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ABSTRACT
Key management is the pillar of a security architecture.
Body sensor networks (BSNs) pose several challenges – some
inherited from wireless sensor networks (WSNs), some unique
to themselves – that require a new key management scheme
to be tailor-made. The challenge is taken on, and the result
is KALwEN, a new lightweight scheme that combines the
best-suited cryptographic techniques in a seamless frame-
work. KALwEN is user-friendly in the sense that it requires
no expert knowledge of a user, and instead only requires a
user to follow a simple set of instructions when bootstrap-
ping or extending a network. One of KALwEN’s key fea-
tures is that it allows sensor devices from different manu-
facturers, which expectedly do not have any pre-shared se-
cret, to establish secure communications with each other.
KALwEN is decentralized, such that it does not rely on
the availability of a local processing unit (LPU). KALwEN
supports global broadcast, local broadcast and neighbor-to-
neighbor unicast, while preserving past key secrecry and fu-
ture key secrecy. The fact that the cryptographic protocols
of KALwEN have been formally verified also makes a con-
vincing case.

1. INTRODUCTION
Specialized WSNs called BSNs are facilitating a revolution

in the healthcare industry. A BSN is a wireless network of
small, low-cost, biosensors worn by a human user, for the
purpose of monitoring the user’s physiological parameters,
e.g., ECG, EMG, EEG, SpO2, blood pressure etc.

The classic architecture of a BSN consists of a network
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of biosensors and an on-body local processing unit (LPU),
usually in the form of a PDA or mobile phone, directly or
indirectly connected to a remote server storing the user’s
records [26]. However, for practical purposes that include
avoiding a single point of failure, in our reference archi-
tecture, we do not stipulate the presence of an LPU. The
number of nodes is up to a few dozens. All nodes are capa-
ble of far-field (radio) communication, some nodes in addi-
tion maybe wired or capable of near-field communication –
device-to-device or intra-body (the latter is also called body-
coupled communication [40]).

The security and privacy problems related to healthcare
systems are real [2]. As a recent study has demonstrated,
medical devices that do not support any confidentiality and
authentication function are prone to eavesdropping and at-
tacks [18]. Solving these problems requires data confidential-
ity and authentication. Providing data confidentiality and
authentication in turn requires a key management scheme to
put the cryptographic keys in place. A practical key man-
agement scheme has to take into account the following con-
straints of a BSN 1:
(i) Usability: The most basic functional requirement is
that the key management process has to be autonomous
enough such that barring some simple, fool-proof procedures
a user has to follow, it requires no expert knowledge whatso-
ever on the part of both the user and the medical personnel.
(ii) Interoperability: Sensor devices from a manufacturer
should interoprate with devices from other manufacturers.
For example, their IDs should be globally unique. Also, due
to their different origins, these nodes should not be required
to store any pre-shared secret. The nodes must be able
to establish session keys without relying on specific sensing
capabilities (more in Section 2).
(iii) Hardware: BSNs experience the same hardware con-
straints as WSNs do, i.e., limited computational power, lim-
ited memory, limited bandwidth and limited energy. Public-
key algorithms should thus be avoided as much as possible.
Moreover, a sensor node is typically not tamper-resistant.
(iv) LPU: When BSNs evolve from WSNs, they lose the
dependability of a base station, because in BSNs, the equiv-
alent of a base station – an LPU – might not exist. After all,

1While it is paramount for implantable medical devices to
provide emergency accessibility mechanisms, BSNs are gen-
erally only for monitoring and it is likely that an emergency
personnel has and should prefer to use their own equipments
to diagnose the user, so emergency accessibility of a BSN is
less critical.



an LPU is potentially costly, is cumbersome to carry around
and may present itself as a single point of vulnerability. The
hardware constraint suggests that we should not expect any
expert to manage cryptographic keys, whereas the LPU con-
straint suggests even if there is such an expert, there might
not be an LPU with the proper user interface for him/her
to manage keys.
(v) Multihop: Although the human body is relatively
small-scale compared to the radio range of a typical sensor
node, due to the unpredictable nature of radio communi-
cations, we must assume some nodes are not directly con-
nected, i.e., some nodes need to communicate across multi-
ple hops.

Our objective is to propose a key management scheme
under the above constraints. Our contribution is KALwEN
(short for Key management for Amblient Living with Em-
bedded Networks). KALwEN combines the most relevant
techniques in the literature in a complete framework, and is
possibly the first proposal of such nature. KALwEN satisfies
the above-mentioned requirements/ constraints, and sup-
ports the three basic communication modes: global broad-
cast, local broadcast and neighbor-to-neighbor unicast, while
preserving past key secrecry and future key secrecy. Using
formal verification, we show that the cryptographic proto-
cols of KALwEN are secure.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 introduces the building blocks
of KALwEN. Section 4 gives an overview of KALwEN. Sec-
tion 5 describes the threat model and the assumptions against
which KALwEN is built. Sections 6 to 10 specify the pro-
tocols for the factory phase, bootstrap phase, deployment
phase and operation phase of a BSN. Section 11 presents our
formal verification results. Finally, Section 12 concludes.

2. RELATED WORK
BSNs, being descended from WSNs, can benefit from the

many ideas that have already been proposed for WSNs. Per-
rig et al. [33] pioneer the use of one-way hash chains in
the form of µTESLA to achieve authenticated broadcasts
in WSNs. Anderson et al. [3] suggest during the bootstrap-
ping phase of a network, keys can be exchanged in the clear.
LEAP+ [45] and its improved variants [14] suggest that dur-
ing the short time before a node is likely to be compromised,
a node can use its so-called initial key (a system-wide tran-
sitory master key) to establish secure channels with all its
neighbors, before deleting the initial key. Kuo et al. [21] pro-
pose establishing a pairwise key between a base station and
each node in a Faraday cage. For bootstrapping multiple
nodes at the same time, they recommend using software at-
testation [38] to make sure all the nodes are uncompromised
before the pairwise keys are transmitted in the clear within
the Faraday cage. In combination with Diffie-Hellman key
exchange, software attestation can be used for key establish-
ment [37]. The catch is, software attestation works only (i)
when the verifier has the same software as the prover’s, and
(ii) when a verifier knows the exact make and model of a
sensor node’s CPU.

The random key pre-distribution paradigm is pioneered by
Eschenauer et al. [17] and later extended by Liu et al. [25]
and Du et al. [16]. The idea is to prepare a pool of ‘keying
material’ (which can be single symmetric keys [17], polyno-
mials [25] or matrices [16]), called the key pool ; and to each
sensor node, distribute a fixed-size subset of keying material

randomly chosen from the key pool (a node’s keying mate-
rial is called the node’s key ring). Two neighobrs are able
to establish a pairwise key when they share at least a key.
Two neighbors that do not share a key must use a common
trusted neighbor to establish a pairwise key – the number of
neighbors that are involved in the process is called the key-
path length. The paradigm is particularly useful for limiting
key storage per node in large-scale WSNs.

Later extensions of random key pre-distribution introduce
deterministic, combinatorial designs – each key ring is drawn
from the key pool in a deterministic fashion according to
some combinatorial rules (for brevity, we call this paradigm
combinatorial key pre-distribution). Various combinatorial
designs have been proposed [23, 11, 9]. With respect to
a fixed key ring size, the various designs enable different
trade-offs on the following parameters: probability of key-
share, average key-path length, resilience to node capture.
The conclusion so far is that except for really small networks
(networks that consist of at most n nodes and where a sensor
node can store at most n − 1 pairwise keys), combinatorial
key pre-distribution seems to be the direction forward for
WSNs, and by extension BSNs.

Ideas from ubiquitous computing can also be useful. The
literature of this area primarily focuses on secure pairing [20].
Secure pairing is a solution to the key establishment prob-
lem between two strangers with no prior shared secret. The
standard solution is to use a band-limited side channel to ex-
change short secrets and based on the short secrets establish
a session key. The usage of four-digit PINs in Bluetooth is a
classic example, although a relatively insecure one. Another
example is to exchange keys in the open, e.g., by signaling
in the source field of the packets, as long as an attacker can-
not tell where the packets originate from [1, 8]. Another
paradigm is to derive a common key by sampling similar
side channels. For example, co-located devices experience
similar radio environments [43]; devices shaken together can
establish a common key [29]. Other examples that are based
on this paradigm involve a pair of human users exchanging
visual information, but these are not as useful [30, 7] for
BSNs. By extension, two devices sensing the same or simi-
lar physiological signals should be able to derive a common
key. This biometric extension is first proposed by Cherukuri
et al. [12] for BSNs. Later work investigates the feasibility
of using the heartrate variability [4], the interval pulse [34],
the electrocardiogram [44] as the biometrics. When all the
nodes in a network are capable of sensing the same type of
signal, these results are applicable, and all the nodes can
establish a common group key. Our goal is to handle the
general case, i.e., where there is a chance that there is no
overlap in sensing capabilities among the nodes.

Some architectures rely on a local base station to authenti-
cate sensor nodes biometrically [27, 28]. These architectures
are more useful for dedicated healthcare facilities than for
ambient-assisted living scenarios.

3. PRELIMINARIES
This section introduces the ‘building blocks’ that we use

to construct KALwEN. Table 1 partially summarizes the
symbols used in this paper.

(a) Elliptic curve Diffie-Hellman (ECDH) Without
any prior shared secret, two nodes can establish a session key
using the Diffie-Hellman (DH) key agreement protocol [15].



Table 1: Partial list of symbols
{·}K Encryption function using key K
[·]K Message authentication function using key K
H(·) Cyptographic hash function
‖ Concatenation operator
R← Randomly and uniformly chosen from
≫ Right shift operator
VSFC Set of all nodes excluding the key distribution

center s in a Smart Faraday Cage
N v Set of all neighbors of node v
IDv ID of node v
NID Network ID
(q, FR, a,
b, G, n, h)

Domain parameters (Section 3)

K Key space
KM Membership key (Section 8)
P, P Key pool (Section 2), P = | P |
κv , K Key ring of node v (Section 2), K = |κv |
CD(P, IDv) A function that returns to the node v, its key

ring and corresponding key indexes drawn
from the key pool P

KID An array of key indices
KG Global key (Section 4)
Kv Cluster key of v (Section 4)
K′ Renewed version of key K
Nv Nonce sent by v
τ Threshold of a secret sharing scheme
l Number of keys in a one-way hash chain
m Length of a hash
c Length of a counter
q Order of a finite field, or number of oracle

queries, depending on the context

Over the years, the original DH protocol has been heavily
extended. Among the numerous variants that exist in the
literature, the variant discussed here is the elliptic curve
Diffie-Hellman (ECDH) scheme [10, Section 6.1] using the
elliptic curve cofactor Diffie-Hellman primitive (which is re-
sistant gainst small subgroup attacks compared to the orig-
inal primitive) [10, Section 3.3.2]. The security of ECDH
hinges on the intractability of finding l such that lG = Q
given G, a point on an elliptic curve of large prime order,
and Q, a scalar multiple of G. Recent implementation re-
sults show that while ECDH is expensive, it is achievable at
a time cost of the order of seconds, a ROM cost of under
20 KB and a RAM cost of around 2 KB, i.e., within the
capabilities of a typical sensor node [24].

An elliptic curve cryptosystem is built on a set of domain
parameters. The standard notation for describing domain
parameters is (q, FR, a, b, G, n, h), where q is the order of
the finite field the elliptic curve takes its values from, FR is
the field representation, a and b are the coefficients of the
elliptic curve, G is the base point on the elliptic curve, and
nh (n being a large prime) is the number of rational points
on the elliptic curve.

Suppose node u has private/public key pair du/duG whereas
node v has private/public key pair dv/dvG. Then the ses-
sion key Kuv between u and v is derived as follows: (i)
u and v exchange their public keys, (ii) u (v) computes
(x, y) = hdudvG (= hdvduG), (iii) if (x, y) = (0, 0) then
stop, otherwise Kuv = KDF (x), where KDF () is a key
derivation function (that typically invokes a hash function
multiple times). The reason for using KDF () is that x may
have some bits that can be predicted with non-negligible
advantage [22].

(b) Combinatorial key pre-distribution We are solely
interested in the type of scheme that ensures that any pair of
nodes have at least one key in common. While this type of
schemes are in general less resilient to node capture attacks,
it is important from the users’ perspective that network de-
ployments are snappy, and furthermore, an attacker cannot
capture too many nodes without alarming the user. High
probability of key-share therefore takes precedence over re-
silience. Suppose the key ring size is fixed at K. The sim-
plistic approach of setting the key pool size P = 2K − 1
and assigning one of the

(
2K−1

K

)
combinatorial patterns to

a node would make sure any pair of nodes share at least a
key [31], but the resilience of this scheme is unsatisfactory
(capturing a node compromises half of the key pool). A
better approach is symmetric designs [9]. For a key ring
size of K, there exists a symmetric design that supports
up to (K − 1)2 + (K − 1) + 1 nodes, and that ensures any
pair of nodes share exactly one key. The supported net-
work size seems to be sufficient for BSNs, for example, when
K = 10, the maximum network size is 91; when K = 20,
the maximum network size is 381, which is more than the
size expected of a BSN. In case the maximum supported
network size is exceeded, a symmetric design can be ex-

tended to support up to
(
(K−1)2+(K−1)+1

K

)
nodes [9], at the

cost of reducing the probability of key-share. We write
CD() to denote a function that outputs the key ring and
key identifiers allocated from a key pool to a node, i.e.,
(κv,KIDv) = CD(P, IDv). Each ‘key’ in a key ring in this
context can actually be a single symmetric key or a polyno-
mial [36], depending on the desired level of trade-off: using
polynomials gives better resilience at the cost of memory
usage. The decision on whether to use polynomials or sym-
metric keys can be safely deferred to the time of actual im-
plementation without sacrificing the soundness of KALwEN.

(c) One-way hash chain µTESLA [33] is the de facto
symmetric-key solution for authenticated broadcast. To boot-
strap the protocol, the sender s first generates a one-way
hash chain {Hs,0, Hs,1, ..., Hs,l−1}, where Hs,i = H(Hs,i+1)
(i = 0, ..., l − 2), H() is a cryptographic hash function (the
security requirements of which will be determined shortly)
; and distributes Hs,0 (called the commitment of the hash
chain) to the receivers securely. For this protocol to work,
the sender and the receivers must synchronize their clocks, at
least loosely. The sender and the receivers divide time into
intervals. Whenever the sender broadcasts a message Mi

during time interval i, the sender always appends [Mi]Hs,i

to Mi. The receivers cannot authenticate Mi until δ in-
tervals later, when the sender would broadcast Hs,i in the
clear. The receivers successfully authenticate Mi if (i) there
exists a past key Hs,j = Hi−j(Hs,i) (0 ≤ j < i); and (ii)
Hs,i generates [Mi]Hs,i .

Bradford et al. [5] propose using k-wise independent hash
chain functions for µTESLA, but they also discover the
probability of choosing such a function from the set of all
functions from {0, 1}m to {0, 1}m is impractically small when
k is large. So in practice, µTESLA should not be used in its
original form. Instead, a larger domain should be used; for
example, by using a separate chain of salts [32], i.e., Hs,i =
H(salts,i+1‖Hs,i+1). Meanwhile, Bradford et al. [6] propose
using a separate chain of counters which do not need to be
transmitted; they also propose Hs,i = H(Hs,i+1‖Hs,i+2‖...).
Throughout our ensuing discussion, for clarity, we continue



to write µTESLA in its original form, with the implicit un-
derstanding that in execution, µTESLA should be imple-
mented using one of the aforementioned more secure propos-
als, and with an always preimage-resistant (aPre-secure [35])
hash function that is indifferentiable from a random ora-
cle [13].

(d) Threshold secret sharing The standard technique
for sharing a secret between n parties such that any τ or
more parties can reconstruct the secret is (τ, n)-threshold
secret sharing [39]. If the secret to be shared is S, then
a random polynomial over a finite field of order q, f(x) ∈
Zq[x], is generated, such that f(x) =

∑τ−1
i=0 aix

i ∈ Zq[x],
where a0 = S, and q is larger than the largest possible value
of S. The shares are distributed as f(IDi) (i = 1, ..., n),
where IDi’s are the individual IDs of the participants. Any
τ or more shares are enough to reconstruct S via Lagrange
interpolation. τ − 1 or less shares reveal no information at
all about S.

4. SCHEME OVERVIEW
We begin the overview by identifying the essential keys

that need to be established. Then we describe the architec-
ture of a node in terms of its life cycle, hardware architec-
ture and finite state machine. At the end of this section, we
also describe the equipments that are needed to support the
nodes.

KALwEN’s mission is to support authentication in these
communication nodes: (i) neighbor-to-neighbor unicast, (ii)
local broadcast, (iii) global broadcast. The first two commu-
nication modes are the basic operations of a medium access
protocol. The latter is the basic operation of a routing pro-
tocol.

To support confidential and authenticated neighbor-to-
neighbor unicast, every pair of neighbors need a pairwise
key [45].

To achieve confidential and authenticated local broadcast,
a node needs to share a cluster key and uses a cluster hash
chain with its neighbors [45].

Confidential and authenticated global broadcast by a node
requires the node to share a global key and use a global hash
chain with all the nodes in the network [45].

Figure 1(a) illustrates (i) the global key and global hash
chain used by the KDC s; (ii) the pairwise keys used by v
and v’s neighbors; and (iii) the cluster key and cluster hash
chain used by v.

Node architecture We divide the life cycle of a node
into the following phases:

• Factory phase: Happens after the node is manufac-
tured and before the node is bootstrapped for the first
time.

• Bootstrap phase: Happens when the user bootstraps
the node in a controlled enviroment, and before the
user deploys the node.

• Deployment phase: Happens after the user bootstraps
the node, but before the node starts operating. This is
the time when the node tries to discover its neighbors.

• Operation phase: Happens after the node has discov-
ered all its neighbors.

• Limbo phase: Happens after the node is removed from
the network. Before the node can be deployed again,
it must be re-bootstrapped.

When a node is first switched on, its bootloader copies the
operating system (OS) from the external program memory
to the internal program memory, and then transfers control
to the OS in the internal program memory. Whenever a
node is reset, the OS in its internal program memory is
erased, and its bootloader copies the OS from the external
program memory to the internal program memory afresh.
All ephemeral cryptographic keys are stored in the RAM, so
that when a node is switched off or reset, all keys are lost.

Figure 1(b) depicts the simplified finite state machine
(FSM) of a node. The innerworking of this FSM shall be-
come clear as we describe the protocols in later sections.

Equipments To bootstrap a network, and to add a node
to a network, two equipments are needed: a ‘Smart Fara-
day Cage’ (SFC) and an RF jammer. A Faraday cage is
a metal enclosure for shielding equipments within the cage
against electromagnetic fields outside the cage. A Faraday
cage, although not yet commercially available for BSNs, can
already be purchased for individual mobile devices2. The
kind of SFC we require is a Faraday cage with imbued intel-
ligence such that it can also act as a KDC for the nodes
to be bootstrapped, i.e., the SFC and the KDC are the
same entity. The conceptual design of the SFC consists of
a knob that can be set to one of the three modes: (i) ‘Boot-
strap’ for bootstrapping nodes to form a new network; (ii)
‘Standby’ for writing everything in its volatile memory to its
nonvolatile memory and going to sleep; (iii) ‘Add’ for boot-
strapping nodes to be added to the previously bootstrapped
network. The SFC has three indicators: ‘Working’, ‘Done’
and ‘Error’. One security requirement of the SFC is that it
must be dimensioned such that any two nodes in it must be
within range of each other. The functional requirements of
the SFC are defined by the protocols the KDC has to fol-
low, as we describe below. A jammer can come in the form
of a transceiver with minimum intelligence, that constantly
transmits a noise signal. It is to be emphasized that an SFC
and a jammer are only needed when bootstrapping a network
or adding a node to a network.

5. THREAT MODEL AND ASSUMPTIONS
An attacker is computationally bounded. This is a stan-

dard cryptographic assumption, implying even if the at-
tacker has access to supercomputers, its computing power
is at most polynomial.

Communication-wise, there exists a range around a BSN
outside which no attacker can eavesdrop on the messages
of the BSN, even with advanced skills and equipments [19].
When an attacker is in range, the attacker can forge, inter-
cept and arbitrarily manipulate any message, as prescribed
by the standard model [41]. When an attacker is out of
range, the attacker can only forge messages.

Hardware-wise, an SFC is tamper-resistant whereas a nor-
mal node is not. The SFC acts as a ‘control center’ for BSNs
much like a base station acts as a center of command for
WSNs. If the center of command is compromised, enforcing
any form of security is meaningless. The essential rationale
behind this assumption is that it is easier to safeguard the

2For example, http://www.mobilecloak.com
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Figure 1: (a) Essential key types; (b) simplified finite state machine of a node

security of a single component rather than a host of smaller
components that are far less physically manageable.

Physically, an attacker can get in-range with a BSN for
an indefinite amount of time, but an attacker cannot try to
remove τ or more nodes without the user noticing.

6. FACTORY PHASE
In the factory phase, every node v is embedded with the

same set of domain parameters (q, FR, a, b, G, n, h) (Sec-
tion 3).

For all the protocols of KALwEN, it is vital that a node
can generate pseudorandom numbers with sufficient ran-
domness. There are ways to collect entropy for this purpose,
for example, by sampling the radio or on-board sensors. As
a supplement, every node can be embedded with a unique
seed, to be used as an input to the builtin pseudorandom
number generators.

All of the above also applies to SFCs.

7. BOOTSTRAP PHASE

Smart Faraday Cage

Jammer

(1)

Jammer

(2)

Jammer

(3)

Jammer

(4)

Boot-
strap

Add
Standby

Working
Done
Error

Boot-
strap

Add
Standby

Working
Done
Error

Boot-
strap

Add
Standby

Working
Done
Error

Boot-
strap

Add
Standby

Working
Done
Error

Figure 2: Procedure for bootstrapping nodes

The bootstrap process takes place in a controlled envi-
ronment. Apart from the nodes themselves, the user needs
two equipments: a ‘Smart Faraday Cage’ (SFC) and an RF
jammer, which have already been described in Section 4.

The instructions a user has to follow are: (Figure 2): (1)
switch on the jammer, then switch on and reset the nodes
in close proximity of the jammer; (2) put the nodes in the
SFC; (3) set the mode of the SFC to ‘Bootstrap’ and seal

the SFC; (4) wait for the ‘Done’ indicator and then deploy
the nodes. We describe the technical detail behind the in-
structions below.

Denote a node by v. When v is switched on, it senses
the medium for a signal. If a noise signal is sensed, v sets a
wake-up timer and go to sleep until the wake-up timer times
out. This process continues until v wakes up and senses no
noise signal. This is the time when v has been put into
the SFC. Once v senses the channel is clear, it broadcasts
a HELLO packet. All nodes contend for the medium to
send their HELLO packets. Once the KDC stops hearing
HELLO packets, based on (i) the number of distinct HELLO
packets the KDC has received so far (which is |VSFC | if all
nodes have sent their HELLO packets, but in anticipation for
expansion, the KDC should add some margin to the network
size), and (ii) the minimum size of a key ring K, the KDC
computes the necessary key pool size and generates a key
pool P of that size. With each node v, the KDC establishes
a pairwise key Ksv using ECDH. For v, the KDC allocate κv,
a block of K keys from P. To v, the KDC then dispatches
κv and other keying material encrypted using Ksv. Denote
the KDC by s, and the protocol is as follows:

Protocol 1. (Closed environment in the SFC)

∀v ∈VSFC,

v : rv
R←[1, n− 1]

v → ∗ : IDv‖ID∗‖HELLO‖rvG‖Nv

∀v ∈VSFC,

s : rs
R←[1, n− 1]

Ksv is derived per Section 3(a)

KM
R←K (detail later)

(κv,KIDv) = CD(P, v)

KG
R←K, Hs,l−1

R←{0, 1}m

Hs,i−1 = H(Hs,i)∀i ∈ {1, ..., l − 1}
θ = IDs‖IDv‖BOOT‖rsG‖Ns‖NID

‖{KM‖κv ‖KIDv‖KG}Ksv‖Hs,0

s→ v : θ‖[Nv‖θ]Ksv

v → s : [Ns]Ksv

Some notes about protocol listings:



• In Protocol 1, every message is explicitly prepended
with a source field and a destination field. Hereafter
however, the source field and the destination field will
be made implicit. If a message is appended with a
message authentication code (such as the message s→
v), the code is implicitly calculated over the source field
and the destination field as well.

• Whenever we use the same key for encryption and mes-
sage authentication in the same message, we are in fact
using separate sub-keys derived from the same key. For
example, for the last message in Protocol 1, we are ac-
tually using [1]Ksv and [2]Ksv as the encryption key
and the message authentication key respectively, con-
sistent with standard approach [33]. For brevity, we
use Ksv to denote both sub-keys.

• While using message authentication code (MAC) is
the standard technique for message authentication, an
efficiency-enhancing alternative is to use H(key‖message),
although at the expense of security.

As Protocol 1 does not authenticate public keys, it is open
to impersonation attacks. However, if say a malicious node
tries to impersonate v or the KDC, such action is imme-
diately detectable by v or the KDC, because every node is
within range of each other. If the attack is against v, v
would immediately alert the KDC, and the KDC would im-
mediately signal ‘Error’ to the user. If the attack is against
the KDC, the KDC would directly signal ‘Error’ to the user.
Consequently, impersonation attacks and hence man-in-the-
middle attacks are detectable in the specific environment of
the SFC.

KM is called the membership key because it will be used
to establish pairwise keys between neighboring nodes in the
deployment phase. After broadcasting KM , the KDC only
keeps H(KM ) instead of KM itself. Doing so serves two
purposes: (i) even when the KDC itself is compromised,
an attacker cannot obtain KM ; (ii) the hash can be used
in Protocol 3 to verify if the shares are correctly recovered
(more on this in Section 9).

If the protocol goes well without any impersonation at-
tack, after the KDC has finished bootstrapping all nodes,
the KDC signals ‘Done’ to the user and the nodes are ready
for deployment.

8. DEPLOYMENT PHASE
Neighbor discovery takes place during the deployment phase.

Every node sets up a pairwise key with each of its neighbors.
Using the pairwise keys, the node distributes its (i) cluster
key and (ii) a commitment of its cluster hash chain to all its
neighbors, per Protocol 2.

Protocol 2.

∀v ∈V,

v → ∗: JOIN‖{NID‖KIDv}KM

∀u ∈N v,

u : Kuv ← H(x) where x ∈ κu ∩κv

Ku
R←K, Hu,l−1

R←{0, 1}m

Hu,i−1 = H(Hu,i)∀i ∈ {1, ..., l − 1}
θ = {Ku}Kuv‖Hu,0‖Nu

u→ v : θ‖[θ]Kuv

v : Kuv ← H(x) where x ∈ κu ∩κv

v → u: [Nu]Kuv

All legitimate nodes are supposed to have obtained KM

in the bootstrap phase. Any outsider without KM is unable
to join the network.

After neighbor discovery (signalled by a certain time-out),
every node generates deterministically a function

f(x) =

τ−1∑
i=0

aix
i ∈ Zq[x], (1)

where a0 = KM , ai = Hi(a0), and q is larger than both the
largest possible membership key and the largest possible ID.
Since f(x) is generated deterministically, all nodes get the
same coefficients ai (i = 0, ..., τ − 1). Each node v then
evaluates f(IDv), and discards all the coefficients, as well
as KM . This secret sharing scheme ensures that at least
τ shares of KM are required to reconstruct KM and this
is the principle behind the process of node addition, to be
discussed later. Deleting KM ensures that KM cannot be
used to perform illegitimate node addition.

At the end of the bootstrap phase, each node is capable of
secure neighbor-to-neigbor unicast and secure local broad-
cast. Each node can also receive secure broadcast from the
KDC, when the broadcast is relayed by a chosen node, as
we shall discuss in the next section.

9. NODE ADDITION
Since a new node is considered trusted to be added to a

network, there seems to be no incentive in enforcing past key
secrecy (not to be confused with “perfect forward secrecy”),
which is the requirement that a new member must not know
old group (global) keys [41]. However, the new node may
actually turn out to be rogue, in which case it is prudent to
refresh the global key before admitting the new node into
the network.

The easiest but most inefficient way to add a node to the
network is to reset and bootstrap all nodes afresh. An alter-
native solution is to have new nodes pre-bootstrapped. For
example, during the previous bootstrap phase, 20 nodes are
bootstrapped but only 10 are deployed. The other 10 nodes
that are not deployed are considered pre-bootstrapped. How-
ever, this solution stresses too much on foresight; and would
not work at all if there are no extra nodes to start with in
the first place.

For a new node to join the network, the user must un-
dertake a procedure that is hard for an attacker but easy
for him/herself to accomplish. Upon successful completion
of the procedure, there should be a viable cryptographic
means for the new node to establish the necessary keys for



supporting all the basic communication modes. Our ratio-
nale is to require the user to use a fair number of nodes to
help bootstrap the new node, as under our assumption it is
hard for an attacker to acquire that many nodes from the
user without raising the user’s suspicion.
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Figure 3: Procedure for adding a node

To add a node to the network, a user has to follow these
instructions (Figure 3): (1) switch on and reset the new node
in close proximity of the jammer, and put the new node into
the SFC; (2) pick any τ operating nodes and put them into
the SFC; (3) seal the SFC and set it to ‘Add’ mode as soon
as the previous step is completed; (4) wait for the ‘Done’
indicator and then deploy the nodes, with the old nodes
first and the new node last. We describe the technical detail
behind the instructions below.

Denote the new node by w. When w is switched on, it
senses the medium for a signal. If a noise signal is sensed,
w sets a wake-up timer and goes to sleep until the wake-
up timer times out. This process continues until w wakes
up and senses no noise signal. This is the time when w
has been put into the SFC. Once w senses the channel is
clear, it broadcasts a HELLO packet. If there are more
than one new node, the other new nodes will also contend for
the medium and broadcast their HELLO packets. Once the
KDC stops hearing HELLO packets, it broadcasts an ADD
packet (reminder: the KDC has been set to ‘Add’ mode).
The protocol is as follows, assuming the latest released hash-
chain hash by the KDC is Hs,i−1:

Protocol 3. (Closed environment in the SFC)

w : rw
R←[1, n− 1]

w → ∗ : HELLO‖rwG‖Nw

s→ ∗ : ADD‖[ADD]Hs,i

s→ ∗ : Hs,i

∀v ∈VSFC \{w},
v → s : {f(IDv)}Ksv‖[{f(IDv)}Ksv ]Ksv

s : rs
R←[1, n− 1]

Ksw is derived per Section 3(a)

K′
M

R←K, (κw,KIDw) = CD(P, w)

K′
G = [0]KG

θ1 = BOOT‖rsG‖Ns‖NID‖{K′
M

‖κw ‖KIDw‖K′
G}Ksw‖Hs,i

s→ w : θ1‖[Nw‖θ1]Ksw

w → s : [Ns]Ksw

s : u
R←VSFC \{w}

θ2 = DLGT‖{K′
M‖Hs,i+1}Ksu

s→ u : θ2‖[θ2]Ksu

The pairwise keys Ksv (∀v ∈ VSFC \{w}) are used to
transport the key shares f(IDv) to the KDC. If there are
less than τ operating nodes, the KDC would not be able to
reconstruct the membership key KM , and the KDC would
not give w the necessary keying material to join the network.
If there are enough key shares to reconstruct KM , the KDC
would verify if the hash of the reconstructed KM is the same
as the stored H(KM ), and if verification succeeds, the KDC
dispatches the necessary keying material to w.

u (randomly chosen) is delegated the task of broadcasting
K′

M encrypted to existing members of the network. In order
for u to do this, u must be able to relay the KDC’s message
in an authenticable fashion. Getting Hs,i+1 from the KDC
allows u to do this.

Delegation to u After the nodes ∈ VSFC \{w} have been
taken out of the SFC and returned to their original locations,
u broadcasts a RENEW packet:

Protocol 4.

u→ ∗: RENEW‖{K′
M}KG‖[{K

′
M}KG ]Hs,i+1

u→ ∗: Hs,i+1

∗ : K′
G = [0]KG

K′
M is encrypted with KG so that only existing operat-

ing nodes can receive K′
M . Authentication is provided by

Hs,i+1. All nodes refresh the global key as K′
G = [0]KG .

Neighbor discovery by w After the new node w has
been taken out of the SFC and fixed at its intended loca-
tion, it initiates neighbor discovery, by broadcasting a JOIN
packet. It is possible that when w broadcasts its JOIN
packet, w’s neighbors have not received K′

M yet, so would
ignore w’s request. w would have to keep on trying until
any of its neighbors respond, or until a certain retry limit is
reached, depending on which event occurs first. A neighbor
v, on hearing the w’s JOIN packets in its operating phase in-
stead of its deployment phase, would respond by unicasting



the necessary keying material to w. After neighbor discov-
ery (delineated by a certain time-out), w becomes a regular
member of the network. The protocol is as follows:

Protocol 5.

w → ∗ : JOIN‖{NID‖KIDw}K′
M

∀v ∈Nw,

v : Kvw ← H(x) where x ∈ κv ∩κw

θ1 = {NID‖KIDv}K′
M
‖{Kv}Kvw‖Hv,iv‖Nv

v → w: θ1‖[θ1]Kvw

w : Kvw ← H(x) where x ∈ κv ∩κw

θ2 = {Kw}Kvw‖Hw,0‖Nw

w → v : θ2‖[Nv‖θ2]Kvw

v → w: [Nw]Kvw

After neighbor discovery (signalled by a certain time-out),
every node generates deterministically a function f(x) based
on K′

M per Equation 1, stores f(IDv) and discards all the
coefficients as well as K′

M . The old key share is also deleted.

Proposition 1. Suppose an attacker is within range of
the BSN and hence has control over the air interface of the
BSN throughout the operation lifetime of the BSN, but does
not have physical access to any of the nodes. Suppose the
hash chain Hs,i = H(Ci+1‖Hs,i+1) is used, where Ci is
the counter corresponding to the ith epoch, and |Ci| = c.
Provided H : {0, 1}c+m → {0, 1}m is an aPre-secure hash
function that is indifferentiable from a random oracle, the
attacker’s advantage in adding a node to the BSN is at most
1− (1− 2−m)q, where q is the number of calls of H() made
by the attacker.

Proof. By definition, an attacker successfully adds a node
w to the network when w successfully establishes a secure
channel with at least one of w’s neighbors. However, w’s
neighbors would only respond to w’s JOIN request after
they have received a RENEW command. To achieve this,
the attacker needs to forge a RENEW command, which re-
quires the attacker to forge Hi+1 (subscript s is dropped for
simplicity) at the very least. The attacker’s advantage in
forging Hi+1 is the probability of the attacker, with knowl-
edge of the released keys H0, H1, ..., Hi, finding x such that
H(Ci+1|x) = Hi. Formally, the attacker’s advantage, using
an algorithm A, is the conditional probability

Adv(A) = Pr
[
x← A(Hi) : (x ≫ m) = Ci+1 ∧H(x) = Hi

∣∣
Hi−1 ← H(Ci|Hi) ∧ ... ∧H0 ← H(C1|H1)

]
.

Provided that H() is indifferentiable from a random oracle,

Adv(A) = Pr
[
x← A(Hi) : (x ≫ m) = Ci+1∧H(x) = Hi

]
.

Let us define algorithm A0 as follows (where X is the do-
main, y is the target hash value, and q is the number of
queries):

Algorithm A0(h,y,q)
choose X0 ⊆ X: |X0| = q ∧ (x ≫ m) = Ci+1, ∀x ∈ X0

foreach x ∈ X0 { if H(x) = y then return x }
return FAILURE

In the random oracle model, every x ∈ X0 has a probability
of 2−m being mapped to y. The success probability of algo-
rithm A0 is therefore εA0 = 1 − Pr[no x is mapped to y] =

1 − (1 − 2−m)q. In fact, algorithm A0 can be shown to be
the optimal algorithm, i.e., using any other algorithm A,
εA ≤ εA0 . We prove this by induction on q. Let q = 1.
A might start with a subset X0 that does not contain only
elements that have prefix Ci+1. Among the x’s that have
prefix Ci+1, each of them has a probability of 2−m of being
mapped to y, so εA ≤ εA0 for q = 1. Suppose εA ≤ εA0 for
q = k − 1. When q = k, εA = Pr[preimage not found in the
previous k − 1 steps]Pr[preimage found in the kth step] +
Pr[preimage found in the previous k − 1 steps], i.e.,

εA ≤ (1− 2−m)k−12−m + 1− (1− 2−m)k−1

= 1− (1− 2−m)k

Hence, εA ≤ εA0 also holds for q = k. The above result
can actually be obtained by comparing algorithm A0 with
algorithm FindPreimage [42] – they are the same except on
how X0 is chosen.

Algorithm FindPreimage(h,y,q)
choose X0 ⊆ X with |X0| = q
foreach x ∈ X0 { if H(x) = y then return x }
return FAILURE

Therefore, Adv(A) ≤ 1− (1− 2−m)q.

10. NODE REMOVAL
When a node is removed from a BSN (detectable by time-

out), future key secrecy (FKS) must be enforced, i.e., new
group (global) keys must not be known by old members [41].

To remove a node, the only instruction a user has to follow
is to switch off the node. All the keys are supposed to be
stored in the RAM of the node, so once the node is switched
off, all the keys are lost, and FKS is preserved.

What might happen is that an attacker might steal one
or more of the nodes to read out the global key. Since there
is no KDC in the network, there is no means to refresh the
global key immediately, the strategy is to ensure each sensor
monitor its neighbors’ heartbeat/keep-alive packets. A node
considers itself removed from the network when it stops re-
ceiving heartbeat packets for a certain duration. Once a
node considers itself removed from the network, it erases all
keys in its RAM. There are a few design considerations here:
(i) The heartbeat packets must be authenticated and fresh
to prevent an attacker from forging heartbeat packets or
replaying past heartbeat packets. This is readily achievable
by using cluster hash chains.
(ii) This duration between the heartbeat packets of a node
must be less than the time required by an attacker to suc-
cessfully read out the keys in the RAM of the node, but
more than the time required for putting τ nodes in an SFC.
A conservative estimate in the order of a few minutes should
probably be used, but more practical experience is needed
to finetune the timing.

11. FORMAL VERIFICATION OF PROTO-
COLS

While Proposition 1 gives the probability of an attacker
adding a node to a BSN, it rules out active attacks like the
planting of malicious nodes in the BSN that actively attack
the protocols (notice the phrase “not have physical access”
in Proposition 1). In the face of active attacks, we prove
the security of Protocols 1 to 5 by formal verification. For



this, we use the automated tools ProVerif3 and Scyther4.
ProVerif is a theorem prover that represents a protocol by a
set of Horn clauses. ProVerif supports unbounded number
of sessions and unbounded message space. Scyther is a tool
that uses symbolic analysis with backwards search based on
partially ordered patterns (which represent infinite sets of
traces). Scyther supports unbounded number of sessions but
only guarantees termination for bounded number of sessions.

We use Scyther as our primary tool because (i) to spec-
ify simple protocols, its security protocol definition language
is easier to use, and (ii) it has a convenient user interface.
However, since Scyther does not support DH, we resort to
ProVerif for Protocol 1 and 3. To simulate the SFC in Proto-
col 1 and Protocol 3, we declare a private free channel in
ProVerif. To simulate DH, we use the equation construct:

fun dh/2. fun g/1. equation dh(x,g(y)) = dh(y,g(x)).

Using Scyther is rather straightforward for the other proto-
cols. For each of the protocols, we verify that the secrecy of
the relevant keys is maintained, and that mutual authentica-
tion property among the principals is achieved. Specifically,
for Protocols 2 and 5, we have verified that even when KM

is compromised, the session key Kuv (or Kvw) is secure as
long as the key shared by v and u (or w) is not compromised.
Finally, since neither ProVerif and Scyther support timing
mechanisms used in µTESLA, verification of Protocol 4 has
not been performed. The scripts are available online5.

12. CONCLUSION AND FUTURE WORK
KALwEN is a key management architecture for BSNs. It

combines the cryptographic techniques of ECDH, combina-
torial key pre-distribution, authenticated broadcast by one-
way hash chains and threshold secret sharing in a complete
framework. KALwEN addresses the usability, interoperabil-
ity, hardware constraints and deployment issues of BSNs. In
terms of usability, a user without expert knowledge needs
but to follow a simple set of instructions to bootstrap or
extend a network. Through user-friendly procedures, sensor
devices from different manufacturers that expectedly do not
have any pre-shared secret can establish secure communica-
tions with each other. KALwEN is lightweight enough to
run on sensor node hardware, and is decentralized so that
it does not depend on the availability of an LPU. While
supporting global broadcast, local broadcast and neighbor-
to-neighbor unicast, KALwEN is able to preserve past key
secrecy and future key secrecy. The fact that all the cryp-
tographic protocols of KALwEN have been formally verified
also makes a convincing case.

One key future task is to improve upon current design of
Protocol 1 such that it (i) requires less user involvement;
and (ii) has less hardware requirements, so that for example
a Faraday cage and public-key cryptography can be avoided.
KALwEN at this stage is a proposal for addressing the con-
straints in Section 1; implementation is pending for substan-
tiating the usability claim.
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