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Abstract� We consider perturbations of integrable� area preserving non�twist maps of the annulus �those
are maps in which the twist condition changes sign�� These maps appear in a variety of applications� notably
transport in atmospheric Rossby waves�

We show in suitable ��parameter families the persistence of critical circles �invariant circles whose
rotation number is the maximum of all the rotation numbers of points in the map� with Diophantine rotation
number� The parameter values with critical circles of frequency �� lie on a one�dimensional analytic curve�

Furthermore� we show a partial justi�cation of Greene�s criterion	 If analytic critical curves with Dio�
phantine rotation number �� exist� the residue of periodic orbits �that is� one fourth of the trace of the
derivative of the return map minus �� with rotation number converging to �� converges to zero exponen�
tially fast� We also show that if analytic curves exist� there should be periodic orbits approximating them
and indicate how to compute them�

These results justify� in particular� conjectures put forward on the basis of numerical evidence in D� del
Castillo et al�� Phys� D� ��� 
��� �


��� The proof of both results relies on the successive application of an
iterative lemma which is valid also for �d�dimensional exact symplectic di�eomorphisms� The proof of this
iterative lemma is based on the deformation method of singularity theory�






�� Introduction

The motivation

The main goal of this paper is to provide rigorous proofs of several phenomena discovered empirically by
del Castillo� Greene and Morrison in �CGM
�� Even if our results will apply for a more general class of
maps�see De�nition 
��� 
��� etc�� for more precise de�nitions�we will start by describing the results of
that paper and the applications of the results we present here�

In �CGM
�� the authors consider the two�parameter family of area preserving maps� called there the
�quadratic standard map�

�
�
� T����p� q� �
�
p� � sin���q�� q � �p� � sin ��q�� � � �mod 
�

�
�

One motivation for such study is that qualitatively similar maps appear naturally in the study of
geostrophic �ows and indeed in many problems in hydrodynamics and in other applications� mentioned
brie�y later�

The �unperturbed� map T���

�
��� T����p� q� � �p� q � ���� p� �mod 
�� � ���� p� � � � p�

describes a situation where particles in a �uid are moving in a laminar �ow whose velocity is faster in the
middle �p � �� but slower as we move away from the center of the stream� This is a very common situation
in �uid motion� where often the motion slows down as we move closer to edges of the stream� In many
applications� it is natural to consider q as an angle� For example� in the description of the jet stream� q
corresponds to the longitude and p is a range of latitudes�

The map T��� is an integrable map� since all the circles with �xed p are invariant under T��� and
the motion in them is a rigid rotation with rotation number ���� p�� The quantity ����p�usually called
the twist�measures the anisochronicity�i�e�� the rate of change of of frequencies among di�erent invariant
circles�� The condition ����p is called �twist condition�� and a map which satis�es the twist condition
is called a �monotone� twist map� This twist condition does not hold in any map T��� given in �
���� since
����p changes sign in p � �� Accordingly� T��� is called a non�twist map� Note that changing of sign is
stronger than the twist vanishing in some circle� but being otherwise positive� These are the small twist maps�
which appear also in many applications� The relevance of the twist condition comes from the celebrated
KAM theorem which establishes that the invariant circles whose frequency satis�es a Diophantine condition�
persist under an small enough�in a smooth norm�area preserving perturbation with zero mean �ux� That
is to say� twist mappings under perturbation look integrable for a large area� Non�twist maps� on the other
hand� experience new phenomena in the area where the twist changes sign� �See later in this introduction
for more references��

The extra term modi�ed by the small parameter � is representative of the maps that arise when one
considers the physical e�ect of a small periodic oscillation transverse to the channel �ow� Such phenomena
occur frequently in hydrodynamics when channel �ows are destabilized through a Hopf bifurcation� This
happens in jet �ows in the atmosphere due to Rossby waves� We refer to �C� and �CM� for a detailed
description of the �uid mechanics motivation of such models� In particular for the justi�cation of the use
of a two�dimensional approximation� In this interpretation� it is very important the existence of invariant
circles� since they are complete barriers for the mixing of the material in the pole�one of the edges of
the latitude p�with the material near the equator�the other edge of p� In the particular model for the
atmosphere� these barriers give rise to the creation of �ozone holes� since they isolate the ozone created in
the tropics from the regions near the poles�

For area preserving perturbations of twist maps� the Twist Theorem �see �He� for a quantitative version�
and �BHS� for an exhaustive description of KAM theory�� ensures the persistence� for j�j small enough� of
those invariant curves with a Diophantine rotation number ��	

�
��� �C � �� 	 � � 	 jk � �� �mj�� � Cjkj�����k � Z�m � Zn f�g�

�



The set of Diophantine numbers has full measure� A paradigmatic example is �
p
� � 
���� which satis�es

the inequalities above for 	 � ��
Unfortunately� given a Diophantine rotation number ��� the Twist Theorem cannot be applied to the

map T���� close to the invariant circle p � �� since the twist condition breaks� and moreover the associated
rotation number �� lies on the boundary of the range of the rotation numbers ����� p�� The paper �CGM
�
�nds numerically�among other results�numerical evidence for the following	

Claim ���� Let �� � �
p
�� 
���� Then� for j�j � 
 there is a smooth curve ���� with ���� � �� such that

a
 If � � ����� then T��� admits two invariant circles with rotation number ���
b
 If � 
 ����� then T��� admits no invariant circles with rotation number ���
c
 If � � ����� then T������ admits an invariant circle with rotation number ���

The circle in c�� moreover is �critical�� that is� there exists a change of variables �p� q� 	 �A��� in its
neighborhood in such a way that

h�� 
 T������ 
 h�A��� � �A�� � �� � �A�� �O�A�� � �� �

�in fact� � 
 � for the example in �
�
���
It is worth noticing that the method used in �CGM
� to assess the existence of the invariant circles is

the Greene�s criterion� introduced in �Gr�� This criterion asserts that there exists an invariant circle with
rotation number �� if and only if

Res�Om�n� 	�
�
�

�
tr
�
DTn

���

�
Om�n

��� �� �	
m�n���

�

for any sequence of periodic orbits Omn of type m�n converging to ���
For the maps T��� as in �
�
�� the Greene�s criterion can be implemented numerically very e�ciently�

These maps are reversible and� for reversible maps� the search for periodic orbits of type m�n �those are
n�periodic orbits which make m complete turns in the angle variable q� in some symmetry lines�not all of
of the map�can be reduced to �nding zeros of one�dimensional functions� a tractable numerical task� In
the paper �CGM
� the authors succeed in implementing this criterion� and therefore they also �nd numerical
evidence for	

Claim ���� Greene�s criterion applies�

In this paper� we will prove rigorous results that justify the experimental results we stated in detail
above� We will state and prove a result that justi�es Claim 
�
 and another one that justi�es one of the
implications in Claim 
��� Namely that� if there exists an invariant circle� the residue goes to zero�

To our knowledge� the converse�that is� if the residue goes to zero for any sequence of periodic orbits
Omn of type m�n converging to ��� one can �nd an invariant circle with rotation number ���remains an
open problem even for twist maps� However we call attention to the work of �KO�� which proves that if there
are periodic orbits of twist maps which are� in a precise sense� well distributed� one can �nd an invariant
circle with rotation number related to that of the periodic orbit� We also note that if the renormalization
group picture can be justi�ed� at least to a certain extent� the Greene�s criterion will be also justi�ed and
indeed several improvements on that give precise asymptotic of the residue �see �McK���

It is worth remarking that an easy argument� which we will detail later in Proposition ���� shows that
if there is a critical invariant circle as above� indeed it is approximated by periodic orbits of type m�n with
m�n converging to ��� Hence� this criterion is rather e�ective�

The general theory we will develop will not depend on the exact form for the map� but on qualitative
features that can be veri�ed in the realistic models� Of course� the map �
�
� is a concrete model introduced
for the purpose of discovering qualitative features through numerical calculations�

We also point out that other models having non�twist maps have appeared with other motivations� For
example� they appear in celestial mechanics in problems such as the �critical inclination� �K� and in the
study of billiards with a boundary moving periodically in time �KMOP
�KMOP�� or in the study of the
motion of particles in magnetic �elds �ZZUSC�� As a matter of fact� since the iterates of a twist map are not�
in general� twist maps� we expect that they appear also as descriptions of regions of iterates of twist maps�
�See� e�g� �BST�Si���

�



These non�twist maps exhibit a very rich phenomenology that is only now started to be explored� The
papers cited above as well as �VG�HH
�HH��Si�Ha
�Ha�� contain descriptions and studies of a wealth of
phenomena such as �scaling relations�� �reconnection�� �meandering curves� etc�� that deserve to be inves�
tigated further� Notably in �Si�Ha
�� there are studies of new phenomena that happen in higher dimensional
non�twist maps� In a very recent paper �DMS�� it is shown that in a generic unfolding of the tripling bifur�
cation of a �xed point of an area preserving map� give rise to non�twist maps and therefore critical invariant
curves appear�

The methodology

In this paper� we will develop rigorous techniques that can produce results on two problems of the ones
mentioned above	 The existence of critical invariant circles and the validity of Greene�s criterion� Needless
to say� we hope that the techniques that we develop for this purpose �e�g� �nding appropriate normal forms
and quantitative error estimates of them in neighborhoods� can eventually be used in the study of some of
these other phenomena�

About the method of proof we note that there are two basic methods in KAM theory to prove the
persistence of invariant tori of exact symplectic mappings or Hamiltonian �ows� One is based on apply�
ing successive transformations close to the invariant torus and another one is based on solving functional
equations that express invariance� Both methods have complementary advantages� The functional equation
method leads to very crisp proofs and they are more natural for numerical implementations� On the other
hand� the methods based on transformation theory yield more information about the behavior of the map
on a neighborhood of the invariant torus�

Since in this paper we wanted to discuss the partial justi�cation of the Greene�s criterion� we certainly
needed a method based on the transformation theory and it was natural to use the same method for the
proof of the persistence of the invariant tori� In the future� we plan to come back to the functional method�
specially in connection with a numerical implementation�

The proof we present here will be based on the deformation method� This method was introduced in
the study of singularities of mappings �TL�Mat� and it is very well suited for study of equivalence of maps in
situations where geometric structures are present �BLW�� like families of exact symplectic di�eomorphisms�
One can use it also for the regular KAM theorem �Ll�� In our case� the use of the deformation method is
very natural since the unknown involves a family of maps�

Note that in this situation we are trying to study the persistence of invariant circles whose frequency
is on the boundary of the frequencies that are present on the integrable map� This is in contrast with
KAM theory� where the non�degeneracy conditions�the so called twist condition or the more sophisticated
R�ussmann conditions �see �BHS�� chapter ���imply that the frequency under study is in the interior of the
frequencies of the invariant circles in the integrable case�

Since the frequency we want to study is on the boundary of the frequencies� it is not di�cult to consider
a perturbation of the integrable case in which there is no invariant circle with the frequency we want� �It
su�ces to consider an integrable perturbation in which we just add�or subtract�an extra rotation so that
all the invariant circles persist� but their rotation number is changed��

Speaking heuristically� what we will do is to consider the regular perturbation theory supplemented with
a choice of ����� The regular perturbation theory may force the �� out of the range of frequencies� but we
will �nd the extra rotation ���� that puts it on the boundary� Since in this method of proof one needs to
consider families all the time� the use of the deformation method seems particularly well justi�ed�

On a more technical level� we note that the proof will be based on an iterative lemma �Lemma ����� that
describes how it is possible to obtain transformations that reduce the system to integrable� Moreover� we will
present bounds on the error of this reduction depending on the domain� This iterative lemma can be applied
repeatedly in di�erent ways depending on how one plays the trade o� between domain loss and accuracy�
One can try to make the error decrease very fast at the price that the domain decreases very fast or one can
make the error decrease slowly on a larger domain� In this way� one can obtain a uni�ed approach towards
KAM theory and towards exponentially small estimates� which we will show justify Greene�s criterion� This
approach has precedents in �DG
�� Since the iterative lemma as well as the deformation method are widely
applicable� we have developed it in an arbitrary dimension� The geometric considerations that lead to the

�



KAM theorem for critical circles and to the Greene�s criterion seem to be di�erent in higher dimensions� so
we have postponed the discussion of this part�

The results

Now we turn to making all these ideas more precise�

De�nition ���� We say that a circle S� invariant under an area preserving map T of R � T� 
 M � is a
critical invariant circle if there exists a canonical transformation h 	 ��
� 
�� T� 	M in such a way that

h�� 
 T 
 h�A��� � �A��� �� � �A�� �O�A��

with � �� � and h�f�g � T�� � S�

Remark� The de�nition of a critical circle includes in its hypothesis that the motion on the circle is conjugate
to a rotation of ��� We will not include the �� in the notation since it will be understood from the context�

We also recall�and we will develop it in more detail later in Lemma ����that there is an analogue of
Birkho� normal form in a neighborhood of an invariant circle with a Diophantine rotation� �In the twist
map case� this was also considered in �OS�FL��� Given N � N� it is possible to �nd coe�cients ��� � � � � �N
and a canonical transformation h such that

�
��� h�� 
 T 
 h�A��� � �A��� �� � ��A� ��A
� � � � �� �MAM � �O�AM���

The coe�cients ��� � � � � �N are uniquely de�ned and are properties of the invariant circle� In this language�
critical circles are those for which �� � �� �� �� ��
De�nition ���� We will call an invariant circle non�degenerate when the normal form �
��
 does not vanish
identically� That is� we can �nd M � N such that �� � � � � � �M�� � �� �M �� ��

Our result to justify Claim 
�
 is	

Theorem ���� Let �� be a Diophantine number as in �
��
� f��� be a family of mappings from R� � T� to
itself satisfying

i
 f����p� q� is analytic in

j� � ��j 
 �� � j�j 
 �� � jIm qj 
 �� � jpj 
 ���

and takes real values for �� �� p� q real

ii
 f��� is exact symplectic for all �� �
iii
 f����p� q� � �p� q � ���� p�� with

����� �� � ���
�

�p
����� �� � �

��

�p�
����� �� � t 
 ��

�

��
����� �� � s � �

Then� we can �nd a 
 � � and an analytic function � de�ned for j�j su�ciently small and taking
real values for � real in such a way that

a
 f������ has exactly one critical invariant circle in ��
� 
�� T�

b
 if � 
 ����� f��� has no points in ��
� 
�� T� with rotation number ��� and if � � ���� there are
two invariant circles of f��� in ��
� 
�� T� which are not critical�

Remark� It is possible to change hypothesis iii� of Theorem 
��� to be that t is positive� It su�ces to change
the inequalities between �� ���� in part b� of the conclusions and the proof goes through without change�
Similarly� if s is negative in iii��

�



The precise meaning in which Greene�s criterion can be justi�ed is the following� We will show

Theorem ��	� Let f��� be an analytic area preserving di�eomorphism of the annulus� Assume that
f��� admits an analytic invariant circle on which the motion is analytically conjugate to a rotation with
Diophantine number �� and which is non�degenerate in the sense of De�nition 
���

Then� we can �nd C�� C�� � � � �depending on ��� the map and the torus
 such that for any sequence
of periodic orbits On of type pn�qn which are converging to the analytic invariant circle and such that
j�� � pn�qnj � 
�qn� we have
�
��� Res�On� � C� exp

��C�j�� � pn�qnj��
�

We will also show that there is one such sequence of periodic orbits converging to the non�degenerate
circle� Of course� when the circle is critical� depending on the sign of ��pn�qn we will �nd either two or four
periodic orbits� For more general non�degenerate circles� when M is even we will �nd two or four periodic
orbits of type pn�qn depending on the sign of �� pn�qn and when M is odd we will �nd two irrespective of
the sign or � � pn�qn�

Remark� The proof that the residue goes to zero faster than any power is signi�cantly easier than the proof
with an explicit rate�

�� The deformation method

In this section we recall the basis of the deformation method for symplectic maps� This method was intro�
duced in singularity theory �TL�Mat�� but it was remarked later that it can be used very e�ectively to obtain
structure theorems for volume preserving maps of a manifold �Mo
�� or for symplectic maps �W� giving a
very direct proof of Darboux theorem� More details and other applications can be found in �LMM�Ll�BLW�
and in several other places�

In this section� the dimension of the space will not play a role� so we will consider M a �d�dimensional
manifold�

We recall that a ��form � on M is a symplectic form if it is closed and has full rank� �Of course� the
fact that � has full rank implies that the dimension of M is even� this is why we chose the notation �d for
it�� We will be specially interested in the case when � is exact� That is� there exist a 
�form � such that
� � d��

A di�eomorphism f is symplectic when f�� � �� For � exact� this is equivalent to d�f����� � �� We
say that a symplectic map f is exact when f��� � � dS for some function S� called the primitive function
of f �

Given a family of di�eomorphisms f�� we denote by F� the vector �eld de�ned by

���
�
d

d�
f� � F� 
 f�

and refer to F� as the generator of f�� Note that a family determines the generator and� conversely� by the
uniqueness theorem for O�D�E��s� a family is determined by its initial point f� and its generator� when the
generator is C�� �We will always assume that this is the case��

The main idea of the deformation method is to work always with the generators� which� when the families
are di�erentiable enough so that the uniqueness theorem for O�D�E��s applies� is equivalent to working with
the families� When the di�eomorphisms are symplectic� further simpli�cations are possible� Using Cartan�s
formula for Lie derivatives and that � is closed we obtain

�����

d

d�
f��� � f���d�i�F���� � i�F�� d�� � f���d�i�F�����

d

d�
f��� � d�f���i�F����� � f���i�F����

If f� is symplectic�
d
d�f��� � �� and then we see that

����� d�i�F���� � �

�



If f� is exact symplectic� d
�
d
d�S�

�� f��d�i�F���� � f���i�F���� and� therefore�

����� i�F��� � dF�

with F� �
�
d
d�S�

� 
 f� � i�F����
Conversely� if F� satis�es ����� or ����� and f� is symplectic or exact symplectic� the family f� is

symplectic or exact symplectic as can be seen integrating ������
Along this paper� we will refer to F� as the Hamiltonian for the family f�� Note that given f�� �����

determines F� up to a function of zero di�erential hence� constant on each connected component of its domain
of de�nition� This justi�es calling F� �the Hamiltonian� if we think of Hamiltonians as equivalent when they
di�er in a function with zero di�erential� This identi�cation is natural since two Hamiltonian di�ering by a
function with zero di�erential generate the same dynamics�

Conversely� for a C� Hamiltonian F�� given that � is full rank� ����� determines F�� and it is C�� This
F� and f� determine f� by the uniqueness result for O�D�E��s�

Hence� for su�ciently smooth families it is equivalent to work with the Hamiltonians and the initial
points of the families�

The main idea of the deformation method for exact symplectic maps is to reformulate all the problems in
terms of Hamiltonians� As it turns out� the equations involving generators are linear� This is to be expected
since we can heuristically think of generators as in�nitesimal transformations and all the equations among
in�nitesimal quantities are linear� Moreover� using Hamiltonians� the otherwise complicated constraint of
the transformations being exact symplectic is implemented automatically� and the resulting equations only
involve functions� Hence� rather than dealing with non�linear equations among di�eomorphisms satisfying
non�linear constraints� we just have to deal with a linear equation among functions�

We will follow the convention of denoting families in lower case f�� their generators in calligraphic font
F� and the Hamiltonians in upper case F��

Proposition ���� Let f�� g� be exact symplectic families and k an exact symplectic di�eomorphism� Then�
the Hamiltonian of the families formed out of them are given in the following table�

family Hamiltonian

f� 
 g� F� � f��G� � F� �G� 
 f���

f��� �F� 
 f�
g��� 
 f� 
 g� F� 
 g� �G� 
 g� �G� 
 f��� 
 g�
k�� 
 f� 
 k F� 
 k
f� 
 k F�

The computations needed to work out this table can be found in �LMM�BLW�� In the latter paper one
can �nd similar tables for volume preserving or contact families�

Since in perturbation theory one does not always have a family of di�eomorphisms but just two di�eo�
morphisms that are close� it is worth remarking that given two symplectic di�eomorphisms that are close�
one can always interpolate them by a family with small Hamiltonian� If the two maps are exact� the family
can be chosen to be exact� This is an immediate consequence of the general fact that symplectic �or exact
symplectic� maps form a Banach manifold �see �W��� We just sketch a direct construction whose details
appear in �BLW�� An alternative� old fashioned proof can be obtained using generating functions� �Interpo�
late the generating functions�� Unfortunately� since it is impossible to obtain generating functions that are
globally de�ned� one has to also use partitions of unity and fragmentation lemmas and the proof becomes
cumbersome�

Given f�� f� symplectic and close enough� we can �nd a family of di�eomorphisms f� interpolating
between them �e�g�� f��x� � expf��x� � exp

��
f��x�

f��x� where exp is the Riemannian exponential map�� The

family f� will not be symplectic� In general� f��� � �� where �� is a family of symplectic forms� Note
that� by our assumptions �� � �� � �� Using Moser�s construction �Mo
��we refer to �LMM�BLW� for
the elementary justi�cation of the smooth dependence on parameters in Moser�s construction�we can �nd
h� close to the identity in such a way that h���� � �� Moreover� h� � h� � Id� Then

�f� � h� 
 f� satis�es
�f� � f��

�f� � f��
�f��� � �� If � � d� then �� � d�� with �� � f���� Also �h� 
 f���� � � is closed� It

�



is then possible to choose g� close to the identity in such a way that �g� 
 h� 
 f���� � � is exact �e�g�� on
the annulus choose translations in the radial direction and in another manifolds choose a displacement in a
neighborhood of paths that generate the homology��

We have� therefore� established

Lemma ���� Let f� be a C� �resp� C�
 symplectic �resp� exact symplectic
 di�eomorphism of a manifold�
If f� is a symplectic �resp� exact symplectic
 di�eomorphism close to f� we can �nd a C� �resp� C�


family f� of symplectic �resp� exact symplectic
 di�eomorphisms interpolating between f� and f��
Moreover� we can arrange that the generators and therefore the Hamiltonians of the isotopy are arbi�

trarily small in the C� �resp� C�
 topology by assuming that f� is arbitrarily close to f��

�� Proof of Theorem ��� using the deformation method

���� Heuristic discussion

The proof we present here starts with the observation that the result would be obvious if we had a family of
the form

���
� i����p� q� � �p� q � ��� �� p��

in which the p is conserved and the q is translated by  ��� �� p�� which depends on p and on external
parameters and is close to the frequency ���� p� satisfying hypothesis iii� of Theorem 
��� We will refer to
such families as integrable�

If we require that the set p � p� is an invariant circle with rotation ��� we obtain the implicit equation

�����  ��� �� p�� � ��

The possibility of �nding solutions of ����� is described by singularity theory and the phenomenon of a
critical invariant circle corresponds to the situation when  ��� �� p��� �� has a fold	

 ��� �� p��� �� � �� �p ��� �� p�� � �

The equation for ���� is precisely the equation for the edge of a fold� We will parameterize the folding
surface ����� as the set of points �!��� p�� �� p� for an appropriate function !	

�����  ��� �� p� � �� �� � � !��� p�

Then� a critical invariant circle takes place at p � p� � p���� if �p!��� p�� � �� and ���� � !��� p������
A standard technique in KAM theory is to make changes of variables so that in the new system of

coordinates� the properties of the map are apparent from its expression� In the present case� we try to �nd
g� in such a way that

����� �f��� � g��� 
 f� 
 g�

has the desired form ���
��
Unfortunately� in general it is not possible to obtain a change of variables reducing to ���
� in the whole

phase space� We only know how to do it approximately in a subset of the domain in ��� �� p� for which
 ��� �� p� � ���

Hence we will use an iterative scheme in which at step n� the system will be �described in the notation
of the deformation method by the initial point of the isotopy and the generating Hamiltonian�

����� fn����p� q� � �p� q � ���� p��" Fn
����p� q� � In����p� �En

����p� q�

#



where En
��� is �small� in a neighborhood of fp � �g�

The Hamiltonian In����p� corresponds to a deformation of the form

����� in����p� q� � �p� q � 
n��� �� p��

where

�����  n��� �� p� � ���� p� �

Z �

�

ds
�

�p
In��s�p�

when we assume that i��� � f���� Hence� the In��� should be thought of as the integrable part of the
Hamiltonian Fn

���� We will think of E
n
��� as an error term that is to be made smaller and smaller in the

iterative process�

Remark� We note that the decomposition of a Hamiltonian into an integrable part and an small part is
not uniquely de�ned� A particularly natural one would be to take the integrable part to be the average
over the q� Nevertheless� we will not be assuming that this natural decomposition is taken� just that such a
decomposition exists�

Remark� Note that when we consider perturbations of an integrable system� we can write the integrable
part in  and� hence� assume that I�����p� � ��

The main ingredient of the proof of Theorem 
�� will be an algorithm that� given a family as in ������
�nds a transformation gn��� de�ned in a neighborhood of the surface  

n��� �� p� � �� such that setting

fn����� � �gn����
�� 
 fn��� 
 gn��� we have

Fn��
��� �p� q� � In����� �p� �En��

��� �p� q�

where En��
��� is much smaller than En

��� and In����� di�ers little from In��� in a domain which will be chosen
appropriately �a smaller neighborhood of the surface  n�� � ����

Since  n�� is close to  n� the folding surfaces de�ned by  n�� � �� and by  
n � �� are very close�

Quantitative estimates will show that the En
����s decrease super�exponentially and that the g

n
����s di�er from

the identity by a super�exponentially small quantity in neighborhoods of the surfaces  n�� � ��� As it turns
out� we will have to choose these neighborhoods to become super�exponentially thinner� The transformations
will be de�ned in these thin slivers in the �� �� p coordinates and in domains in q which include complex
extensions of T� so that the size of the size of the imaginary extension of the domain remains bounded from
below�

Similarly� the functions  n converge to a function  �� Therefore� the surfaces $ n 
 �g�
� � �
gn���f n �
��g converge to a surface $ �� Since each of the surfaces f n � ��g is foliated by smooth circles invariant
by F 
 g� 
 � � � 
 gn up to super�exponentially small errors� it follows that $ � is foliated by smooth circles
invariant by F �

For the bene�t of experts� we point out that an alternative method to prove Theorem 
�� could have
been to use the non�degeneracy in � to prove a KAM theorem for all small enough � and p� �That is� we
�x � and p� but allow ourselves to choose the ��� Even if not all methods to prove KAM theorems would
have worked� it seems that methods based on the �translated curve method� works since one can use the �
to adjust the frequency� Then� one needs to prove the analytic dependence of the circle on the parameter �
and to prove that there is indeed a fold�

The method we develop in this paper seems more appealing since one has an understanding of the
folding surface at all the stages of the iteration and it is certainly not longer to write in all detail�

Moreover� we can use much of the technology developed along these lines� to prove the partial converse
of Greene�s theorem� In particular� Lemma ��� is the crux of the iterative step in the proofs of both problems�
The di�erence between the KAM theorem and the proof of the exponentially small estimates that imply
Greene�s criterion� lies only in di�erent choices on how we iterate the method� In the KAM theorem� we lose
domain very fast and drive the errors to zero very fast� In the exponentially small estimates� we reduce the
domains more slowly and do not obtain convergence but the estimates are valid in a larger domain�

We also call attention to the fact that Lemma ��� is valid in any dimension� It is only the geometric
considerations about domains that one uses to conclude Theorem 
�� and Theorem 
�� that require the fact
that we are working in an annulus� We think that this restriction can be lifted with some small amount of
extra e�ort�






���� Notation and elementary estimates

Since the iterative step will rely on making transformations on functions in such a way that the errors become
smaller� we will need to de�ne appropriate norms� We will also need to be able to manipulate sets where
our transformations will be de�ned� �As usual in KAM theory� one has to consider functions de�ned in
decreasing sets�� In this section� we collect the de�nitions of the norms� parameterizations of sets that we
will use later as well as some elementary lemmas and propositions dealing with them�

Since Lemma ��� is valid in any number of dimensions� we will be considering maps in Rd � Td till the
end of Section ����

We recall the standard de�nition that �� � Rd is said to be Diophantine of exponent 	 if we can �nd a
C � � such that for all k � Zd�m � Z we have
���#� jk � �� �mj�� � Cjkj���

This is the de�nition of Diophantine vectors that appears naturally in KAM theory for maps� �The de�nition
that appears naturally in KAM theory for �ows is slightly di�erent��

Besides the above standard de�nition� in this paper we will use the following notations�
We will denote by Ia�b the real interval �a� b�� by Bx�c the closed ball in R

d with center x � Rd and radius
c � �� and by Td the d�dimensional torus Rd�Zd�

We will also denote by Ia�b�� � fz � C j d�z� Ia�b� � 
g� Bx�c�� � fz � C d j d�z� Ia�b� � 
g� Similarly we
will denote by Td� the complex extensions on the torus T

d of a distance ��
Given a set U � Bx��c���

� Ia��b��� �Bx��b���
and a function  	 U 	 C d � we will denote for �� � � �

���
�
%��U � f��� �� p� q� j ��� �� p� � U� jIm qj � �g � U � T

d
�

%	�	���U � f��� �� p� q� � %��U j j ��� �� p�� ��j � �g
The way to think about %	�	���U is as the Cartesian product of a thin �lm�of width �� which will

be extremely small in the proof�around a portion of surface given by the equation  ��� �� p� � �� and a
complex extension of width � of the torus� The parameter U just limits which portion of the surface we are
considering and it plays a somewhat minor role�

Note that� for the sake of notation� we are suppressing some of the parameters on which %	�	���U

depends� Notably ��� We hope that this does not lead to confusion in the proof since the values of these
parameters will be kept �xed� The �� will be that appearing in Theorem 
�� and� hence� will not change
throughout the proof�

We will introduce the notation U
 to denote a domain formed by restricting the domain only in the
variable p by an amount � � �� that is� U � Bx��c���

� Ia��b��� �Bx��b����
�
This will be used later since we need to reduce the domains in phase space �to guarantee that compo�

sitions make sense� but the domains in parameters are not a�ected�
Given a complex domain %� we will denote by kFk
 
 supx�
 jF �x�j and by �
 the Banach space of

functions analytic in % �analytic in the interior and continuous up to the boundary� equipped with the norm
k � k
� In particular� for % � %��U � % � %	�	���U of the form ���
�� for typographical reasons� we will write
k � k
��U as k�k��U and k � k
������U as k � k	�	���U �

For a function F 	 U � Td� 	 C � where U � Bx��c���
� Ia��b��� � Bx��b���

� we de�ne the partial Fourier
expansion

F����p� q� �
X
k�Zd

$F����k�p�e
��i k�q

The coe�cients are unique in the regularity classes we will be considering�
For this kind of functions depending on parameters� we will use the notation r to denote the derivatives

with respect to the variables� not with respect to the parameters� Hence

rF����p� q� �
�
�

�p
F����p� q��

�

�q
F����p� q�

�

In the cases that we will need to consider derivatives with respect to the parameters� we will write them
explicitly�


�



We recall that the well known Cauchy inequalities allow us to bound derivatives �in a domain� and
Fourier coe�cients of a function in terms of its size in a �slightly larger� domain�

Lemma ���� Let U � Bx��c���
� Ia��b��� �Bx��b���

� �U � U be a domain that is at a distance � � � from the

complement of U � and F 	 U � Td� 	 C analytic� Then�

krmFk��
� �U � K��m kFk�� �U
k�m� Fk�� �U � k�m� Fk�� �U � K��m kFk�� �U

j $F����k�p�j � Ke����jkj kFk��f�����p�g

The well known proof is based on expressing the Fourier coe�cients or derivatives as integrals over
paths and deforming them in the complex domain� It can be found in many reference books and we will not
reproduce it here�

���� The iterative step

In this subsection� we will specify the iterative step of the algorithm and we develop quantitative estimates
that will later lead to the possibility of iterating it and showing it converges� Most of these estimates will
be used also in Theorem 
�� on the partial justi�cation of Greene�s criterion�

We recall that for the purposes of the iterative lemma Lemma ���� the dimension of the space will be
irrelevant� so we will state the results in the �d�annulus Rd � Td�

At the beginning of the iterative step� we will be given a family of exact symplectic maps f��� de�ned
on a subset of Rd � Td endowed with the standard symplectic structure�

���
�� f����p� q� � �p� q � ���� p�� F����p� q� � I����p� �E����p� q�

where F���� the Hamiltonian of the deformation f���� is de�ned in a set %	�	���U of the type described in
���
�� with

U � B������
� I
������� �B�����

for some � � �� � 
 
 
 
� where �� is a Diophantine vector �e�g� it satis�es ���#�� and

���

�  ��� �� p� � ���� p� �

Z �

�

ds
�

�p
I��s�p�

Since  ��� �� p� � ���� p�� from the hypotheses of Theorem 
�� we will also assume that  is non�
degenerate� that is� that we have

���
��
����� �����U � A�

�����p �����U � B

The goal of the iterative step is to determine g���� g��� � Id� in such a way that �f� � g����� 
 f��� 
 g���
has Hamiltonian

���
�� �F����p� q� �
�I����p� �

�E����p� q�

where �I����
�E��� will be de�ned in an slightly smaller domain than I���� E��� and where

�E��� is much smaller

than E��� and
�I��� � I��� is of the same order of magnitude than E��� with all these functions de�ned in an

slightly smaller domain than the original ones�
According to Proposition ��
� the Hamiltonian of g����� 
 f��� 
 g��� is

���
�� F��� 
 g��� �G��� 
 g��� �G��� 
 f����� 
 g���






Heuristically� assuming that G��� and E��� are small and of the same order�and therefore that g��� � Id
and f��� � i��� are small� where i��� is the integrable part of f��� as in ������the main terms in ���
�� are

F��� �G��� �G��� 
 i�����

Hence� to make the new error �E��� zero in this linear approximation� we need to determine G��� in such a

way that these main terms give just an integrable system �which we will call �I����� This is formulated as the

equation for G����
�I���� given F���	

�I����p� � F����p� q��G����p� q� �G��� 
 i��� �p� q�

Equivalently� we look for an approximate solution of

���
�� &����p� � E����p� q��G����p� q� �G��� 
 i��� �p� q�

where &����p� 	�
�I����p�� I����p��

This approximate solution will be used to construct a g���� which will lead to a Hamiltonian which is
much closer to integrable�

Indeed� the approximate solution of ���
�� will be chosen as an exact solution of

���
�� &����p� � E����p� q��G����p� q� �G����p� q � ���

which can be solved by taking Fourier coe�cients� We will show that� if we restrict ourselves to a domain
%	�	���� �U � with � very small� the solutions of ���
�� solve ���
�� up to errors that can be controlled by ��
Then� the system will be reduced very approximately to a new integrable one� If the frequency function
 is non�degenerate� we can apply the implicit function theorem and express the domain in terms of the
new frequency function � � We call attention that it is only in this last step that the non�degeneracy of the
frequency function is used�

To justify the above heuristic argument� we will just �nd the g��� obtained by the procedure detailed
above and estimate rigorously the remainder after we conjugate the original problem with it� This task will
take most of the present section� We will collect all the estimates systematically and� at the end of the section
we will formulate the �nal result precisely� Once we have these results� we will also need to estimate how
the integrable part has changed and� in particular� how much the folding surface % and its parameterization
! introduced in ����� have changed� This is the task we will undertake in the next section� Then� in a
subsequent section� we will show that the procedure can be iterated inde�nitely �when some of the arbitrary
choices are made appropriately�� and that the transformations converge to a limiting transformation that
reduces the system to integrable�

���� The iterative step� Estimates

In this subsection� we present detailed quantitative estimates for the iterative step that we described infor�
mally in the previous section�

Following standard practice� we denote by K su�ciently large positive constants that depend only on
the dimension� the number �� and other elements that remain constant during the proof and denote by K

��

all su�ciently small positive constants� We will also need to assume that some quantities related to the
integrable part of the system remain bounded under the iteration� We will use K��K� for these constants
that depend on the integrable part� The constants K may depend on these K��K� but not viceversa� When
we discuss the iteration� we will see that these K��K� are chosen in the �rst step and then� they remain
unaltered� In particular� we will need to assume that the constants A and B that quantify the non�degeneracy
assumptions ���
�� satisfy

���
�� A � K�� B � K�


�



Recall that the goal was� given a Hamiltonian with an error term E� de�ned in a set %	�	���U of the form

de�ned in ���
�� perform a transformation that has an error term �E which is much smaller even if de�ned in
a smaller set %�	��	���� �U �

As it turns out� we will take a number � and take �� � � � �� ��� �U � U�
� At the n step �n will be
���

�n but � will have to decrease super�exponentially�
Our goal will be to show that� under appropriate hypotheses� which we will assume inductively� we can

perform the transformation and obtain estimates of the form

���
#� k �Ek�	��	���� �U � K��
kEk	�	���U�kEk	�	���U � ���

for some �xed positive number � �we will show later that it su�ces to take � � �� � � where � � 	� d� 
�
and 	 is the Diophantine exponent of ����

We will also establish that ! and �!�the parameterizations ����� of the surfaces  � �� and
� � ��

respectively�� are de�ned in very similar domains and di�er by an small amount

���

� k!� �!k �U � K���kEk	�	���U

The proof will be conveniently divided into two parts� In the �rst one� we obtain estimates in terms of
the old domains parameterized by  and �� In this �rst part�culminated in Lemma ����we will not need
to use any non�degeneracy hypothesis in  and indeed � and � will just go along for the ride� In a second
part of the inductive step� we adjust the domains to the new frequency map� This part will require that we
assume that  is non�degenerate and we will have to lose some domain in �� This division is natural since
the �rst part is exactly the same as that used in the proof of Theorem 
���

Remark� For the experts in KAM theory� we call attention to the fact that the right hand side of ���
#� is
not quadratic in kEk	�	���U�the size of the error� Nevertheless� the linear term is multiplied by the number
��� As we will see in the following subsection� as �� goes to zero super�exponentially with the number of
steps taken� it is possible to recover the super�exponential convergence of KAM theory that beats the small
divisors�

As is customary in KAM theory� in order to be able to carry out the iterative step� we will need to assume
that certain quantities are su�ciently small with respect to others�so that for example� compositions have
domains that match� implicit function theorems can be applied� etc� As it will turn out all the conditions
necessary to perform the iterative step will be implied by smallness conditions of kEk	�	���U with respect to
other quantities� Since the iterative step implies that this goes to zero extremely fast� the conditions will be
recovered from one step to the next�

Hence� for the proof of Theorem 
��� the main result of this subsection will be Lemma ��� below� which
states that� under some explicit conditions� the iterative step can be performed and that the result satis�es
���
#� and ���

��

Since the proof of Lemma ��� will consist in walking through the steps outlined before and just record
the conditions needed for them to go through� it is natural to start with the proof of the lemma and postpone
its precise statement�

Using Proposition ��
� the Hamiltonian of g�����
f���
g����if it is possible to de�ne all the compositions�
is I��� 
 g��� �E��� 
 g��� �G��� 
 g��� �G��� 
 f����� 
 g���� which adding and subtracting appropriate terms
becomes

������

I��� 
 g��� � �I��� 
 g��� � I��� 
 g����
�E���

� �E��� �E���� � �E��� 
 g��� �E����

�G��� � ��G��� 
 g��� �G����

�G��� 
 T � � �G��� 
 i����� �G��� 
 T �� � �G��� 
 f����� 
 g��� �G��� 
 i������

where we have used the notation to indicate average over the q variables and T ��p� q� � �p� q � ����


�



The main idea will be to show that it is possible to choose G��� in such a way that the �rst terms in
the last three lines of ������ add to zero� That is�

����
� E��� �E��� �G��� �G��� 
 T � � �

and that this G��� satis�es estimates which will guarantee that the compositions we used are indeed de�ned�
�We call attention to the fact that ����
� is the linearized equation that always appears in KAM theory��
Then� the transformed system will have an integrable part �I��� � I��� 
 g��� � E��� and the other terms
appearing in ������ will be the error part of the new Hamiltonian� We will estimate them and show that� in
a precise sense� they will be smaller than the other ones�

Remark� For the experts in KAM theory� we note that this procedure has two error terms that are linear
in G�and hence �rst order in E�� namely �G��� 
 i����� � G��� 
 T �� and �I��� 
 g��� � I��� 
 g�����recall
that I will not be converging to zero�

Even if full details will be given later� we advance that for the �rst term� in the domains that we are
considering� i����� and T � are indeed close and the distance is measured by ��� The mean value theorem will
give an estimate that contains the factor kEk�� multiplied by the small divisors� This is the estimate that
appears in one of the terms in ���
#�� The second term will turn out to be quadratic because of the fact that
g��� is exact symplectic� This is the only place in all the estimates where we use that the maps are exact
symplectic�

As usual in KAM theory� we start by obtaining bounds on G��� and we will use them to obtain bounds
on all the other terms�

Lemma ���� For any E����p� q� de�ned in %	�	���U � we can �nd unique &����p�� G����p� q� satisfying

&����p� � E����p� q��G����p� q� �G����p� q � ���Z
Td

G����p� q� dq � �

Moreover� these &� G satisfy

������ kGk��
�U � K��� kEk��U � k&k��U � kEk��U
where � � 	 � d� 
�

Proof� The proof is quite standard� We note that integrating in q we have

������ &����p� � E����p� 	�

Z
Td

dq E����p� q�

hence� the �rst estimate in ������ follows�
If we take Fourier transforms in the variable q we obtain	

������ $G����k�p� �



�e���ik��� � 
�
$E����k�p�

By the Cauchy estimates of Lemma ��
� we have j $E����k�p�j � Ke����jkj kEk��U and� by the Diophantine
assumptions� je���ik�� � 
j�� � Cjkj���� Hence�

j $G����k�p�j � Kjkj���e����jkj kEk��U
and� therefore

kGk��
�U �
X
k�Zd

j $G����k�p�je�����
�jkj � K

�
	X
k�Zd

jkj���e���
jkj


A kEk��U

� K

�X
l�N

jlj����d��e���
l
�
kEk��U � K��� kEk��U


�



where � � 	 � d� 
�
We refer to �SM� for more details but point out that it is possible to obtain better exponents in � �see

e�g�� �Ru��� Of course� since the rest of the proof goes through for any exponent� this does not a�ect the
subsequent reasoning�

A small generalization of these estimates is	

Proposition ���� With the notation of Lemma ���

������ krmGk��
�U� � K����m kEk��U

Proof� Using Lemma ��
 and ������ we obtain that� for ��� �� p� � U
� we have

������ j�ip $G����k�p�j � K���i�����e���jkj� kEk��U
Similarly� we have

������ j�jq � $G����k�p�e
��ik�q�j � Kjkjj j $G����k�p�j � Kjkjj����e���jkj� kEk��U

On %��
�U� we have jImqj � � � � and hence je��ik�q j � e��jkj���
�� Therefore� using the above
estimates ������ and ������ in the same way as in Lemma ���� we obtain the desired result�

Now� we can prove estimates for the �ow of G���

Proposition ���� Assume that the conditions of Proposition ��� are met and that� furthermore

����#� K����� kEk��U � ���

Then�
i
 for ��� �� p� q� � %���
�U�� � the �ow g����p� q� generated by the Hamiltonian G��� is well de�ned� and�

�� �� g����p� q�
� � %��
�U�

ii
 kg � Idk���
�U�� � krGk��
�U� � K����� kEk��U
Proof� It follows from hypothesis ����#�� Proposition ��� and the local existence theorem for solutions of
O�D�E��s�

From now on� we will assume that ����#� holds� and we will proceed to estimate the terms in �������
By Proposition ���� the compositions G��� 
 g���� E��� 
 g��� are well de�ned on %���
�U�� � Using the

mean value theorem and Cauchy inequalities from Lemma ��
� we can bound

����
� kG�G 
 gk���
�U�� � krGk��
�U� kg � Idk���
�U�� � K������ kEk���U

������ kE �E 
 gk���
�U�� � krEk��
�U� kg � Idk���
�U�� � K����� kEk���U
These estimates show that two of the terms in ������ are quadratically small in the original error�
Now� we turn to estimate the last term in ������� which� as we will show� will also be quadratic in kEk�

The reason is that f��� and i��� satisfy di�erential equations whose di�erence can be controlled by kEk and
the same initial conditions� Hence� kf��� i��k � KkEk under some mild extra assumptions that guarantee
that domains match etc�� and we can now apply the mean value theorem� The precise details are a walk
through the standard proof of the existence and uniqueness for O�D�E��s� as we detail below�


�



First� we recall that i��� has the form �����	 i����p� q� � �p� q� ��� �� p��� with  ��� �� p� given in ���

��

and we note that i������p� q� � �p� q � ��� �� p��� Hence� for

����
� ki� T�kU �
��i�� � T�

��
U
� k � ��kU � �

we have

������ ��� �� p� q� � %��	�U ��
�
�� �� i����p� q�

�
�
�
�� �� i������p� q�

� � %��U
Assuming

������

����� �p
����
U

� K�

�where without loss of generality� we assume� to simplify some formulas that K� � 
�� we can bound

������ krikU �
��ri����

U
� K

We recall now that f��� is the solution of

������

f����x� � f����x� �

Z �

�

dsF��s 
 f��s�x�

� f����x� �

Z �

�

ds
�I��� 
 f��s�x� � E��� 
 f��s�x��

while i��� satis�es i����x� � i����x� �
R �
�
ds I��s 
 i��s�x�� with f����x� � i����x�� By hypothesis ����#�� using

standard arguments of O�D�E��s based on the Gronwall inequality� we get that for ��� �� p� q� � %��	��
�U�� �
the �ow f����p� q� is well de�ned� and satis�es

������ ��� �� p� q� � %��	��
�U�� ��
�
�� �� f����p� q�

� � %��
�U�
������ kf � ik��	��
�U�� � eK� krEk��
�U� � K��� kEk��U

From ������� and Lemma ��
 applied to ������� we can bound rf���	

����#� krfk��	��
�U�� � krikU � kr�f � i�k��	��
�U�� � K

Applying the Implicit Function Theorem to the estimates above� it turns out that for ��� �� p� q� �
%��	��
�U�� � f

��
����p� q� is well de�ned� satis�es

�
�� �� f������p� q�

� � %��
�U� and
����
�

��f�� � i��
��
��	��
�U��

� K���k kEk��U

As before� from ������� and Lemma ��
 applied to ����
�� we can bound rf�����	

������
��rf����

��	��
�U��
� K

Using the mean value theorem� ������ and the bounds on g��� � Id established in Proposition ���� we
obtain	

����
�
��f�� � f�� 
 g��

��	��
�U��
� K����� kEk��U

Putting together ����
� and ����
�� by the triangle inequality� we obtain

������
��f�� 
 g � i��

��
��	��
�U��

� K����� kEk��U


�



Using the mean value theorem� the estimates in Proposition ��� and ������� we can bound the last term in
������ as

������
��G 
 f�� 
 g �G 
 i����

��	��
�U��
� K������ kEk���U

Now� we turn our attention to the �rst term in ������� It will depend on the approximate expression
g���� � Id�

R �
�
dsG��s for g���	

������ g�����p� q� �

�
p�

Z �

�

ds
�

�q
G��s�p� q� � q �

Z �

�

ds
�

�p
G��s�p� q�

�

Proposition ���� Under our standing hypotheses� we have

��g � g�
��
���
�U��

� K������ kEk���U

Proof� Note that our standing assumptions imply

��g� � Id��
��
�U�

� krGk��
�U� � K����� kEk��U

and consequently
�
�� �� g�����p� q�

� � %��
�U� for ��� �� p� q� � %��	��
�U�� �
We can write g��� as the solution of a �xed point problem� Namely�

g��� � Id�

Z �

�

dsG��s 
 g��s 
 T �g����

and we have the identity

T �g����� � g���� �

Z �

�

ds �G��s 
 g���s � G��s�

If we estimate the integrand of the R�H�S� by the mean value theorem� we have

������
��T �g��� g�

��
���
�U��

� ��r�G
��
��
�U�

��g� � Id��
��
�U�

� K������ kEk���U

We also obtain� under ����#�� that T is a contraction of factor 
��� Hence� there is a �xed point of T
whose distance from g���� is not bigger than 
��
� 
��� � � times the R�H�S� of �������

We note that� because I����x� does not depend on q� denoting by 'p�'q the projections on the p and q
components respectively� we have for x � �p� q�

������

I����g����x�� � I����'pg����x��

� I����p� � �pI����p�'p

�
g����x�� x

�
�R�

�
�� �� x� g����x�

�
� I����p� � �pI����p�'p

�
g�����x�� x

�
� �pI����p�'p

�
g����x�� g�����x�

�
�R�

�
�� �� x� g����x�

�
where we have denoted by R� the remainder of the second order Taylor expansion in p�

Note that 'p

�
g�����x� � x

�
� �qG����x� �see ������ � and that �qG��� � � since q is a periodic variable�

Hence� observing that �pI is independent of q� we obtain

������ �pI

Z �

�

ds �qG��s � �


�



That is� the second term in the R�H�S� of the formula of ������ has zero average� We call attention to the fact
that this is the only part in the whole proof of the estimates where we use the exact symplectic character
of the deformation� which is equivalent to the fact that G is a function on the annulus and not just on the
universal cover�

Since I��� depends only on p we have that I��� � I����
Under the assumption

����#�
��r�I

��
��
�U�

� K�

we can bound the last two terms in ������ by terms that are quadratic in kEk�
Since the last two terms in ������ are the only ones that contribute to I��� 
 g���� I��� 
 g���� we obtain

from Proposition ���

����
�
��I 
 g � I 
 g

��
���
�U��

� K������ kEk���U

The only term in ������ that remains to be estimated is G��� 
 i������G��� 
T �� We note that� by ����
��
we have ��i�� � T �

��
U
� �

Therefore� using the estimates in Proposition ���

������
��G 
 i�� �G 
 T �

��

�U�����

� K������ kEk��U

If we add the estimates in ����
�� ������� ������� ����
� and ������� for the terms that has to be bounded
in ������� and claim them only in the domain %��	��
�U�� � which is smaller than any of the domains in
which we have bounds� we obtain

����
�
��� �E���

��	��
�U��
� K��
 kEk��U



kEk��U � �

�

where � 	� �� � � and k � ��kU � ��
We also notice that from Proposition ��� and ������� it follows that if ��� �� p� q� � %��	��
�U�� � then�

�� �� g����� 
 f��� 
 g����p� q�
� � %��
�U� �

On the set %	�	��	��
�U�� introduced in ���
�� equation ����
� reads as

������ k �Ek	�	���	��
�U�� � K��
kEk	�	���U �kEk	�	���U � ��

This is very similar to the estimates desired in ���
#� and it only di�ers from them in the fact that the
norm in the L�H�S� of ������ is referred to the domain speci�ed by  and not by � �

To remedy that� we will estimate the change in  and the attendant change in the parameterizations !
of the surface and the domain %� Using that the frequency function  is non�degenerate� this will allow us
to transform the expression of the domain in which we have improved estimates into an expression involving
the new frequency function�

We will �nd it convenient to state formally what we have already accomplished without using non�
degeneracy conditions in  � We call attention that this lemma will also play an important role in the proof
of Theorem 
��� Later� we will prove Lemma ��� that takes into account the change in the frequency function
and which indeed uses the non�degeneracy assumptions in  �

Lemma ��	� Given the Hamiltonian F � I � E of f��� introduced in ���
�
� choose G� & as given by

Lemma ���� and consider the new Hamiltonian �F � �I � �E of g����� 
 f��� 
 g��� as given in ���
�
� Assume
that � is such that �����
� �����
� and �����
 are met� and let � � �� � �� Then

������ k �Ek	�	���	��
�U�� � K��
kEk	�	���U �kEk	�	���U � ��

������ k&k	�	���U � kEk	�	���U � kr&k	�	���
�U� � K���kEk	�	���U

#



The way of interpreting these estimates is that ������ indicates that� after the transformation� the
resulting Hamiltonian is essentially an integrable one �albeit in a smaller domain�	 the right hand side of
������ consists on two terms� one of which is quadratic in kEk and the other one contains kEk�� If we choose
� su�ciently small� we will be able to make the right hand side of ������ much smaller than the original one�
This will overcome the small divisors ��
 �

We call attention to the fact that Lemma ��� does not need the non�degeneracy assumption on  and
that does not lose any domain in the parameters� This lemma will a basic tool for the estimates of the
inductive steps both in the proof of the KAM theorem and in the justi�cation of Greene�s criterion� The
di�erence between the two results will be that that the inductive steps will have di�erent domain loses and
that we will have to apply them repeatedly in di�erent ways� losing domain at di�erent rates�

���� The KAM inductive step� Geometry of domains

To complete the work for the bounds of the inductive step in the KAM theorem� we need to study
the change in  � the surface % de�ned by  � �� and its natural parameterization ! de�ned in ������
In particular� we will need to provide estimates for the changes of the bounds in ���
�� that quantify the
non�degeneracy assumptions� Since we are also taking into account the derivative of  with respect to ��
instead of ������� we are going to assume	

������

����� �p
����
U

� K��

����� ��
����
U

� K�

Again� we emphasize that most of the results in this section are true for arbitrary d� The only exception
is iv� in Lemma ��� below�

Given the estimates that we have on &� it will be very easy to estimate the change in  and all the
other estimates will follow by an application of the implicit function theorem� We note that since & is small�
and  depends linearly on the integrable part� the change in  will be of the same order of magnitude and
hence also small� All the changes in the surface and in the parameterization will be small and hence can
be estimated by kEk possibly multiplied by some factors that come from the fact that we have to involve
derivatives and control them by Cauchy estimates�

More precisely� we have	

Lemma ��
� Let  be the frequency function ���


 for the family f��� ���
�
 de�ned on %	�	���U as in
����
� Let & be given by �����
 and let � be a positive number� Assume that ���
�
� �����
� �����
� and
�����
� hold� Consider � � the new frequency function de�ned by

������� � ��� �� p� �  ��� �� p� �

Z �

�

ds
�

�p
&��� s� p�

Denote by ! and �! the parameterizations ����
 corresponding to  and � �
Then� for any �� � � satisfying

������ K���kEk	�	���U � ��

we have�
i�
��� � � 

���
U�

� K���kEk	�	���U � ��

ii� For �� as before� �� � � � �� ��� �U 
 U�
 � we have�

%�	��	���� �U � %	��	����
�U��

iii� �����
�

�

��
� 

��������
�U

�
�����
�

�

��
� 

��������
U��

�
�����
�

�

��
 

��������
U

�K���kEk	�	���U







iv� When d � 
� �����
�
��

�p�
� 

��������
�U

�
�����
�
��

�p�
� 

��������
U��

�
�����
�
��

�p�
 

��������
U

�K���kEk	�	���U

v� k!� �!k �U � K���kEk	�	���U
vi� The inequalities ���
�
 hold� That is� for � � �� � �

k �Ek�	��	���� �U � K��
kEk	�	���U�kEk	�	���U � ���

Proof� Part i� follows immediately from the formula ������ for � and the estimates that we have for & in
Lemma ���� The last inequality in i� is just a re�statement of ����#�� which is one of the hypotheses of the
lemma�

Part ii� follows because of �������
Parts iii� and iv� follow because we can use Cauchy estimates to estimate the derivatives of &� Then�

we can use Cauchy estimates to bound the derivatives of  �
The existence of �! and its estimates are a very simple consequence of the implicit function theorem�

Recall the well known result that if an analytic function ( satis�es j(���j � � and j(�j�� � a on a ball around
zero of radius a� there is one and only one zero in this ball� Moreover� if ( depends analytically on parameters�
the zero depends analytically on parameters� We can apply this result to (�s� �  �s � !��� p�� �� p� � ��
and then� the result follows�

Part vi� is a consequence of the estimates in Lemma ��� and part ii� of this Lemma�

Notice that the only places where we had to consider derivatives with respect to � are iii� and v��
Hence� this will be easy to adapt to the situation in the justi�cation of the Greene�s criterion where there is
some degeneracy in the frequency function�

Remark� Notice also that it is only in these non�degeneracy assumptions that we have to consider the one�
dimensional properties of the map� It seems that with some appropriate notion of critical circle in higher
dimensions �one has to consider invariant tori with )degenerate torsion��� one could develop an analogous
convergingKAM process� and a subsequent geometrical interpretation could provide the structure of invariant
objects nearby the critical torus�

��	� Iteration of the KAM inductive step� Convergence

In this subsection� we verify that if we start with a su�ciently small perturbation E� the iterative step can
be repeated in�nitely many times and� moreover� converges to a solution� The estimates are very similar to
those in the paper �Ru�� on the translated curve method� Along the rest of this section� we will assume that
d � 
�

The main idea is that the loss of domain has to be fast�say exponentially fast�in the variables q
so that we have some domain left� On the other hand� we have to decrease super�exponentially fast the
variable � which controls the thickness of the approximations to the surface %� This will achieve that the
kEk decreases super�exponentially and that� as a consequence� the process can be iterated inde�nitely�

We will choose �n� �n� and show that if kE�k	��	�����U� is small enough� the iterative step described in
the previous section can be repeated inde�nitely and the transformations converge to a solution that indeed
solves the problem�

We point out that these smallness conditions can always be adjusted by switching to another variable
�� � ��� If we choose � small enough� the remainder is made arbitrarily small while all the other parameters
in the problem are left unaltered� �That is� when we have families� we can obtain the smallness conditions
by considering � restricted to an small domain�� Of course� when our families are obtained by interpolating
between two di�eomorphisms� as in Lemma ���� the smallness assumptions in the family can be accomplished
by assuming that the di�eomorphisms we are interpolating are close�

��



We will start by picking �n � ����n� where we pick �� 
 ���# so that �n de�ned in Lemma ��� by
�n�� � �n� ��n is bounded away from zero� and �� 
 
�# so that all the domains Un�� � Un


n
contain the

open domain U�
�
� � Now� we will show that it is possible to choose �n in such a way that if kE�k	��	�����U�

is small enough� the process can be iterated inde�nitely and it converges�
Introducing the notation en � kEnk	n�	n��n�Un � an � �n��� A � �


 � C � K���� the recursion equation
in vi� of Lemma ��� becomes

����#� en�� � CAn en�en � an�

We claim that

Lemma ���� If e� is small enough� it is possible to choose � 
 � 
 
 in such a way that setting an �
��

n
�AB��n� for B � 
� the conditions for Lemma ��� are satis�ed for all n and

����
� en �
an
C �n

�
��

n

C��AB�n
�

Proof� Assume that ����
� holds for a certain n and that we have chosen an as indicated and that the
iterative step can be applied at this step�

Then� by ����#� we have

������

en�� �
��

n

C��AB�n

�
��

n

C��AB�n
�

��
n

�AB�n

�
CAn

�
��

n��

C��AB�n��
�ABC

Bn

�



C �n
� 


�
� ��

n��

C��AB�n��
�ABC

Bn
�

If n � N��A�B�C� we have that

����
�
�ABC

Bn
� 


so that indeed the formula ����
� holds for n� 
�
We also observe that� if an and en are of the form that we claimed� there is an N��A�B�C� � N� so

that all the hypotheses ���
��� ����#�� ������� ����#�� ������ are satis�ed for n � N��
Therefore� it su�ces to ensure that e� is so small that the iterative step can be performed N� times and

that the inequalities ����
� hold for n � N�� Then� the argument in ������ will show that ����
� continue to
hold� and that the hypotheses needed to perform the iterative step and ����
� hold�

Clearly� from ����
�� we obtain that the error of the solution goes to zero on the surfaces� Similarly�
using the estimates in Lemma ��� we can show that the parameterizations ! of the surface converge� �It
su�ces to check that the increments are summable��

Moreover� de�ning hn��� � g���� 
 � � � 
 gn��� we have that

������
khn � hn��k	n�	n��n�Un � khn�� 
 gn � hn��k	n�	n��n�Un

� ���n��Kkhn��k	n���	n����n���Un��kgn � Id k	n�	n��n�Un

From ������ and the estimates in ii� of Proposition ���� it is immediate to show by induction that
khnk	n�	n��n�Un remains bounded independently of n� Then� using ii� of Proposition ���� the RHS of ������ is
summable in n� Hence hn��� converges in the limiting domain %	��	�����U� � with �� � �� consisting on the

points ��� �� p� q� with ��� �� p� � U� � U�
�
� such that  

���� �� p� � �� and jImqj � �� � ������ � �����
This �nishes the proof of Theorem 
���

�




	� Partial justi�cation of Greene�s criterion

To assess numerically the existence of invariant circles� the most frequently used method is the so�called
Greene�s criterion� formulated in �Gr� for two�dimensional maps�

This criterion asserts that a smooth invariant circle with motion smoothly conjugate to a rotation �
exists if and only if it is possible to �nd a sequence of periodic orbits of type m�n whose �residue� �that is�
the trace of the derivative of the return map minus �� converges to zero as the m�n converges to ���

As it turns out� this criterion has not been proved to hold� nevertheless� parts of it can be established
rigorously�

For standard KAM tori� Mather �see �McK� Section 
������� suggested a method to prove that if KAM
tori existed� the residue should go to zero faster than any power of j��pn�qnj� This method was implemented
in �FL�McK�� for two�dimensional maps to show that the residue is smaller than exp��cj� � pn�qnj�	� for
some � � ��

The main goal of this section is to prove one of the implications of Greene�s criterion for critical circles�
We will prove that if a critical circle exists� then any sequence of periodic orbits converging to it has residual
converging to zero� We will also show that� if a critical circle exists� indeed there is at least one such sequence�
Actually� for any m�n such that m�n 
 �� jm�n��j � 
� we can �nd at least � periodic orbits of type m�n
and� under mild non�degeneracy conditions� at least ��

Again� we will assume in this section that d � 
� We note that for higher dimensional maps� in �T
� and
�T�� there are versions of Greene�s criterion for higher dimensional twist maps �a rigorous justi�cation of
one of the implications and numerical evidence respectively�� There are some di�erences between the proofs
in higher dimensional cases and the case considered here of d � 
 and we will comment on them after the
proof of our results�

The main part of the proof will consist in showing that� in a neighborhood of the invariant circle� it is
possible to �nd changes of variables that reduce the system almost to integrable� Once we have that� the
result will follow word for word the result in �FL��

Of course� the estimates near the invariant torus are a more general result than that of the Greene�s cri�
terion and they allow to control not only the behavior of the periodic orbits� but also other dynamical objects�
Other papers in which similar estimates are obtained for non�degenerate circles are �OS�PW�JV�DG���

Most of the work has been done already in Section �� The estimates that we will use are the same as
those of the iterative step and the only di�erence is that we will be in the iterative step that makes di�erent
choices� This uni�ed approach between the KAM theorem and exponentially small estimates appears also
in �DG
��

���� Preliminary estimates and notation�

We will be considering area preserving maps f which are de�ned in a neighborhood of ��
� 
�� T� to itself�
These maps will have the form

f�p� q� � �p� q � �� � �pM � �O�pM���

for some � �� ��
By Lemma ���� we can �nd an f� in such a way that the f��p� q� � �p� q���� �pM �� The Hamiltonian

of this deformation will be F� � O�pM����
We will write for these type of families F��p� q� � I��p� � E��p� q�� where again I� will be thought of

as the integrable part� We will denote by i� the deformation with initial point f� and with Hamiltonian I�	
i��p� q� �

�
p� q � �� � �pM �

R �
� ds �pIs�p�

�
�

We note that these families are a particular case of the families we have considered in Section �� �In
particular� � 
 � and M � � for the example �
�
��� In that section� we allowed a dependence in another
parameter �� The families we consider here can be considered as embedded in families depending on �
but such that the dependence on � is trivial� Clearly� all the results of Section � that do not rely on the
dependence on � being non�trivial will go through as stated using the elementary device of writing the extra
variable � and noticing that the functions we consider do not depend on �� We will use this completely
elementary device without too much of an explicit mention�

��



For the purposes of this section� it will be su�cient to use particular cases of the neighborhoods %	�	���U �
Since all the objects we will consider will not depend on �� we will not need to consider objects that depend
on this� in particular we can suppress U from the notation�

We will also introduce the simpli�ed domains

%� � f�p� q� �� j jpj � 
� jIm qj � 
� d��� ��� 
�� � 
g

and� given a family of functions H��p� q�� we will denote by

kHk� � sup
�p�q����
�

jH��p� q�j

Since we will be working with functions that vanish at the origin to a high order� it is worth remarking
that Cauchy bounds can be improved for them�

Proposition ���� Let H��p� q� be such that H��p� q� � pnJ��p� q�� Then� provided that the norms are
de�ned�

i
 kJk� � 
�nkHk�
and� for 
� 
 
� we have

ii
 kHk�� � �
��
�nkHk�
iii
 krHk�� � �n�
� � �
 � 
������
��
�nkHk�

Proof� By the maximum modulus principle

kHk� � sup

�

jH��p� q�j � sup
jpj��

jIm qj��
d���
�������

jH��p� q�j � 
n sup

�

jJ��p� q�j � 
nkJk�

This proves i�� Then�
kHk�� � 
�nkJk�� � 
�nkJk� � �
��
�nkHk�

Furthermore�

kr�pnJ��k�� � k�npn��J� � pn�pJ�� p
n�qJ��k�� � n
��n���
�nkHk� � 
�nkrJ�k��

� n
����
��
�nkHk� � 
�n�
 � 
����kJ�k�
� �n
��� � �
 � 
������
��
�nkHk�

���� Reduction of maps to integrable in a neighborhood of a Diophantine circle

The key step in the proof of Theorem 
�� is the following� Once we prove this result� the proof will be the
same as in �FL��

Lemma ���� Let �� be a Diophantine number� M an integer� Let f be an analytic area preserving map of
the form

f�p� q� �
�
p� q � �� � �pM

�
�O

�
pM��

�
for some � �� �� Then�
i� For every N � N we can �nd an analytic canonical transformation such that

���
� g��N 
 T 
 gN�p� q� � �p� q � N �p�� �RN �p� q�

with  N analytic�  N �p� � �� � �pM �O�pM���� and jRN �p� q�j � CN jpjN �

��



ii� Moreover� we can �nd ��� �� � � depending only on M and the Diophantine properties of ��� such that
for su�ciently small 
� choosing N � K
�� � we have

����� kRNk� � K exp��K��
����

Remark� We note that Lemma ���� besides giving some control on the periodic orbits that we will use
to prove Theorem 
��� also provides control over other orbits� Notably� it shows that critical circles are
approximated by KAM circles� Indeed� the density of KAM circles in a neighborhood of size 
 of a critical
circle will be bigger than 
� C� exp��C�


�	� for some positive C�� C�� ��

Remark� We observe that the �rst part of the claim� the reduction to an integrable form could go through
with less di�erentiability� If we only want that gN � C� �which we will show is enough to show that the
residue goes to zero faster than j���m�njN�M � it would su�ce to assume that f is Cr with r depending on N
and the Diophantine properties of ��� Of course� the quantitative estimates ����� depend on the analyticity
properties� The �rst part of the claim is much easier to prove� since� as we will see� only entails matching
powers of p in an equation that expresses the desired result� We note that this is enough to show using
the methods that we will develop later that if there is a �nitely di�erentiable circle� then the residue of a
periodic orbit of type m�n is smaller than a power of j�� �m�nj� This power can be made as large as we
want by assuming that the di�erentiability is high enough�

Proof of i�� If we denote by f��p� q� � �p� q � �� � �pM �� by Lemma ��� we can �nd an analytic family
f� that interpolates between f� and f � The Hamiltonian of this family F �

� will be an analytic function of
�p� q� �� in a complex neighborhood of %��

To prove that we can �nd gN so that ���
� holds� we proceed by induction in N and assume that for
some N � � we can write our Hamiltonian as

����� FN
� �p� q� � IN� �p� �EN

� �p� q�

with
EN
� �p� q� � pNRN

� �p� q�

We seek Hamiltonians GN
� �p� q� � pNSN� �q� determined in such a way that the family gN� with this

Hamiltonian and starting in the identity is such that

����� j� � �g
N
� �

�� 
 fN� 
 gN�
has a Hamiltonian which is integrable up to a higher order error in p�

We note that

����� gN� �p� q� �
�
p� pN&p�p� q�� q � pN��&q�p� q�

�
where &p�&q are analytic functions� Therefore� the compositions needed to de�ne j� in ����� make sense in
a su�ciently small neighborhood of the circle�

From Proposition ��
 and ������ we can compute the Hamiltonian of j�

����� J� � IN� 
 gN� � �p� pN&p�
N � RN

� 
 g� �G� 
 gN� �GN
� 
 �fN� ��� 
 gN�

Expanding the above formula and denoting RN
� �p� q� �

P
i	� p

iRN�i
� �q��and analogously for other

functions�we obtain

J��p� q� � IN� �p� � pNRN��
� � pN

n

RN��
� �q��RN��

�

�
� SN� �q� � SN� �q � ���

o
�O�pN���

Using Lemma ��� we now that we can �nd an analytic SN so that the term in braces is zero in the
domain where the function is de�ned� which includes a strip around the torus� By the form of the functions�
all the compositions needed to de�ne j� will be de�ned in a su�ciently small strip around of the torus�

��



This establishes the �rst part of the claim� the fact that we can reduce to any order�

Remark� Rather than using an inductive argument� as we have done� it is possible to show that ���
� holds
to all orders by matching terms in ������ We note that the terms of order pN�m have the form	

RN�m
� �q�� SN�m

� �q� � SN�m
� �q � ��� �

�RN�m��
� �p� q�

where �RN�m��
� is a polynomial expression in RN�i

� � SN�i
� � i � m� 
 and their derivatives and the derivatives

of I � Again� we can use Lemma ��� to prove that a solution exists to all orders in pn�
This method clearly shows that the coe�cients of the expansion in the reduction are uniquely determined

by the map and the torus� and are independent of the procedure� For example� in �OS�� a di�erent procedure
using generating functions is used for twist maps and one can �nd the remark that the coe�cients of this
normal form are unique� �For the situation we are considering here� generating functions are not so convenient
since the mixed variables are not a good system of coordinates in a neighborhood of the invariant torus�
Nevertheless� the formalism that we developed above allows us to reach the same uniqueness conclusions��

To obtain the estimates on the remainders of the reduction� we use an slightly di�erent procedure� We
use ������ and determine G� in exactly the same way as in section �� We can apply Lemma ����which does
not depend on  being non�degenerate�to obtain� with the notation introduced there� ������ and ������
provided that the inductive hypothesis hold�

Lemma ���� Let  be the frequency function ���


 de�ned in %	�	���U as in ����
� Let & be de�ned as in

�����
 and let � be a positive number� Assume that ���
�
� �����
� �����
� �����
� hold� Consider � � the new
frequency function de�ned by

������ � ��� �� p� �  ��� �� p� �

Z �

�

ds
�

�p
&��� s� p�

Then� for any �� � � satisfying

���#� K���kEk	�	���U � ���

we have�
i�
��� � � 

���
U�

� K���kEk	�	���U � ��

ii� For �� as before� �� � � � �� ��� �U 
 U�
 � we have�

%�	��	���� �U � %	��	����
�U��

iii� �����
�
�M

�pM
� 

��������
�U

�
�����
�
�M

�pM
� 

��������
U��

�
�����
�
�M

�pM
 

��������
U

�K��M��kEk	�	���U

iv� The inequalities ���
�
 hold� That is� for � � �� � �

k �Ek�	��	���� �U � K��
kEk	�	���U�kEk	�	���U � ���

The only di�erence between the proofs of Lemma ��� and Lemma ��� is that in Lemma ��� we do not
need to worry about the non�degeneracy in  with respect to �� Item iii� in Lemma ��� is just an slight
generalization of the standard implicit function theorem�

We also note that if E is O�pL�� then G is also O�pL� and� as a consequence� all the terms in the
decomposition of �E according to ������ are O�p�L��� except �G��� 
 i������G��� 
T �� which is only O�pL�M ��
We note that� for high enough L� �L� 
 � L�M so that� for large enough L the order of tangency grows
by M in each step�

��



We can therefore assume that if we have performed n steps� the resulting non�integrable part is
O�pMn�A� where A is a number that may depend only on M and not on n� The number A takes into
account that in the �rst steps of the iteration it could happen that �L� 
 is smaller than L�M �

Remark� One could have obtained slightly more sophisticated estimates taking advantage of the fact that
the functions we are considering vanish with powers of p and we can use the sharper Proposition ��
 instead
of Lemma ��
� As it turns out� this does not make an appreciable di�erence in the �nal answer and it would
require that the estimates leading to Lemma ��� are redone�

Proof of part ii� of Lemma ���� Iteration of the inductive step�

Now we discuss the possibility and the e�ect of iterating the inductive step� Since the goals are quite
di�erent than in the iteration leading to the KAM theorem� the choices that we will make in domain losses
etc� will be also quite di�erent� In our case� we are not interested in having some analyticity domain left
�the existence of an analytic torus is part of the assumptions�" rather� we are interested in obtaining control
of the remainders in a wide domain�

We will take take

���
� �n�� � cn�� � �n � cn��

with �� � � � chosen in such a way that

���
�� �� � 
�� � � 
 �

Note that then� � � �� � ��
 so that the domains in the p variable are smaller than those in the q variable�
Moreover� �n � ��n � �n����� � c�n���� � O�n����� and we can bound ��
n � Kn
������ Note also that
it also follows from ���
�� that � � � and that given any � � � we can chose � � � in such a way that ���
��
is satis�ed�

We claim that if the iterative step can be iterated N times� and c as in ���
� is su�ciently small� we
have	

���

�
��EN

��
	N �	N ��N �UN

� �N *������
��

We can proceed by induction� Note that if ���

� were true� we could� for N � N��c�� obtain the bound
kENk	N �	N ��N �UN � �N�� � K�N��� Then���EN��

��
	N���	N����N���UN�� � �N *������
��Kc�N � 
������
��

which implies the result for N � 
 when c is small enough�
We note� as in the proof of the KAM theorem� that all but one of the hypotheses of the iterative step

are satis�ed provided that kEnk is much smaller than �n to a �xed power� The only condition that involves
the � is ���#�� Namely�

K���kEk	�	���U � ��

We note that� if we �x c� we have the hypotheses satis�ed for N � N� � N�� If we assume that the error
is su�ciently small to start with�which can be assumed if we start in a neighborhood su�ciently small��
then� we can perform the N� steps and then� the iteration can continue� Therefore� if the initial error kE�k
is su�ciently small� we can iterate inde�nitely� Notice that since E� vanishes up to order M in p it su�ces
to choose c su�ciently small�

Moreover� the estimates iii� of Lemma ��� tell us that we can bound from below

����
 �M

�pM  
������� inde�

pendently of the number of iterates� Then� the domain %� is contained in all the domains of the form
%	N �K���M �K���M �UN provided that UN contains a neighborhood of the map�

With the choices of �n �n that we have made above in ���
�� we see that we can repeat the iterative
step described in Lemma ��� and obtain control in a �
 neighborhood of the circle while cN�� � K
��M �
That is� N � K��
����M���

��



As we have seen in ���

�� for N large enough�which is implied by 
 small enough�we have	

kENk	N �	N ��N �UN � �N *������
�� � exp


�K��
����M��j log�
����M���j�K

�
By worsening slightly the power of 
 in the �rst term� we can suppress the logarithm to simplify the expression

���
�� kENk	N �	N ��N �UN � �N *������
�� � exp


�K��
����M����

�
for some small � � �� Now� we note that the system f��� is obtained by solving up to time 
 the system

d

d�
x � FN

� �x� � IN� �x� � EN� �x�

Applying Cauchy bounds to ���
��� we can obtain bounds for EN in a 
 neighborhood of the origin which
are of the same form as ���
�� with an slightly bigger � and some bigger K�

Note that� by de�nition� IN generates an integrable �ow� Hence� applying the usual estimates for the
dependence of the solutions on the vector �eld� we obtain the result claimed in Lemma ����

Note that the argument we have given shows that we can take �� � 
�M��� and �� any number strictly
smaller� Since we only needed �� �
�� � � 
 �� we can choose � any number bigger than � and then choose
�� Of course� the constants will be worse�

���� Proof of Theorem ��	 using Lemma ���

A possible proof can be made following the argument in �FL��
We note that Theorem 
�� makes statements about the trace of derivatives of Fn at �xed points of Fn�

Since the trace of the derivative of a map at a �xed point is invariant under changes of coordinates� we can
study the derivatives of this map in the coordinates provided by Lemma ����

First� we need to obtain some idea of where the periodic orbits could be� We will need to show that if
j�� �m�nj is small� then the orbit is very close to the invariant circle so that� in the coordinates provided
by Lemma ���� the orbit is close to being the orbit of an integrable system� Note that for the orbit of an
integrable system� the derivative is upper triangular with a diagonal which is the identity �hence� for an
integrable system the trace of the derivative is � and the residue is ��� A second part of the argument is
a perturbation argument that shows that if the system is close to integrable� the trace of the derivative is
close to � and� hence� the residue is small�

The �rst part of the argument is accomplished by the following

Proposition ���� For m�n su�ciently close to ��� any orbit of type m�n should be contained in annuli of
radii r �O�r���� where r satis�es �� � �MrM � m�n�

We see that� when M is odd� we �nd one such r� namely r � ���� �m�n���M�
��M

� When M is

even� if ��� � m�n���M is positive we can �nd two such r� namely r � � �m�n� �����M �
��M

and when
�m�n � �����M is negative� we can �nd none� �In general� for each of the values of r that guarantee the
existence of periodic orbits� they will appear in pairs	 elliptic and hyperbolic��

The argument will also show that� when we cannot �nd any r solving the equation� there are no periodic
orbits of type m�n in a su�ciently small neighborhood of the non�degenerate circle�

Proof� If we apply the �rst claim of Lemma ��� to order �M ��� we obtain that� in an appropriate system
of coordinates� our map can be written as

���
�� �p� q� �	 �p� q � �p�� �O
�
p�M��

�
with  �p� � �pM �O�pM����

��



In the set I � ��
�
��r� �

�
��r�� T�� the mapping ���
�� can be considered as a perturbation of an
integrable system�

We note that the frequencies present in the integrable system in the domain considered are

�� � �rM ��
�
��M � �

�
��M � �O�rM����

Note also that d	
dp � �MrM�� �O�rM �� This lower bound on the derivative is called the twist constant�

We recall that� by standard arguments in Diophantine approximation� we can �nd �� such that � i �
Z� � j � N� j�� � i�jj�� � Cj��� in any interval of length bigger than KC��� �It su�ces to �x i� j and
consider the length of the interval of � for which the desired inequality fails� See e�g� �AA� p� �����

Hence� we can �nd two frequencies �
 such that

a� They are Diophantine with exponent 	 � 
 � ��� and with constant C � r�M

b� �� 
 m�n 
 ��
c� �� � �� � KrM

We now recall the quantitative version of the twist mapping theorem �He� that states that if we perturb
an integrable system with twist constant � de�ned in a range of A of diameter D� by a perturbation of C�
size �� the invariant circles corresponding to a Diophantine frequency of constant C persist provided that
C�� �����D are su�ciently small� Moreover� C� distance of these invariant tori to the unperturbed ones
can be bound by �����

If we apply this to the circles of frequencies �
 in the domain indicated� we see that � � O�r�M����
C � O�R�M �� ��� � O�r�M���� and D � ��
�r�

Hence� we conclude that these circles with frequency �
 persist� Since in a su�ciently small neighbor�
hood of the invariant circle� the map is a twist map� all the orbits with rotation number in ���� ��� have to
be contained in the annulus bounded by these two invariant circles� In particular those of rotation number
m�n�

This �nishes the proof of Proposition ����

For the cases where we can �nd an r such that the rotation number of the integrable part is m�n� we can
apply Lemma ��� with 
 � �r with r as above to obtain that kRNk� vanishes to order K��j��m�nj����M
and has size smaller than K exp��K��j� �m�nj����M ��

The improved Cauchy estimates� Proposition ��
� give us that the entries on the matrix DR are smaller
than

���
��
��K

��j���m�nj����MK exp


�K��j�� �m�nj����M

�
� K exp

��K��j�� �m�nj����
for some �� � ��

We also note that the derivatives of the integrable part are of the form DI �
�
�
�

a
�

�
with a bounded

independently of the number of iterates that we need to take in Lemma ����

If we have a periodic orbit of type m�n� by the chain rule we have DFn�x� � DF �xn��� � � �DF �x��
where xi � F i�x�� Note that DF �xi� � DI�xi� �DR�xi��

Therefore� we can apply the following lemma� which appears as Lemma ��� of �FL��

Lemma ���� Let fAigNi�� be a set of �� � matrices of the form Ai �
�
�
�

ai
�

�
with sup��i�N jaij � A�

Let fBigNi�� satisfy
sup

��i�N
j�k����

j�Bi�jk � �Ai�jk j � � with � � A �

Then B � B� � � �BN satis�es

jTrB � �j � �
h�

 � �

p
A
p
�
�N � 


i

�#



Applying Lemma ��� with Ai � DI�xi�� Bi � DF �xi�� we obtain that for su�ciently large n� recalling
that Theorem 
�� includes in the assumptions that j�� �m�nj � 
�n and that therefore K exp��K��j�� �
m�nj��� tends to zero

jTrDFn�x�� �j � � ��
 �K exp��K��j�� �m�nj����n � 
�
� nK exp��K��j�� �m�nj��� � K exp��K��j�� �m�nj���

This concludes the proof of Theorem 
���

We also remark that the argument that we gave to locate the periodic orbits also shows that if we have
a non�degenerate critical circle� then it is approximated by periodic orbits�

In the cases that we can �nd an approximate r �i�e� in the case of odd M or� when M is even� that the
sign of ���m�n is chosen correctly� we see that we can apply the classical Poincar+e last geometric theorem
�Fr� to Fn � ���m� and obtain that there are two �xed points of di�erent index� and� hence two di�erent
periodic orbits of F �

In the case that M is even and the signs are right� since we can �nd two rings we can obtain four
periodic orbits�

Remark� Note that in order to obtain two periodic orbits using this argument� we need to use the modern
version of the Poincar+e theorem which includes information about the index of the �xed points of Fn����m��
The classical Poincar+e �xed point theorem �See e�g �St� p� 

� does not provide information about the index
and hence� we cannot exclude that the two �xed points of Fn � ���m� produced by it are part of the same
orbit for F �

Remark� In our case� noting that our maps admit a generating function� we could also produce the two
periodic orbits using variational methods� �See �KH� theorem 
������

A di�erent line of argument that produces quantitative results under stronger hypotheses is the following	
In a annulus p � �r � r���� r � r���� the map is an small perturbation of an integrable map that is

non�degenerate� If this perturbation satis�es some non�degeneracy assumptions� one can �nd two periodic
orbits of type m�n� One of them is hyperbolic an another one is elliptic� The �rst order calculations of
these periodic orbits is sometimes called sub�harmonic Melnikov theory� Formal expansions� including non�
degeneracy assumptions that imply that the expansions predict one pair of elliptic and hyperbolic periodic
orbits can be found in �Po� x��� x�
� A justi�cation of these expansions for �nitely di�erentiable functions
that shows that� under the formal conditions derived in �Po� one can �nd indeed the periodic orbits with the
character predicted by the expansions can be found in �LW� chapter �� or in �Po� x�
�
Remark� Note that the above argument only requires estimates about the trace of the derivative� The
fact that the trace of the derivative can be studied requires that gN � C�� The argument that we used to
show that� in the coordinates given by gN � the periodic orbit of period m�n is at a distance not more that
j�� �m�nj��M requires the twist mapping theorem with Lipschitz estimates and hence that gN � C�� The
rest of the argument applying Lemma ��� only requires that the map gN � C�� Hence we see that if gN � C�
we have that jRes�Om�n�j � Kj�� �m�njN�M � Therefore� as we remarked before� to show that the residue
goes to zero faster than a power� one only needs �nite di�erentiability and for C� mappings one can show
that the residue goes to zero faster than any power�

Remark� For a Diophantine number �
���� it holds that j�� � pn�qnj�� � Cq
n for some � � �� if we take
pn�qn to be the convergents of the continued fraction expansion of ��� Hence� the conclusion of Theorem

�� can be written as

Res�On� � C� exp��C�q
��

n �

Remark� A followup paper �CGM�� of �CGM
� goes on to �nd scaling relations for the invariant circles with
rotation number �� � �

p
� � 
��� of T������ as � goes to a critical value where they cease to exist� These

scaling relations suggest that there is a renormalization group description of these invariant circles with the
KAM circles corresponding to a trivial �xed point� If this was the case �to our knowledge nobody has yet

�




worked out a precise formulation and computed the trivial �xed points�� the residue of a periodic orbit of
type Fn�Fn�� would go to zero super�exponentially fast in n� since for the Fibonacci numbers F� � F� � 
�

Fn�� � Fn � Fn��� one has j�� � Fn�Fn��j�� � C���n� �

Remark� In higher dimensions� under the non�degeneracy hypotheses of the KAM theorem�which are
weaker than twist hypothesis�an argument similar to the one given above has been developed in �T
�� The
reduction to integrable normal form up to a very small error can be carried out� Similarly� there is an
analogue of Lemma ��� that shows that products of su�ciently small perturbations of Jordan Blocks with
identity in the diagonal� still have characteristic polynomials close to �t�
��d� Therefore� if there is a periodic
orbit in a neighborhood of the torus� not only the trace but all the other coe�cients of the characteristic
polynomial have to converge to those of the Jordan normal form� One important element from our present
argument that does not generalize to higher dimensions is the application of the twist mapping theorem to
conclude that the distance of the periodic orbits to the invariant circle is bounded by the di�erence of the
rotation numbers� Nevertheless� it is possible to show that if there is an invariant torus� there are periodic
orbits that approximate it well and that the characteristic polynomial of the derivative converges to �t�
��d�
It has been argued�and implemented numerically in �T���that this convergence of the coe�cients of the
characteristic polynomial of the derivative can considered as a test of the presence of a KAM torus�

We think that it should be possible to extend the methods presented here to establish one of the
implications of Greene�s criterion for some invariant torus that satisfy some hypothesis of non�degeneracy
weaker than the twist hypothesis�
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