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Abstract

We prove a new invariant torus theorem, for α-Gevrey smooth Hamiltonian sys-

tems, under an arithmetic assumption which we call the α-Bruno-Rüssmann condi-

tion, and which reduces to the classical Bruno-Rüssmann condition in the analytic

category. Our proof is direct in the sense that, for analytic Hamiltonians, we avoid

the use of complex extensions and, for non-analytic Hamiltonians, we do not use

analytic approximation nor smoothing operators. Following Bessi, we also show that

if a slightly weaker arithmetic condition is not satisfied, the invariant torus may be

destroyed. Crucial to this work are new functional estimates in the Gevrey class.

1 Introduction

1.1 The general question

We consider small perturbations of an integrable Hamiltonian system, defined by

q̇ = ∇pH(q, p), ṗ = −∇qH(q, p)

where H is a Hamiltonian of the form

H(q, p) = h(p) + ǫf(q, p), (q, p) ∈ Tn × Rn, 0 ≤ ǫ < 1

where n ≥ 2, Tn = Rn/Zn, ω0 = ∇h(0) ∈ Rn, and ∇2h(0) ∈ Mn(R) is non-degenerate.
When ǫ = 0, the torus T0 of equation p = 0 is invariant and quasi-periodic of frequency
ω0. The general question we are interested in is the persistence of this torus for ǫ 6= 0
sufficiently small : does there exist a torus Tǫ which is invariant and quasi-periodic of
frequency ω0 and which converges (in a suitable sense) to T0 as ǫ goes to zero?

This question was answered positively by Kolmogorov in his foundational paper [Kol54]
under the assumption that H is real-analytic and ω0 is a τ -Diophantine vector (τ ≥ n−1):
there exists γ > 0 such that for all k ∈ Zn \ {0}, |k · ω0| ≥ γ|k|−τ . As a conclusion, the
perturbed torus is real-analytic. It became clear that a regularity assumption on H and an
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arithmetic condition on ω0 were necessary, and then further works investigate the interplay
between the analysis and the arithmetic.

It was certainly a remarkable contribution of Moser (see [Mos62]) to realize that the
question can also be answered for Hamiltonians which are only finitely differentiable. More
precisely (see [Sal04]), if ω0 is τ -Diophantine and if H is of class Cr, with r > 2(τ + 1),
then the torus persists and it is of class Cr′+τ+1 for any r′ < r− 2(τ + 1). If H is smooth,
that is C∞, there is no restriction on τ and the perturbed torus is smooth. It follows from
a recent result of Cheng-Wang [CW13] (which uses an idea of Bessi [Bes00]) that the result
is false if H is of class Cr, with r < 2(τ + 1). Thus in the finitely differentiable or smooth
case, one may consider this Diophantine condition as essentially optimal.

In the real-analytic setting, the Diophantine condition is not necessary. Indeed, it
is sufficient to assume that ω0 satisfies the weaker Bruno-Rüssmann condition (see §2.2
for a definition), as was first proved by Rüssmann in [Rüs01]; an equivalent condition
was actually introduced earlier by Bruno [Bru71], [Bru72] in a different but related small
divisors problem, the Siegel linearization problem. The necessity of this condition turns
out to be a more subtle problem. In the Siegel problem, it is optimal in dimension one (this
is a celebrated result of Yoccoz [Yoc88], [Yoc95]) but in higher dimension it is unknown.
In the Hamiltonian problem we are considering here, the only general result we are aware
of is due to Bessi [Bes00] (extending an earlier result of Forni [For94] for twist maps of the
annulus) in which a torus with a frequency not satisfying a slightly weaker condition can
be destroyed by an arbitrary small analytic perturbation. This leaves open the possibility
of slightly improving the Bruno-Rüssmann condition.

1.2 Main results of the paper

Real-analytic functions are characterized by a growth of their derivatives of order s−|k|k!
for some analyticity width s > 0; in the periodic case, this is equivalent to a decay of
Fourier coefficients of order e−s|k|. Given a real parameter α ≥ 1, allowing a growth of
the derivatives of order s−|k|k!α or, equivalently, a decay of Fourier coefficients of order
e−αs|k|1/α, one is lead to consider α-Gevrey functions, which thus corresponds to real-
analytic functions when α = 1. Since the introduction by Gevrey of the class of functions
now baring his name ([Gev18]), there has been a huge amount of works on Gevrey functions,
mainly for PDEs, but also more recently in other fields, including dynamical systems (see
§1.3 for some related works in dynamical systems dealing with Gevrey regularity).

In this paper, we study the persistence when ǫ is small of the torus T0, as a Gevrey
quasiperiodic invariant torus Tε, under the assumptions that H itself has Gevrey regularity.
The only general result so far is due to Popov [Pop04] who proved that the latter holds
true if ω satisfies a Diophantine condition. This result, the proof of which uses analytic
approximation, extends the result of Kolmogorov when α = 1 but not the one of Rüssmann:
clearly one would expect an arithmetic condition which does depend on α and that reduces
to the Bruno-Rüssmann condition when α = 1.

The main result of the paper is to solve this persistency problem, assuming that the
frequency ω0 satisfies some arithmetic condition which we call the α-Bruno-Rüssmann
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condition, which is weaker than the Diophantine condition and agrees with the Bruno-
Rüssmann condition when α = 1. This is the content of Theorem A; Theorem B and
Theorem C deal respectively with the iso-energetic and time-periodic versions. We will also
state and prove a Gevrey analogue of Arnold’s normal form theorem for vector fields on the
torus (Theorem E). Theorem H is a more precise, quantitative statement, with parameters,
which does not require non-degeneracy, and from which Theorem A and Theorem E follow.
We also notice that Bessi’s ideas [Bes00] may be adapted to the Gevrey setting, to provide
a necessary arithmetic condition for the invariant torus to persist (Theorem D). The so-
obtained condition fails to agree with the sufficient condition of Theorem A and, as in the
analytic case, it remains open to determine the optimal condition. Finally, we will also
give discrete versions of Theorem A and Theorem E, which are, respectively, Theorem F
and Theorem G.

When a Hamiltonian is not real analytic, it is often the case that there is still some con-
trol on its derivatives and that it has Gevrey regularity. This may happen for example for
the restriction of an analytic Hamiltonian restricted to a Gevrey, symplectic, central mani-
fold. Technically, Gevrey regularity luckily extends the well-behaved analytic regularity in
KAM theory: the effect of small denominators in Fourier series reduces to decreasing the
“Gevrey width” s, the analogue of the analyticity width. This makes it possible to adapt
Kolmogorov’s proof of his invariant torus theorem without using analytic approximations
or smoothing operators as in the smooth setting. Yet there are two issues one needs to
solve.

The first and main issue is that the estimates needed in the general problem of per-
turbation theory were missing. This is why we provide an appendix with an adequate
choice of norms and spaces, together with the estimates needed in our proof. In particular,
Proposition 20 provides a “geometric” estimate of the composition of two Gevrey func-
tions, in which the loss of Gevrey width is arbitrarily small when composing a function
to the right by a diffeomorphism close to the identity, in continuity with the real-analytic
setting. Starting with the work of Gevrey itself [Gev18], there have been many results
concerning the composition of Gevrey functions (see, for instance, Yamanaka [Yam89],
Marco-Sauzin [MS02], Cadeddu-Gramchev [CG03], Popov [Pop04]) but none of them al-
lowed an arbitrarily small loss of width except in some particular cases (the one-dimensional
case and the analytic case). To our knowledge, our composition result is new and may be
of independent interest.

The second and minor issue is that to reach a weak arithmetic condition, it is usually
better not to solve exactly the cohomological equation but an approximate version of it,
and hence one cannot proceed as in Kolmogorov’s proof. The strategy of Rüssmann, that
we could have tried to pursue here, consists in solving this equation not for the original
perturbation but for a polynomial approximation of it. We will rather adopt the strategy
of [BF13], [BF14] in which periodic approximations of the frequency are used and only
cohomological equations associated to periodic vectors need to be solved: estimates on the
solution are straightforward in this case, unlike the cohomological equation associated to
a non-resonant vector.

As a further remark concerning the proof, in invariant tori problems derivatives in the
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angle and action directions do not play the same role: in the analytic case it is customary
to introduce anisotropic norms. However, as Theorem H and its proof show, we can still get
good estimates if we keep track separately of the sizes of various terms in the expansion of
the Hamiltonian with respect to the actions: this turns out simpler than using anisotropic
Gevrey norms. Such a feature is not present in dealing with linearization problem such as
in Theorem E; a direct proof of the latter result would have been much simpler.

1.3 Related results

Apart from the work of Popov that we have already mentioned, there have been several
works dealing with Gevrey regularity in a related context.

The first setting is the so-called Siegel-Sternberg linearization problem. Under a non-
resonance condition, a formal solution to the conjugacy problem always exists and Stern-
berg proved that the solution is in fact smooth. In the analytic case, under the Bruno-
Rüssmann condition the conjugacy is analytic; this arithmetic condition is thus sufficient
but also necessary in (complex) dimension one (a result of Yoccoz we already mentioned).
In the Gevrey setting, still under the Bruno-Rüssmann condition, Carletti-Marmi [CM00]
and Carletti [Car03] have shown that the formal solution still has Gevrey growth (with
the same Gevrey exponent); an interesting feature of their result is that allowing a worse
Gevrey exponent for the formal solution, one can relax accordingly the arithmetic condi-
tion. All these results are actually valid for a class of ultra-differentiable functions that
includes analytic and Gevrey functions. It was then proved by Stolovitch [Sto13] that
this formal Gevrey solution actually give rise to a Gevrey smooth solution, and recently,
Pöschel [Pös17] gave a very general version of the Siegel-Sternberg theorem for ultra-
differentiable functions that contains all the previous results (the smooth, analytic, Gevrey
and ultra-differentiable cases). Let us mention that all these results do use stability by
composition, but a precise composition result is not needed as they do not require to keep
track of the width.

In the analytic setting, the Siegel problem and the problem of the linearization of circle
diffeomorphisms are solved under the same arithmetic condition [PM97]. But this may well
be incidental, and, to our knowledge, it may well not be true in the Gevrey setting. The
only result concerning Gevrey circle diffeomorphism we are aware of is due to Gramchev-
Yoshino [GY99]: they proved the linearization theorem under a condition which is weaker
than the Diophantine condition but stronger than the α-Bruno-Rüssmann condition (they
actually introduce a condition equivalent to our α-Bruno-Rüssmann condition and conjec-
ture that the result should hold under this condition). To prove such a result, they use a
composition result but in one dimension only; in this special case, as we already pointed
out above, good composition estimates are known (see, for instance, [MS02]). As a matter
of fact, Theorem G (the discrete version of Theorem E) gives linearization of Gevrey torus
diffeomorphism close to a translation under the α-Bruno-Rüssmann condition, extending
the result in [GY99] (and giving a positive answer to their conjecture).
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1.4 Further results

Let us describe some further results that could be achieved using the techniques of this
paper. The literature on KAM theory is enormous and so there are many potential appli-
cations; we will only describe here some of those that may have some interest.

First, and more importantly, the technical estimates we derive in Appendix B for Gevrey
functions actually hold true for a larger class of ultra-differentiable functions that includes
Gevrey (and thus analytic) functions as a particular case. This not only leads to a further
extension of the KAM theorems we state and prove here, but also allows us to generalize
other perturbative results such as the Nekhoroshev theorem (extending the result of [MS02]
in the convex case and [Bou11] in the steep case). To keep this paper to a reasonable length,
all these results will be derived in a subsequent article [BF17].

Then, our main result Theorem A deals with the persistence of Lagrangian tori; KAM
theory also deals with lower-dimensional tori (see, for instance, [Rüs01] for a comprehensive
treatment in the analytic case), and one may expect that our result extend to such a setting.

Finally, one may consider the problem of reducibility of quasi-periodic cocycles close to
constant. In the analytic case, the Bruno-Rüssmann condition is sufficient, as was shown
in [CM12]; in the α-Gevrey case, the α-Bruno-Rüssmann condition is sufficient. In fact,
this setting is simpler from a technical point of view and our Gevrey estimates are not
necessary to obtain such a result; one simply needs to go through the proof of [CM12].
A possible explanation for this is that for quasi-periodic cocycles, composition occur in
a linear Lie group, thus only estimates for linear composition (product of matrices) are
necessary and so everything boils down to good estimates for the product of two functions.

1.5 Plan of the paper

The plan of the paper is as follows.
In Section 2, we describe precisely the setting, namely we properly define the Gevrey

norms we will use and the α-Bruno-Rüssmann condition. In Section 3 we state our main
results:

• Theorem A about the persistence of a torus in a non-degenerate Hamiltonian system
under the α-Bruno-Rüssmann condition;

• Theorem B, the iso-energetic version of Theorem A;

• Theorem C, the non-autonomous time-periodic version;

• Theorem D about the destruction of a torus in the same context not assuming a
condition weaker that the α-Bruno-Rüssmann condition;

• Theorem E about linearization of vector fields on the torus close to constant (we will
also discuss necessary arithmetic conditions here, albeit in a restricted context);

• Theorem F, the discrete version of Theorem A, about the persistence of a torus in a
non-degenerate exact-symplectic map;
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• Theorem G, the discrete version of Theorem E, about the linearization of diffeomor-
phisms of the torus close to a translation.

In Section 4 we state Theorem H, the main technical result of this paper, which is a KAM
theorem which do not require non-degeneracy but depends on parameters. In Section 5,
we give the proof of Theorems A and E, assuming Theorem H. Section 6 contains the proof
of Theorem H. Section 7 contains the proof of Theorem D, a straightforward extension of
the work of Bessi [Bes00].

Finally, two appendices contain technical results. Appendix A provides various charac-
terizations of the α-Bruno-Rüssmann condition. Appendix B, which is absolutely crucial
in this work, provides estimates on Gevrey functions (and in particular our composition
result Proposition 20) which are use throughout the paper.

2 Setting

2.1 Gevrey Hamiltonians

Recall that n ≥ 1 is an integer, Tn = Rn/Zn and let B ⊆ Rn be a bounded open domain
containing the origin. For a small parameter ǫ ≥ 0, we consider a Hamiltonian function
H : Tn × B → R of the form

{

H(q, p) = h(p) + ǫf(q, p),

∇h(0) := ω0 ∈ Rn.
(∗)

The Hamiltonian h is non-degenerate at the origin if the matrix ∇2h(0) itself is non-
degenerate. We shall assume that the Hamiltonian H is α-Gevrey on Tn × B̄, with α ≥ 1
and where B̄ denotes the closure of B in Rn: H is smooth on a open neighborhood of
Tn × B̄ in Tn × Rn and there exists s0 > 0 such that, using multi-indices notation (see
Appendix B),

|H|α,s0 := c sup
(θ,I)∈Tn×B̄

(

sup
k∈N2n

(|k|+ 1)2s0
α|k||∂kH(θ, I)|
|k|!α

)

<∞, c := 4π2/3. (1)

This definition can be extended to vector-valued function X : Tn × B̄ → Rp by setting

|X|α,s0 := c sup
(θ,I)∈Tn×B̄

(

sup
k∈N2n

(|k|+ 1)2s0
α|k||∂kX(θ, I)|1
|k|!α

)

<∞ (2)

where | . |1 is the l1-norm of vectors in Rp, or the sum of the absolute values of the com-
ponents. As a rule, we will use the l1-norm for vectors, so for simplicity we shall write
| . |1 = | . |. To emphasize the role of the “Gevrey width” s0, we shall also say that H
is (α, s0)-Gevrey if (1) holds. Observe that a function is 1-Gevrey if and only it is real-
analytic, in which case the parameter s0 > 0 is the width of analyticity.

Properties of these Gevrey norms are described in Appendix B; in particular we explain
there the (inessential) role of the factor (|k|+1)2 and the normalizing constant c > 0 in (1).
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2.2 The α-Bruno-Rüssmann condition

Given ω0 ∈ Rn, define the function

Ψω0
: [1,+∞) → [Ψω0

(1),+∞], Q 7→ max{|k · ω0|−1 | k ∈ Zn, 0 < |k| ≤ Q}. (3)

This function Ψω0
measures the size of the so-called small denominators which will come

into play in our computations. Call BR the set of vectors ω0 satisfying the so-called
Bruno-Rüssmann condition,

∫ +∞

1

ln(Ψω0
(Q))

Q2
dQ <∞ (BR)

and, given α ≥ 1, call BRα the set of vectors ω0 satisfying the α-Bruno-Rüssmann condi-
tion, which we define as

∫ +∞

1

ln(Ψω0
(Q))

Q1+ 1

α

dQ <∞. (BRα)

These conditions prevent Ψω0
from growing too fast at infinity. If ω0 ∈ BR = BR1, in

particular Ψω0
(Q) is finite for all Q, i.e. ω0 is non-resonant. Besides, the set BRα decreases

with respect to α. For example, if Ψω0
(Q) = exp(Qβ) then ω0 ∈ BRα if and only if β < 1/α

(we let the reader check, using continued fractions if n = 2, that the set of vectors ω0 having
such function Ψω0

is not empty).
Let Dτ be the set of τ -Diophantine vectors (τ ≥ n − 1), i.e. for which there exists

γ > 0 such that Ψ(Q) ≤ Qτ/γ for all Q ≥ 1. Dτ is non-empty and has full measure if
τ > n − 1 [Rüs75]. As definitions show, for all α ≥ 1, we have Dτ ⊂ BRα. Thus, as
Example 10 shows,

∩α≥1BRα \ ∪τ≥n−1Dτ

has zero-measure but is non-empty.

Now assume that ω0 is non-resonant. The function Ψω0
is non-decreasing, piecewise

constant, and has a countable number of discontinuities. In the sequel, it will be more
convenient to work with a continuous version of Ψω0

: it is not hard to prove (see, for
instance, Appendix A of [BF13]) that one can find a continuous non-decreasing function
Ψ : [1,∞) → [Ψ(1),+∞) such that Ψ(1) = Ψω0

(1) and

Ψω0
(Q) ≤ Ψ(Q) ≤ Ψω0

(Q + 1), Q ≥ 1. (4)

For all k ∈ Zn \ {0}, we still have

|k · ω0| ≥ 1/Ψ(|k|)

and in the condition (BRα) (which defines ω0 ∈ BRα), one may use Ψ instead of Ψω0
.

Let us now define the function

∆ : [1,+∞) → [Ψ(1),+∞), Q 7→ QΨ(Q).
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It is continuous and increasing, and thus is a homeomorphism, whose functional inverse is

∆−1 : [Ψ(1),+∞) → [1,+∞), ∆−1 ◦∆ = ∆ ◦∆−1 = Id.

In Appendix A we show that the set BRα agrees with the set Aα defined by the condition

∫ +∞

∆(1)

dx

x(∆−1(x))
1

α

<∞. (Aα)

3 Main results

3.1 KAM theorem for non-degenerate integrable Hamiltonians

The image of the map Θ0 : Tn → Tn × B, q 7→ (q, 0), is an embedded torus invariant by
the flow of h carrying a quasi-periodic flow with frequency ω0. We shall prove that this
quasi-periodic invariant Gevrey-smooth embedded torus is preserved by an arbitrary small
perturbation, provided h is non-degenerate, H is α-Gevrey and ω0 satisfies the α-Bruno-
Rüssmann condition.

Theorem A. Let H be as in (∗), where H is (α, s0)-Gevrey, ω0 ∈ BRα and h is non-
degenerate. Then there exists 0 < s′0 < s0 such that for ǫ small enough, there exists an
(α, s′0)-Gevrey torus embedding Θω0

: Tn → Tn × B such that Θω0
(Tn) is invariant by the

Hamiltonian flow of H and quasi-periodic with frequency ω0. Moreover, Θω0
is close to Θ0

in the sense that
|Θω0

−Θ0|α,s′
0
≤ c

√
ǫ

for some constant c > 0 independent of ǫ.

Theorem A will be deduced from a KAM theorem for a Hamiltonian with parameters,
for which a quantitative statement is given in §4. Let us also state the corresponding
iso-energetic and non-autonomous time-periodic versions.

We say that the integrable Hamiltonian h is iso-energetically non-degenerate at 0 if the
so-called bordered Hessian of h,

(
∇2h(0) t∇h(0)
∇h(0) 0

)

,

has a non-zero determinant. Under this assumption, the unperturbed torus p = 0, with
energy h(0), can be continued to a torus with the same energy but with a frequency of the
form λω0 for λ close to one.

Theorem B. Let H be as in (∗), where H is (α, s0)-Gevrey, ω0 ∈ BRα and h is iso-
energetically non-degenerate. Then there exists 0 < s′0 < s0 such that for ǫ small enough,
there exist λ ∈ R∗ and an (α, s′0)-Gevrey torus embedding Θω0

: Tn → Tn × B such that
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Θω0
(Tn) is invariant by the Hamiltonian flow of H , contained in H−1(h(0)) and quasi-

periodic with frequency λω0. Moreover, λ is close to one and Θω0
is close to Θ0 in the

sense that
|λ− 1| ≤ c

√
ǫ, |Θω0

−Θ0|α,s′
0
≤ c

√
ǫ

for some constant c > 0 independent of ǫ.

We can also look at the non-autonomous time-periodic version; we consider a slightly
different setting by looking at a Hamiltonian function H̃ : Tn × B × T → R of the form

{

H̃(q, p) = h(p) + ǫf(q, p, t),

∇h(0) := ω0 ∈ Rn.
(∗̃)

It is better to consider the unperturbed torus p = 0 as an invariant torus for the integrable
Hamiltonian h̃ : B × R defined by h̃(p, e) := h(p) + e: it is then quasi-periodic with
frequency ω̃0 := (ω0, 1), has dimension n + 1 and is the image of the trivial embedding
Θ̃0 : T

n × T → Tn ×B × T.

Theorem C. Let H̃ be as in (∗̃), where H̃ is (α, s0)-Gevrey, ω0 ∈ BRα and h is non-
degenerate. Then there exists 0 < s′0 < s0 such that for ǫ small enough, there exists an
(α, s′0)-Gevrey torus embedding Θ̃ω0

: Tn × T → Tn × B × T such that Θ̃ω0
(Tn × T) is

invariant by the Hamiltonian flow of H̃ and quasi-periodic with frequency ω̃0. Moreover,
Θ̃ω0

is close to Θ̃0 in the sense that

|Θ̃ω0
− Θ̃0|α,s′

0
≤ c

√
ǫ

for some constant c > 0 independent of ǫ.

Theorem B and Theorem C are essentially equivalent statements and can be easily
deduced from Theorem A; in the analytic case details are given in [TZ10], Chapter 2, but
it is plain to observe that the arguments still work in the Gevrey case.

3.2 Destruction of invariant tori

According to Theorem A, the α-Bruno-Rüssmann condition is sufficient for the preserva-
tion of an invariant torus under an α-Gevrey perturbation. A natural question is: is it
necessary? To this question, here we only bring a partial answer, which circumscribes the
optimal arithmetic condition, if any. Following Bessi [Bes00], one can show that if ω = ω0

satisfies a condition (the condition (Bα) defined below), the torus can be destroyed. In
particular, this shows that the exponent 1+1/α in (BRα) cannot be replaced by a strictly
larger exponent. As a matter of fact, the example of Bessi already shows this in the ana-
lytic case α = 1; our observation here is that Bessi’s example gives a similar result for any
α ≥ 1.
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Theorem D. Given α ≥ 1, assume that the vector ω ∈ Rn satisfies the following condition:

lim sup
Q→+∞

ln(Ψω(Q))

Q1/α
> 0. (Bα)

Then an invariant torus with frequency ω can be destroyed by an arbitrarily small α-Gevrey
perturbation.

Thus the condition that ω0 does not satisfy (Bα), namely

lim
Q→+∞

ln(Ψω(Q))

Q1/α
= 0, (Rα)

is a necessary condition for the conclusion of Theorem A to hold true. For α = 1, this
condition (Rα) is actually a sufficient (and most probably necessary) condition to solve the
cohomological equation associated to ω (see [Rüs75]); in the general case α ≥ 1 this should
also be true but we couldn’t find a reference. Let us also note that (Rα) is implied by (but
clearly not equivalent to) the condition that ω ∈ BRα, see Remark 1 in Appendix A.

For a more precise statement and how this follows from [Bes00], we refer to Theorem 7
in Section 7. It is likely that one could improve this result for α > 1 by using perturbations
with compact support as in [CW13].

Observe that for any α ≥ 1 and any 0 < β < α, vectors ω ∈ Rn for which

Ψω(Q) ∼ eQ
1/α

satisfies (Bα) but also the β-Bruno-Rüssmann condition. (That such vectors do exist is a
classical matter in number theory.) The following corollary is then obvious.

Corollary 1. For any α ≥ 1 and any 0 < β < α, there exist invariant tori with frequency
vectors ω ∈ BRβ which can be destroyed by an arbitrary small α-Gevrey perturbation. In
particular, there exist invariant tori with frequency vectors ω ∈ BR which can be destroyed
by an arbitrary small Gevrey non-analytic perturbation.

3.3 KAM theorem for constant vector fields on the torus

Now we state a Gevrey version of Arnold’s normal form theorem for vector fields on the
torus.

Theorem E. Let ω0 ∈ BRα and X ∈ Gα,s(T
n,Rn) a vector field on Tn of the form

X = ω0 +B, |B|α,s ≤ µ.

Then, for µ sufficiently small, there exist a vector ω∗
0 ∈ Rn and an (α, s/2)-Gevrey diffeo-

morphism Ξ : Tn → Tn such that X + ω∗
0 − ω0 is conjugate to ω0 via Ξ:

Ξ∗(X + ω∗
0 − ω0) = ω0.
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Moreover, we have the estimate

|ω∗
0 − ω0| ≤ cµ, |Ξ− Id|α,s/2 ≤ cµ

for some constant c ≥ 1 independent of µ.

Observe that because of the shift of frequency ω∗
0 − ω0, in general this result does not

give any information on the vector field X . Under some further assumption (for instance,
if ω0 belongs to the rotation set of X , see [Kar16]), then this shift vanishes and Theorem E
implies that X is conjugated to ω0.

An even more restricted setting is when X is proportional to ω0 (so that the flow of
X is a re-parametrization of the linear flow of frequency ω0 and thus ω0 is the unique
rotation vector of X); Theorem E applies in this case to give a conjugacy to ω0, assuming
that ω0 ∈ BRα, but the proof is actually much simpler in this case (it boils down to solve
only once the cohomological equation) and should require the weaker condition that ω0

satisfies (Rα), as it is stated in the case α = 1 in [Fay02]. Still in [Fay02], it is proved that
for α = 1 (there are also versions in the Cr case), if ω0 satisfies (Bα), then there is a dense
set of reparametrized linear flow which are weak-mixing (and so cannot be conjugated
to the linear flow); thus a necessary condition for Theorem E to hold true is that ω0

satisfies (Rα) (and this is also a sufficient condition if we impose that X is proportional to
ω0)

1. Clearly, this should extend to the general case α ≥ 1 and thus the condition that ω0

does not satisfy (Bα) is a necessary condition for Theorem E to hold true, as in Theorem A.

3.4 KAM theorem for maps

In this section, we give the statement of discrete versions of Theorem A and Theorem E.
Let us start with the discrete analogue of Theorem A. Given a function h : B̄ → R, we

define the exact-symplectic map

Fh : Tn × B̄ → Tn × B̄, (q, p) 7→ (q +∇h(p), p).

As before, let us fix α ≥ 1 and s0 > 0.

Theorem F. Let F : Tn × B̄ → Tn × B̄ be an (α, s0)-Gevrey exact symplectic map with

|F − Fh|α,s0 ≤ ǫ.

Assume that ω0 = ∇h(0) ∈ BRα and that h is non-degenerate. Then there exists 0 <
s′0 < s0 such that for ǫ small enough, there exists an (α, s′0)-Gevrey torus embedding
Θω0

: Tn → Tn × B such that Θω0
(Tn) is invariant by F and Θω0

gives a conjugacy
between the translation of vector ω0 on Tn and the restriction of F to Θω0

(Tn). Moreover,
Θω0

is close to Θ0 in the sense that

|Θω0
−Θ0|α,s′

0
≤ c

√
ǫ

for some constant c > 0 independent of ǫ.

1We would like to thank B. Fayad for a discussion on this topic.
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Theorem F follows at once from Theorem B (or Theorem C) provided one has a suitable
quantitative “suspension” result; in the analytic case α = 1 this was proved in [KP94] and
in the Gevrey non-analytic case α > 1 this is contained in [LMS16].

In the same way, we have the following discrete analogue of Theorem E. Given ω0 ∈ Rn,
let Tω0

be the translation of Tn of vector ω0:

Tω0
: Tn → Tn, θ 7→ θ + ω0.

Let α ≥ 1 and s > 0.

Theorem G. Let ω0 ∈ BRα and T ∈ Gα,s(T
n,Tn) a diffeomorphism of Tn of the form

T = Tω0
+B, |B|α,s ≤ µ.

Then, for µ sufficiently small, there exist a vector ω∗
0 ∈ Rn and an (α, s/2)-Gevrey diffeo-

morphism Ξ : Tn → Tn such that T + ω∗
0 − ω0 is conjugate to Tω0

via Ξ:

Ξ−1 ◦ (T + ω∗
0 − ω0) ◦ Ξ = Tω0

.

Moreover, we have the estimate

|ω∗
0 − ω0| ≤ cµ, |Ξ− Id|α,s/2 ≤ cµ

for some constant c ≥ 1 independent of µ.

4 Statement of the KAM theorem with parameters

Let us now consider the following setting. Fix ω0 ∈ Rn \ {0}. Re-ordering the components
of ω0 and re-scaling the Hamiltonian allow us to assume without loss of generality that

ω0 = (1, ω̄0) ∈ Rn, ω̄0 ∈ [−1, 1]n−1.

Given real numbers r > 0 and h > 0, we let

Dr := {I ∈ Rn | |I| ≤ r}, Dh := {ω ∈ Rn | |ω − ω0| ≤ h}, Dr,h := Dr ×Dh.

Our Hamiltonians will be defined on Tn × Dr,h, a neighborhood of Tn × {0} × {ω0} in
Tn × Rn × Rn.

Let α ≥ 1, s > 0, η ≥ 0 a fixed parameter, ε ≥ 0 and µ ≥ 0 two small parameters. We
consider a function H ∈ Gα,s(T

n ×Dr,h) of the form







H(θ, I, ω) = e(ω) + ω · I
︸ ︷︷ ︸

N(I,ω)

+A(θ, ω) +B(θ, ω) · I
︸ ︷︷ ︸

P (θ,I,ω)

+M(θ, I, ω) · I2
︸ ︷︷ ︸

R(θ,I,ω)

|A|α,s ≤ ε, |B|α,s ≤ µ, |∇2
IR|α,s ≤ η

(∗∗)
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where the notationM(θ, I, ω) ·I2 stands for the vector I given twice as an argument to the
symmetric bilinear form M(θ, I, ω). Observe that A : Tn × Dh → R, B : Tn × Dh → Rn

whereas M : Tn × Dr,h → Mn(R) with Mn(R) the ring of real square matrices of size n.
Observe that we do not assume ε = µ because these two small parameters play different
roles in applications (in Theorem A we will have µ =

√
ε while in Theorem E, ε = 0 and

µ will be the only small parameter).
The function H in (∗∗) should be considered as a Gevrey Hamiltonian on Tn × Dr,

depending on a parameter ω ∈ Dh; for a fixed parameter ω ∈ Dh, when convenient, we
will write

Hω(I, θ) = H(I, θ, ω), Nω(I) = N(I, ω), Pω(I, θ) = P (I, θ, ω), Rω(I, θ) = R(I, θ, ω).

The image of the map Φ0 : Tn → Tn × Dr, θ 7→ (θ, 0) is a smooth embedded torus in
Tn×Dr, invariant by the Hamiltonian flow of Nω0

+Rω0
and quasi-periodic with frequency

ω0. The next theorem asserts that this quasi-periodic torus will persist, being only slightly
deformed, as an invariant torus not for the Hamiltonian flow ofHω0

but for the Hamiltonian
flow of Hω∗

0
, where ω∗

0 is a parameter close to ω0, provided ε and µ are sufficiently small
and ω0 satisfies the α-Bruno-Rüssmann condition. Here is the precise statement.

Theorem H. Let H be as in (∗∗), with ω0 ∈ BRα. Then there exist positive constants
c1 ≤ 1, c2 ≤ 1 and c3 ≥ 1 depending only on n and α such that if

√
ε ≤ µ ≤ h/2,

√
ε ≤ r, h ≤ c1(Q0Ψ(Q0))

−1 (5)

where Q0 ≥ n + 2 is sufficiently large so that

Q
− 1

α
0 + (ln 2)−1

∫ +∞

∆(Q0)

dx

x(∆−1(x))
1

α

≤ c2(1 + η)−1/αs, (6)

there exist a vector ω∗
0 ∈ Rn and an (α, s/2)-Gevrey embedding

Φ∗
ω0

: Tn ×Dr/2 → Tn ×Dr

of the form
Φ∗

ω0
(θ, I) = (θ + E∗(θ), I + F ∗(θ) · I +G∗(θ))

with the estimates

|ω∗
0 − ω0| ≤ c3µ, |E∗|α,s/2 ≤ c3Ψ(Q0)µ, |F ∗|α,s/2 ≤ c3∆(Q0)µ, |G∗|α,s/2 ≤ c3∆(Q0)ε

(7)
and such that

Hω∗

0
◦ Φ∗

ω0
(θ, I) = e∗0 + ω0 · I +R∗(θ, I), R∗(θ, I) =M∗(θ, I) · I2,

with the estimates

|e∗0 − eω∗

0
| ≤ c3ε, |∇2

IR
∗ −∇2

IRω∗

0
|α,s/2 ≤ c3η∆(Q0)µ.

13



Theorem A follows quite directly from Theorem H, introducing the frequencies ω =
∇h(p) as independent parameters, taking µ =

√
ε, and tuning the shift of frequency ω∗

0 −
ω0 using the non-degeneracy assumption on the unperturbed Hamiltonian. Theorems E
follows also from Theorem H by realizing X as the restriction of a Hamiltonian vector field
on an invariant torus, setting ε = η = 0 and letting µ be the only small parameter. These
arguments are made precise in Section 5.

5 Proofs of Theorems A and E, assuming Theorem H

5.1 Proof of Theorem A

In this section, we assume Theorem H and we show how it implies Theorem A, follow-
ing [Pös01] (in the analytic case) and [Pop04] (in the Gevrey case).

Proof of Theorem A. As noticed at the beginning of Section 4, we may assume that ω0 is
of the form

ω0 = (1, ω̄0) ∈ Rn, ω̄0 ∈ [−1, 1]n−1.

For p0 ∈ B, we expand h in a small neighborhood of p0: writing p = p0 + I for I close to
zero, we get

h(p) = h(p0) +∇ph(p0) · I +
∫ 1

0

(1− t)∇2
ph(p0 + tI) · I2 dt.

Similarly, we expand ǫf with respect to p, in a small neighborhood of p0:

ǫf(q, p) = ǫf(q, p0) + ǫ∇pf(q, p0) · I + ǫ

∫ 1

0

(1− t)∇2
pf(q, p0 + tI) · I2 dt.

Since ∇ph : B → Ω is a diffeomorphism, instead of p0 we can use ω = ∇ph(p0) as a new
variable, and letting ∇ωg := (∇h)−1, we write

h(p) = e(ω) + ω · I +Rh(I, ω)

with

e(ω) := h(∇ωg(ω)), Rh(I, ω) :=

∫ 1

0

(1− t)∇2
ph(∇ωg(ω) + tI) · I2 dt

and also, letting θ = q,

ǫf(q, p) = ǫÃ(θ, ω) + ǫB̃(θ, ω) · I + ǫRf (θ, I, ω)

with
Ã(θ, ω) := f(θ,∇ωg(ω)), B̃(θ, ω) := ∇pf(θ,∇ωg(ω))

and

Rf (θ, I, ω) := ǫ

∫ 1

0

(1− t)∇2
pf(θ,∇ωg(ω) + tI) · I2 dt.

14



Finally, we can set

A := ǫÃ, B := ǫB̃, R := Rh + ǫRf =M(θ, I, ω) · I2,
so that h+ ǫf can be written as

H(θ, I, ω) = e(ω) + ω · I + A(θ, ω) +B(θ, ω) · I +R(θ, I, ω),

and we have

∇2
IR(θ, I, ω) = ∇2

Ih(∇ωg(ω) + I) + ǫ∇2
If(θ,∇ωg(ω) + I).

By assumption, h and f are (α, s0)-Gevrey on Tn × B̄, and since the space of Gevrey
functions is closed under taking derivatives, products, composition and inversion (up to
restricting the parameter s0, see Appendix B for the relevant estimates), we claim that
we can find s > 0, r > 0, h > 0 and c̃ > 0 which are independent of ǫ such that H is
(α, s)-Gevrey on the domain Tn ×Dr,h with the estimates

|A|α,s ≤ c̃ǫ, |B|α,s ≤ c̃ǫ, |∇2
IR|α,s ≤ c̃.

We may set
ε := c̃ǫ, µ :=

√
ε, η := c̃

and assuming ǫ small enough, we have c̃ǫ ≤ µ =
√
ε. Thus we have

|A|α,s ≤ ε, |B|α,s ≤ µ, |∇2
IR|α,s ≤ η.

Having fixed s > 0 and r > 0, we may choose Q0 sufficiently large so that (6) holds true,
and then by further restricting first h, and then ǫ, we may assume that the condition (5)
is satisfied. Theorem H applies: there exist an (α, s/2)-Gevrey embedding Υω0

: Tn →
Tn ×Dr, defined by

Υω0
(θ) := Φω0

(θ, 0) = (θ + E∗(θ), G∗(θ))

where Φω0
is given by Theorem H, and a vector ω∗

0 ∈ Rn such that Υω0
(Tn) is invariant by

the Hamiltonian flow of Hω∗

0
and quasi-periodic with frequency ω0. Moreover, ω∗

0 and Υω0

satisfy the estimates

|ω∗
0 − ω0| ≤ cµ, |E∗|α,s/2 ≤ cΨ(Q0)µ, |G∗|α,s/2 ≤ cQ0Ψ(Q0)ε

for some large constant c > 1. Since h is non-degenerate, there exists p∗0 such that∇h(p∗0) =
ω∗
0 and, up to taking c > 1 larger and recalling that µ =

√
ε, the above estimates imply

|p∗0| ≤ c
√
ε, |E∗|α,s/2 ≤ cΨ(Q0)

√
ε, |G∗|α,s/2 ≤ cQ0Ψ(Q0)ε. (8)

Now observe that an orbit (θ(t), I(t)) for the Hamiltonian Hω∗

0
corresponds to an orbit

(q(t), p(t)) = (θ(t), I(t)+p∗0) for our original Hamiltonian. Hence, if we define T : Tn×Rn →
Tn × Rn by T (θ, I) = (θ, I + p∗0) and

Θω0
= T ◦Υω0

: Tn → Tn × Rn, Θω0
(θ) = (θ + E∗(θ), G∗(θ) + p∗0)

then Θω0
is an (α, s/2)-Gevrey torus embedding such that Θω0

(Tn) is invariant by the
Hamiltonian flow ofH and quasi-periodic with frequency ω0. The estimates on the distance
between Θω0

and the trivial embedding Θ0 follows directly from (8), which finishes the
proof.
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5.2 Proof of Theorem E

Now we show how Theorem E follows from Theorem H.

Proof of Theorem A. Consider the vector field X = ω0 + B ∈ Gα,s(T
n,Rn) as in the

statement. It can be trivially included into a parameter-depending vector field: given
h > 0, let X̂ ∈ Gα,s(T

n ×Dh,R
n) be such that

X̂(θ, ω) = X̂ω(θ) = ω +B(θ), ω ∈ Dh, X̂ω0
= X.

Now given any r > 0, consider the Hamiltonian H defined on Tn ×Dr,h by

H(θ, I, ω) = Hω(θ, I) := ω · I +B(θ) · I. (9)

Clearly, for any parameter ω, the torus Tn × {0} is invariant by the Hamiltonian vector
field XHω , and, upon identifying Tn × {0} with Tn, the restriction of XHω to this torus
coincides with X̂ω.

Now the Hamiltonian H defined in (9) is of the form (∗∗) with ε = η = 0 (and e = 0)
and therefore for µ sufficiently small, Theorem H applies: there exist a vector ω∗

0 ∈ Rn and
an (α, s/2)-Gevrey embedding

Φ∗
ω0

: Tn ×Dr/2 → Tn ×Dr

here of the form
Φ∗

ω0
(θ, I) = (θ + E∗(θ), I + F ∗(θ) · I)

with the estimates

|ω∗
0 − ω0| ≤ c3µ, |E∗|α,s/2 ≤ c3Ψ(Q0)µ, |F ∗|α,s/2 ≤ c3∆(Q0)µ

and such that
Hω∗

0
◦ Φ∗

ω0
(θ, I) = ω0 · I. (10)

The embedding Φ∗
ω0

clearly leaves invariant the torus Tn×{0} and induces a diffeomorphism
of this torus that can be identified to Ξ := Id + E∗. Writing the equality (10) in terms
of Hamiltonian vector fields, we have, upon restriction to the invariant torus and recalling
that the restriction of XHω coincides with X̂ω,

Ξ∗(X̂ω∗

0
) = ω0.

But X̂ω∗

0
= X̂ω0

+ ω∗
0 − ω0 = X + ω∗

0 − ω0 and therefore

Ξ∗(X + ω∗
0 − ω0) = ω0

which, together with the estimates on ω∗
0 and Ξ− Id = E∗, was the statement we wanted

to prove.
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6 Proof of Theorem H

This section is devoted to the proof of Theorem H, in which we will construct, by an
iterative procedure, a vector ω∗

0 close to ω0 and a Gevrey-smooth torus embedding Φ∗
ω0

whose image is invariant by the Hamiltonian flow of Hω∗

0
. We start, in §6.1, by recalling

the Diophantine result of [BF13] which will be used in our approach. Then, in §6.2, we
describe an elementary step of our iterative procedure, and finally, in §6.3, we will show
that infinitely many steps may be carried out, to converge towards a solution.

In this paper, we do not pay attention to how constants depend on the dimension n or
the Gevrey-exponent α, both being fixed. Hence in this section, we shall write

u<· v (respectively u ·<v)
if, for some constant C ≥ 1 depending only on n and α, we have u ≤ Cv (respectively
Cu ≤ v). In particular, u ·<v is stronger than u<· v.

6.1 Approximation by rational vectors

Recall that we have written ω0 = (1, ω̄0) ∈ Rn with ω̄0 ∈ [−1, 1]n−1. For a given Q ≥ 1, it is
always possible to find a rational vector v = (1, p/q) ∈ Qn, with p ∈ Zn−1 and q ∈ N, which
is a Q-approximation in the sense that |qω0 − qv| ≤ Q−1, and for which the denominator
q satisfies the upper bound q ≤ Qn−1: this is essentially the content of Dirichlet’s theorem
on simultaneous rational approximations, and it holds true without any assumption on ω0.
In our situation, since we have assumed that ω0 is non-resonant, there exist not only one,
but n linearly independent rational vectors in Qn which are Q-approximations. Moreover,
one can obtain not only linearly independent vectors, but rational vectors v1, . . . , vn of
denominators q1, . . . , qn such that the associated integer vectors q1v1, . . . , qnvn form a Z-
basis of Zn. However, the upper bound on the corresponding denominators q1, . . . , qn is
necessarily larger than Qn−1, and is given by a function of Q that we can call here Ψ′

ω0
(see

[BF13] for more precise and general information, but note that in this reference, Ψ′
ω0

was
denoted by Ψω0

and Ψω0
, which we defined in (3), was denoted by Ψ′

ω0
). A consequence

of the main Diophantine result of [BF13] is that this function Ψ′
ω0

is in fact essentially
equivalent to the function Ψω0

.

Proposition 2. Let ω0 = (1, ω̄0) ∈ Rn be a non-resonant vector, with ω̄0 ∈ [−1, 1]n−1. For
any Q ≥ n + 2, there exist n rational vectors v1, . . . , vn, of denominators q1, . . . , qn, such
that q1v1, . . . , qnvn form a Z-basis of Zn and for j ∈ {1, . . . , n},

|ω0 − vj |<· (qjQ)−1, 1 ≤ qj <·Ψ(Q).

For a proof of the above proposition with Ψω0
instead of Ψ, we refer to [BF13], Theorem

2.1 and Proposition 2.3; now by (4), Ψω0
≤ Ψ and so one may replace Ψω0

by Ψ.
Now given a q-rational vector v and a smooth function H defined on Tn × Dr,h, we

define

[H ]v(θ, I, ω) =

∫ 1

0

H(θ + tqv, I, ω)dt. (11)
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Given n rational vectors v1, . . . , vn, we let [H ]v1,...,vd = [· · · [H ]v1 · · · ]vd. Finally we define

[H ](I, ω) =

∫

Tn

H(θ, I, ω)dθ. (12)

The following proposition is a consequence of the fact that the vectors q1v1, . . . , qnvn form
a Z-basis of Zn.

Proposition 3 ([Bou13, Corollary 6]). Let v1, . . . , vn be rational vectors, of denominators
q1, . . . , qn, such that q1v1, . . . , qnvn form a Z-basis of Zn, and H a function defined on
Tn ×Dr,h. Then

[H ]v1,...,vn = [H ].

6.2 KAM step

Now we describe an elementary step of our iterative procedure. Such a step consists in
pulling back the Hamiltonian H by a transformation of the form

F = (Φ, ϕ) : (θ, I, ω) 7→ (Φ(θ, I, ω), ϕ(ω));

Φ is a parameter-depending change of coordinates and ϕ a change of parameters. Moreover,
our change of coordinates will be of the form

Φ(θ, I, ω) = Φω(θ, I) = (θ + E(θ, ω), I + F (θ, ω) · I +G(θ, ω))

with
E : Tn ×Dh → Rn, F : Tn ×Dh →Mn(R), G : Tn ×Dh → Rn

and for each fixed parameter ω, Φω will be symplectic. For simplicity, we shall write
Φ = (E, F,G); the composition of such transformations F = (Φ, ϕ) = (E, F,G, ϕ) is
again a transformation of the same form, and we shall denote by G the groupoid of such
transformations.

Proposition 4. Let H be as in (∗∗), with ω0 = (1, ω̄0) ∈ Rn non-resonant, consider
0 < σ < s, 0 < δ < r, Q ≥ n+ 2, and assume that
√
ε ≤ µ ≤ h/2,

√
ε ≤ r, h ·< (QΨ(Q))−1, rµ ·<δ(QΨ(Q))−1, (1 + η) ·<Qσα. (13)

Then there exists an (α, s− σ)-Gevrey symplectic transformation

F = (Φ, ϕ) = (E, F,G, ϕ) : Tn ×Dr−δ,h/2 → Tn ×Dr,h ∈ G,

with the estimates






|E|α,s−σ<·Ψ(Q)µ, |∇E|α,s−σ<·σ−αΨ(Q)µ,

|F |α,s−σ<·σ−αΨ(Q)µ, |∇F |α,s−σ<·σ−2αΨ(Q)µ,

|G|α,s−σ<·σ−αΨ(Q)ε, |∇G|α,s−σ<·σ−2αΨ(Q)ε,

|ϕ− Id|α,s−σ ≤ µ, |∇ϕ− Id|α,s−σ<·σ−αµ

(14)
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such that

H ◦ F(θ, I, ω) = e+(ω) + ω · I
︸ ︷︷ ︸

N+(I,ω)

+A+(θ) +B+(θ) · I
︸ ︷︷ ︸

P+(θ,I,ω)

+M+(θ, I, ω) · I2
︸ ︷︷ ︸

R+(θ,I,ω)

,

with the estimates
{

|A+|α,s−σ ≤ ε/16, |B+|α,s−σ ≤ µ/4,

|e+ − e ◦ ϕ|α,s−σ ≤ |A|α,s, |∇2
IR

+ −∇2
IR ◦ F|α,s−σ<· η|F |α,s−σ.

(15)

Proof. We divide the proof of the KAM step into five small steps. Except for the last one,
the parameter ω ∈ Dh will be fixed, so for simplicity, in the first four steps we will drop
the dependence on the parameter ω ∈ Dh. Let us first notice that (13) clearly implies the
following seven inequalities:

h ·< (QΨ(Q))−1 (16)

Ψ(Q)µ ·<σα (17)

ε ≤ rµ (18)

rµσ−αΨ(Q) ·<δ (19)

µ ·< (QΨ(Q))−1 (20)

(1 + η) ·<Qσα (21)

µ ≤ h/2. (22)

It is also important to notice that the implicit constant appearing in (21) is independent
of the other implicit constants; we may choose it as large as we want without affecting the
other implicit constants. In the first three steps, the term R which contains terms of order
at least 2 in I will be ignored, that is we will only consider Ĥ = H −R = N + P .

1. Rational approximations of ω0 and ω ∈ Dh

Since ω0 is non-resonant, given Q ≥ n + 2, we can apply Proposition 2: there exist
n rational vectors v1, . . . , vn, of denominators q1, . . . , qn, such that q1v1, . . . , qnvn form a
Z-basis of Zn and for j ∈ {1, . . . , n},

|ω0 − vj |<· (qjQ)−1, 1 ≤ qj <·Ψ(Q).

For any ω ∈ Dh, using (16) and qj <·Ψ(Q), we have

|ω − vj | ≤ |ω − ω0|+ |ω0 − vj |<·h + (qjQ)
−1<· (QΨ(Q))−1 + (qjQ)

−1<· (qjQ)−1. (23)

2. Successive rational averagings

Let us set A1 := A, B1 := B so that P1(θ, I) := A1(θ) + B1(θ) · I satisfies P1 = P .
Recalling that [ . ]v denotes the averaging along the periodic flow associated to a periodic
vector v ∈ Rn (see (11)), we define inductively, for 1 ≤ j ≤ n,

Aj+1 := [Aj ]vj , Bj+1 := [Bj ]vj , Pj+1 := [Pj ]vj
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so in particular Pj(θ, I) = Aj(θ) + Bj(θ) · I for 1 ≤ j ≤ n. Let us also define Xj, for
1 ≤ j ≤ n, by

Xj(θ, I) := Cj(θ) +Dj(θ) · I
where

Cj(θ) = qj

∫ 1

0

(Aj − Aj+1)(θ + tqjvj)tdt, Dj(θ) = qj

∫ 1

0

(Bj − Bj+1)(θ + tqjvj)tdt.

If we further define Nj by Nj(I) = e(ω) + vj · I, it is then easy to check, by a simple
integration by parts, that the equations

{Cj, Nj} = Aj − Aj+1, {Dj, Nj} = Bj −Bj+1, 1 ≤ j ≤ n, (24)

and then
{Xj , Nj} = Pj − Pj+1, 1 ≤ j ≤ n, (25)

are satisfied, where { . , . } denotes the usual Poisson bracket. Moreover, we have the
estimates

|Aj|α,s ≤ |A|α,s ≤ ε, |Bj|α,s ≤ |B|α,s ≤ µ, (26)

and then

|Cj|α,s ≤ qj |Aj|α,s ≤ qjε<·Ψ(Q)ε, |Dj |α,s ≤ qj |Bj|α,s ≤ qjµ<·Ψ(Q)µ. (27)

Next, for any 0 ≤ j ≤ n, define rj = r − n−1jδ and sj = s − (2n)−1jσ. We have
rn = r − δ ≤ rj ≤ r0 = r while sn = s − σ/2 ≤ sj ≤ s0 = s. Let X t

j be the time-t
map of the Hamiltonian flow of Xj . Using (27), together with inequalities (17), (18) and
(19), the condition (80) and (82) of Proposition 22, Appendix B, are satisfied, so the latter
proposition can be applied: for 1 ≤ j ≤ n, X t

j maps Tn × Brj into Tn × Brj−1
for all

t ∈ [0, 1] and it is of the form

X t
j(θ, I) = (θ + Et

j(θ), I + F t
j (θ) · I +Gt

j(θ))

with 





|Et
j |α,sj ≤ |Dj|α,sj−1

<·Ψ(Q)µ

|F t
j |α,sj <·σ−α|Dj |α,sj−1

<· σ−αΨ(Q)µ

|Gt
j |α,sj <·σ−α|Cj|α,sj−1

<·σ−αΨ(Q)ε.

(28)

Now we define Φ0 := Id to be the identity and inductively Φj := Φj−1 ◦ X1
j for 1 ≤ j ≤

n. Then Φj maps Tn × Brj into Tn × Br and one easily checks, by induction using the
estimates (28), that Φj is still of the form

Φj(θ, I) = (θ + Ej(θ), I + F j(θ) · I +Gj(θ))

with the estimates, for j = 1, ..., n,

|Ej|α,sj <·Ψ(Q)µ, |F j|α,sj <·σ−αΨ(Q)µ, |Gj|α,sj <·σ−αΨ(Q)ε. (29)
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3. New Hamiltonian

Let us come back to the Hamiltonian Ĥ = H − R = N + P = N + P1. We claim that
for all 0 ≤ j ≤ n, we have

Ĥ ◦ Φj = N + Pj+1 + P+
j+1, P+

j+1(θ, I) = A+
j+1(θ) +B+

j+1(θ) · I

with the estimates

|A+
j+1|α,sj <· (Qσα)−1ε, |B+

j+1|α,sj <· (Qσα)−1µ. (30)

Let us prove the claim by induction on 0 ≤ j ≤ n. For j = 0, we may set P+
1 := 0 and

there is nothing to prove. So let us assume that the claim is true for some j − 1 ≥ 0, and
we need to show it is still true for j ≥ 1. By this inductive assumption, we have

Ĥ ◦ Φj = Ĥ ◦ Φj−1 ◦X1
j = (N + Pj + P+

j ) ◦X1
j

with
|A+

j |α,sj−1
<· (Qσα)−1ε, |B+

j |α,sj−1
<· (Qσα)−1µ. (31)

Let Sj = ω · I − vj · I so that N = Nj + Sj and thus

Ĥ ◦ Φj = (Nj + Sj + Pj + P+
j ) ◦X1

j = (Nj + Sj + Pj) ◦X1
j + P+

j ◦X1
j .

Let us consider the first summand of the last sum. Using the equality (25), a standard
computation based on Taylor’s formula with integral remainder gives

(Nj + Sj + Pj) ◦X1
j = N + [Pj ]vj + P̃j+1 = N + Pj+1 + P̃j+1

with

P̃j+1 =

∫ 1

0

U t
j+1 ◦X t

jdt, U t
j+1 := {(1− t)Pj+1 + tPj + Sj , Xj}.

Clearly, U t
j+1 is still of the form

U t
j+1(θ, I) = U t

j+1(θ, 0) +∇IU
t
j+1(θ, 0) · I

as this is true for Pj , Sj, Xj and that this form is preserved under Poisson bracket. Using
the estimates for Pj(θ, 0), ∇IPj(θ, 0), Xj(θ, 0), ∇IXj(θ, 0) (given respectively in (26) and
in (27)), the fact that

Sj(θ, 0) = 0, ∇ISj(θ, 0) = ω − vj

with the inequality (23), and the estimates for the derivatives and the product of Gevrey
functions (given respectively in Proposition 14, Corollary 15 and Proposition 16, Corol-
lary 18, Appendix B), one finds, for all t ∈ [0, 1]

|U t
j+1(θ, 0)|α,sj <· (σ−αqjεµ+ σ−αqjεµ+ σ−αqjε(qjQ)

−1)<·σ−αqjεµ+ (Qσα)−1ε.
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Since qj <·Ψ(Q), using (20) the latter estimate reduces to

|U t
j+1(θ, 0)|α,sj <· (Qσα)−1ε.

Similarly, one obtains
|∇IU

t
j+1(θ, 0)|α,sj <· (Qσα)−1µ.

Then, using the expression of X t
j and the associated estimates (28), a direct computation,

still using (20), gives
|P̃j+1(θ, 0)|α,sj <· (Qσα)−1ε

and
|∇I P̃j+1(θ, 0)|α,sj <· (Qσα)−1µ.

Using again the estimates of X t
j given by (28), and the inductive assumption (31), we also

find
|P+

j ◦X1
j (θ, 0)|α,sj <· (Qσα)−1ε

and
|∇I(P

+
j ◦X1

j )(θ, 0)|α,sj <· (Qσα)−1µ.

Eventually, we may define
P+
j+1 := P̃j+1 + P+

j ◦X1
j

so that
Ĥ ◦ Φj = N + Pj+1 + P+

j+1, P+
j+1(θ, I) = A+

j+1(θ) +B+
j+1(θ) · I

and these last estimates imply that

|A+
j+1|α,sj <· (Qσα)−1ε, |B+

j+1|α,sj <· (Qσα)−1µ.

The claim is proved. So we may set

Φ := Φn, (E, F,G) := (En, F n, Gn),

with, as (29) tells us with j = n and sn = s− σ/2,

|E|α,s−σ/2<·Ψ(Q)µ, |F |α,sσ/2<·σ−αΨ(Q)µ, |G|α,s−σ/2<·σ−αΨ(Q)ε. (32)

Observe that Pn+1 = [· · · [P ]v1 · · · ]vn = [P ]v1,...,vn, and thus by Proposition 3, Pn+1 =
[P ], and as a consequence

Ĥ ◦ Φ(θ, I) = e + ω · I + [A] + [B] · I + A+
n+1(θ) +B+

n+1(θ) · I

with the estimates

|A+
n+1|α,s−σ/2<· (Qσα)−1ε, |B+

n+1|α,s−σ/2<· (Qσα)−1µ. (33)

4. Estimate of the remainder
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Now we take into account the remainder term R that we previously ignored: we have
H = Ĥ +R, and therefore

H ◦ Φ(θ, I) = e+ ω · I + [A] + [B] · I + A+
n+1(θ) +B+

n+1(θ) · I +R ◦ Φ(θ, I).

Let us decompose

R ◦ Φ(θ, I) = R ◦ Φ(θ, 0)
︸ ︷︷ ︸

R0(θ)

+∇I(R ◦ Φ)(θ, 0)
︸ ︷︷ ︸

R1(θ)

·I + R̃(θ, I)

and let us define
Ã := A+

n+1 +R0, B̃ := B+
n+1 +R1.

We have R(θ, I) = M(θ, I) · I2 and as H and R differ only by terms of order at most one
in I, ∇2

IH = ∇2
IR so

M(θ, I) =

∫ 1

0

(1− t)∇2
IH(θ, tI)dt =

∫ 1

0

(1− t)∇2
IR(θ, tI)dt

and therefore |M |α,s ≤ η. Then, as Φ(θ, 0) = (θ + E(θ), G(θ)), we have the expression

R0(θ) = R(Φ(θ, 0)) =M(θ + E(θ), G(θ)) ·G(θ)2

and so using the above estimate on M , together with the estimates on E, G and the esti-
mates for the product and compostion of Gevrey functions (given respectively in Proposi-
tion 16 and Proposition 20, Appendix B), we find

|R0|α,s−σ/2<· η|G|2α,s−σ/2<· η(σ−αΨ(Q)µ)2ε<· η(Qσα)−2ε<· η(Qσα)−1ε.

Then, we have ∇IR(θ, I) = M̂(θ, I) · I2 with

M̂(θ, I) =

∫ 1

0

∇2
IH(θ, tI)dt =

∫ 1

0

∇2
IR(θ, tI)dt

and hence |M̂ |α,s ≤ η. Since

|∇IΦ− Id|α,s−σ = |F |α,s−σ<·σ−αΨ(Q)µ ·< 1 (34)

we obtain, using the fact that ε ≤ µ2 and proceeding as before,

|R1|α,s−σ/2<· η|G|α,s−σ/2<· ησ−αΨ(Q)ε<· η(σ−αΨ(Q)µ)µ<· η(Qσα)−1µ.

These last estimates on R0 and R1, together with (33), imply

|Ã|α,s−σ/2<· (1 + η)(Qσα)−1ε, |B̃|α,s−σ/2<· (1 + η)(Qσα)−1µ.

We can finally now use (21) to ensure that

|Ã|α,s−σ/2 ≤ ε/16, |B̃|α,s−σ/2 ≤ µ/4. (35)

23



It is important to recall here that we may choose the implicit constant in (21) as large as
we want (in order to achieve (35)) without affecting any of the other implicit constants.
Then observe also that H ◦ Φ and R̃ differ only by terms of order at most one in I, so

∇2
I(H ◦ Φ) = ∇2

IR̃, ∇2
IH = ∇2

IR

and therefore using the formula for the Hessian of a composition, (34) and the fact that
∇2

IΦ is identically zero, one finds

|∇2
IR̃−∇2

IR ◦ Φ|α,s−σ/2<· η|F |α,σ. (36)

We also set ẽ := e + [A] and observe that

|ẽ− e|α,s−σ/2 ≤ |[A]|α,s ≤ |A|α,s. (37)

5. Change of frequencies and final estimates

Let us now write explicitly the dependence on the parameter ω ∈ Dh: we have

H ◦ Φ(θ, I, ω) = ẽ(ω) + (ω + [B](ω)) · I + Ã(θ, ω) + B̃(θ, ω) · I + R̃(θ, I, ω).

Consider the map φ(ω) := ω + [B(ω)], it satisfies

|φ− Id|α,s ≤ |[B]|α,s ≤ |B|α,s ≤ µ

and therefore the conditions (83) of Proposition 23 are satisfied: the first condition of (83)
follows, from instance, from condition (17) and the fact that Ψ(Q) ≥ Q ≥ 1, whereas the
second condition of (83) is implied by condition (22). Hence Proposition 23 applies and
one finds a unique ϕ ∈ Gα,s−σ/2(Dh/2, Dh) such that φ ◦ ϕ = Id and

|ϕ− Id|α,s−σ/2 ≤ |φ− Id|α,s ≤ µ. (38)

We do have ϕ(ω) + [B(ϕ(ω))] = ω and thus, setting F := (Φ, ϕ), this implies that

H◦F(θ, I, ω) = H◦Φ(θ, I, ϕ(ω)) = ẽ(ϕ(ω))+ω·I+Ã(θ, ϕ(ω))+B̃(θ, ϕ(ω))·I+R̃(θ, I, ϕ(ω))

and at the end we set

e+ := ẽ ◦ ϕ, A+ := Ã ◦ ϕ, B+ := B̃ ◦ ϕ, R+ := R̃ ◦ ϕ.

Using once again Proposition 20, the inequalities (35), (36) and (37) imply







|A+|α,s−σ = |Ã ◦ ϕ|α,s−σ ≤ |Ã|α,s−σ/2 ≤ ε/16,

|B+|α,s−σ = |B̃ ◦ ϕ|α,s−σ ≤ |B̃|α,s−σ/2 ≤ µ/4,

|e+ − e ◦ ϕ|α,s−σ = |(ẽ− e) ◦ ϕ|α,s−σ ≤ |ẽ− e|α,s−σ/2 ≤ |A|α,s,
|∇2

IR
+ −∇2

IR ◦ F| = |(∇2
IR̃−∇2

IR ◦ Φ) ◦ ϕ|α,s−σ ≤ |∇2
IR̃−∇2

IR ◦ Φ|α,s−σ/2<· η|F |α,s−σ,
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which were the estimates (15) we needed to prove. The transformation F = (Φ, ϕ) =
(E, F,G, ϕ) ∈ G maps Tn ×Dr−δ,h/2 into Tn ×Dr,h and it follows from (32) and (38) that







|E|α,s−σ<·Ψ(Q)µ, |∇E|α,s−σ<·σ−αΨ(Q)µ,

|F |α,s−σ<·σ−αΨ(Q)µ, |∇F |α,s−σ<·σ−2αΨ(Q)µ,

|G|α,s−σ<·σ−αΨ(Q)ε, |∇G|α,s−σ<·σ−2αΨ(Q)ε,

|ϕ− Id|α,s−σ ≤ µ, |∇ϕ− Id|α,s−σ<·σ−αµ

which were the wanted estimates (14). This concludes the proof.

6.3 Iterations and convergence

We now define, for i ∈ N, the following decreasing geometric sequences:

εi := 16−iε, µi := 4−iµ, δi := 2−i−2r, hi = 2−ih. (39)

Next, for a constant Q0 ≥ n+ 2 to be chosen below, we define ∆i and Qi, i ∈ N, by

∆i = 2i∆(Q0), Qi = ∆−1(∆i) = ∆−1(2i∆(Q0)), (40)

and then we define σi, i ∈ N, by

σi = CQ
− 1

α
i (41)

where C ≥ 1 is a sufficiently large constant so that the last condition of (13) is satisfied
for σ = σ0 and Q = Q0 (and thus for σ = σi and Q = Qi, for any i ∈ N); clearly, this
constant is of the form C =· (1 + η)1/α. Finally, we define si and ri, i ∈ N, by

s0 = s, si+1 = si − σi, r0 = r, ri+1 = ri − δi. (42)

Obviously, we have

lim
i→+∞

ri = r −
∑

i∈N

δi = r/2.

We claim that, assuming ∆−1 satisfies (Aα), which is equivalent to ω0 ∈ BRα, we can
choose Q0 sufficiently large so that

lim
i→+∞

si ≥ s/2 ⇐⇒
∑

i∈N

σi ≤ s/2.

Indeed, since Qi = ∆−1(∆i) = ∆−1 (2i∆(Q0)), we have

∑

i≥1

Q
− 1

α
i =

∑

i≥1

1

(∆−1 (2i∆(Q0)))
1

α

≤
∫ +∞

0

dy

(∆−1 (2y∆(Q0)))
1

α

=

∫ +∞

∆(Q0)

(ln 2)−1dx

x(∆−1(x))
1

α

< +∞
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where we made a change of variables x := 2y∆(Q0), and the last integral converges since

∆−1 satisfies (Aα). Now as σi = CQ
− 1

α
i , we have

∑

i∈N

σi = C
∑

i≥0

Q
− 1

α
i = CQ

− 1

α
0 + C

∑

i≥1

Q
− 1

α
i ≤ CQ

− 1

α
0 + C

∫ +∞

∆(Q0)

(ln 2)−1dx

x(∆−1(x))
1

α

≤ s/2

provided we choose Q0 sufficiently large in order to have

Q
− 1

α
0 +

∫ +∞

∆(Q0)

(ln 2)−1dx

x(∆−1(x))
1

α

≤ (2C)−1s. (43)

Applying inductively Proposition 4 we will easily obtain the following proposition.

Proposition 5. Let H be as in (∗∗), with ω0 ∈ BRα, and fix Q0 ≥ n+2 sufficiently large
so that (43) is satisfied. Assume that

√
ε ≤ µ ≤ h/2,

√
ε ≤ r, h ·<∆(Q0)

−1. (44)

Then, for each i ∈ N, there exists an (α, si)-Gevrey smooth transformation

F i = (Φi, ϕi) = (Ei, F i, Gi, ϕi) : Tn ×Dri,hi
→ Tn ×Dr,h ∈ G,

such that F i+1 = F i ◦ Fi+1, with

Fi+1 = (Φi+1, ϕi+1) = (Ei+1, Fi+1, Gi+1, ϕi+1) : T
n ×Dri+1,hi+1

→ Tn ×Dri,hi
∈ G,

satisfying the following estimates







|Ei+1|α,si+1
<·Ψ(Qi)µi, |∇Ei+1|α,si+1

<·σ−α
i Ψ(Qi)µi,

|Fi+1|α,si+1
<·σ−α

i Ψ(Qi)µi, |∇Fi+1|α,si+1
<·σ−2α

i Ψ(Qi)µi,

|Gi+1|α,si+1
<·σ−α

i Ψ(Qi)εi, |∇Gi+1|α,si+1
<·σ−2α

i Ψ(Qi)εi,

|ϕi+1 − Id|α,si+1
≤ µi, |∇ϕi+1 − Id|α,si+1

<·σ−α
i µi

(45)

and such that

H ◦ F i(θ, I, ω) = ei(ω) + ω · I
︸ ︷︷ ︸

N i(I,ω)

+Ai(θ) +Bi(θ) · I
︸ ︷︷ ︸

P i(θ,I,ω)

+M i(θ, I, ω) · I2
︸ ︷︷ ︸

Ri(θ,I,ω)

with the estimates






|Ai|α,si+1
≤ εi, |Bi|α,si+1

≤ µi,

|ei+1 − ei ◦ ϕi+1|α,si+1
≤ |Ai|α,si,

|∇2
IR

i+1 −∇2
IR

i ◦ Fi+1|α,si+1
<· η|Fi+1|α,si+1

.

(46)

Let us emphasize that the implicit constants in the above proposition depend only on
n and α and are thus independent of i ∈ N.
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Proof. For i = 0, we let F0 be the identity, e0 := e, A0 := A, B0 := B, R0 := R, M0 :=M
and there is nothing to prove. The general case follows by an easy induction. Indeed,
assume that the statement holds true for some i ∈ N so that H ◦ F i is (α, si)-Gevrey on
the domain Tn ×Dri,si. We want to apply Proposition 4 to this Hamiltonian, with ε = εi,
µ = µi, r = ri, s = si, h = hi, σ = σi and Q = Qi. First, by our choice of Q0 and δ0 it
is clear that 0 < σi < si, 0 < δi < ri, and Qi ≥ n + 2. Then we need to check that the
conditions

√
εi ≤ µi ≤ hi/2,

√
εi ≤ ri, hi ·<∆(Qi)

−1, riµi ·<δi∆(Qi)
−1, 1 ·<Qiσ

α
i

are satisfied. Since

∆(Qi) = ∆(∆−1(∆i)) = ∆i, 2−ir ≤ ri ≤ r,

it is sufficient to check the conditions

√
εi ≤ µi ≤ hi/2,

√
εi ≤ 2−ir, hi ·<∆−1

i , rµi ·<δi∆−1
i , 1 ·<Qiσ

α
i . (47)

The last condition of (47) is satisfied, for all i ∈ N, simply by the choice of the constant
C in the definition of σi. As for the other four conditions of (47), using the fact that the
sequences εi, µi, hi, ∆

−1
i and δi decrease at a geometric rate with respective ratio 1/16,

1/4, 1/2, 1/2 and 1/2, it is clear that they are satisfied for any i ∈ N if and only if they
are satisfied for i = 0. The first three conditions of (47) for i = 0 are nothing but (44).
Moreover, using our choice of δ0 = r/4, the fourth condition of (47) for i = 0 reads µ ·<∆−1

0

and this also follows from (44).
Hence Proposition 4 can be applied, and all the conclusions of the statement follow at

once from the conclusions of Proposition 4.

We can finally conclude the proof of Theorem H, by showing that one can pass to the
limit i→ +∞ in Proposition 5.

Proof of Theorem H. Recall that we are given ε > 0, µ > 0, r > 0, s > 0, h > 0 and that
we define the sequences εi, µi, δi, hi in (39), and then we chose Q0 ≥ n + 2 satisfying (43)
to define the sequences ∆i, Qi in (40) and σi in (41) and finally, si and ri were defined
in (42). Moreover, we have

{

limi→+∞ εi = limi→+∞ µi = limi→+∞ hi = 0,

limi→+∞ ri = r −∑+∞
i=0 δi = r/2, limi→+∞ si = s−∑+∞

i=0 σi ≥ s/2
(48)

and for later use, let us observe that the following series are convergent and can be made
as small as one wishes thanks to condition (5) of Theorem H:

+∞∑

i=0

σ−α
i µi ≤

+∞∑

i=0

Qiµi =

+∞∑

i=0

(Ψ(Qi))
−1∆iµi ≤ 2(Ψ(Q0))

−1∆0µ = 2Q0µ (49)
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+∞∑

i=0

µi ≤ 2µ (50)

+∞∑

i=0

σ−α
i Ψ(Qi)µi ≤

+∞∑

i=0

∆iµi ≤ 2∆0µ = 2Q0Ψ(Q0)µ (51)

+∞∑

i=0

Ψ(Qi)µi ≤
+∞∑

i=0

Q−1
i ∆iµi ≤ 2Q−1

0 ∆0µ = 2Ψ(Q0)µ (52)

+∞∑

i=0

σ−α
i Ψ(Qi)εi ≤

+∞∑

i=0

∆iεi ≤ 2∆0ε = 2Q0Ψ(Q0)ε. (53)

Now the condition (5) of Theorem H implies that the condition (44) of Proposition 5 is
satisfied; what we need to prove is that the sequences given by this Proposition 5 do conver-
gence in the Banach space of (α, s/2)-Gevrey functions. Recall that F0 = (E0, F 0, G0, ϕ0)
is the identity, while for i ≥ 0,

(Ei+1, F i+1, Gi+1, ϕi+1) = F i+1 = F i ◦ Fi+1 = (Ei, F i, Gi, ϕi) ◦ (Ei+1, Fi+1, Gi+1, ϕi+1)

from which one easily obtains the following inductive expressions:







Ei+1(θ, ω) = Ei+1(θ, ω) + Ei(θ + Ei+1(θ, ω), ϕi+1(ω))

F i+1(θ, ω) = Fi+1(θ, ω) + F i(θ + Ei+1(θ, ω), ϕi+1(ω)) · (Id + Fi+1(θ, ω))

Gi+1(θ, ω) = (F i(θ + Ei+1(θ, ω), ϕi+1(ω)) + Id) ·Gi+1(θ, ω) +Gi(θ + Ei+1(θ, ω), ϕi+1(ω))

ϕi+1 = ϕi ◦ ϕi+1.

(54)
Let us first prove that the sequence ϕi converges. We claim that for all i ∈ N, we have

|∇ϕi|α,si <·
i∏

l=0

(1 + σ−α
l µl)<· 1

where the fact that the last product is bounded uniformly in i ∈ N follows from (49). For
i = 0, ϕ0 = Id and there is nothing to prove; for i ∈ N since ϕi+1 = ϕ◦ + ϕi+1 we have

∇ϕi+1 =
(
∇ϕi ◦ ϕi+1

)
· ∇ϕi+1

so that using the estimate for ϕi+1 and ∇ϕi+1 given in (45), Proposition 5, the claim follows
by induction. Using this claim, and writing

ϕi+1 − ϕi = ϕi ◦ ϕi+1 − ϕi =

(∫ 1

0

∇ϕi ◦ (tϕi+1 + (1− t)Id)dt

)

· (ϕi+1 − Id)

one finds
|ϕi+1 − ϕi|α,si+1

<· |ϕi+1 − Id|α,si+1
,
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and therefore
|ϕi+1 − ϕi|α,si+1

<·µi.

Using the convergence of (48) and (50), one finds that the sequence ϕi converges to a trivial
map

ϕ∗ : {ω0} → Dh, ϕ∗(ω0) := ω∗
0

such that
|ω∗

0 − ω0|<·µ.
Now let us define

Vi+1(θ, ω) := (θ + Ei+1(θ, ω), ϕi+1(ω)), Vi+1 = (Id + Ei+1, ϕi+1)

and observe that since Ψ(Qi) ≥ 1, then the estimates for Ei+1, ∇Ei+1, ϕi+1 and ∇ϕi+1

given in Proposition 5 implies that

|Vi+1 − Id|α,si+1
<·Ψ(Qi)µi, |∇Vi+1 − Id|α,si+1

<·σ−α
i Ψ(Qi)µi.

Using these estimates, and the fact that Ei+1 can be written as

Ei+1 = Ei+1 + Ei ◦ Vi+1

we can proceed as before, using the convergence of (51) to show first that

|∇Ei|α,si <·
i∑

l=0

σ−α
l Ψ(Ql)µl<· 1

and then
|Ei+1 −Ei|α,si+1

<· |Ei+1|α,si+1
<·Ψ(Qi)µi.

Using the convergence of (48) and (52), this shows that Ei converges to a map

E∗ : Tn × {ω0} → Tn ×Dh

such that
|E∗|α,s/2<·Ψ(Q0)µ.

For the F i, we do have the expression

F i+1 = Fi+1 + (F i ◦ Vi+1) · (Id + Fi+1)

or alternatively
F i+1 = (Id + F i ◦ Vi+1) · Fi+1 + F i ◦ Vi+1

and thus
F i+1 − F i = (Id + F i ◦ Vi+1) · Fi+1 + F i ◦ Vi+1 − F i.
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As before, using the estimates on Fi+1 and ∇Fi+1 given in Proposition 5, one shows that

|∇F i|α,si <·
i∑

l=0

σ−2α
l Ψ(Ql)µl

but however, here, the sum above is not convergent. Yet we do have

σα
i |∇F i|α,si <·σα

i

i∑

l=0

σ−2α
l Ψ(Ql)µl<·

i∑

l=0

σ−α
l Ψ(Ql)µl<· 1

from (52) and using the fact that the estimate for Vi+1 can be written as

|Vi+1 − Id|α,si+1
<·σα

i σ
−α
i Ψ(Qi)µi

one obtains
|F i ◦ Vi+1 − F i|α,si+1

<·σ−α
i Ψ(Qi)µi.

By induction, one shows that

|F i|α,si <·
i∑

l=0

σ−α
l Ψ(Ql)µl<· 1

from which one obtains
|Id + F i ◦ Vi+1|α,si <· 1

and as a consequence,
|F i+1 − F i|α,si+1

<·σ−α
i Ψ(Qi)µi.

Using the convergence of (48) and (51), this shows that F i converges to a map

F ∗ : Tn × {ω0} → Tn ×Dh

such that
|F ∗|α,s/2<·Q0Ψ(Q0)µ.

For Gi, we have the expression

Gi+1 = (F i ◦ Vi+1 + Id) ·Gi+1 +Gi ◦ Vi+1

and thus
Gi+1 −Gi = (F i ◦ Vi+1 + Id) ·Gi+1 +Gi ◦ Vi+1 −Gi.

Proceeding exactly as we did for Ei and F i, using the convergence of (48), (51) and (53),
one finds that Gi converges to a map

G∗ : Tn × {ω0} → Tn ×Dh
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such that
|G∗|α,s/2<·Q0Ψ(Q0)ε.

In summary, the map F i converges to a map

F∗ : Tn ×Dr/2 × {ω0} → Tn ×Dr,h

which belongs to G, of the form

{

F∗(θ, I, ω0) = (Φ∗
ω0
(θ, I), ω∗

0),

Φ∗
ω0
(θ, I) = (θ + E∗(θ), I + F ∗(θ) · I +G∗(θ))

with the estimates

|E∗|α,s/2<·Ψ(Q0)µ, |F ∗|α,s/2<·Q0Ψ(Q0)µ, |G∗|α,s/2<·Q0Ψ(Q0)ε, |ω∗
0−ω0|<·µ. (55)

Then from the estimates
|Ai|α,si ≤ εi, |Bi|α,si ≤ µi,

given in (46), Proposition 5, and the convergence (48), it follows that both Ai and Bi

convergence to zero. Next from the estimates

{

|ei+1 − ei ◦ ϕi+1|α,si+1
≤ |Ai|α,si,

|∇2
IR

i+1 −∇2
IR

i ◦ Fi+1|α,si+1
<· η|Fi+1|α,si+1

still given in (46), Proposition 5, one can prove in the same way as we did before, that ei

converges to a trivial map

e∗ : {ω0} → Dh, e∗(ω0) := e∗0

such that
|e∗0 − eω∗

0
|<· ε (56)

whereas M i converges to a map

M∗ : Tn ×Dr/2 × {ω0} → Tn ×Dr,h

such that, setting R∗(θ, I) =M∗(θ, I)I · I,

|∇2
IR

∗ −∇2
IRω∗

0
|α,s/2<· ηQ0Ψ(Q0)µ. (57)

Therefore we have

H ◦ F∗(θ, I, ω0) = Hω∗

0
◦ Φ∗

ω0
(θ, I) = e∗0 + ω0 · I +R∗(θ, I),

which, together with the previous estimates (55), (56) and (57), is what we wanted to
prove.
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7 Proof of Theorem D, following Bessi

The goal of this short section is to show how Theorem D follows directly from the work of
Bessi in [Bes00].

In Bessi, one starts with a non-resonant vector ω ∈ Rn which is assumed to be “expo-
nentially Liouville” in the following sense: there exists s0 > 0 and a sequence kj ∈ Zn with
|kj| → +∞ as j → +∞ for which

0 < |kj · ω| ≤ e−s0|kj |. (C1,s0)

Given this sequence of kj ∈ Zn, one can find another sequence k̃j ∈ Zn such that for all
j ∈ N, |k̃j| ≤ |kj|, k̃j · kj = 0 and |k̃j · ω| ≥ c|k̃j| for some constant c > 0 independent of j.

Then one defines the following sequence of Hamiltonians on Rn/(2πZn) × Rn (which
are similar to the Hamiltonian considered by Arnold in [Arn64]):







H1,j
ε,µ(θ, I) :=

1
2
I · I + F 1,j

ε,µ(θ), (θ, I) ∈ Rn/(2πZn)× Rn

F 1,j
ε,µ(θ) := εν1,j,s(1− cos(kj · θ))(1 + µν̃1,j,s cos(k̃j · θ))

0 < ε ≤ 1, 0 < µ ≤ 1, ν1,j,s := e−s|kj |, ν̃1,j,s := e−s|k̃j |.

(H1,j,s)

Observe that the only role of the sequences ν1,j,s and ν̃1,j,s is to ensure that the sequence
of perturbations F 1,j

ε,µ satisfy, for all j ∈ N and all 0 ≤ µ ≤ 1:

|F 1,j
ε,µ |s := sup

θ∈Cn/(2πZn), |Im(θ)≤s|

|F 1,j
ε,µ(θ)| ≤ 4ε.

In [Bes00], Bessi proved the following theorem.

Theorem 6 (Bessi). Assume that ω ∈ Rn satisfy (C1,s0). Then, if s0 > s, for any
0 ≤ ε ≤ 1, there exists µε > 0 and jε ∈ N such that for any 0 < µ ≤ µε and any j ≥ jε,
the Hamiltonian system defined in (H1,j,s) does not have any invariant torus T satisfying

(i) T projects diffeomorphically to Tn;

(i) There is a C1 diffeomorphism between Tn and T which conjugates the flow on T to
the linear flow on Tn of frequency ω.

It is clear that it is the regularity of the perturbation, here the analyticity which causes
the exponential decay of the Fourier coefficients, that forces the condition (C1,s0). If the
perturbation is assumed to be only of class Cr for some r ∈ N, then (C1,s0) can be weakened
to cover frequencies ω which are Diophantine with an exponent τ which is related to r (this
can be obtained from Bessi’s work; one can find a better quantitative result in [CW13],
which also uses ideas of [Bes00]).

Here we would like to consider the case where the perturbation is α-Gevrey; we will
consider a slight modification of the family of Hamiltonians (H1,j,s) to a family of Hamilto-
nians (Hα,j,s) depending on α ≥ 1, which are still analytic but for which the perturbation
are bounded and small only in a α-Gevrey norm.
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First we need to compute the Gevrey of the function Pk(θ) := cos(k ·θ) for an arbitrary
k ∈ Zn. Using the fact that (l + 1)2 ≤ 4l for any l ∈ N we have

|Pk|α,s = c sup
l∈N

(l + 1)2sαl|k|l
l!α

≤ c sup
l∈N

(4|k|sα)l
l!α

≤ c

(

sup
l∈N

((4|k|)1/αs)l
l!

)α

≤ cesα(4|k|)
1
α .

Now, given α ≥ 1, we introduce the following condition on the non-resonant vector ω ∈ Rn:
there exists s0 > 0 and a sequence kj ∈ Zn with |kj| → +∞ as j → +∞ for which

0 < |kj · ω| ≤ e−s0α(4|kj |)
1
α . (Cα,s0)

For α = 1, this condition reduces to (C1,s0). Then we consider the following modified
sequence of Hamiltonians, which once again corresponds exactly to H1,j,s for α = 1:







Hα,j
ε,µ (θ, I) :=

1
2
I · I + F α,j

ε,µ (θ), (θ, I) ∈ Rn/(2πZn)× Rn

F α,j
ε,µ (θ) := ενα,j,s(1− cos(kj · θ))(1 + µν̃α,j,s cos(k̃j · θ))

0 < ε ≤ 1, 0 < µ ≤ 1, να,j,s := e−sα(4|kj |)
1
α , ν̃α,j,s := e−sα(4|k̃j |)

1
α .

(Hα,j,s)

With these choices of να,j,s and ν̃α,j,s we have that, for all j ∈ N and all 0 ≤ µ ≤ 1:

|F α,j
ε,µ |s,α ≤ Cε

for some constant C > 1 independent of ε and µ. The argument of Bessi goes exactly the
same of way for this family of Hamiltonians (Hα,j,s) under the condition (Cα,s0), and thus
we have the following statement.

Theorem 7. Assume that ω ∈ Rn satisfy (Cα,s0). Then, if s0 > s, for any 0 ≤ ε ≤ 1, there
exists µε > 0 and jε ∈ N such that for any 0 < µ ≤ µε and any j ≥ jε, the Hamiltonian
system defined in (Hα,j,s) does not have any invariant torus T satisfying

(i) T projects diffeomorphically to Tn;

(i) There is a C1 diffeomorphism between Tn and T which conjugates the flow on T to
the linear flow on Tn of frequency ω.

Now Theorem 7 implies Theorem D, as if ω satisfies (Bα), then it satisfies (Cα,s0) for
some s0 > 0 and it is sufficient to consider a Hamiltonian system as in (Hα,j,s) with s < s0.

A On the α-Bruno-Rüssmann condition

Recall from Section 2.2 that the arithmetic function on [1,+∞) associated with a vector
ω ∈ Rn is given by

Ψω(Q) = max
{
|k · ω|−1, k ∈ Zn, 0 < |k| ≤ Q

}
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and that we have introduced a continuous version Ψ which satisfies (4). We have further
defined ∆ by ∆(Q) = QΨ(Q) and its functional inverse ∆−1.

Also recall that, by definition, if α ≥ 1, Aα consists of those vectors ω for which
∫ +∞

∆(1)

dx

x(∆−1(x))
1

α

<∞, (Aα)

whereas BRα consists of vectors ω satisfying the α-Bruno-Rüssmann condition:
∫ +∞

1

ln(Ψω(Q))

Q1+ 1

α

dQ <∞ ⇔
∫ +∞

1

ln(Ψ(Q))

Q1+ 1

α

dQ <∞. (BRα)

In the proof of Theorem H, we use the following fact.

Proposition 8. For any α ≥ 1, Aα = BRα.

Proof. We aim at showing that the two integrals
∫ +∞ dx

x(∆−1(x))
1

α

and

∫ +∞ ln(Ψ(Q))

Q1+ 1

α

dQ

converge or diverge simultaneously. Equivalently, choosing for example t = ∆−1(1) and, in
the first integral, making the change of variable x = ∆(Q), we may compare the following
two quantities:

aα =

∫ ∞

t

d∆(Q)

Q
1

α∆(Q)
and bα =

∫ ∞

t

ln∆(Q)

Q1+ 1

α

dQ.

A (Riemann-Stieltjes) integration by part shows that, if T > 1,

∫ T

t

d∆(Q)

Q
1

α∆(Q)
=

ln∆(T )

T
1

α

+
1

α

∫ T

t

ln∆(Q)

Q1+ 1

α

dQ. (58)

On the one hand, the two integrals in this equality have a (possibly infinite) limit as T

tends to +∞, and ln∆(T )

T
1
α

≥ 0, thus (58) yields, as T tends to infinity,

aα ≥ bα
α
.

On the other hand, since ∆ is increasing,

ln∆(T )

T
1

α

=
ln∆(T )

α

∫ +∞

T

dQ

Q1+ 1

α

≤ 1

α

∫ +∞

T

ln∆(Q)

Q1+ 1

α

dQ

so, letting T tend to +∞, (58) entails

aα ≤ bα
α
.

So, aα = bα
α
, whence the conclusion.
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Remark 1. From the proof above, one easily see that if ω ∈ BRα, then

lim
Q→+∞

ln(∆(Q))

Q1/α
= 0.

But ln(∆(Q)) = ln(QΨ(Q)) = lnQ+ ln(Ψ(Q)) and therefore

lim
Q→+∞

ln(Ψ(Q))

Q1/α
= 0

which means that ω satisfies Rα.

We refer to [BF13, Proposition 2.2] for related, more precise results. In the next lemma,
we give alternative characterizations of the α-BR condition, so as to facilitate comparisons
with other arithmetic conditions.

Lemma 9. Let α ≥ 1, β = 1+ 1
α
and ω ∈ Rn non-resonant. The following conditions are

equivalent to each other:

1.
∫ +∞

1
lnΨω(Q)

Qβ dQ <∞

2.
∑

Q≥1
lnΨω(Q)

Qβ <∞

3.
∑

l≥0
lnΨω(2l)

2l/α
<∞

4. if n = 2 and ω = (1, ν),
∑

k≥1
ln qk+1

q
1/α
k

<∞, where the qk’s are the main denominators

of the continued fraction of ν.

In the case α = 1, the equivalence (1 ⇔ 2) is proved in [Rüs01], whereas (2 ⇔ 3 ⇔ 4)
is proved in in [GM10].

Proof. (1 ⇔ 2) As already noticed in Section 2.2, Ψω is constant on intervals of the form
[Q,Q+ 1), Q ∈ N∗. So,

∫ ∞

1

lnΨω(Q)

Qβ
dQ =

+∞∑

Q=1

lnΨω(Q)

∫ Q+1

Q

q−β dq = α
∑

Q≥1

lnΨω(Q)
(
Q−1/α − (Q+ 1)−1/α

)
.

Since the general term of this series is positive and Q−1/α − (Q+ 1)−1/α ∼Q→+∞ Q−β, the
first two conditions are equivalent to one another.

(2 ⇔ 3) We want to show that f2 =
∑

Q≥1
lnΨω(Q)

Qβ and f3 =
∑

l≥0
lnΨω(2l)

2l/α
are simulta-

neously finite or infinite. Since Ψω is non-decreasing,

f2 ≥
∑

l≥0

lnΨω(2
l)

∑

2l≤Q≤2l+1−1

1

Qβ
,
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where
∑

2l≤Q≤2l+1−1

1

Qβ
≥
∫ 2l+1

2l

dQ

Qβ
≥ α

2

1

2l/α
,

so that
f2 ≥

α

2
f3.

Conversely, again using the fact that Ψω is non-decreasing,

f2 ≤
∑

l≥0

lnΨω(2
l+1)

∑

2l≤Q≤2l+1−1

1

Qβ
,

where

∑

2l≤Q≤2l+1−1

1

Qβ
≤ 1

2lβ
+

∫ 2l+1−1

2l

dQ

Qβ
≤ 1

2l/α

(
1

2l
+ α

)

≤ 1 + α

2l/α
=

21/α(1 + α)

2(l+1)/α

so that
f2 ≤ 21/α(1 + α)f3.

(2 ⇔ 4) Now assume n = 1 and ω = (1, ν), ν ∈ R. Let (pk/qk) be the sequence of
convergents of ν: one has then the following explicit expression

Ψω(Q) = |qkν − pk|−1, qk ≤ Q < qk+1

as was proved in [BF13], Proposition 2.7. Hence,

S :=
∑

Q≥1

ln(Ψω(Q))

Qβ
=
∑

k≥1

(

ln |qkν − pk|−1

qk+1−1
∑

Q=qk

1

Qβ

)

.

Bounding the first factor by

ln qk+1 ≤ ln |qkν − pk|−1 ≤ ln(2qk+1)

and the second one by

α

q
1/α
k

− α

q
1/α
k+1

≤
qk+1−1
∑

Q=qk

1

Qβ
≤ 1 + α

q
1/α
k

(obtained by comparing the series with an integral) yields

α
∑

k≥1

(

ln qk+1

q
1/α
k

− ln qk+1

q
1/α
k+1

)

≤ S ≤ (1 + α)
∑

k≥1

ln(2qk+1)

q
1/α
k

= (1 + α)
∑

k≥1

(

ln 2

q
1/α
k

+
ln(qk+1)

q
1/α
k

)

.

Since the sequence (qk)k≥0 increases at least geometrically, namely qk ≥ 2k/2 for any k ≥ 0,
we have

∑ ln qk+1

q
1/α
k+1

<∞,
∑ 1

q
1/α
k

<∞
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and therefore

S <∞ ⇔
∑ ln qk+1

q
1/α
k

<∞.

Example 10. Let ν =
∑

n≥1 10
−n!. Recall from [Khi63, Theorem 30] that if p/q ∈ Q

satisfies

|p− qν| < 1

2q
,

then p/q is a best approximation of ν. So, we see that
∑

1≤n≤Q 10−n! are best approxima-

tions, and thus qn = 2n!. The 4th criterion of Lemma 9 thus tells us that ω = (1, ν) ∈ BRα

for all α ≥ 1, while ω is not Diophantine.

B Gevrey estimates

Let us start by recalling some notations and definitions. Given an integer m ≥ 1 and
k = (k1, . . . , km) ∈ Nm, we define

|k| =
m∑

i=1

ki, k! =

m∏

i=1

ki!.

Given x ∈ Rm, we set

xk =

m∏

i=1

xkii .

Let K be a compact set of the form

K = Tm1 × B̄m2 , m1 +m2 = m,

where B̄m2 is the closure of an open subset Bm2 of Rm2 . Let f : K → R be a smooth
function, meaning that f extends smoothly to an open neighborhood of K. Such an
extension is by no means unique, but note that, by continuity, the partial derivatives of f
over K, at any order, do not depend on the extension. For a ∈ K and k ∈ Nm we set

∂kf(a) = ∂k1x1
· · ·∂kmxm

f(a). (59)

Given real numbers α ≥ 1 and s > 0, the function f is said to be (α, s)-Gevrey if

|f |α,s := c sup
a∈K

(

sup
k∈Nm

(|k|+ 1)2sα|k||∂kf(a)|
|k|!α

)

<∞, c := 4π2/3. (60)

The space of such functions will be denoted by Gα,s(K), and equipped with the above
norm, it is a Banach space. Our definition of Gevrey norm is not quite standard, but up to
decreasing or increasing the parameter s, it is comparable to the Gevrey norms that have
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been used in Hamiltonian perturbation theory (as for instance in [MS02] or in [Pop04]).
On the one hand, the role of the factor (|k|+1)2 is to simplify the estimates for the product
and composition of Gevrey functions (see respectively Lemmas 17 and 19). On the other
hand, the role of the normalizing constant c > 0 in the definition is to ensure that Gα,s(K)
is a Banach algebra (see Lemma 17).

The above definition can be extended to vector-valued functions f = (fi)1≤i≤p : K → Rp

for p ≥ 1 by setting

|∂kf(a)| :=
∑

1≤i≤p

|∂kfi(a)|, a ∈ K

in (60). The space of such vector-valued functions is still a Banach space with the above
norm, and it will be denoted by Gα,s(K,R

p). The case of matrix-valued functions, say with
values in the space Mm,p(R) of matrix with m rows and p columns, is reduced to the case
of vector-valued functions by simply identifying Mm,p(R) to Rmp.

B.1 Majorant series and Gevrey functions

The definition of Gevrey functions can be conveniently reformulated in terms of majorant
series with one variable (see [Kom79], [Kom80] and also [SCK03]).

But first let us consider a formal power series in m variables X = (X1, . . . , Xm) with
coefficients in a normed real vector space (E, | . |E), which is a formal sum of the form

A(X) =
∑

k∈Nm

AkX
k, Ak = Ak1,...,km ∈ E.

Such a formal series is said to be majorized by another formal power series with real
non-negative coefficients

B(X) =
∑

k∈Nm

BkX
k, Bk = Bk1,...,km ∈ R,

and we write A≪ B, if
|Ak|E ≤ Bk, ∀ k ∈ Zm. (61)

Next, following [SCK03], we introduce a notion of a smooth function being majorized by
a formal power series in one variable. So let f : K → Rp be a smooth function, and F be
a formal power series in one variable with non-negative coefficients, that we shall write as

F (X) =

+∞∑

l=0

Fl

l!
X l.

We will say that f is majorized by F on K, and we will write f ≪K F (or f(x) ≪K F (X)),
if for all a ∈ K and all k ∈ Nm, we have

|∂kf(a)| ≤ F|k|. (62)
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To better understand this definition, recall that given f : K → Rp and a ∈ K, we can
define its formal Taylor series at a by

Taf(X) :=
∑

k∈Nm

∂kf(a)

k!
Xk,

which is a formal power series in m variables that takes values in Rp. To a formal series F
in one variable, one can associate a formal series F̂ in m variables simply by setting

F̂ (X1, . . . , Xm) := F (X1 + · · ·+Xm).

If is then easy to check that f ≪K F , in the sense of (62), if and only if for all a ∈ K,
Taf ≪ F̂ , in the sense of (61) (with E = Rp and | . |E the norm given by the sum of the
absolute values of the components).

Now, given α ≥ 1 and s > 0, let us define the following formal power series in one
variable

Mα,s(X) := c−1
+∞∑

l=0

l!α−1

(l + 1)2

(
X

sα

)l

= c−1
+∞∑

l=0

Ml

l!
X l, Ml =

l!α

(l + 1)2sαl
, c = 4π2/3.

(63)
The following characterization of Gevrey functions is evident from the definitions (60)
and (62).

Proposition 11. If f : K → Rp is a smooth function,

|f |α,s = inf {C ∈ [0,+∞] | f ≪K CMα,s} .

Henceforth α ≥ 1 will be fixed, so in the sequel we will simply write Mα,s =Ms.

B.2 Properties of majorant series

We collect here some properties of majorant series that will be used later on. It is clear
how to define the derivatives of a formal power series in one variable, and also a linear
combination and the product of two such formal power series. We then have the following
lemma.

Lemma 12. Let f, g : K → Rp be smooth functions, F,G be two formal power series in
one variable, and assume that

f ≪K F, g ≪K G.

Then
∂kf ≪K ∂|k|F, k ∈ Nm, (64)

λf + µg ≪K |λ|F + |µ|G, λ ∈ R, µ ∈ R. (65)
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Moreover, if we define f · g : K → R by

f · g =
p
∑

i=1

figi,

then
f · g ≪K FG. (66)

For a proof, we refer to [SCK03], Lemma 2.2, in which the case p = 1 is considered;
but the general case p ≥ 1 is entirely similar.

Given two formal power series in one variable F and G, we define the composition
F ⊙G of F and G by

F ⊙G(X) :=
+∞∑

l=0

Fl

l!
(G(X)−G(0))l .

Lemma 13. Let f : K → Rp be a smooth function, g : L → Tm1 × Rm2 another smooth
function such that g(L) ⊆ K, and assume that

f ≪K F, g ≪L G.

Then
f ◦ g ≪L F ⊙G.

Once again, for a proof we refer to [SCK03], Lemma 2.3.

B.3 Derivatives

In this section, we will show that the derivatives of a Gevrey function are still Gevrey, at
the expense of reducing the parameter s > 0; these are analogues of Cauchy estimates for
analytic functions.

Proposition 14. Let f ∈ Gα,s(K,R
p), and 0 < σ < s. Then for any k ∈ Nm, ∂kf ∈

Gα,s−σ(K,R
p) and we have

|∂kf |α,s−σ ≤
( |k|α
σα

)|k|

|f |α,s.

Proof. It is enough to prove the case |k| = 1, as the general case follows by an easy
induction. From Proposition 11 and (64) of Lemma 12, to prove the case |k| = 1 it is
sufficient to prove that

∂1Ms ≪ σ−αMs−σ (67)

where Ms is the formal power series defined in (63). We have

∂1Ms(X) = c−1
+∞∑

l=1

l!α

(l + 1)2slα(l − 1)!
X l−1 = c−1

+∞∑

l=0

(l + 1)!α

(l + 2)2s(l+1)αl!
X l
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and hence (67) is true if, for all l ∈ N,

(
σs−1

)α (
1− σs−1

)lα
(l + 1)α ≤ 1. (68)

Since 0 < σs−1 < 1, we have ln(1− σs−1) ≤ −σs−1 and thus

(
1− σs−1

)lα
(l + 1)α = elα ln(1−σs−1)(l + 1)α ≤ e−lασs−1

(l + 1)α.

Let λ = σs−1, and consider the function u(x) = (x + 1)αe−αλx for x ≥ 0. This function
reaches its maximum at x = λ−1(1− λ), the value of which is

u
(
λ−1(1− λ)

)
= λ−αe(λ−1)α ≤ λ−α.

Therefore, for all l ∈ N, we have

(
1− σs−1

)lα
(l + 1)α ≤ λ−α =

(
σs−1

)−α

which is exactly the inequality (68) we wanted to prove.

For f : K → R, let ∇f : K → Rm be the vector-valued function formed by the partial
derivatives of f of order one, and more generally, for f : K → Rp, we let ∇f : K →
Mm,p(R) ≃ Rmp be the matrix-valued function whose columns are given by ∇fi where
f = (fi)1≤i≤p. Then we have the following obvious corollary of Proposition 14.

Corollary 15. Let 0 < σ < s. If f ∈ Gα,s(K,R), then ∇f ∈ Gα,s−σ(K,R
m) and

|∇f |α,s−σ ≤ mσ−a|f |α,s

and if f ∈ Gα,s(K,R
p), then ∇f ∈ Gα,s−σ(K,R

mp) and

|∇f |α,s−σ ≤ mpσ−a|f |α,s.

B.4 Products

In this section, we shall prove that the product of Gevrey functions is still a Gevrey
function.

Proposition 16. Let f, g ∈ Gα,s(K,R
p). Then f · g ∈ Gα,s(K,R) and we have

|f · g|α,s ≤ |f |α,s|g|α,s.

Once again, in view of Proposition 11 and (66) of Proposition 12, Proposition 16 is a
direct consequence of the following lemma.

Lemma 17. We have
M2

s ≪Ms.
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The proof given below follows [Lax53]. It is this lemma that motivates the introduction
of the normalizing constant in Ms (and thus in the Gevrey norm); without this constant
one would have M2

s ≪ c2Ms. Let us point out that the proof given below is elementary
thanks to the factor (|k| + 1)2 in the definition of Ms; without this factor, the statement
is true (with a different normalizing constant) but the proof is more involved (see Lemma
2.7 of [SCK03]).

Proof. Recall that

Ms(X) = c−1
+∞∑

l=0

Ml

l!
X l, Ml =

l!α

(l + 1)2sαl

and so the assertion of the lemma amounts to prove that for all l ∈ N,

l∑

j=0

(j!)α−1((l − j)!)α−1

(j + 1)2(l − j + 1)2
≤ c

(l!)α−1

(l + 1)2
, c =

4π2

3
. (69)

Observe that the sum in the left-hand side of (69) is symmetric with respect to j 7→ l− j,
and that since α− 1 ≥ 0, (j!)α−1((l − j)!)α−1 ≤ (l!)α−1 for all l ∈ N. Hence,

l∑

j=0

(j!)α−1((l − j)!)α−1

(j + 1)2(l − j + 1)2
≤ 2

l/2
∑

j=0

(j!)α−1((l − j)!)α−1

(j + 1)2(l − j + 1)2
≤ 2(l!)α−1

l/2
∑

j=0

1

(j + 1)2(l − j + 1)2
.

Then for any 0 ≤ j ≤ l/2, (l − j + 1)2 ≥ (l/2 + 1)2 ≥ (l + 1)2/4, and therefore

l∑

j=0

(j!)α−1((l − j)!)α−1

(j + 1)2(l − j + 1)2
≤ 8(l!)α−1

(l + 1)2

l/2
∑

j=0

1

(j + 1)2
≤ 8(l!)α−1

(l + 1)2

+∞∑

j=0

1

(j + 1)2
=

4π2

3

(l!)α−1

(l + 1)2

which is the inequality we wanted to prove.

Proposition 16 can be extended to matrix-valued functions. More precisely, given f :
K →Mm,p(R) and g : K →Mp,q(R) where f = (fi,j)1≤i≤m, 1≤j≤p and g = (gj,k)1≤j≤m, 1≤k≤p,
we define f · g : K →Mm,q(R) by f · g := ((f · g)i,k)1≤i≤m, 1≤k≤q where

(f · g)i,k :=
p
∑

j=1

fi,jgj,k.

Then the following statement is an obvious corollary of Proposition 16.

Corollary 18. Let f ∈ Gα,s(K,Mm,p(R)), g ∈ Gα,s(K,Mp,q(R)). Then f ·g ∈ Gα,s(K,Mm,q(R))
and we have

|f · g|α,s ≤ |f |α,s|g|α,s.
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B.5 Compositions

Our goal here is to prove that the composition of Gevrey functions are still Gevrey. But
first we need to define two additional formal power series associated toMs, the latter being
defined in (63). So we define M̄ by

M̄s(X) :=Ms(X)−Ms(0) = c−1

+∞∑

l=1

l!α−1

(l + 1)2

(
X

sα

)l

(70)

and M̃ by

M̃s(X) := c−1
+∞∑

l=0

(l + 1)!α−1

(l + 2)2

(
X

sα

)l

. (71)

It is clear that
s−αXM̃s(X) = M̄s(X). (72)

Lemma 19. We have
M̃2

s ≪ M̃s, M̃sM̄s ≪ M̄s.

As for Lemma 17, the factor (|k|+ 1)2 in the definition of Ms makes the proof simple,
but the statement is still true with this factor (see Lemma 2.4 of [SCK03]).

Proof. It is enough to prove the first part of the statement, as the second part of the
statement follows from it; indeed, if M̃2

s ≪ M̃s, then using (72) we have

M̃s(X)M̄s(X) = s−αXM̃s(X)M̃s(X) ≪ s−αXM̃s(X) = M̄s(X).

As in Lemma 17, to prove that M̃2
s ≪ M̃s one needs to show

l∑

j=0

((j + 1)!)α−1((l − j + 1)!)α−1

(j + 2)2(l − j + 2)2
≤ c

((l + 1)!)α−1

(l + 2)2
, c =

4π2

3
. (73)

The sum in the left-hand side of (73) is still symmetric with respect to j 7→ l − j, and
therefore

l∑

j=0

((j + 1)!)α−1((l − j + 1)!)α−1

(j + 2)2(l − j + 2)2
≤ 2

l/2
∑

j=0

((j + 1)!)α−1((l − j + 1)!)α−1

(j + 2)2(l − j + 2)2
.

Then, for any l ∈ N and any 0 ≤ j ≤ l/2, since α− 1 ≥ 0 we have

((j + 1)!)α−1((l − j + 1)!)α−1 ≤ ((l + 1)!)α−1

as one may easily check. Then, as in Lemma 17, for any 0 ≤ j ≤ l/2, (l − j + 2)2 ≥
(l/2 + 2)2 ≥ (l + 2)2/4, and therefore

l∑

j=0

((j + 1)!)α−1((l − j + 1)!)α−1

(j + 2)2(l − j + 2)2
≤ 8((l + 1)!)α−1

(l + 1)2

l/2
∑

j=0

1

(j + 2)2
≤ 4π2

3

((l + 1)!)α−1

(l + 2)2

and this concludes the proof.

43



Proposition 20. Let f ∈ Gα,s(K,R
p), 0 < σ < s, and g ∈ Gα,s−σ(L,T

m1 × Rm2) such
that g(L) ⊆ K. Assume that g = Id + u with

|u|α,s−σ ≤ σα. (74)

Then f ◦ g ∈ Gα,s−σ(L,R
p) and

|f ◦ g|α,s−σ ≤ |f |α,s. (75)

When f et g are analytic, the analogue of estimate (75) with the supremum norm
is obvious, for the obvious reason that the supremum of a function is a non-increasing
function of the domain.

As it will be clear in the proof, the conclusions of Proposition 20 holds true under the
slightly weaker assumption that

|u|α,s−σ − sup
a∈K

|u(a)| ≤ sα − (s− σ)α

but this will not be needed.

Proof. Let
a := |f |α,s, b := |u|α,s−σ

so that, from Proposition 11,

f(x) ≪K aMs(X), u(x) ≪L bMs−σ(X)

and consequently
f(x) ≪K aMs(X), g(x) ≪L X + bMs−σ(X).

We now apply Lemma 13 and, recalling the definition of M̄s and M̃s given respectively
in (70) and (71), we obtain

f(g(x)) ≪L aMs

(
X + bM̄s−σ(X)

)

= aMs(0) + aM̄s

(
X + bM̄s−σ(X)

)

= aMs(0) + aM̄s

(

X + b(s− σ)−αXM̃s−σ(X)
)

= aMs(0) + a
+∞∑

l=1

l!α−1

(l + 1)2

(

X + b(s− σ)−αXM̃s−σ(X)

sα

)l

= aMs(0) + a

+∞∑

l=1

l!α−1

(l + 1)2

(
X

sα

)l (

1 + b(s− σ)−αM̃s−σ(X)
)l

. (76)

From the first part of Lemma 19, for any j ∈ N, we have

M̃ j
s−σ ≪ M̃s−σ
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and therefore

(

1 + b(s− σ)−αM̃s−σ(X)
)l

=
l∑

j=0

(
l

j

)

bj(s− σ)−jαM̃s−σ(X)j

≪ M̃s−σ(X)
l∑

j=0

(
l

j

)

bj(s− σ)−jα

= M̃s−σ(X)
(
1 + b(s− σ)−α

)l
.

Now, from (74) we get
b = |u|α,s−σ ≤ σα ≤ sα − (s− σ)α

and thus
1 + b(s− σ)−α ≤ sα(s− σ)−α.

This gives
(

1 + b(s− σ)−αM̃s−σ(X)
)l

≪ M̃s−σ(X)(sα(s− σ)−α)l

which, together with (76), yields

f(g(x)) ≪L aMs(0)+aM̃s−σ(X)

+∞∑

l=1

l!α−1

(l + 1)2

(
X

(s− σ)α

)l

= aMs(0)+aM̃s−σ(X)M̄s−σ(X).

Using the second part of Lemma 19, this gives

f(g(x)) ≪L aMs(0) + aM̄s−σ(X)

and since Ms(0) =Ms−σ(0), we arrive at

f(g(x)) ≪L a(Ms−σ(0) + M̄s−σ(X)) = aMs−σ(X).

Using Proposition 11, we eventually obtain

|f ◦ g|α,s−σ ≤ a = |f |α,s

and this concludes the proof.

B.6 Flows

In this section and the next one, we shall state and prove some estimates adapted to the
situation considered in §6: that is we consider functions H = H(θ, I, ω) which are defined
and Gevrey smooth on a domain of the form

Tn ×Dr,h = Tn ×Dr ×Dh ⊆ Tn × Rn × Rn

45



where Dr is the ball of radius r > 0 centered at the origin and Dh is an arbitrary ball of
radius h > 0. In the lemma and proposition below, the variables ω ∈ Dh play the role of a
fixed parameter, hence to simplify the notations we will explicitly suppress the dependence
on ω ∈ Dh.

Moreover, throughout this section and the next one, for simplicity we shall write u<· v
(respectively u ·<v), if, for some constant C ≥ 1 which depends only on n and α and could
be made explicit, we have u ≤ Cv (respectively Cu ≤ v).

Let us first start with a vector-valued function D : Tn → Rn which depends only on
θ ∈ Tn, and that we shall considered as a vector field on Tn.

Lemma 21. Given D ∈ Gα,s(T
n,Rn), let 0 < σ < s and assume that

|D|α,s ·<σα. (77)

Then for any t ∈ [0, 1], the time-t map Dt of the flow of D belongs to Gα,s−σ(T
n,Tn) and

we have the estimate
|Dt − Id|α,s−σ ≤ |D|α,s. (78)

The proof of the above lemma is a variant of the proof of Lemma B.3 in [LMS16].

Proof. The fact that Dt is smooth and defined for all t ∈ [0, 1] (in fact, for all t ∈ R)
follows from the compactness of Tn and the classical result on the existence and uniqueness
of solutions of differential equations (even though this will essentially be re-proved below);
the only thing we need to prove is the estimate (78). So let us consider the space V :=
C([0, 1], Gα,s−σ(T

n,Tn)) of continuous map from [0, 1] to Gα,s−σ(T
n,Tn): given an element

Φ ∈ V and t ∈ [0, 1], we shall write Φt := Φ(t) and consequently Φ = (Φt)t∈[0,1]. We equip
V with the following norm:

||Φ|| := max
t∈[0,1]

|Φt|α,s−σ

which makes it a Banach space, and if we set ρ := |D|α,s, we define

BρV := {Φ ∈ V | ||Φ− Id|| ≤ ρ}.

We can eventually define a Picard operator P associated to D by

P : BρV → BρV, Φ 7→ P (Φ)

where P (Φ) = (P (Φ)t)t∈[0,1] is defined by

P (Φ)t := Id +

∫ t

0

D ◦ Φτdτ.

To prove the lemma, it is sufficient to prove that P has a unique fixed point Φ∗ ∈ BρV ,
as necessarily (Φt

∗)t∈[0,1] = (Dt)t∈[0,1]. Therefore it is sufficient to prove that P induces a
well-defined contraction on BρV , as the latter is a complete subset of the Banach space V .
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First we need to show that P maps BρV into itself. So assume Φ ∈ BρV , using (77)
this implies that for all t ∈ [0, 1],

|Φt − Id|α,s−σ ≤ ρ ≤ σα

so that (74) of Proposition 20 is satisfied (with f = D and g = Φt for any t ∈ [0, 1]) and
the latter proposition applies: this gives

|D ◦ Φt|α,s−σ ≤ |D|α,s = ρ, t ∈ [0, 1]

hence
∣
∣P (Φ)t − Id

∣
∣
α,s−σ

=

∣
∣
∣
∣

∫ t

0

D ◦ Φτdτ

∣
∣
∣
∣
α,s−σ

≤ tρ ≤ ρ, t ∈ [0, 1]

and therefore
||P (Φ)− Id|| ≤ ρ.

This proves that P maps BρV into itself.
It remains to show that P is a contraction. So let Φ1,Φ2 ∈ BρV , then for any t ∈ [0, 1],

P (Φ1)
t − P (Φ2)

t =

∫ t

0

(D ◦ Φτ
1 −D ◦ Φτ

2) dτ

=

∫ t

0

(∫ 1

0

∇D ◦ (sΦτ
1 + (1− s)Φτ

2)ds

)

· (Φτ
1 − Φτ

2)dτ.

Using Proposition 20, Corollary 15 and Corollary 18, we obtain, for any t ∈ [0, 1],

|P (Φ1)
t − P (Φ2)

t|α,s−σ<·σ−α|D|α,s max
0≤τ≤t

|Φτ
1 − Φτ

2 |α,s−σ<·σ−α|D|α,s||Φ1 − Φ2||

and hence
||P (Φ1)− P (Φ2)||<·σ−α|D|α,s||Φ1 − Φ2||.

Using (77), we can then insure that P is a contradiction, which concludes the proof.

Now let us consider a Hamiltonian function X on Tn ×Dr, of the form

X(θ, I) := C(θ) +D(θ) · I, C : Tn → R, D : Tn → Rn. (79)

The Hamiltonian equations associated to X are given by:

{

θ̇(t) = ∇IX(θ(t), I(t)) = D(θ(t)),

İ(t) = −∇θX(θ(t), I(t)) = −∇C(θ(t))−∇D(θ(t)) · I.

The equations for θ are uncoupled from the equations of I (and hence can be integrated
independently), while the equations for I are affine in I; it is well-known that these facts
lead to a simple form of the Hamiltonian flow associated to X (see, for instance, [Vil08]).
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Proposition 22. Let X be as in (79) with C ∈ Gα,s(T
n,R) and D ∈ Gα,s(T

n,Rn). Let
0 < σ < s and assume that

|D|α,s ·<σα. (80)

Then for any t ∈ [0, 1], the time-t map X t of the Hamiltonian flow of X is of the form

X t(θ, I) = (θ + Et(θ), I + F t(θ) · I +Gt(θ))

where Et ∈ Gα,s−σ(T
n,Rn), F t ∈ Gα,s−σ(T

n,Rn2

) and Gt ∈ Gα,s−σ(T
n,Rn) with the esti-

mates
|Et|α,s−σ ≤ |D|α,s, |F t|α,s−σ<·σ−α|D|α,s, |Gt|α,s−σ<·σ−α|C|α,s. (81)

As a consequence, given 0 < δ < r, if we further assume that

rσ−α|D|α,s + σ−α|C|α,s ·<δ (82)

then X t maps Tn ×Dr−δ into Tn ×Dr.

Proof. The second part of the statement clearly follows from the first part, so let us prove
the latter. From the specific form of the Hamiltonian equations associated to X , one has,
for any t ∈ [0, 1],

X t(θ, I) = (θ + Et(θ), I + F t(θ) · I +Gt(θ))

with 





Et(θ) =
∫ t

0
D(θ + Eτ (θ))dτ,

F t(θ) = −
∫ t

0
∇D(θ + Eτ (θ))dτ −

∫ t

0
∇D(θ + Eτ (θ)) · F τ (θ)dτ

Gt(θ) = −
∫ t

0
∇C(θ + Eτ (θ))dτ −

∫ t

0
∇D(θ + Eτ (θ)) ·Gτ (θ)dτ.

Because of (80), Lemma 21 applies and the flow Dt(θ) = θ + Et(θ) satisfies (78), and
therefore

|Et|α,s−σ = |Dt − Id|α,s−σ ≤ |D|α,s
which gives the first estimate of (22). Using this estimate and (80), we can apply Propo-
sition 20 and Corollary 15 (both with σ/2 instead of σ) to obtain, for any 0 ≤ τ ≤ t ≤ 1,

|∇D ◦Dτ |α,s−σ ≤ |∇D|α,s−σ/2<·σ−α|D|α,s.

Looking at the expression of F t, this gives

|F t|α,s−σ<·σ−α|D|α,s
(

1 +

∫ t

0

|F τ |α,s−σdτ

)

which, by Gronwall’s inequality and (80), implies that for all t ∈ [0, 1],

|F t|α,s−σ<·σ−α|D|α,s
which is the second estimate of (22). For the third estimate of (22), observe that the same
argument yields

|Gt|α,s−σ<·σ−α|C|α,s + σ−α|D|α,s
∫ t

0

|Gτ |α,s−σdτ
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and again, by Gronwall’s inequality and (80), for all t ∈ [0, 1] we have

|Gt|α,s−σ<·σ−α|C|α,s.
This concludes the proof.

B.7 Inverse functions

In this last section, we shall prove that if a Gevrey map is sufficiently close to the identity,
then its local inverse is still Gevrey. To prove this in a setting adapted to §6, let us consider
a map φ which depends only on ω ∈ Dh, that is φ : Dh → Rn.

Proposition 23. Given φ ∈ Gα,s(Dh,R
n), let 0 < σ < s and assume that

|φ− Id|α,s ·<σα, |φ− Id|α,s ≤ h/2 (83)

Then there exists a unique ϕ ∈ Gα,s−σ(Dh/2, Dh) such that φ ◦ ϕ = Id and

|ϕ− Id|α,s−σ ≤ |φ− Id|α,s. (84)

Proof. Let us define V := Gα,s−σ(Dh/2,R
n), which is a Banach space with the norm || . || =

| . |α,s−σ, and for ρ := |φ− Id|α,s, we set

BρV := {ψ ∈ V | ||ψ − Id|| ≤ ρ}.
Let us define the following Picard operator P associated to φ:

P : BρV → BρV, ψ 7→ P (ψ) = Id− (φ− Id) ◦ ψ.
It is clear that φ◦ϕ = Id if and only if ϕ is a fixed point of P , and therefore the proposition
will be proved once we have shown that P has a unique fixed point in BρV , and to do this
it is enough to prove that P is a well-defined contraction of BρV .

First let us prove that P maps BρV into itself. So let ψ ∈ BρV , and using the second
part of (83), observe that since

sup
ω∈Dh/2

|ψ(ω)− ω| ≤ ||ψ − Id|| ≤ ρ ≤ h/2

then ψ maps Dh/2 into Dh. This, together with the first part of (83) allows us to apply
Proposition 20 to get

||(φ− Id) ◦ ψ|| = |(φ− Id) ◦ ψ|α,s−σ ≤ |φ− Id|α,s = ρ

and thus
||P (ψ)− Id|| = ||(φ− Id) ◦ ψ|| ≤ ρ,

that is, P maps BρV into itself. To show that P is a contraction, using Corollary 15,
Corollary 18 and Proposition 20 one gets, for any ψ1, ψ2 ∈ BρV :

||(φ− Id) ◦ ψ1 − (φ− Id) ◦ ψ2||<·σ−α|φ− Id|α,s||ψ1 − ψ2||
and from the first part of (83), one can make sure that P is a contraction. This ends the
proof.
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Comment. After this work was made public on Arxiv, an independent and interesting
proof of a special case of Theorem E appeared in the preprint [LDP17].
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