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1 Introduction

In the last years many progresses have been done concerning KAM theory for nonlinear Hamiltonian
PDEs. The first existence results were given by Kuksin [20] and Wayne [32] for semilinear wave (NLW)
and Schrodinger equations (NLS) in one space dimension (1d) under Dirichlet boundary conditions,
see [27]-]28] and [23] for further developments. The approach of these papers consists in generating
iteratively a sequence of symplectic changes of variables which bring the Hamiltonian into a constant
coefficients (=reducible) normal form with an elliptic (=linearly stable) invariant torus at the origin.
Such a torus is filled by quasi-periodic solutions with zero Lyapunov exponents. This procedure
requires to solve, at each step, constant-coefficients linear “homological equations” by imposing the
“second order Melnikov” non-resonance conditions. Unfortunately these (infinitely many) conditions
are violated already for periodic boundary conditions.

In this case, existence of quasi-periodic solutions for semilinear 1d-NLW and NLS equations, was
first proved by Bourgain [5] by extending the Newton approach introduced by Craig-Wayne [I1] for
periodic solutions. Its main advantage is to require only the “first order Melnikov” non-resonance
conditions (the minimal assumptions) for solving the homological equations. Actually, developing this
perspective, Bourgain was able to prove in [6], [§] also the existence of quasi-periodic solutions for
NLW and NLS (with Fourier multipliers) in higher space dimensions, see also the recent extensions
in [2], [3], [3I]. The main drawback of this approach is that the homological equations are linear
PDEs with non-constant coefficients. Translated in the KAM language this implies a non-reducible
normal form around the torus and then a lack of informations about the stability of the quasi-periodic
solutions.

Later on, existence of reducible elliptic tori was proved by Chierchia-You [9] for semilinear 1d-
NLW, and, more recently, by Eliasson-Kuksin [14] for NLS (with Fourier multipliers) in any space
dimension, see also Procesi-Xu [30], Geng-Xu-You [10].

An important problem concerns the study of PDEs where the nonlinearity involves derivatives. A
comprehension of this situation is of major importance since most of the models coming from Physics
are of this kind.

In this direction KAM theory has been extended to deal with KdV equations by Kuksin [2I]-[22],
Kappeler-Poschel [19], and, for the 1d-derivative NLS (DNLS) and Benjiamin-Ono equations, by Liu-
Yuan [24]. The key idea of these results is again to provide only a non-reducible normal form around
the torus. However, in this cases, the homological equations with non-constant coefficients are only
scalar (not an infinite system as in the Craig-Wayne-Bourgain approach). We remark that the KAM
proof is more delicate for DNLS and Benjiamin-Ono, because these equations are less “dispersive” than
KdV, i.e. the eigenvalues of the principal part of the differential operator grow only quadratically at



infinity, and not cubically as for KdV. As a consequence of this difficulty, the quasi-periodic solutions
n [21], [19] are analytic, in [24], only C*°. Actually, for the applicability of these KAM schemes, the
more dispersive the equation is, the more derivatives in the nonlinearity can be supported. The limit
case of the derivative nonlinear wave equation (DNLW) -which is not dispersive at all- is excluded by
these approaches.

In the paper [5] (which proves the existence of quasi-periodic solutions for semilinear 1d-NLS
and NLW), Bourgain claims, in the last remark, that his analysis works also for the Hamiltonian
“derivation” wave equation
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see also [7], page 81. Unfortunately no details are given. However, Bourgain [7] provided a detailed
proof of the existence of periodic solutions for the non-Hamiltonian equation
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These kind of problems have been then reconsidered by Craig in [10] for more general Hamiltonian
derivative wave equations like

Yit — You + 9(x)y + f(2,D%) =0, =z €T,

where g(z) > 0 and D is the first order pseudo-differential operator D := /=04, + g(x). The
perturbative analysis of Craig-Wayne [I1] for the search of periodic solutions works when 8 < 1. The
main reason is that the wave equation vector field gains one derivative and then the nonlinear term
f (Dﬁ u) has a strictly weaker effect on the dynamics for § < 1. The case 8 = 1 is left as an open
problem. Actually, in this case, the small divisors problem for periodic solutions has the same level
of difficulty of quasi-periodic solutions with 2 frequencies.

The goal of this paper is to extend KAM theory to deal with the Hamiltonian derivative wave
equation

yftfyrr‘i’my‘i’f(Dy):Ov m>0, D:= *aerm, zeT, (11)
with real analytic nonlinearities (see Remark
f(s):as3+2fksk, a#0. (1.2)
k>5

We write equation as the infinite dimensional Hamiltonian system
uy = —i0gH , iy = 10, H ,
with Hamiltonian ~ s
H(u,u) ::/TﬂDu—FF(%) dx, F(s) ::/0 f, (1.3)

in the complex unknown

1 1
u = —(Dy +iy), U= —(Dy —iy), ir=v-1.

Setting u = Z U elie (similarly for @), we obtain the Hamiltonian in infinitely many coordinates
JEL

H = Z)\jujﬂj + /’H‘F(ﬁ jgz(uje‘” —|— ﬂj€_1]$)> dl’ (14)
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where

Aji=+/j2+m (1.5)
are the eigenvalues of the diagonal operator D. Note that the nonlinearity in (|L.1]) is z-independent im-
plying, for (|1.3)), the conservation of the momentum —i / u0yudzx. This symmetry allows to simplify

T
somehow the KAM proof (a similar idea was used by Geng-You [I5]).

For every choice of the tangential sites Z := {j1,...,jn} C Z, n > 2, the integrable Hamiltonian
Z Aju;%; has the invariant tori {u;a; = ¢;, for j € 7, u; = u; = 0 for j ¢ 7} parametrized by the
JEZ
actions & = (§j)jez € R™. The next KAM result states the existence of nearby invariant tori for the
complete Hamiltonian H in (|1.4).

Theorem 1.1. The equation (1.1)-(1.2) admits Cantor families of small-amplitude, analytic, quasi-
periodic solutions with zero Lyapunov exponents and whose linearized equation is reducible to constant
coefficients. Such Cantor families have asymptotically full measure at the origin in the set of param-
eters.

The proof of Theorem is based on the abstract KAM Theorem which provides a reducible
normal form (see (4.12))) around the elliptic invariant torus, and on the measure estimates Theorem
The key point in proving Theorem is the asymptotic bound on the perturbed normal
frequencies Q°°(&) after the KAM iteration. This allows to prove that the second order Melnikov
non-resonance conditions (4.11) are fulfilled for an asymptotically full measure set of parameters
(see (4.16))). The estimate (4.9), in turn, is achieved by exploiting the quasi- Tdplitz property of the
perturbation. This notion has been introduced by Procesi-Xu [30] in the context of NLS in higher
space dimensions and it is similar, in spirit, to the T6plitz-Lipschitz property in Eliasson-Kuksin
[14]. The precise formulation of quasi-To6plitz functions, adapted to the DNLW setting, is given in
Definition 3.4 below.

Let us roughly explain the main ideas and techniques for proving Theorems [{.1] [£:2] These
theorems concern, as usual, a parameter dependent family of analytic Hamiltonians of the form

H=w(&) y+Q) 22+ Px,y,2,2¢) (1.6)

where (z,y) € T" x R", z, Z are infinitely many variables, w(§) € R", Q(¢) € R* and £ € R". The
frequencies (&) are close to the unperturbed frequencies A; in .

As well known, the main difficulty of the KAM iteration which provides a reducible KAM normal
form like is to fulfill, at each iterative step, the second order Melnikov non-resonance conditions.
Actually, following the formulation of the KAM theorem given in [4], it is sufficient to verify

Y
X&) - k+ Q08 — QF > 0 1.7
() k+ OO~ O] 2 T >0, (a7)
only for the “final” frequencies w™ (§) and Q% (), see (4.11)), and not along the inductive iteration.
The application of the usual KAM theory (see e.g. [20], [27]-[28]), to the DNLW equation provides
only the asymptotic decay estimate

Q7)) =7 +0(1) for j— +oo. (1.8)

Such a bound is not enough: the set of parameters ¢ satisfying could be empty. Note that for
the semilinear NLW equation (see e.g. [27]) the frequencies decay asymptotically faster, namely like
Q7 (&) =7+ 0(1/j).

The key idea for verifying the second order Melnikov non-resonance conditions for DNLW is
to prove the higher order asymptotic decay estimate (see , )
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where ay(€) is a constant independent of j (an analogous expansion holds for j — —oo with a
possibly different limit constant a_(&)). In this way infinitely many conditions in (1.7) are verified
by imposing only first order Melnikov conditions like [w™ (&) - k + h| > 2+4%/3/|k|™, h € Z. Indeed, for
i>j> O(k|"y™13), we get

lw>(€) k+i—j+ T2 +0(y** /)|

292 1k|7T = O(kI/5%) = O(**[3) = */P Ikl =

W=(E) - &+ 27(6) — 27

%

noting that i — j is integer and |i — j| = O(]k|) (otherwise no small divisors occur). We refer to section
[6] for the precise arguments, see in particular Lemma [6.2

The asymptotic decay for the perturbed frequencies 2°°(¢) is achieved thanks to the “quasi-
Toplitz” property of the perturbation (Definition . Let us roughly explain this notion. The new
normal frequencies after each KAM step are Q;‘ = —I—Pjo where the corrections P7O are the coefficients
of the quadratic form

P2z .= ZP]szZj, PjQ = / (afjng)(a:,0,0,0;f) dz .
J

We say that a quadratic form P° is quasi-T6plitz if it has the form
P'=T+R

where T is a Toplitz matrix (i.e. constant on the diagonals) and R is a “small” remainder satisfying
R;; = O(1/j) (see Lemmal5.2). Then follows with a := T}; which is independent of j. The rate
of decay O(1/5) is the natural one for the application to the DNLW equation, due to the asymptotic
expansion \/j2 +m = j +m/(25) + O(1/4%) as j — 400, see (5.12). We expect that the class of
quasi-T6plitz functions defined with a weaker decay, say O(1/]4]°), 8 > 0, would still be closed under
Poisson brackets, see below.

Since the quadratic perturbation PY along the KAM iteration does not depend only on the
quadratic perturbation at the previous steps, we need to extend the notion of quasi-T6plitz to general
(non-quadratic) analytic functions. The preservation of the quasi-Toplitz property of the perturba-
tions P at each KAM step (with just slightly modified parameters) holds in view of the following key
facts:

1. the Poisson bracket of two quasi-T6plitz functions is quasi-T6plitz (Proposition [3.1)),

2. the hamiltonian flow generated by a quasi-Toplitz function preserves the quasi-Toplitz property

(Proposition ,

3. the solution of the homological equation with a quasi-Toplitz perturbation is quasi-Toplitz

(Proposition [5.1)).

We note that, in [I4], the analogous properties 1 (and therefore 2) for Téplitz-Lipschitz functions is
proved only when one of them is quadratic.

The definition of quasi-To6plitz functions heavily relies on properties of projections. However, for
an analytic function in infinitely many variables, such projections may not be well defined unless the
Taylor-Fourier series (see (2.28)) is absolutely convergent. For such reason, instead of the sup-norm,
we use the majorant norm (see (2.12), (2.54))), for which the bounds and on projections
hold (see also Remark [2.4)).

We underline that the majorant norm of a vector field introduced in is very different from
the weighted norm introduced by Pdschel in [26]-Appendix C, which works only in finite dimension,
see comments in [26] after Lemma C.2 and Remark In Section [2| we show its properties, in




particular the key estimate of the majorant norm of the commutator of two vector fields (see Lemma
[2.15). A related majorant norm for functions and vector fields is introduced in Bambusi-Grébert [I]
in a context of Sobolev spaces (and with tame modulus properties), see also [25].

Before concluding this introduction we also mention the recent KAM theorem of Grebért-Thomann
[18] for the quantum harmonic oscillator with semilinear nonlinearity. Also here the eigenvalues grow
to infinity only linearly. We quote the normal form results of Delort-Szeftel [12], Delort [13], for
quasi-linear wave equations, where only finitely many steps of normal form can be performed. Finally
we mention also the recent work by Gérard-Grellier [I7] on Birkhoff normal form for a degenerate
“half-wave” equation.

The paper is organized as follows:

e In SECTION [2| we define the majorant norm of formal power series of scalar functions (Defini-
tion and vector fields (Definition and we investigate the relations with the notion of
analiticity, see Lemmata and Corollary Then we prove Lemma on

commutators.

e In SECTION we define the Toplitz (Deﬁnition and Quasi-Toplitz functions (Deﬁnition.
Then we prove that this class of functions is closed under Poisson brackets (Proposition and
composition with the Hamiltonian flow (Proposition [3.2).

e In SECTION [4] we state the abstract KAM Theorem [4.1] The first part of Theorem [4.1] follows by
the KAM Theorem 5.1 in [4]. The main novelty is part II, in particular the asymptotic estimate
(4.9) of the normal frequencies.

e In SECTION [5] we prove the abstract KAM Theorem

We first perform (as in Theorem 5.1 in [4]) a first normal form step, which makes Theorem
suitable for the direct application to the wave equation.

In Proposition we prove that the solution of the homological equation with a quasi-Toplitz
perturbation is quasi-To6plitz. Then the main results of the KAM step concerns the asymptotic
estimates of the perturbed frequencies (section [5.2.3) and the Toplitz estimates of the new

perturbation (section [5.2.4)).

e In SECTION [6] we prove Theorem the second order Melnikov non-resonance conditions are
fulfilled for a set of parameters with large measure, see (4.16). We use the conservation of
momentum to avoid the presence of double eigenvalues.

e In SECTION|(7 we finally apply the abstract KAM Theorem 4 he DNLW equation (|1.1] .
7.1

proving Theorem . We first verify that the Hamlltonlan 1-) is qua81 Toplitz ( Lemma

as well as the Birkhoff normal form Hamiltonian of Proposition The main technical
difficulties concern the proof in Lemma that the generating function of the Birkhoff
symplectic transformation is also quasi-T6plitz (and the small divisors Lemma . In section
we prove that the perturbation, obtained after the introduction of the action-angle variables,
is still quasi-T6plitz (Proposition . Finally in section we prove Theorem applying
Theorems 1] and .2

Acknowledgments : We thank Benoit Grébert for pointing out a technical mistake in the previous
version.
2 Functional setting

Given a finite subset Z C Z (possibly empty), a > 0,p > 1/2, we define the Hilbert space

67 ={s={5henz, 5 €C 1 22, = Y 152e0()? < oo}
JEZNT



When 7 = () we denote £*? := (7*. We consider the direct product
E :=C" x C" x {77 x (27 (2.1)

where n is the cardinality of Z. We endow the space E with the (s, r)-weighted norm

_ x z z
=@y 52) € B, Tols = lollpa, = 22 g My Plow  Blles )
n
where, 0 < 5,7 < 1, and |z| := , uax lznl, |yl = Z lyn|. Note that, for all " < s, 7" <7,
=1,...,n
h=1
o[l 5, < max{s/s", (r/r")*}[v]| 55,1 - (2.3)
We shall also use the notations
z}'zzj, zj =Zj.
We identify a vector v € F with the sequence {v\/)},c 7 with indices in
) S . {1,...,n} if 1 =1,2
= = (J1,72), €{1,2,3,4}, S 2.4
J {J (J1,J2), J1 € {1, 2 {Z\I it = 3.4 (2.4)

and components
,U(Ljfz) =, , v(27j2) = Yj, (1 <jg < n)7 ’U(3’j2) = 2j,, U(4’j2) = Zj, (32 c Z\I)’

more compactly
) = T, @) = Y, , ) = 2y, o) =z,

We denote by {e;};cs the orthogonal basis of the Hilbert space E, where e; is the sequence with
all zeros, except the jo-th entry of its ji-th components, which is 1. Then every v € E writes
v = Z v(j)ej, v e C. We also define the toroidal domain

JjeT

D(s,r):=T2 x D(r) =T} X B2 X B, Xx B, CE (2.5)
where D(r) := B2 x B, X B,

T = {x e C"” : max
h=1...

LN

Tm x| < s}, B,z = {y eC”: lyh < r2} (2.6)
and B, C (7" is the open ball of radius r centered at zero. We think T" as the n-dimensional torus
T" := 27R"™/Z", namely f : D(s,r) — C means that f is 27-periodic in each zp-variable, h = 1,...,n.

Remark 2.1. If n =0 then D(s,r) = B, X B, C {*? x (*P.

2.1 Majorant norm
2.1.1 Scalar functions

We consider formal power series with infinitely many variables

fW)=f(@y.22) = Y friapety'? (2.7)

(k,i,a,B)€l

with coefficients fi ;.3 € C and multi-indices in

I:=2Z" x N* x N&\D) » N(Z\D) (2.8)



where

NAD .— {a = (aj)jemvz € N with | == Z o < —l—oo}. (2.9)

JEINT
In (2.7) we use the standard multi-indices notation 22" := TI, JEINT Z; & zﬁ . We denote the monomials
M i0,8(V) = M i0,8(2,y, 2, 2) o= e 0y'227 (2.10)

Remark 2.2. Ifn = 0 the set I reduces to N x N and the formal series to f(z, %) Z fa,82° z8
(a,B)€l

We define the “majorant” of f as
(Mf) (v) = (Mf) (z,y,2,2) = Z |fk,i7a,g\e‘k Tyizozl (2.11)
(k,i,00,8)€l
We now discuss the convergence of formal series.

Definition 2.1. A series

> Ckiwps Chias €C,
(k,i,a,8)€l

is absolutely convergent if the function 1 > (k,i,a, 3) — criap € C is in L' (I, ) where p is the
counting measure of I. Then we set

> Chiap = /Clw‘,aﬂ dp..
I

(k,i,a,B)€l

By the properties of the Lebesgue integral, given any sequence {I;};>¢ of finite subsets I; C I with
I; C Ii4q and Uj>ol; = I, the absolutely convergent series

§ Chyiya,B 1= § Chyia,8 = 1M E Cheyi,a, -

— 00

kyi,o,B (k.i,a,B)€l (k,i,o,B)€D

Definition 2.2. (Majorant-norm: scalar functions) The majorant-norm of a formal power series

(2.7) s
s = sup > |fiiaslelyilz112") (2.12)

(y,2,2)€D(r) 5 o 3

where k| :=|k|1 = k1| + ... + |kn].
By (2.7) and (2.12) we clearly have ||f]|s, =

For every subset of indices I C I, we define the projection

(Hlf)(x,y,z,é) = Z fk,i,oz,ﬁelk myzzazﬁ (213)
(k,i,0,8)€T

s,r-

of the formal power series f in . Clearly

”HIst.,r < Hf”s,r (2.14)
and, for any I,I’ C I, it results
Iy = Unp = Il (2.15)
Property (2.14)) is one of the main advantages of the majorant-norm with respect to the usual sup-norm
|flsp=="sup |f(v)]. (2.16)
veD(s,r)

We now define useful projectors on the time Fourier indices.



Definition 2.3. Given ¢ = (s1,...,6,) € {+,—}" we define

fo=1f = HZQXN"XN(Z\DXMZ\I)JC = Z frioB eik‘myizaiﬁ (2.17)
keZr i,a,B
where
kp >0 if =
Z?::{keZ” with rn=0 i e = v1§h§n}. (2.18)
kpn<0 if ¢, =-—

Then any formal series f can be decomposed as
f= > ILf (2.19)
se{+,—}n

and ((2.14)) implies ||H§f||8,r < ”f”s,r'

We now investigate the relations between formal power series with finite majorant norm and
analytic functions. We recall that a function f : D(s,r) — C is

e ANALYTIC, if f € C'(D(s,r),C), namely the Fréchet differential D(s,r) > v + df (v) € L(E,C)
is continuous,

e WEAKLY ANALYTIC, if Vv € D(s,7), v' € E \ {0}, there exists € > 0 such that the function
{€eC, [fl<e} — flu+&)eC
is analytic in the usual sense of one complex variable.
A well known result (see e.g. Theorem 1, page 133 of [29]) states that a function f is
analytic <=  weakly analytic and locally bounded . (2.20)

Lemma 2.1. Suppose that the formal power series (2.7) is absolutely convergent for all v € D(s,r).
Then f(v) and M f(v), defined in (2.7) and (2.11)), are well defined and weakly analytic in D(s,r).

If, moreover, the sup-norm |f|s, < 0o, resp. |M fls, < oo, then f, resp. M f, is analytic in D(s,r).
PROOF. Since the series (2.7)) is absolutely convergent the functions f, M f, and, for all ¢ € {4, —}",

fo=T1f, M f. (see (2.17))) are well defined (also the series in (2.17)) is absolutely convergent).
We now prove that each M f. is weakly analytic, namely Vv € D(s,r), v' € E \ {0},

Mfw+&) = > |freios

keZr i, B

mk,m,g(v —|—§U’) (2.21)

is analytic in {|¢] < €}, for € small enough (recall the notation (2.10))). Since each & — my ; o.8(v +
&v') is entire, the analyticity of M f.(v + &v') follows once we prove that the series (2.21)) is totally
convergent, namely

Z | frionp] SUD [Mp 0 5(v + E0')| < +00. (2.22)
kEZ™ iy, £l<e

Let us prove (2.22). We claim that, for ¢ small enough, there is v° € D(s,r) such that

sup [Meia,8(v+ &) < mpiap(®), VkeEZiapB. (2.23)
|€l<e

Therefore (2.22) follows by
Z | fria] sUp [mpiap(v+&0")] < Z | fr iy,

k€L i, €l<e KEZE i
= Mf.(v) < +oc0.

My i0,6(0°)



Let us construct v € D(s,r) satisfying (2.23). Since v = (z,y,2,2z) € D(s,r) we have z € T? and,
since T? is open, there is 0 < s’ < s such that [Im(zy)| < ', V1 < h < n. Hence, for € small enough,

sup |Im(z + &2')p| < s’ <s, V1<h<n. (2.24)
l€l<e

The vector v* := (z°,y°, 2°,2°) with components

5, = —igs’, i, = lynl +elynl,  1<h<n,
2= |on| +elznl,  Z =] +elzh],  heZ, (2.25)

belongs to D(s,r) because [Imaf| = s’ < s, V1 < h < n, and also (y°,2°,2°) € D(r) for € small
enough, because (y, z, 2) € D(r) and D(r) is open. Moreover, Vk € Z”, by (2.24), (2.18)) and (2.25)),

E_‘up |eik-(m+§r’)| S e‘klsl — ei]vxg ) (226)
<e

By (2.10)), (2.25)), (2.26)), we get (2.23). Hence each M f. is weakly analytic and, by the decomposition
(2.19), also f and M f are weakly analytic. The final statement follows by (2.20). m

Corollary 2.1. If ||f

s < 400 then f and M f are analytic and

Flom M Flar < o (2.97)
PROOF. For all v = (z,y,2,%) € T? x D(r), we have |¢*"| < el¥I* and
S1h,t |~ 5
@) M@ < Y7 kaaple™ 1220127 < 1fllsr < +o0
ki,

by assumption. Lemma [2.I] implies that f, M f are analytic. ®

Now, we associate to any analytic function f : D(s,r) — C the formal Taylor-Fourier power series

f(v) == Z friap et myz72" (2.28)
(ko0 B) €l

(as (2.7)) with Taylor-Fourier coefficients

1 —ik-x 1 @ o
fk:,i,oz,ﬂ = W /n e g Z'Ol'ﬂ' (ayaz 85]0)(33707070) dz (229)

i 16] . . . 1
where 0, 0707 f are the partial derlvatlve
What is the relation between f and its formal Taylor-Fourier series £ ?

Lemma 2.2. Let f : D(s,r) — C be analytic. If its associated Taylor-Fourier power series (2.28))-
(12.29) is absolutely convergent in D(s,r), and the sup-norm

| Seiaset Y| <o, (2.31)
ki, 8 o
then f =1, Vv € D(s,r).
1 F _ _ . . . .
For a multi-index a = Z €ij, |a| = k, the partial derivative is
1<5<k
ak
8?f(z7y7'z72) =S A f(mvyvz+Tleil +~-~+Tkeik72)' (230)

Ot1... 07Tk =0



PROOF. Since the Taylor-Fourier series (2.28)-(2.29) is absolutely convergent and (2.31)) holds, by
Lemmathe function £ : D(s,r) — Cis analytic. The functions f = £ are equal if the Taylor-Fourier

coefficients

fk,i,a,ﬂ = fk,z’,a,,@ ) Vk? i7 «, ﬂ7 (232)
where the coefficients £y ; o, g are defined from £ as in (2.29)). Let us prove (2.32). Indeed, for example,

1 d -
fovoaehmo = (2 )n / dif Z fk,O,meh,,Oelk zﬁm (233)

)" S 081620 | g men
1 / d "
= — Jk0men,0€" ™ = f0,0,e4,0 5
kez;neN @m)" Jpn dEjeg” ™ -

using that the above series totally converge for v’ < r, namely
ik-x em nm
sup [ fr,0,mey.0¢""E™| < > fromenol(r)
kezn, meN TER, [€]<r keZn, meN

Z |fk,i,a,ﬂmk,i,a,ﬁ(07Oarlehao)‘ < o0
k,i,o,8

recall (2.10)). For the others k, i, «, 5 in (2.32)) is analogous. H

The above arguments also show the unicity of the Taylor-Fourier expansion.

IN

Lemma 2.3. If an analytic function f : D(s,7) — C equals an absolutely convergent formal series,

ie. f(v)= Z Friape€fy'z220  then its Taylor-Fourier coefficients 2.29) are friop = friop-
kyia,B

The majorant norm of f is equivalent to the sup-norm of its majorant M f.

Lemma 2.4.
IMflsr < I fllsr < 27[M £l (2.34)

PRrROOF. The first inequality in (2.34]) is (2.27). The second one follows by
L f

where II. f is defined in (2.17). Let us prove (2.35)). Let

s,T < |Mf|s,r7 VC € {+a _}n’ (235)

DH(r) = {(y,z,z) eD(r) t Yy >0, Y1<h<n, 2,7 207VZEZ\I}.
For any 0 < o < s, we have

= . ik-x, i oz
* B 2 by Xy
| M flsr sup E | foicsle yzz‘
(z.y,2,2)€D(s,) ' 0 g

> sup Z | friaple “y'222”
:El:*iilawuyfl’n:*igna»(y’z’z)eD*»(T) ki, o3

12.18) |k| . 3

> sup Z |fk,i,a,ﬁ|e a|yl||za||z|
(©:2.2)€D%(1) kezn i 0,8

= s > el 122 = T
(.2:2)€D(") kezn i 0,8

|s,r-.

Then (2.35) follows since for every function g we have sup ||gllor = [lg
0<o<s

10



Definition 2.4. (Order relation: scalar functions) Given formal power series

F= sy, g= > griape™ Y27,
kyi,a,pB ki, o,

with gr.iap € RT, we say that
=9 it |friasl <griaps, ki apB. (2.36)
Note that, by the definition of majorant series,
f<9g <= [f<Mf=<g. (2.37)

Moreover, if ||g||s» < +00, then f < g = || flls,r < |glls,r
For any ¢ € {4, —}" define ¢. := (g (]))]EJ as

(

. —gp i if j=(1,h 1<h<
OB _(’ ), 1<h<n, (2.38)
1 otherwise .
Lemma 2.5. Assume || f||s.r, [ glls,r < +00. Then
f+g<Mf+ Mg, f-g=<Mf-Mg (2.39)
and

where 0; is short for 0,u) and q(]) are defined in 1)

S

PROOF. Since the series which define f and g are absolutely convergent, the bounds (2.39) follow
by summing and multiplying the series term by term. Next (2.40) follows by differentiating the series
term by term. W

An immediate consequence of (2.39)) is

If +gllse < fllsir +lgllsrs  F gllsr < NS lsrllgllsr- (2.41)
The next lemma extends property for infinite series.
Lemma 2.6. Assume that fV9), g(j) are formal power series satisfying

1. f(j) = g(j), ViedJ,

2. g9 <00, Vi €T,

5’2|g(3 )| < o0, Vv € D(s,7),
JjeT

v) = Z g (v) is bounded in D(s,r), namely |gs., < .

JjeET
Then the function g : D(s,r) — C is analytic, its Taylor-Fourier coefficients (defined as in (2.29)) are
9ki,a,8 = ngza,,@ = V(k‘,i,a,ﬁ) E]Ia (242)
Jje€T

and ||g||s,r < co. Moreover

1. Z|f(3) )| < o0, Vv e D(s,r),
JjeTJ

11



v) = Z f(j)(v) is analytic in D(s,r),
jeT

s < lglls,r < oo

PRrROOF. For each monomial my,; o g(v) (see (2.10)) and v = (x,y, 2, Z) € D(s,r), we have

Mk i0,6(0)] = Meia6(ve), (2.43)
where vy = (1Im33 lyl, | |z|) 6 D(s,r) with [y := (|y1], .-, [ya]) and |z|, |2| are similarly defined.
Since [|g\7||,.» < oo (and £ < g)) the series
Z gk,i,a,ﬁmkﬂvaaﬁ(v)’ gk i,a,8 = ( : )
ki, a0

is absolutely convergent. For all v € D(s,r) we prove that

oD o) g ()] = 2 D Gia e (vs)

JE€T ki, JET kyi,oB
(2.44) i
B 300 = (o) < oo (2.45)
NSV

by assumption [3| Therefore, by Fubini’s theorem, we exchange the order of the series

:Z Z gl(ejz)a,ﬂmklaﬂ Z (ngmﬁ)mkmg( ) (2.46)

JET ka3 k0,8 jET

proving that g is equal to an absolutely convergent series. Lemma and the assumption |g|s, < 0o

imply that ¢ is analytic in D(s r). Moreover and Lemma imply (2.42 - The gk iap > 0
because g,(cjz) >0, see . Therefore Mg = g, and by (2.34 and the assumption |g|s, < 00, we
deduce ||g||s7r < 00.

Concerning f we have

(2.45)

SUO@IEY Y | smrias®)] €3 D gl sl < oo

Jj€ET JET kyi,a,8 JET kyi,a,B
and, arguing as for g, its Taylor-Fourier coefficients are fj ;.3 = Z f,c B V(k,i,, 3) € I. Then
JjeT
(9) (.42)
sl < S0 sl €370 0 5 5 ghians-
JjeT JjeET

Hence f < g and ||f||s,» < ||lglls,» < co. Finally f is analytic by Lemma |

Lemma 2.7. Let ||f]|s,» < co. Then, V0 < s' <s, 0 <71’ <r, we have ||0;f]s < co.

PROOF. It is enough to prove the lemma for each f. = Il  f defined in (2.17). By || f|ls,r < oo and
Corollary 2.1] the functions f., M f. are analytic and

n &0 ,n
”ajchS’,W < 2 ‘M(ajf<)|8’,r/ = 2 |8j(Mf<)|S',r’§C|Mf<|sm < C||f<||sn“

for a suitable ¢ := ¢(n, s, s’,r,7’), having used the Cauchy estimate (in one variable). ®

We conclude this subsection with a simple result on representation of differentials.

12



Lemma 2.8. Let f: D(s,r) — C be Fréchet differentiable at vy. Then

v] = Z 9 f(vo)v¥ | o= Z vWe; € B, (2.47)
JET JET
and ‘
D105 f(w0)o?| < ldf (vo)ll .0y 0]l - (2.48)
JET

PROOF. ([2.47) follows by the continuity of the differential df (vy) € L(E, C). Next, consider a vector
o= (8W),e7 € E such that || = |v;| and

590, f)(wo) = (95 5)(wo)oP|, VieT.
Hence df (vo)[0] = Z @8 f)(vo) Z| (9 f)(vo)v'?| which gives ([2.48) because ||3]|z = |[v] . ®

JjeET JjeT

2.1.2 Vector fields

We now consider a formal vector field
X(v) = (X(j)(v)> (2.49)
JjeT
where each component X /) is a formal power series

XD ()= XD (2,y,2 2) Z X,gjl)aﬂe‘k Tyipzh (2.50)
k,i,a,0

as in (2.7). We define its “majorant” vector field componentwise, namely

MX(v) = ((MX)(j)(v)> - (MX(j)(v)) . (2.51)

JjET JjET
We consider vector fields X : D(s,r) C E — E, see (2.1]).

Definition 2.5. The vector field X is absolutely convergent at v if every component X(j)(v), 1€ J,
is absolutely convergent (see Deﬁnition and

H(X(j)(v < +400.

))JEJ HE
The properties of the space E in (2.1)) (as target space), that we will use are:
1. F is a separable Hilbert space times a finite dimensional space,

2. the “monotonicity property” of the norm
vo,v € E with | <0, VieTd = Jvolle < |lule. (2.52)

For X : D(s,r) — E we define the sup-norm

| X

s,y *= Sup HX(U)
vED(s,r)

(2.53)
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Definition 2.6. (Majorant-norm: vector field) The majorant norm of a formal vector field X

as in (2.49) is

1X]

. (4) |kls|, il o508
o= sup ‘( | X, o gle!™ Pyt |2 |2 |) H
5,7 (y.2.2)eD(r) k%:ﬁ k.i,a,8 jeETNE,s,r

= s || ST Kl
(y,2,2)€D(r) ka8 E,s,r

where 0 0
Xhyiva,8 1= (chj,i,a,ﬁ)jej and | Xk i,0,6] = (|ij,i,a,ﬁ|)jej'

Remark 2.3. The stronger norm (see [27])

Xlwi= [ sup ST XE) ple el 20127))

(y,2,2)€D(r) k.o, jEJHE&,T

is not suited for infinite dimensional systems: for X = Id we have |X|s,, = +00.
By ([254) and (251) we get || X

(H[X)(J," Y, 2, 2) = Z Xk:,i,a,ﬁ eik'wyizazﬂ )
(k,i,a,8)€T

Lemma 2.9. (Projection) VI C I,
X s, < {1 X s, -
PROOF. See (2.54)). m

Remark 2.4. The estimate (2.55) may fail for the sup-norm | |s, and suitable I.

Let us define the “ultraviolet” reps. infrared projections

(D> X) (7,9, 2,2) = Z Xiiap € y'z22%  Mpgjeg i=Id —p>k.

|k|> K i,a,3
Lemma 2.10. (Smoothing) V0 < s’ < s,

S _ )
Mgz Xl < 5 e KC=) X

|5,r .

PROOF. Recall (2.54) and use el**" < elklse=KG=) vk > K. m

We decompose each formal vector field

X= ) ILX

e+,

applying (2.19) componentwise
X =X = (H§X<J'>)

recall (2.17)). Clearly (2.55|) implies

JjET

[ Xells,r < 11X

8,7 *

In the next lemma we prove that, if X has finite majorant norm, then it is analytic.

14
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Lemma 2.11. Assume
[ X[[s,r < 400 (2.61)

Then the series in (2.49)-(2.50), resp. (2.51)), absolutely converge to the analytic vector field X (v),
resp. M X (v), for every v € D(s,r). Moreover the sup-norm defined in (2.53)) satisfies

|X|s,ra |MX|s,r >

(2.62)

Proor. By (2.61)) and Definition for each j € J, we have

sup Z |Xk 1,00 ﬁ'elk‘s|yi||za”25‘ < 400
(y,2,2)€ED(r k’LOLﬁ

and Lemma (and Corollary implies that each coordinate function X), (M X)W : D(s,r) — C
is analytic. Moreover (2.62)) follows applying (2.27)) componentwise. By (2.61)) the maps

X, MX:D(s,r) > E

are bounded. Since E is a separable Hilbert space (times a finite dimensional space), Theorem 3-
Appendix A in [29], implies that X, M X : D(s,r) — E are analytic [ |

Viceversa, we associate to an analytic vector field X : D(s,r) — E a formal Taylor-Fourier vector
field ( - - developing each component X ) as in - -

Definition 2.7. (Order relation: vector fields) Given formal vector fields X, Y, we say that
X <Y

if each coordinate X0 <y, j € J, according to Definition .
If |Y]s,r < 400 and

X<Y = [ X[sr <Yl (2.63)
Applying Lemma component-wise we get
Lemma 2.12. If || X |5, [|Y||s,r < o0 then X +Y < MX + MY and || X +Y||s,r < [|[X||sr + Y |5,

Lemma 2.13.
MXI., < X[ <2°|MX]., . (2.64)
PrOOF. As for Lemmawith f~ X, Z |~ | Z ||z and using (2.52)). m
kyi,a,B k,i,a,8

We define the space of analytic vector fields
Vsr =Vsrp = {X :D(s,r) — E with norm || X||,, < +oo} .

By Lemma if X € V,, then X is analytic, namely the Fréchet differential D(s,r) > v — dX(v) €
L(E, E) is continuous. The next lemma bounds its operator norm from (E,s,r) := (E,|| ||gs.») to

(B, .1, seo ([22).
Lemma 2.14. (Cauchy estimate) Let X € V,,. Then, for s/2<s <s,r/2 <1 <r,

gl(lp ) HdX(v)|‘£((E,s,7"),(E,s’,r’)) S 4571|X|S77~ (265)
veD(s',r’

where the sup-norm |X|s. is defined in (2.53)) and

5::min{178;,177ﬂ—}. (2.66)
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PROOF. In the Appendix. B
The commutator of two vector fields X,Y : D(s,r) — E is

[X,Y](v) :=dX)[Y(v)] = dY (v)[X (v)], Vv € D(s,r). (2.67)
The next lemma is the fundamental result of this section.
Lemma 2.15. (Commutator) Let X,Y €V, . Then, forr/2 <r' <r, s/2<s <s,
11X, Y lor i < 227207 HIX L [V ], (2.68)
where § is defined in .
PROOF. The lemma follows by

[dX Y]]l < 4" 72670 X

soellYllsirs (2.69)

the analogous estimate for dY[X] and (2.67).
We claim that, for each ¢ € {4+, —}", the vector field X, defined in (2.59) satisfies

Hch[Y]HS’,r’ < 2n+25_1||Xc| s,THYHs,T (2-70)
which implies (2.69) because
@-70) T
HdX[Y]HS’,r’ < Z ”ch[Y]”s/,r’ < Z 2726 1||X< s,T”Y”s,r
se{+,—}" se{+,—}n
2-60)
< Yo 2 X e Y s < 425X o[V s, -
se{+,—}n
Let us prove (2.70). First note that, since | Xc|ls, < [[X|s, < +oo and [|Y]s, < 400 by
assumption, Lemma implies that the vector fields
X, MX.,Y,MY : D(s,7) = E, VYse{+,—}", (2.71)
are analytic, as well as each component Xg(i), MXg(i)7 Y@ My ® . D(s,r) —>C,ie J.
The key for proving the lemma is the following chain of inequalities:
AX, Y] < M(dX, Y)Y 2 (Y0 x 0 0)
JjeT
Lommn B 3 M@ XD )My V) (2.72)
jeT
240 j i H B2 AR,
= D a0, (MxP) My == d(MX D) [v]
JjeT
where R o 4 _
Y, = (Y DN)jeq = (@D MY))er € E. (2.73)
Actually, since |q£j)| =1 (see (2.38)), then
;
1Y, = IMY@W)||lg < +oo, VveD(sr). (2.74)
In (2.72) above we applied Lemma with
s 8 ! f9) s (9, XYW g0 s M(9; X D) MY D) (2.75)

Let us verify that the hypotheses of Lemma hold:
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1. f9) < g9 follows by (2:39) and since || £ ||y, (g9 ]|sr v < 400 because | X ||, < [[X || <
~+00, ||Y(j)||s’r <||IY||s,r < 400, and Lemma

2. ||g(j)Hs’77" < 00 is proved above.

3. We have Z 199 (v)] < oo, for all v € D(s,7"), because

JjET
j (2.75) i i (2.40) i ; ;
Y 190 @1 B2 Y (M@, x ) @) My 0 ) BS990, (M X0) (0) 17D )
JjegJ JjeET JjeET
39 i ) () B i
3 10, (XD MY O @) = MXDW)le0) MY @) < oo
JjeJ

by , . Actually we also proved that g(j) = qéj)aj (MXg(i))MY(j).
4. The function
o) = 3= g (w) = 3 a0, (x) 2y B a(ax )17,
JjeT JjeT
since M X[ is differentiable (see [2.71)) and Y, € F (see (2.74)).
Moreover the bound [gs .+ < oo follows by

|9‘S’,r’ = |d(MX§(l)) [?q]‘S’,r’ < |d(MX§) [qu]'S’J"

and
- E53) >
X Tl B s Jaux) @ Fol|
veD(s',r’) E,s"r
< su ‘d MX ) (v H Y, (v PR
UED(SI?,T/) ( g)( ) L((E’S’T)x(EaS/J"))H q( )”E’ ’

< 40T MXle, swp o [[Yg(0)]lm s

veD(s’,r")

25627
< 45_1||X<H5,T sup
v

I
eD(s'sr")
< 45X

because ||Y||s,r < +00 and || X¢|[sr < || X||s,» < +00 by assumption.

(MY) (U)”E,S,r

1»
|s,T|MY|s,T > 45_1||X§||57r\|Y||5’,«<+oo (2.76)

Hence Lemma [2.6] implies

X 54 . . Lemm i > .
axOy] B S0, x 0y 0 = p B — (X O)[7,], vied,
J

namely, by (2.37) and Definition [2.7]

dX[Y] < M(dX([Y]) < d(MX)[Y,]. (2.77)
Hence is fully justified. By and we get
- (2.64) n -
JX ¥ < XY Tl < 2| M(dMX) V)|
= 2"d(MX)[Y)| (2.78)

because d(MX.) [?q] coincides with its majorant by (2.77)). Finally (2.70) follows by (2.78]), (2.76]). m
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2.2 Hamiltonian formalism

Given a function H : D(s,r) C E — C we define the associated Hamiltonian vector field
Xy = (0,H,—0,H, —10:H,10. H) (2.79)

where the partial derivatives are defined as in ([2.30)).
For a subset of indices I C I, the bound ([2.55)) implies

||XH1H||5,T < ||XHHs,r~ (280)
The Poisson brackets are defined by

{H,K} = {H K} +{H K}**
= (81H 9K — 0,K - 6yH) + i((‘)zH 0K — O:H - 6ZK>
= O0,H -0yK—-0,K -0,H+i0,+H -0,-K —-i0,-H-0,+K
= O,H -0,K—0,K-0,H+i > 00:7 H O, K (2.81)
o=+,jEZ\T ’
where “-” denotes the standard pairing a - b := Z a;b;. We recall the Jacobi identity
J
{K.G), H} + {({G, H), K} + {{H.K},G} =0. (282)

Along this paper we shall use the Lie algebra notations

>, adh
adp :={,F}, e .= k—f (2.83)
k=0

Given a set of indices
Z:={j1,.---,jn} CZ, (2.84)

we define the momentum
M::MI::Zjlyl—i- ijsz Zjlyl+ Z]z Zi
=1 JEINT JEZNT

We say that a function H satisfies momentum conservation if {H, M} = 0.
By (2.81), any monomial e*"¥3? 2%z is an eigenvector of the operator ad ¢, namely

{e*oyizozP M} = 7(k, o, B)em Tyt 220 (2.85)

where
m(k,a, ) : Zykﬁ >l (2.86)
JEZNT
We refer to 7(k, v, ) as the momentum of the monomial elbTyizazh, A monomial satisfies momentum
conservation if and only if w(k,«, 3) = 0. Moreover, a power series with || f][s,» < 400 satisfies
momentum conservation if and only if all its monomials have zero momentum.

Let O C R" be a subset of parameters, and

f:D(s,r) x O —=C with X¢:D(s,r) x O — E. (2.87)
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For A > 0, we consider

X420 = 1Xs12, = Sgple|s,r + AX 2 (2.88)

XA(6) = X5(n)|or
= sup |Xf(£)|s,r +A sup | f(g) f(Ti)| T
£€o £€O, £ 1€ =

Note that | - |)‘ is only a semi-norm on spaces of functions f because the Hamiltonian vector field

s,r

Xy =0 when f is constant.
Definition 2.8. A function f as in (2.87) is called

e regular, if the sup-norm |X;|sr.0 :=sup|Xyls,, < 00, see (2.53)).
o
e M-regular, if the majorant norm || X¢||sr0 :=sup || Xf|lsr < 00, see (2.54)).
o

e \-regular, if the Lipschitz semi-norm |Xf|§‘,r’@ < 00, see ([2.88).

null

We denote by Hs,,- the space of M-regular Hamiltonians and by H," its subspace of functions satisfying
momentum conservation.

When T = 0 (namely there are no (x,y)-variables) we denote the space of M-regular functions

simply by M., similarly H™™, and we drop s form the norms, i.c. |- |, |- |rs |- |ro, ete.
Note that, by (2.62)) and (2.88]), we have
M —regular = regular <= )\ —regular. (2.89)

If H, F satisfy momentum conservation, the same holds for {H, K'}. Indeed by the Jacobi identity

@32),
(M,H}=0 and {M,K}=0 = {M, {H K}}=0. (2.90)

For H, K € 'H,, we have
Xenxy = dXu[Xk] — dXg([Xu] = [Xu, Xk] (2.91)
and the commutator Lemma [2.15|implies the fundamental lemma below.
Lemma 2.16. Let H, K € H,,. Then, for allr/2 <71 <r,s/2<s <s
1Xtarcy s = 11X e Xilllsr o < 227207 X pr s | X s, (2.92)
where § is defined in .

Unlike the sup-norm, the majorant norm of a function is very sensitive to coordinate transforma-
tions. For our purposes, we only need to consider close to identity canonical transformations that are
generated by an M-regular Hamiltonian flow. We show below that the M-regular functions are closed
under this group and we estimate the majorant norm of the transformed Hamiltonian vector field.

Lemma 2.17. (Hamiltonian flow) Let r/2 <71’ <r, s/2<s <s, and F € H,, with
1Xpllsr <m:=68/(22"%€) (2.93)
with § defined in . Then the time 1-hamiltonian flow
&1 : D(s',7") — D(s,7)
is well defined, analytic, symplectic, and, VH € H; ., we have H o @}v € Her o and

[ Xells.r

X odl ||s’,r < . 2.94
|| H@F” 1_7]_1HXF||S,T ( )

Finally if F,H € H2"' then H o ®}, € Hu"W..
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PROOF. We estimate by Lie series the Hamiltonian vector field of

d’“ o~ H® X
H = Hod = v = Z e e de Xp=3) Z'““’ : (2.95)
k=0 k=0 )

where H := ad’.(H) = adp(H" V), HO .= H.
For each k > 0, divide the intervals [s’, s] and [r’, 7] into k equal segments and set

s—s' r—r'
i = —1 5 i = —1 , :0,,k
s s—1 B T r—1 2 )
By (2.92)) we have
HXH“) ||Si77‘z’ = ||[XF’XH”*1>} 8iyTi < 22n+36i_IHXH(’i*1)Hsifl,mfl HXF 8i—1,Ti—1 (296)
where
5 i {1 1 ”}>‘S (2.97)
; = min — , 11— > —. .
Si—1 Ti—1 k
By (2.96)-(2.97)) we deduce
HXH(” ||5l771 < 273k 1||XH(1 b Héz 1,7i—1 ||XFH57, i1y L= L....k.

Sic1,Tio1 4||XF||8T (see (22 )
X oo [|sr < (22" FPk6™ ¥ X .

Tterating k-times, and using || Xr

(2.98)
By (2.97), using k* < €*k! and recalling the definition of 7 in (2.93)), we estimate

’ ”X WHS r’ - (22n+5k571”XF”s r)k
”XH/HS’J” Z = | X H ””’Z :

!
k=0
o0
_ 1’ HXHHST
< 2 X e )t T e —
,; Sl T

proving .

Finally, if F' and H satisfy momentum conservation then each ad]}H , k > 1, satisfy momentum
conservation. For &k = 1 it is proved in and, for k > 1, it follows by induction and the Jacobi
identity . By we conclude that also H o @% satisfies momentum conservation. B

We conclude this section with two simple lemmata.

Lemma 2.18. Let P = Z kai’aﬂelk Tyi22Z8 and |Akiapgl >k, Ykl < K,i,a,5. Then
|k|<K.ia,p

P
Fo= }: A’“aﬂ efeyizozf satisfies || Xpller <7 KT Xp o
. k,i,a,0
|k|<K,i,a,3

PRrROOF. By Deﬁnitionand |[Akia,pl =K forall k| < K. m

Lemma 2.19. Let P = Y P,z with [|Xp|, < co. Then |P;| < ||Xpl|,.
JEZNT

Proor. By (2.79)) and Definition we have

IXpl2=2 sup 3 (Rl et gy > e
HZHa p<T hEZ\I

by evaluating at z(J = djpe a|7|< )Pr/\f m
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3 Quasi-Toplitz functions
Let Ng € N, 0, 1 € R be parameters such that

1<0,p<6, 12NE'42eNt<1, k= max {5, (3.1)

(the j; are defined in (2.84)) where
0<b<L<1. (3.2)

For N > Ny, we decompose
077 x 070 = 47P D UGP D LY (3.3)

where
(7P = U7P(N) = {wz(zﬂz*) el7? xtz? 1 28 =0, o=+, V|j 26NL}
B = UEP(N) = {w:(er,z*) €07 x 477 27 =0, 0 =+, unless 6N < |j| <N}

08P = (P (N) = {w — (2T 2T) €O X B 27 =0, o=+, V]| < N}.
Note that by (3.1)-(3.2)) the subspaces £7” N ¢}” = 0 and £3” # 0. Accordingly we decompose any
w € LYP x *P as w=wr +wgr +wy

and we call wy, € £7” the “low momentum variables” and wy € ¢%;" the “high momentum variables”.
We split the Poisson brackets in (2.81)) as

{'7 } - {'7 .}z,y + {'ﬂ '}L + {'7 '}R + {'7 '}H

where
H .
{H, K} =i ) 00::H O~ K. (3.4)
o==,|j|>cN

The other Poisson brackets {-,-}%, {-,-}® are defined analogously with respect to the splitting (3.3)).
Lemma 3.1. Consider two monomials m = cm,aﬂeik'zyizaéﬁ and m' = c%/7i/7a,75/eik/'myi,z°"2ﬁ/.
The momentum of mm’, {m,m’'}, {m,m'}*¥, {m,m'}2, {m,m'}%, {m,m'}, equals the sum of the
momenta of each monomial m, m’.

Proor. By (2:80), [281), and
w(k+ K, a+ o', B+ 8) =k, 8) + 7K, o/, 8) = w(k,a— e;, B) + 7(K, o/, B — ¢;),

forany j€Z. m
We now define subspaces of H, , (recall Definition .

Definition 3.1. (Low-momentum) A monomial €*%y'227" is (N, u)-low momentum if
> lilley +8;) < pN*. [k < N (3.5)
JELNT

We denote by
»CS,T(Nv M) C Hs,r

the subspace of functions
g = ng,i,a,ﬁeikmyiza'gﬁ S Hs,r (36)
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whose monomials are (N, p)-low momentum. The corresponding projection

5, Her — Lo (N, 1) (3.7)

is defined as Hk,u =TIy (see (2.13)) where I is the subset of T (see (2.8))) satisfying (3.5). Finally,

given h € Z, we denote by
‘CSJ‘(N’ /u‘7 h) - ‘CS,T(Nv ,U,)

the subspace of functions whose monomials satisfy

m(k,a,B)+h=0. (3.8)
By , -, any function in Ly, (N, 1), 1 < p < 6, only depends on z,y, wy, and therefore
9.9 € Lo (N,p) = g9, {9,9'}"Y, {9,9'}* do not depend on wg . (3.9)

Moreover, by ([2.86), (3.1), (3.5), if
|h| > uN* + kN = L, (N,u,h)=0. (3.10)

Definition 3.2. ((V, 6, u)-bilinear) We denote by
Be (N, 0, 1) C HEY
the subspace of the (N, 0, p)-bilinear functions defined as

f= Z gb’f’n/ (z,y, wL)zfnzZ/ with ;;;j’n' € Ly (N,p,om+o'n) (3.11)
Im|,|n|>0N,0,0'=+

and we denote the projection
HN,G,H : Hs,r e Bs,r(Na 97 M) .

Explicitely, for g € He, as in (3.6), the coefficients in (3.11)) of f :=TInyg .9 are

o0’ Ly ._ Z o0’ ik-x, i o=
m,n ($7y7w ) T k,i,a,ﬁ,m,ne yzz (312)
(k,i,a,B) s.t. (3.5) holds

and m(k,o,8)=—om—o'n

where
+,+ - -1 +,— —
k,i,a,8,mmn " (2 - 5mn) Gk,i,atemten,B fk:,i,oz,@m,n = ki, atem,B+en
—— - -1 —+ —
fk,i,a,ﬁ,m,n T (2 - 57"”) ki, ftemten ki, 8,mn - 9ksi,aten,Bten - (313)

For parameters 1 < 6 < 6', 6 > pu > 1/, we have
B, (N0, ") C By (N, 0, 1)

Remark 3.1. The projection Il g, can be written in the form I1;, see (2.13), for a suitable I C L.
The representation in (3.11)) is not unique. It becomes unique if we impose the “symmetric” conditions
a0’ — folo (3.14)

m,n n,m

Note that the coefficients in (3.12)-(3.13)) satisfy (3.14).
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3.1 Toplitz functions
Let N > NQ.
Definition 3.3. (T6plitz) A function f € B, (N,0,u) is (N,8,pn)-Toplitz if the coefficients in

have the form
":’nl = f""’,(s(m),am—k o’'n) for some 77 (s, h) € Lsr(N,p,h), (3.15)
with s(m) :=sign(m), s = +,— and h € Z. We denote by
T, =T, (N,0,1) C By (N, 0, 1)
the space of the (N, 0, u)-Toplitz functions.
For parameters N' > N, §' >0, ' < pu, v <r, s’ <s we have
Tor(N,0, 1) C Tor i (N, 60, 4t . (3.16)

Lemma 3.2. Consider f,g € T,,(N,0,p) and p € Ls,(N,11,0) with 1 < p,pq < 6. For all
0<s' <s,0<r <rand® >0,1/ <p one has

HNve/vH/{fvp}L 9 HN,G/JLI{fa p}m’y € ,];lyr/(Nv 9/’ ILL/) . (317)
If moreover
uNE + kNP < (0" — )N (3.18)
then
HN,G/,,U/{fag}H € 7;’,7”(N7 9/,/14/) . (319)
Proor. Write f € 7, ,(N,0, ) as in where f7:7, " satisfy (3.15) and , namely
ool = 00 = [ (s(m),om + o'n) € Ly (N, p,om +o'n), (3.20)

similarly for g.
PROOF OF (3.17). Since the variables z; , zzl, |m|,|n| > 6N, are high momentum,

{mn ZmAn 7p}L_{ mn’p}LZg@ZfL

and { m n p}L does not d6pend on wy by . recall that m nﬂ pE 'CS T(N ’u')) The coefficient
of 29,25 in Tyg . {f,p}"

0y {55, pt* €20 % {f"’”/(s(m),am +o'n), ptt € Lo (N, i/ ;om+ o'n)

using Lemma (recall that p has zero momentum). The proof that I ¢/, {f,p}*Y € Ty (N, 6, 1)
is analogous.

PRrROOF OF (3.19). A direct computation, using (3.4]), gives

(f,9}" = 3 P2 2s

[m|,|n|>6N, 0,0'=%

with )

pglgn =2 Z o1 (f;;?gl 7(7,717 _|_f0 Ulgl 7%17 ) . (3.21)
l|[>0N , o1=%
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By . ) the coefficient p7.7, " does not depend on wg. Therefore

H . !’ L 7
HN,G’,;L/{f, g} = Z Qm nza ZU with qrari,gn = HN,,u’p;‘rfn (322)
|m|,|n|>0'N, o,0'==%

(recall (3.7))). It results qfn"n’ € Ly (N,p',om+o'n) by (3.22), (3.21)), and Lemma since, i.e.,
fa € Ly (N, u,om+o1l) and 9m —o1,0’ ¢ L (N, p,—o1l+0'n).

Hence the (N, ¢, i/)-bilinear function Iy o . { f, g} in (3.22)) is written in the form (3.11)). It remains
to prove that it is (N, 6, u')-Téplitz, namely that for all |m|, |n| > 6'N, 0,0’ = =+,

qfn",; = q""’/ (s(m),om +o'n) for some q” (s, h) € Lsr(N,u' h). (3.23)

Let us consider in (3.21)-(3.22) the term (with m,n,0,0", 01 ﬁxed)

15 Z g o (3.24)
[l|>6N

(the other is analogous). Since f, g € 7, (IV, 0, 1) we have
fo’0'1 fo’t71( ( ),am—f—O'll) Gﬁs’,«(N,,u,am—i—oll) (325)

gfgl’”/ = g*"l"’/ (s(l), —o1l + a’n) € Ls (N, p,—o1l+ 0'n). (3.26)

By (3.10), (3.25), (3.26), if the coefficients f7", gljgl’al are not zero then

lom 4+ o1l], | — o1l 4+ o'n| < uN* + kN®. (3.27)
By (3:27), (1), we get ¢N > |om+01l| = |oo1s(m)|m|+s(1)|l||, which implies, since [m| > §'N > N
(see 1_' that the sign
s(l) = —oo1s(m). (3.28)
Moreover r T
-3 ) B1s)
1] > |m| — |om + o1l O'N — uNt — xN* == 0N

This shows that the restriction |I| > #N in the sum (3.24) is automatically met. Then

Z foo *T‘L’lv H&H,Zf”"” (s(m),am—i—Ull)g_"“”/(s(l)7—all—i—a’n)

\l|>9N ez
= TR Y 77 (s(m)g)g 7 (s(),om + o'n — j)
JEZ
328 H%#/ Z fa,al (S(m),j)gigl’al ( . Jcrls(m), om + o'n — ])
JEL

depends only on s(m) and om + o'n, i.e. (3.23). m

3.2 Quasi-Toplitz functions
Given f € H,, and fe Ts.r(N,0, 1) we set

f=Nnouf ~1). (3.20)
All the functions f € Hs, below possibly depend on parameters £ € O, see (2.87)). For simplicity we
shall often omit this dependence and denote || ||s.r.0 = || ||s,-
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Definition 3.4. (Quasi-Toplitz) A function f € H?}‘TH is called (N, 0, p)-quasi-Toplitz if the quasi-
Téoplitz semi-norm

LA = A1 g = suo [ inf (max{ | X o Xl 1 X7l1003)] (330)

N>Ng L feT, . (N,0,p)

is finite. We define
Q= QT (No, b, ) i= { f € M IFI1Z, g < o0}

In other words, a function f is (No, 0, p)-quasi-Téplitz with semi-norm || || if, for all N > No,
Ve > 0, there is f € Ts,-(N,0, 1) such that

Ovouf =F+ N7 and 1 Xpllsrs [ Xfllsr s 1Xfllsr < AT, +e (3.31)

We call f € T, r(N,0, 1) a “Toplitz approzimation” of f and f the “Toplitz-defect”. Note that, by
Definition [3.3] and (3.29)
HN,H,uf = fa HN,@,Mf = f

By the definition ([3.30) we get

I Xsller < IFIE, (3.32)
and we complete (2.89) noting that
quasi-Toplitz = M —regular = regular <= ) —regular. (3.33)

Clearly, if f is (No, 8, u)-Toplitz then f is (No, 6, u)-quasi-Toplitz and
£ 0,000 = 1 X plls,r - (3.34)
Then we have the following inclusions
Tor C QL. Bor CHM' CH,p
Note that neither B, , C QST’T nor By, 2 QST,T.

Lemma 3.3. For parameters Ny > No, p1 < p, 01 >0, r1 <r, s1 < s, we have

Qr (No,0,p) € QL , (N1,01, 1)

and
LIS 600 < max{s/s1, (r/m1) 2 HIF I N 0, (3.35)

Proor. By (3.31)), for all N > Ny > Ny (since 61 > 0, pq < )

HNﬁth = HN7917#1HN79,MJ£ = HN,el,#lf + N_1HN,91,M1f~

The function Ty g, .., f € T,y (N, 01, p11) and

||XHN,91,u1f||81,7’1 < ||Xf||81,r1 < ||fHZ1,r1 +e,
|| HN,el,/;,1f||517T1 < ||Xf||5177‘1 < ”szl,rl—’—E'

Hence, VN > Ny,

it (il e I e 1)) < AT
FE€Tsy,ry (N,01,111)
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applying (2.3) we have ([3.35)), because € > 0 is arbitrary. B
For f € H,, we define its homogeneous component of degree | € N,

fO =10 f .= Z friapeFoyiz2z8 (3.36)
keZm | 2|i|+|a|+| 8=l

and the projections

T =<k f = Z friape® Y222 sk f:=f—My<xf. (3.37)
|k|<K.i,a,8
We also set
[0 = Myex fS2, 2= fO 4 fO 4 f@ (3.38)

The above projectors o, k< x, Ik have the form IIy, see (2.13)), for suitable subsets I C I.

Lemma 3.4. (Projections) Let f € QET(NO,G,N), Then, for alll e N, K € N,

||H l)st r,No,0,;n = ||f||s r,No,0,1 (339)
Hf<2||5rNo, 0, ||f ||erg, O,p = Hf”ero,Op, (340)
||H\k|<Kf|| erO,e,H (3.41)
||H7€ 0H|a\ 18l= IH( )er ,No,0,p = < HH(Q)f”ero, 0,1 (342)
and, V0 < s’ < s,
— S§—S S

Z—;,T,No,a,u <e K( N ||f||s r,No,0,u * (343)

PROOF. We first note that by (2.15]) (recall also Remark we have
MO Ty g =g, TVg, VgeH,,. (3.44)

Then, applying 1® in , we deduce that, VN > Ny, Ve > 0, there is f € 75 (N, 0, 1) such that
MOy g, f = Tng, A0 f =10 f + N—TIO f (3.45)
and, by , ,
X flls.r s 1 X fllsr s 1 X flse < IFIG +e (3.46)
We claim that IV f € 7, (N, 0, 1), VI > 0. Hence (3-45)-(3.46)) imply nof e er(No,G,/i) and

O r, <

sr—i_6

ie. (3.39). Let us prove our claim. For [ = 0,1 the projection H(l)f = 0 because f € Tsr(N, 0, 1)
is bilinear. For | > 2, write f in the form (3.11) with coefficients fm . " satisfying (3.15). Then also
g := 11D f has the form (3.11)) with coefficients

a0’ _ H(l—?) fo,o

gm n m,n

which satisfy (3.15) noting that IV L, (N, u,h) C L, (N, h). Hence g € T, ,.(N,0,p), ¥l > 0,
proving the claim. The proof of (3.40), (3.41)), (3.42), and (3.43) are similar (use also (2.57))). m

26



Lemma 3.5. Assume that, VN > N,, we have the decomposition
G=Gy+GY with [|Gy[l, ne, <K, NlXny, ol < K. (3.47)
Then G2, x. 0, < mac{| Xa o, Ko + Ko}

PROOF. By assumption, VN > N,, we have HGG\,HST,T,N’&H < K;. Then, Ve > 0, there exist
G’y € T,..(N,0, 1), Gy, such that

lnouGy =Gy + NGy and [ Xg s 1 Xgy lsr < Ki+e. (3.48)
Therefore, VN > N,,

HN,97MG=G~'N+N716N, GN = é;\lv GN = GA§V+NHN797HG/[<;
where G € 7,..(N, 0, 1) and

Xy llsr = 1Xay llsr < Kite, (3.49)

Em).ED
1Xe, o < 1Xe lor + Nl Xny, agller < K

Then G S QZ?T?N*,@JL and

L +e+ K. (3.50)

G

S,T‘}

Z:'r‘,N*,G,M < NSBJI\)I maX{HXG”S,M ||XG’N

Z LV s

s 1 X |

BT 550
<

max{ || X¢l|sr, K1+ K2 +¢€}.

Since € > 0 is arbitrary the lemma follows. B

The Poisson bracket of two quasi-T6plitz functions is quasi-Toplitz.

Proposition 3.1. (Poisson bracket) Assume that fV), f? ¢ Ql (No,0, ) and Ny > No, 1 < pu,
01 >0, s/2<s1 <s,r/2<r <r satisfy

KNP <y — g, pNETV 4 kNPT <9 — 0, 2N e NI <1, b(s — s1)NP > 2. (3.51)
Then
{fV @Y e ol ., (N1, 61,m)
and
Y PO w00 < COSHIFDNT w0l F N2 N 0.0 (3.52)
where C(n) > 1 and
5::min{175—1,177’—1}. (3.53)
s r

The proof is based on the following splitting Lemma for the Poisson brackets.

Lemma 3.6. (Splitting lemma) Let @ ¢ QiT(NO,H,u) and (3.51)) hold. Then, for all
N > Ny,

HN,91“U1 {f(l)v f(2)} =
(1) @\ W p@)* L) @\”
N6, ({HN,G,uf o uf } + {HN,H,Hf AN o f } + {HN,zﬂf Mnouf }
x,Y x,yY
+ {HNuevﬂf(1)7 H%,uf@)} + {H%,ufu% HNﬂ,uf@)}

+ {H\k|2Nbf(1)7 f(Q)} + {H|k|<Nbf(1)aH\k\ZNbf(Q)}) . (3.54)
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PrROOF. We have

(P, @} = {ene fY, e ne £} (3.55)
+ {Hlk\szf(l)vf(2)}+{H\k\<Nbf(1)7H|k|2Nbf(2)}'
The last two terms correspond to the last line in (3.54). We now study the first term in the right

hand side of (3.55). We replace each f () = 1,2, with single monomials (with zero momentum) and
we analyze under which conditions the projection

PR CORICO NN CO NP TCD BT C) SO BN ¢ BIPTC) 1 9 b
HNﬂhm{e‘ Tyt 2 25 €l Tyt 2 b , \k()\,\k()\<N,

is not zero. By direct inspection, recalling the Definition of IIng,,., and the expression (2.81))
of the Poisson brackets {, } = {, }*¥ + {, }*%, one of the following situations (apart from a trivial
permutation of the indexes 1,2) must hold:

@ g _ a0 0
a8 = P50 z;” and z

(1) _3(1) 52 _3(2)
Zﬁ z° Zﬁ

@) _g@) 52 5@
AL

1. one has z -

z; 7 where |m|,|n| > 61N,

o,01,0 = %, and z is of (N, u1)-low momentum. We consider the Poisson
bracket { 1 : (in the variables (zj', z; ) of the monomials.

W _gh _ah F0 @ _g@ A _3
2. one has 2% 27 = 7720 27 z7" and 2% A z; 7!

AV 31 5@ _5@ . . .
2877 287 297 s of (N, p1)-low momentum. We consider the Poisson bracket {, }*#

where |m|, |n| > 6; N and

a® g0 s pM o o

(2) _g2) ~(2) _5(2)
zo zy and z2° T = T8

3. one has z , where |m|,|n| > 61N and
A(D 31 @) 5@ . . . L
2877287 257 s of (N, p1)-low momentum. We consider the Poisson bracket {, }*¥, i.e. in

the variables (z,y).
Note that when we consider the {, }*¥ Poisson bracket, the case

1) _gn A1) (1)
20 = e A e

@) _g@ A _F@)
. 22T = TP 0

n

and |m|,|n| > 601N,

and 28" 78 ,a® 58 is of (N, p1)-low momentum, does not appear. Indeed, the momentum conser-
vation —om = W(d(l),ﬁ(l),k‘(l)), (2.86) and |k‘(1)| < N, give

ON < [m < > (a4 137V + kN < pNE 4 &N,
1€Z\T

which contradicts (3.1).

CASE 1. The momentum conservation of each monomial gives

Ulj = —0om — 7-[-(6[(1)7 B(l)) k(l)) — o'ln _|_ W(@(Q)’ 5(2)7 k(2)) . (356)
Since 28" 58 267 28 ig of (N, p1)-low momentum (Definition ,
>l +a? + ) <Nt = Y E" +47) < Nt i=1,2,
leZ\T 1€Z\T

which implies, by (3.56)), P |k<1>| < N® |j] > 61N — uuN* — kN® > 0N by (3.51). Hence
Im|, |n|,|j| > ON. Then e'* ﬁ(h)l h = 1,2, are (N,0, u)-bilinear. Moreover the (z;, Z;)
are high momentum variables, namely {, V2% = {, Y see (34). As m,n run over all Z \ 7 with
|m|, |n| > 61N, we obtain the first term in formula (3.54).

CASE 2. The momentum conservation of the second monomial reads

—o1j = —n(a®, 3P k@), (3.57)
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Then, using also (2.86)), |k®)] < N°, that L8 BN 6P 2B g of (N, p1)-low momentum,

. ~ % (3:57) ~ 5 ~ 5
i1+ 3 i + 5 B (@@, 5, k@) + 3 e + 5P) <
1€Z\T 1€Z\T

W e - E51)
STHEY + BV + 67 + 5) + kNY < uNF + kN* T uNE

I€Z\T

Then zd(l)ZB(l)z}” is of (N, p1)-low momentum and the first monomial

kM. ;) L1 _gD) kM. ;) 51 _z31 ’
elk: zyz s Zﬁ — elk xyz s zﬁ Z;_flzglzg

is (N, 6, p)-bilinear (u1 < p). The second monomial

k(2. (2 (2 _g©2) ik . 2 52 _3@ _
61k zyz P Z’B _ elk zyz P Z'G Zj o1

is (N, 2u)-low-momentum because, arguing as above,

(3.57)

g+ 3@ + 62) m(@®, 3@ k) + S @ + 57)
l l

EED)
< 2uNE 4+ kN® " 2uNE.

The (zj, Z;) are low momentum variables, namely {, }** = {, }¥, and we obtain the second and third
contribution in formula ([3.54)).

Caske 3. We have, for ¢ = 1,2, that
Sol@ + 57 < Y@ + 5 + 6 + 5Y) < Nt < unt
! 1
Then eik(l)'”’yi(l)zo‘méﬁ(l) is (N, 0, p)-bilinear and eik(z)'xyi(z)za(z)iﬁ(z) is (N, p)-low-momentum. We
obtain the fourth and fifth contribution in formula (3.54). ®

PROOF OF PROPOSITION . Since f() QZ:T(NO,Q,M), 1 =1,2, for all N > N; > N there exist
f® e T, (N6, 1) and ) such that (see (3.31))

My f@ =FfO+ N1fO =12, (3.58)

and

1X s s < 2 FOIT, - (3.59)

5,7 ”Xf(i) llsrs ”Xf(i)

In order to show that {f), f?} Qzl,n (N1,07, p1) and prove (3.52)) we have to provide a decom-
position

Ty oy { SO, fP} = 2 4 N2 YN > Ny
so that f(172) € 7—5177‘1 (N? 617,“/1) and
{F fF@ Y s1,m1s Fa2) lls1,res fa2lls1,m B 5,7 8,7 :
X | 1X .2 s [ X pa s < C)SHIFDNT NPT (3.60)
or brevity we omit the indices Ny, 01, p1, No, 0, 1). By (2. we have (0 1s defined in (3.
for brevi it the indi Ny,0 Ny, 0 By (2.92) h ¢ is defined in (3.53))

X p@yllsim < 227367 X o

S,T||Xf(2)

ERE
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Considering (3.58) and (3.54)), we define the candidate Toplitz approximation

T N (T {f“ 1 0, /@) {11k, s, 72

~ T,y
+ {70,k @Y 4 k0, Fo ) (3.61)
and Toplitz-defect
FO2 = N (T, {70, ) = f(w)). (3.62)
Lemmal 3.2/ and (3.51)) imply that f2) ¢ Ty, (N, 01, p11). The estimate (3.60) for f F(12) follows by
B61), (2.92), 2. 80 - (3:59). Next

f(1,2)

M o0, ({70, f(2>}H +{o, f<z>}H F N, f@)}H
{f“),ng,zﬂf@)}L + {1k, ), f(z)}L

{701k, @} + {0 @

N{H\mszf(l), f(Q)} + N{H‘k|<Nbf(1)7 H\k\szf(Q)})

and the bound (3.60) follows again by (2.92)), (2.80)), (3.59), (2.57), (3.51)). Let consider only the term
N{H‘klzl\]bf(l),f(2)} =: g, the last one being analogous. We first use Lemma [2.16| with r" ~ 71,

+

+

+

-1 -1
r~s7, 8 ~ 51 and s~ 51 + 0 /2, where o := s — s1. Since (1—%) §2(1—8—1) <9251
S1 g S
with the § in (3.53)), by (2.92) we get
[ Xgllsyn < C(n)d 'N|[Xp

e

5 OIS e N 2 Xy | X o
< 1 FOllsrllds@lls,r
(3.51) _

< C) X sl X g llsr s

for every N > Nj. The proof of Proposition is complete. H

The quasi-Toplitz character of a function is preserved under the flow generated by a quasi-Toplitz
Hamiltonian.

Proposition 3.2. (Lie transform) Let f,g € QI (No,0,p1) and let s/2 < s < s, 7/2 <1/ <.
There is ¢(n) > 0 such that, if

zr,No,G,p < C(’I’L) 57 (363)

with ¢ defined in (2.66), then the hamiltonian flow of f at time t =1, ®} : D(s',r") — D(s,r) is well
defined, analytic and symplectic, and, for

N > max{Ny, N}, N := exp(max{%7%_l),%,8}>7 (3.64)
(recall (3:2)), p' < p, 0' > 0, satisfying
RN " FInNy < p— g/, (64+K)(NHF T InNg <0 — 0, 2(Ny) "In> Ny <b(s—s'),  (3.65)
we have > g € QL (N, 0',pt') and

(3.66)

1€ 9113 g < 209115100,
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Moreover, for h =0,1,2, and coefficients 0 < b; <1/j!, j €N,

H Zb adj

j>h

Note that (3.66) is (3.67) with h =0, b; := 1/!

PROOF. Let us prove (3.67). We define

s ! NGO ! —= 06 1Hf||er07 ,p) HgHero, O,

GO =g, GY:=ad}(g):=ads(GU V) ={f,GU TV}, j>1,

and we split, for h = 0,1, 2,

J—1
M= G0 =60 4+ 60 = G2 4+ Gy
j>h j=h j>J

As in (2.98) we deduce
| Xao s < (C(n)js—1)?

where ¢ is defined in (2.66). Let

Vj=0,

0= Cn)ed™ Xl < 1/(2¢)
(namely take ¢(n) small in (3.63)). By using j7b; < j7 /5! < €7, we get

Xy llsrrr <37 05 (C)76HIX L) 1 Xl <
izJ

In particular, for J =h =0, 1,2, we get
[Xeazn s < 277h||Xg||S,r~

For any N > N{ we choose
J:=J(N):=InN,

and we set

! ._ ~>h
V=G

>h ! "
<7 =G>y, G"=Gy+Gy.

glls,r -

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

Then (3.67) follows by Lcmma (with Ny ~» Nj, s~ 8,0~ 1/, 0~ 0y~ p') and (3.72)), once

we show that

||GN||5 ' N0 = 2 N”XGX,
with A = 0,1,2 (for simplicity ||g||s) = ||g||t N0 ,u>
For all N > N| > 8 (recall (3.64] ),
.
Nl X, llswr < N2p7 || Xglls, < 0" (N2 h)HgHT
(3-70)

< ’I7h2_']+h+1ehN€ ER 7||g||sr7

proving the second inequality in (3.74)). Let us prove the first inequality in (3.74)).
Cram: Vj=1,...,J — 1, we have GY) € QF;F,,T,(N, 0, u) and

IGONT o vy < NlglE (C 36 IAIIT, Y
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(for simplicity | fIIT, == 11fII%, o6, ,)- This claim implies (using §b; < e’)

H Zb aol|l”

(e L A
g
< Jal? an< Sy llT,

for ¢ small enough in (3.63)). This proves the first inequality in (3.74).
Let us prove the claim. Fix 0 < j < J — 1. We define, Vi =0, ..., 7,

s’ ,r' ,N,0",n"

o 0/ 0 R o
i —u—z'u o , 0, =041 ri::r—irjr,si::s—isjs, (3.77)
and we prove inductively that, for all =0, ..., j,
lad’ (D17, o 3,000 < (CT36 AT Mg (3.78)
which, for ¢ = j, gives (3.76). For i = 0, formula (3.78) follows because g € QZ:T(Nm 0, 11) and Lemma

B3

Now assume that (3.78) holds for i and prove it for ¢ + 1. We want to apply Proposition [3.1]to the
functions f and adf( ) with Ny ~» N, s~ 84,81 ~ 841, 0 ~ 0;,01 ~ 0,11, etc. We have to verify
conditions ) that reads

KNVL < Wi — Mhit1 s /LiNL_l + kN < 0iv1—0;, (3.79)
INe N "= <1, b(si — sip1) NP > 2. (3.80)
Since, by (3.77),
— 0—0 s—s'
,uz'—/MHZM .M7 9i+1_9i: —  Si— Si41 = -
J J J

and j < J =1InN (see (3.73)), 0 < b < L < 1 (recall (3.2))), ' < pu < 6, the above conditions
(B-79)-(380) are implied by
KN PN <pu—p', (64+6)NTITInN <@ -0,
ONe N'(s=s1/2InN 1 = b5 ¢)NP > 2In N. (3.81)
The last two conditions (3.81)) are implied by b(s — s')N® > 2In®> N and since N > e'/17° (recall
(3.64)). Recollecting we have to verify
KN IInN <p—p', 6+8)NETTInN <@ —60, 2N In® N <b(s — 5). (3.82)

Since the function N — N~ 7In N is decreasing for N > e'/7, we have that ( (3-82) follows by (3.64)-
3.65)). Therefore Proposition implies that ad”l( ) € Q£+1,n+1(N 0it1,1i+1) and, by (3.52),
3.35)), we get

ad’ s D15y N00 s iiss < C'8 NI adF DI, s 3000 (3.83)

where 5
5; :min{15i+l,1w}2, (3.84)

Si T J

and ¢ is defined in (2.66). Then

i+l (3-83),(3.8 , 1
||a‘d (g) 841,741,V 001,511 < C J6 HfHS r,No,0 ,H”adf ) 5i,7i,IN,05, 144
B
< (C'jo e gk,

proving (3.78) by induction. B
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4 An abstract KAM theorem
We consider a family of integrable Hamiltonians
N = N(z,y,2 %) =e(§) +w(&) -y + QE) - 22 (4.1)

defined on T x C" x £7” x £7” where 7 is defined in (2.84)), the tangential frequencies w := (w1, ..., wy)
and the normal frequencies Q := (£2;),cz\ 7 depend on n-parameters

EeOCR™.
For each ¢ there is an invariant n-torus 7o = T" x {0} x {0} x {0} with frequency w(§). In its
normal space, the origin (z, Z) = 0 is an elliptic fixed point with proper frequencies 2(£). The aim is

to prove the persistence of a large portion of this family of linearly stable tori under small analytic
perturbations H = N + P.

(A1) PARAMETER DEPENDENCE. The map w: O — R", £ — w(€), is Lipschitz continuous.
With in mind the application to NLW we assume
(A2) FREQUENCY ASYMPTOTICS. We have
Qi) =vi2+m+al§)eR, jeZ\T, (4.2)
for some Lipschitz continuous functions a(&) € R.

By (A1) and (A2), the Lipschitz semi-norms of the frequency maps satisfy, for some 1 < My < oo,

[P, QI3 < My (4.3)
where the Lipschitz semi-norm is
i i Q(¢) —
Q= R = sup MO O (1.4)
gmeozn €=l
and |z|oc == sup |z;|. Note that by the Kirszbraun theorem (see e.g. [23]) applied componentwise

JEZNT
we can extend w, Q2 on the whole R™ with the same bound (4.3)).

(A3) REGULARITY. The perturbation P : D(s,7) x O — C is A-regular (see Definition [2.8).

In order to obtain the asymptotic expansion (4.9) for the perturbed frequencies we also assume

(A4) Quasi-TOPLITZ. The perturbation P (preserves momentum and) is quasi-T6plitz (see Defini-
tion .
Thanks to the conservation of momentum we restrict to the set of indices
1= { (k,1) € Z" x 7%, (k,1) # (0,0), |I] < 2, where (4.5)
orl=0, k-j=0,
orl=c0e,,meEZ\L, k-j+om=0,
orl=ocey,+de,,mneZ\T, k~j+am+0’n:0}.

Let

P = Pyo(z) + P(z,y,2,2) where P(z,0,0,0)=0. (4.6)
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Theorem 4.1. (KAM theorem) Suppose that H = N + P satisfies (Al)-(A4) with s,r > 0,
1<0,u<6, N>0. Let v > 0 be a small parameter and set

e = max {72\ Xp, 2, v N X s v X PN v} A= /M. (AT)

If € is small enough, then there exist:
o (Frequencies) Lipschitz functions w™ : R"™ — R", Q° :R" — ly, a : R" — R, such that

|w™ — w| + Aw™® — WP 0% — Q| +AQ®° - QP < Crye, [aT] < Cre, (4.8)
C . _
byt 195°(§) — (&) — ag(;)(©)] < 72/35@’ V)i > Coy 3. (4.9)
cRr

o (KAM normal form) A Lipschitz family of analytic symplectic maps
P : D(s/4,7/4) X Oco 3 (Too, Yoo, Weoi &) = (2, y,w) € D(s,7) (4.10)

close to the identity where

On = {6€0 & [w(©) k+92() -1 zlf#,wk,wel defined in (5),
lw> (&) - k+p| > 1217:}, VkeZ", peZ, (k,p)#(0,0), 7>1/b see7
w(€) - k| > 12:2;”, VO < [k <o) } (4.11)
such that, V€ € Oy :
H>® (€)= Ho®(&) = w™®(€) Yoo + Q7€) - 200Zoc + P has P25 =0. (4.12)

Then, V¢ € Ox, the map T — P(2,0,0;&) is a real analytic embedding of an elliptic, n-dimensional
torus with frequency w™(§) for the system with Hamiltonian H.

The main novelty of Theorem is the asymptotic decay of the perturbed frequencies. In
order to prove (4.9) we use the quasi-Toplitz property (A4) of the perturbation. The reason for
introducing in (4.7) conditions for both the Lipschitz-sup and the Toplitz-norms is the following. For
the measure estimates, we need the usual Lipschitz dependence of the perturbed frequencies with
respect to the parameters, see (£.8). This is derived as in [27] and [4]. On the other hand, we do not
need (in section @ a Lipschitz estimate on a5 (that, in any case, could be obtained). For this reason,
we do not introduce the Lipschitz dependence in the T6plitz norm.

In the next Theorem we verify the second order Melnikov non-resonance conditions thanks to

1. the asymptotic decay (4.9)) of the perturbed frequencies,
2. the restriction to indices (k,1) € Iin (4.11)) which follows by momentum conservation, see (A4).

As in [4], the Cantor set of “good” parameters O, in (4.11]), is expressed in terms of the final
frequencies w™(€), Q°°(¢) (and of the initial tangential frequencies w(€)) and not inductively as, for
example, in [27]. This simplifies the measure estimates.

Theorem 4.2. (Measure estimate) Let O := [p/2, p]", p > 0. Suppose

w)=w+A, weR", AcMat(nxn) , Q¢)=vi2+m+a-§, acR" (4.13)
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and assume the non-degeneracy condition:
A invertible and 2(A"Y)Ta¢ z"\ {0}. (4.14)
Then, the Cantor like set Oy defined in (4.11)), with exponent

7> max{2n + 1,1/b} (4.15)

(b is fized in ), satisfies
|0\ Oce| < C(r)p" 192 (4.16)

Theorem is proved in section@ The asymptotic estimate (4.9)) is used for the key inclusion (6.12]).
5 Proof of the KAM Theorem [4.1]
In the following by a < b we mean that there exists ¢ > 0 depending only on n, m, x such that a < ¢b.

5.1 First step

We perform a preliminary change of variables to improve the smallness conditions. For all £ in

2/3
O, = { €0 1 wE) k> VO < [k <y~ } (5.1)
1+ [k|®
we consider the solution P
F — 00,k ik-x 592
0o() > W)k (5.2)
0<|k|<y—1/(Tm)
of the homological equation
—adp Foo + H|k‘<,rl/(7n)P00($) = <P00> . (5.3)
Here Py is defined in (4.6 and () denotes the mean value on the angles. Note that for any function
Foo(z) we have |[Foolls, = [|[XFylls,r see Definition We want to apply Proposition ﬂ with
s,r, 81"~ 3s/4,3r/4,5/2,r/2. The condition (3.63) is verified because
G2).ED.@F) 3 (1)
“F00||§s/4,r = ||XFOO ||3S/4,T 2 C(TL, 8)7 2/3||XP00 HS,T ? C(nv 8)5

and ¢ is sufficiently small. Hence the time-one flow
Dpg = q)%oo : D(sg,7m0) X Ox — D(s,r) with sg:=5/2, r9:=1/2, (5.4)

is well defined, analytic, symplectic. Let pg < p, 69 > 6, No > N large enough, so that (3.65]) is
satisfied with s, 7, No, 0, u,~ s,7, N, 0, and s', 7', N§, 0", i’ ~ 50,70, No, 0o, 0. Note that here Ny is
independent of 7. Hence (3.66]) implies

adg,, p||T BT
(€200 P[5, o Nowbo.so < 2I1Pl5.r N0, - (5.5)
Noting that e®4Fo0 Py = Pyo and e Fo N = N + adp,, NV the new Hamiltonian is

HY:=eMrofdg = P N e*dro0 Py + e300 P = N + adp,, N + Poo + €700 P

(5-3) a _
(<P00> +N) + (H\k|27—1/(7”>P00 + e2drgo P) =Ny + P. (5.6)
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By (2.57) (and since Pyo(x) depends only on x)

T [4.7)

_s —1/(7n) _s —1/(7n)
HHUC\Zy—l/(m)Poo N < 4e™%7 /4HXP00||S7‘ < 4y 3 e < e, (5.7)
for « small. By , (5.5) and (4.7) we get
HPOHE(‘),T‘(),No,G(),/,LO < 376 ° (5~8)

In the same way, since |XF00\§‘S/4)T < C(n,s)y 23| X p |2

‘s,r?

we also obtain the Lipschitz estimate

|XP0 2

‘So,’r’o

< 3ve. (5.9)

5.2 KAM step

We now consider the generic KAM step for an Hamiltonian

H=N+P=N+Pg’+(P-Pg (5.10)
where P[§2 are defined as in (3.38).

5.2.1 Homological equation

Lemma 5.1. Assume that
- Y . .
IQj—\/J2+m—as<j>|§m, Vil > s, (5.11)

for some ay,a_ €R. Let Ay pyn i =w-k+Qy —Qy, A;am’n =w-k+|m|—|n|
If |m|, |n| > max{j., vVm} and s(m) = s(n), then

m |m — n| 1 1 m? 1 1
A A . _— (— —) —_— — 4+ —] . 5.12
Bt = Bl < 5o TN T ) T2 B TP (5:12)

PrROOF. For 0 < 2 <1 we have |[v1+x — 1 — /2| < 2?/2. Setting  := m/n? (which is < 1) and
using (5.11)), we get

O — |n| — 2 <o
—In]-=——a —_
" 2] = ] T 2P
An analogous estimates holds for €,,. Since | Ak mn — Akmn\ = |Qy — |m| — Q,, + |n|| the estimate
(5.12) follows noting that ag(m) = as(n)-
For a monomial my,; o 5 := e Iyzzazﬁ we set
Mk a, if k=0, a=p
(W] = 4 : (5.13)
0 otherwise.

The following key proposition proves that the solution of the homological equation with a quasi-T6plitz
datum is quasi-Toplitz.

Proposition 5.1. (Homological equation) Let K € N. For all £ € O such that

T (k1) €T (see (ED)), k| < K, (5.14)

(k)"
then VPI((h) 'H?“TH, h=0,1,2 (see , , the homological equations

w(&) - k+Q(E) 1| =

—ady F& + P = [PI(?)] . h=0,1,2, (5.15)

36



have a unique solution of the same form F1(<h) € H;“TH with [Ff((h)] =0 and
X polls.r <A KT NX pomllsr s 1 X o 3 < VR X o o8 (5.16)
where 29A71 > |w|" Q¥ In particular F2* := F1(<0) + FI(S) + FI(?) solves
—adyFg* + P = [PR7]. (5.17)
Assume now that P ) e QET(NO,Q ) and Q&) satisfies for all |j| > ON§ where
N := max {No , 67‘1/3KT+1} (5.18)
for a constant ¢ :== é(m, k) > 1. Then, Y& € O such that

2/3
w() - k+p|> T, V<K pez, (5.19)

(k)

we have FI((h) € er(Ng,G,u), h=0,1,2, and

|| s’rNJ, T 46771K2THP ||a7"N0, O,u (520)
PROOF. The solution of the homological equation ((5.15)) is
h . Pk LA LRI
=i Y eikeyizazh | Apap = w(€) k+ Q) (a—f).

| <E, (ki o, B)£(0,6,00,00) Ak

2i+lal+|6]=h

The divisors Ag;ag # 0, V(k, i, @, 8) # (0,1, o, «), because (k,i,a, 8) # (0,7, o, ) is equivalent to
(k,ao — B) € I, and the bounds (5.14)) hold. Then the first estimates in (5.16]) follows by Lemma
2.18 The Lipsichtz estimate in (5.16|) is standard, see e.g. Lemma 1 (and the first comment after
the statement) of [27]. We just note that the Melnikov condition used in [27] follows by (5.14) and

momentum consevation, e.g.

- 7 €2 ym—nl _|m—n|

|w -k + Q — Q| = v .
(k)" 13- kI(R)™ —  w(k)TH
For the Toplitz estimate notice that the cases h = 0,1 are trivial since Iy g MF = 0. When h =2
we first consider the subtlest case when P1(<) contains only the monomials with i = 0, || = 8] = 1
(see (3.36)), namely
P:=rY = > Prmn€® % 27, (5.21)

|k| <K ,m,n€Z\T

and, because of the conservation of momentum, the indices k, m,n in (5.21)) are restricted to
j-k+m—-n=0. (5.22)

The unique solution FI((Z) of (5.15) with [FI((Q)] =0is

P, .
F=F == Y SR ikr s g A = w() Q€)= Qa(8)  (5.23)
k| <K, (kymon)#£(0,mum) — F T

Note that by (5.14) and (5.22) we have Ag ., ,, # 0 if and only if (k,m,n) # (0, m, m).
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Let us prove (5.20)). For all N > N§

. Py ik
Oy F = —i § SR oihT Fns (5.24)
k<K, |m],|n|>6N —Fmm

and note that " is (N, y)-low momentum since |k| < K < (N§)? < N® by (5.18) and 7 > 1/b. By
assumption P € er,No,e,p and so, recalling formula (3.45)), we may write, VN > NJ > Ny,

Myp,P=P+N 1P with P:= > Pinn€® 27, € T. (N, 0, 1) (5.25)
|k|<K,|m|,|n|>0N
and
X lls,m 1 X5 llsms 1 Xp s < 21 P, (5.26)
We now prove that
~ Pk m—n ik 5 A
F = Z - ZmZn y Ak,m,n = w(ﬁ) -k + |m| - |n| ) (527)

|k|<K,|m]|,|n|>0N Ak,mn

lb
is a Toplitz approximation of F. Since |m|,|n| > 0N > ONJ > N| kK > |j- k| by (3.1), we
deduce by (5.22)) that m,n have the same sign. Then

A =w() -k +|m| —|n| =w(€) -k +s(m)(m—n), s(m):=sign(m),
and F in (5.27) is (N, 0, u)-Toplitz (see (B.15)). Moreover, since |m| — |n| € Z, by (5.19), we get
|Ak,m,n

and Lemma and ((5.27) imply

> 23k, VIk| < K, mon, (5.28)

”X]?'HS,T < '7_2/3KT||X75||8,7’ . (5~29)
The Toplitz defect is
N~LF = My F —F (5.30)
€29.620 Z Ak’ m ok )elk ¥ ZmZn
k,m,n Alc,m,n

|K|<K.|ml.In|>0N

Pk,m,n Pk,m,n Pk,m,n - Pk,mfn ik-x _
= E - = + = e zmz
A A A "

|k|§K,|m|,|n|>9N k,m,n k.mmn k,m,n

(.25) Ay — Ay 1 P e
-2 Z |:Pk,m,n( mn T Bkmn) -1 Tkmn ) ke, s
|k|<K,|m],|n|>0N Ak.m.nBkm.n

By (5.12), |m|,|n| > 0N > N, and |m — n| < kK (see (5.22)) we get, taking ¢ large enough,

X mkK 2y m? ¢ (K BID . (&3 423
- < A iy = m (5
[Btemn = Biemonl oN? TN TN S AN (N 7) m{ 2N ' 2KT (5:31)

Henee 2/3 23 2/3
~ ~ 15.28)),(5.31)
|Ak,m,n| > |Ak,m,n| - ‘Ak,m,n - Ak,m,n| > 2 - 7 > 2 .
(k)™ 2KT ~ 2(k)"

(5.32)
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Therefore ([5.31)), (5.28)), (5.32) imply

|Ak,m,n — Dpymnl < /3 2(k)" (k)" < LKQT
|Ak7m,n |Ak:,m7n| - 2N 72/3 72/3 o N’Y

and (5.30)), (5.28), and Lemma imply

. . -
||Xﬁ||s,r§C'Y 1K27HX7’||S,T+'Y Q/BKTHXﬁ”s,r < Aoy 1K2THPHZ,7~ (5.33)

In conclusion (5.16)), (5.29)), (5.33]) prove (5.20]) for F.

Let us briefly discuss the case when h = 2 and P}(f
la] =2, |8] = 0 or viceversa (see (3.36))). Denoting

P=P2 = Y Pumnzmza, (5.34)
|k|<K,m,n€Z\T

)

contains only the monomials with ¢ = 0,

we have

. Py ”
HN,9,H‘7: =1 E w-k+ i;n7n+ Q elk ? 2m2n
k| <K, |m],|n|>0N m "

where |w -k + Qp + Q| > (|m| + |n])/2 > ON/2 since |m|,|n| > ON and |k| < K < NP®. In this case
we may take as Toplitz approximation 7 = 0. B

5.2.2 The new Hamiltonian H+

Let F = F;Q be the solution of the homological equation (5.17)). If, for s/2 < s, < s, 7r/2 <ry <r,
the condition s ,
. + +
|F |sT,r,Ng,9,u <e¢(n)dy, 4 :=min {1 - 1- 7} (5.35)

holds (see (3.63))), then Proposition (with s" ~» si,7" ~ 14, Ng ~ N{ defined in (5.18)) implies
that the Hamiltonian flow ®% : D(s;,ry) — D(s,r) is well defined, analytic and symplectic. We
transform the Hamiltonian H in (5.10]), obtaining

: 1
HY = etir g H + adp(H) + " —ad)y (H)
i>2 J:
J1Z
5.10 1 .
N+ P2+ (P - Pg*) +adpN +adpP + ) —ad},(H)
i>27"
5.17 1 .
P N+ PR+ P - PP+ adpP + Y —adh(H) = N* + P*
j>27"
with new normal form

NT=N+N, N=[P=é¢+0-y+Q2-2

Wi = ayi‘y:07225:0<P> s i=1,...n, Q= (Qj)jGZ\I7 Qj = [P]J = a?jzj |y:0,z:E:O<P> (5.36)
(the () denotes the average with respect to the angles x) and new perturbation
1
Pt i=P— P’ +adp P +adp P74+ ) - —adj,(H) (5.37)
=27
having decomposed P = P<2 4+ P23 with P23 := Z PM gee (13.36)).

h>3

39



5.2.3 The new normal form V7T

Lemma 5.2. Let P € Q:T(No,ﬁ,u) with 1 < 0,4 <6, Ng>9. Then

151, 19200 < 21 PPNT s ng 0.0 (5.38)
and there exist a1 € R satisfying
|a:t| <2HP ||s7"N07 0,
such that
19— au] < NPT vy 1] 2 6N+ 1) (5.39)

141
Moreover ||, [Q]'P < | X pe) |;‘;
Lemma is based on the following elementary Lemma, whose proof is postponed.

Lemma 5.3. Suppose that, VN > Ny > 9, j > 6N,
Qj =an + bN’jN_l with (lN,bN’j eR, |(lN| <cy, |bN7j| <cy, (540)

for some ¢ > 0 (independent of j). Then there exists a € R, satisfying |a| < ¢1, such that

20c¢y

€ —al <
il

Vil > 6(No +1). (5.41)

PROOF OF LEMMA The estimate on & is trivial. Regarding 2 we set (recall (3.36), (3.42))

PO(Z) = Mp=oM|a|=|g= 1P = Z §%i%i
j

since, by the momentum conservation (2.86)), all the monomials in PO(Q) have o = § = e;. Note that
[P]; is defined in (5.36]). By Lemma

7 B

[Pl < [ Xpe [l < 1o IIP(2 I (5.42)

We now prove (5.39) for j > 0 (the case j < 0 is similar). Since P ) e OT(N,0, 1), for all N > Ny,
we may write HNﬂ,HPéQ) = 15(52]2, + Nﬁlpé?lz, with

]5(5,2]2, ZPZJZJET(NQ[L é? ZP iZ
Jj>6N >O0N
and -
1X o [l 11X ) [l 1K 2y [l < 201P67 7 < 2| PAT,. (5.43)

For |j] > 6N, since all the quadratic forms in (5.43)) are diagonal, we have

Qj = [P]j = Pj + Nﬁlpj =an+ + NﬁleJ'
where ay 4 = Pj is independent of j > 0 because ]5(5213, € T.(N,0, 1) (see (3.15))). Applying Lemma
to ]5(5212, and ]50(2]2,, we obtain

sl < IXpg e 5 2APOUT, gl = B < X g 5 21POYE

Hence the assumptions of Lemma [5.3| are satisfied with ¢; = 2\|P(2)||£T and (5.39) follows.
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The final Lipschitz estimate is standard, see e.g. [4], [27]. m
PrOOF OF LEMMA 5.3 For all Ny > N > Ny, j > 0N; we get, by (5.40),

any —an, | = by, iNT' —by N~ <2, N7, 5.44
1 1,7 1 »J

Therefore ay is a Cauchy sequence. Let a := Nlirn ay be its limit. Since |ay| < ¢; we have |a|] < ¢;.

— 400

Moreover, letting Ny — 4-oc in (5.44)), we derive |a —ay| < 2¢; N1, VN > Ny, and, using also (5.40)),
1Q; —a| <|Qj —an|+ |ax —al <3e;N7!, VN >Ny, j>6N. (5.45)

For all j > 6(No + 1) let N := [j/6] (where [-] denotes the integer part). Since N > Ny, j > 6N,

31 3c1 18¢; 1 20c;
2, — al < <=1+ o) <=2
/6] = (3/6) =1~ j No j
forall j > 6(No+1). ®
5.2.4 The new perturbation P*
We introduce, for h = 0,1, 2,
2
e® =y maX{HP(h)”Zr,No,e,w | Xpm |;\7‘} ) €= Zf(h) ) (5.46)
h=0

— A
0 =7 max {IPIT,.x, 00 1XPI2, ),

(X defined in (4.7)) and the corresponding quantities for P* with indices r4, sy, Ny, 04, uy. The
P™ denote the homogeneous components of P of degree h (see (3.36)).

Proposition 5.2. (KAM step) Suppose (s,7, No, 0, 1), (s4,74, No", 04, 1) satisfy s/2 < s < s,
r/2<ry<r,

N{ > max{Ng, N} (recall (5.18), 3.64)), 2(N; ) "In*NJ < b(s —s), (5.47)

RN EIn NS <p—py, (6+r)(NSETInNS <0, —6. (5.48)

Assume that )
éKT(Zl < ¢ small enough, © <1, (5.49)

where T := 27 +n+ 1 and 04 is defined in (5.35)). Suppose also that (5.11)) holds for |j| > ONg.
Then, for all £ € O satisfying (5.14),(5.19), denoting by F := FI%Q the solution of the homological
equation (5.17)), the Hamiltonian flow ®1 : D(sy,r.) — D(s,r), and the transformed Hamiltonian

HY :=HodhL =e"H =N, + P,
satisfies

Ef) < 072K”TE 420 ~(s=s)K
e < 572K (60 4 82) 4 eWe—(s—s1)K

e? < 0PKT (O W 4 2) 4 P (msK (5.50)

01 <O(1+C52K*s). (5.51)
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We focus on the quasi-Toplitz estimates, the Lipschitz ones follow formally in the same way. The
proof splits in several lemmas where we analyze each term of P* in (5.37). We note first that

’ _
||PI§2HS’I"N00;L HP<2||STN00;L vE- (552)

Moreover, the solution F' = F(©) + F() 4 F() of the homological equation (5.17) (for brevity FM =
FI((h) and F' = F;z) satisfies, by (5.20) (with Ng defined in (5.18)), (3.41)), (5.46)),

| erO,Gu

Hence (5.49) and (5.53)) imply condition (5.35)) and therefore ®%. : D(s,,r) — D(s,7) is well defined.
We now estimate the terms of the new perturbation P* in (5.37).

<K7e™, h=01,2 |F|L, nio,<KE. (5.53)

Lemma 5.4.

[aar(p=2)||"

s, NG04 g

<6 PyKPTER
s+ NG04y

SR

PrOOF. We have

1 1 1 1
Zﬁadj (H) = Z; adf, (N + P) = ZﬁadJF 1(adFN)+Zﬁad;(P)
j=>2 j=2 j>2 j>2
1
BB 5 St () P+ X o
=" i>2

By (5.47), (5.48) and (5.35)) we can apply Propositionwith No, Nb,'sr' 0/ 1,8 ~ N§, N, s+,
T4, 04, 1y, 01 We get (recall Nj > Npy)

H Z 7adj 657 639 ( 1||1~"||S,ANO,9,M) P15 No 0.0
j>2 s+,r+,N 0404
% 5;21(2%52’}/@ (5.54)
and, similarly,
1 e 1 i o< ||T
H ; dJ ) e N s = H ; madﬂ;(ﬂ? ) s N 040y
I 0 PRI
% 5T K (5.55)
Finally, by Proposition [3.1} applied with
No, N1, 51,71, 01, 11,6 ~ Ng, Ny 54,740,045 g, 0y (5:56)
we get
HadF(PSZ) j+,T+7N0+,9+nU'+ < 1||F||STN579“”P<2”3TN°9“
EDED ;1pr o (557)

The bounds (5.54), (5.55), (5.57), and © < 1 (see (5.49)), prove the lemma. ®
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Lemma 5.5. (5.51)) holds.
PROOF. By Proposition [3.1] (applied with (5.56)) we have

T
dp(P=? < < g1 PZ?
oar=)| v 0P v
(653), (3:40), (-46) _
< 6 KTyE0O, (5.58)

and (5.51)) follows by (5.37), (3.40), (3.35), (5.46) (5.55), Lemma and & < 30 (which follows by
(5.46) and (3.39)). m

We now consider P( ) . h =0,1,2. The term adpP>> in ) does not contribute to P . On
1) 4

the contrary, its contrlbutlon to Py
{F(O), p(3)} (5.59)

and to PJ(FQ) is
{FO) pB)} 4 (FO) pAHy (5.60)
Lemma 5.6. ||{F( P(S)}HT

st N 0414

<67 K70 and

<0 KTy (e + Mo

sy, Ng 04 1y

H{Fu) PO} 4 (FO p<4>}

ProoF. By (3.52)) (applied with (5.56))), (5.53)), (5.46) and (3.39). =
The contribution of P — P[%z in (5.37) to P(h) h=0,1,2,is P( ).

—K(s=s4),(h)
sty NG 04,1 < 2 e

Proor. By (3.43) and ( - ]

PROOF OF PROPOSITION COMPLETED. Finally, (5.50) follows by (5.37), Lemmata [5.4]
(and (5.59)-(5.60))), Lemma and 0 <1.

5.3 KAM iteration
Lemma 5.8. Suppose that ¢; ©) (1),52(-2) >0,i=0,...,v, satisfy

? Z

Lemma 5.7. ||[P{")||T

9 < CKE 40D K (5.61)

e C.K (e +22) + Ol e K2

e < Ok 4N 42 4 0P e B2 0, -1,

IN

where &; 1= 61(»0) + 651) + 652), for some K,C, K, > 1. Then there exist £, < 1,Cy > 0, x € (1,2),
depending only on X,C., K, (and not on v and satisfying 1 < C,e™**), such that, if

fo<& = &<Cige XX vi=0.. . v. (5.62)

PROOF. Iterating three times (5.61) we get

IN

ClC:lK(/’l]( (O) + E(l) +€ e + Ej+26 —K. 2j+2)

,K*2j+1)

€]+3
< CQC 2Kc ] ( )] 5 1 5 8 + e
.7 J Jj+1 J

< 3CKeI (éf +&+ éje‘K*”) , VO<j<v-3, (5.63)
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for suitable constants 1 < ¢; < ¢o < c3.
We first claim that (5.62) holds with x := 6/5 for all i = 3j < v. Setting a; := &3;, we prove that
there exist C, large and &, small (as in the statement) such that if ag < &, then

S), aj<fTage X, vo<j<u/3

for a suitable ¢4 = ¢4(K,Cy, Ki) > 1 large enough and x < 213 eg. ¥ = 5/4. We proceed by
induction. The statement (S), is trivial. Now suppose (S); holds true. Note that a; < 1 taking

_ . K*)ZSJ' j+1
ge < mine /ey Then (S);,, follows by
-63) ) 37\ @S , 3j
ajr1 = E3j43 < c3Ce3K3esd (a? + af» + aje_K*2 ) < 2c30C3K33I (a? + aje_K*2 )

(8); . . ~3j ; =35 35 ~3j43
< 2,03 ((cfflaoe*K*X )2 4 (&l age KX)o~ K2 >§Czl+2040€7K*X

. swdcsif d+l K%Y —K,2% 2 _R,gME L -
since 4¢3 CC K3 () T age FXT)e K2 < (I T2q0e KX taking ¢y large enough (use ¥ < 2) and
cap3esj(Jtl  —K.x%\2 J+2 K, xS
4e3 OSBRI (T age™ X)) < ¢ Fage™ X

taking ap < &, small enough. We have proved inductively (S);. Then (5.62)) for i = 35 follows since
6/5 =: x < X := 5/4 and taking C, large enough. The cases i = 3j + 1 and ¢ = 3j + 2 follow
analogously noting that &1, &, can be made small by (5.61]) taking &, small. B

For v € N, we define

o S,11:=5,— 502 "2\, %O, Pyl =1, — 1027V TN, %), D, :=D(sy,1,),
f 1 1
o K,:=Ky4", N,:=Ny2" with Ny :=é&y Y3KJ™', p:=max {2(7’ +1), I 31 L} )
—v— —v— 0
o far =y — o2 V2N, % Oy =0, + 0,272 7 350 : (5.64)

We consider H® = Ny + Py : Dy x O, — C with N := ey + w<°>(g) sy 4+ QO (€) - zz. We suppose
that w® and Q© are defined on the whole R" (using in case the Kirszbraun extension theorem),
that Q) satisfies and |w @] |QOP < A7y on R™. Let Oy C {€ € O, : By, (&) C O}
where O, is defined in and B,.(£) denotes the open ball in R™ of center £ and radius r > 0.

Lemma 5.9. (Iterative lemma) Let H® be as above and let &y, ©¢ be defined as in (5.46) for P,.
Then there are Kqg > 0 large enough, g > 0 small enough, such that, if

£0,00 < ¢, (565)

then
v Szgl/,tereemstw', i,ai efined for a € R", satisfying
S1), V0 < h st w®, Q0 6l defined for all € € R f

|w(i) - w(0)| + /\\w(i) — w(0)|hp’ |Q(i) - Q(O)\oo + )\|Q(i) - Q(O)|Eé) <C(1- 24)750 (5.66)
0] < 0 —27 N0, ', 1O < (2 -27)Mo. (5.67)

There exists H' := N; + P, : D; x O; — C with N = ¢; + w® (&) -y+ Q(i)(g) - 2Z 1in normal form,
where, fori >0,

) ) ) 2
O; = {5 €01 : |w(271)(£) -k + Q(lil)(g) ! l| > (1 - 271)ﬁ7v(k’l) € Ia |k| < Ki—lv
272/3

(i=1) (¢ . > (1—9-i
WO k] 2 (127 e

V(k,p) £ (0,0), |k| < K;_1, pe z} . (5.68)
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Moreover, V1 <i<wv, H = H ' o ®" where ®' : D; x O; — D;_1 is a (Lipschitz) family (in & € O;)
of close-to-the-identity analytic symplectic maps. Setting, for h =0,1,2,

(h) = -1 maX{HP(h)

2
_ h
80,70, N3 ,0 5405 0 |XP.(h) |§\7,T1} ’ € = Z EE ) ’ (569)
h=0

0 = max {IPIZ . g XA}
Vi<i<vandV&eR"
WO ©) =1, 19966 = 2V [ (€) = ol V()] < 2980

19(6) — ol () = V() +all D ()] < 4077 SEVIZ 6N+ D). (5.70)

(S2), V0 <i<wv-—1, the 550)751(-1), E satisfy (5 with K = 4°™T1 7 .= 2r 4+ n+ 1, C, = 4K,
K* == 80K0/4.
(S3), V0 <i < v, we have & < C’*e’oe_K*Xi and ©; < 20 (recall that Ce X+ > 1, see Lemma .

PrOOF. The statement (S1), follows by the hypotheses setting af) (€) == 0, V¢ € R". (82), is
empty. (S3), is trivial. We then proceed by induction.

(S1),,1. We denote &) := V(P (€))]y=0,-=2=0 and Q) (&) := 02 _ | o .__o(P.(€)), see (£:36),
forall € O, if v > 1 and £ € O, (see (b.1)) if v =0. By Lemmaand - there exist constants
al”(¢) € R such that

B 10 e, 108 (©)] < 218, 1047(6) -l (O < 1075, WIjI > 6(N, +1),  (5.71)

il
uniformly in £ € O, (resp. O, if v =0), and

@) |ie QWP < C5,, (5.72)
Let ,
mi=A=7/Mo, n, =7/ MK, v>1. (5.73)
We claim that, for v > 1, the 7,-neighborhood of O, 11
Ovii= |J {€eRrm i é=¢+é l<n} c 0. (5.74)
£€0, 41

Note that the definitions of Oy, O; in (5.68)), and (5.73)) imply O C O,. Recalling (5.68)), we have to
prove that for v > 1, for every £ = £+ &, € € Oy, |§] < 1y, we have

W) k4 QU 1 = (1277 f?kr, Yk D) €L, K < Kyy,  (5.75)

and the analogous estimate for [w® =Y (€) - k + p|. By the expression (5.77) (at the previous step) for
w® Q™ " and since x,_1 € [0,1], we get

W DE) -k + QEIE) 1] 2 W) -k + 2P E) - 1] — o ()G IE) - k+ Q@) -1

(6.71) ~ ~
> W)k + Q) 1] - | (€)= (©) -k + Q) — 2(©)) - 1] - 2981 (Kyo1 +2)
§€(9,,+1,,(Sl)l, 2
Z _ 2—1/—1) : _|_"yk|7' — (Kyfl —+ 2)2M0’I7V — 2’751,71(.[{1/71 + 2)
(B73).(53).
2 —e
1+ |k|7
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taking ey small enough, and (5.75) follows. The estimate for [w® = (£) - k + p| follows similarly.
We define a smooth cut-off function x, : R™ — [0,1] which takes value 1 on O, and value 0
outside O, 11. Thanks to (5.74) and recalling (5.73) we can construct x,, ¥ > 0, in such a way that

I[P < /T M2V KT (5.76)
where K_; := 1. We extend w(”) Q(”) ) to zero outside O, for v > 1 and, for v = 0 outside O,.
Then we define on the whole R™
WD = ) Ly o) QD . ) 1y QW) QD o) ) (5.77)
By (.76), (6.72), (5.71), we get
|w(u+1) _w(u)|1ip < |Xu‘lip|(;)(u)| + |XV||(’:}(V)|1ip < OK;—i_llMoéy +0s, < 271/71M0

by (SS)V and &y small enough. Similarly for |Q(”+1) QWP Recalling also (5.71] (B.71)), we get (5.66) and

with ¢ = v + 1. Moreover 5.77)) imply - ) for i = v + 1 and V|j| > 6(N, + )

We wish to apply the KAM step Proposmon @ w1th N=N,,P=P, Ng=N,,0=240,
and NS' = Nl,+1,9+ = 0,41,... Our definitions in 4) (and 7 > 1/b) imply that the Condltlonsﬂ
- are satisfied, for all v € N, taking K large enough. Moreover, since

5% = 8,41 := min {1 - ’;“ 1 r;i} sothat 2772 < 8,4, <2701, (5.78)

and (S53), the condition ([5.49) is satisﬁed for &g < €p small enough, Vv € N. By ( - the condition

5.11) holds for |j| > 6,N,, and and (| - ) hold for all £ € O, 41 (it is the definition of O, 1,
see (|5.68 :

). Hence Proposition appheb For all £ € O, the Hamiltonian flow &' := <I>1
Dyy1 X Opq1 — D, and we deﬁne

Hl/+1 = HVO(PVJFI _ eadF”HV :Ny+1 +Py+1 : DV+1 X Oy+1 —C.
(S2),,, follows by (5.50) and (5.64).

S3 By (52), we can apply Lemma |5.8 and ([5.62]) implies &,,1 < C’*e’oe_K*XHl. Moreover, for
v41 DY ppLy p +
) BB 0

€o small enough, 0,11 ! Ooll7_ 0(1 + 0o 2 KZT o.M

Proof of the KAM Theorem [4.1] completed We apply the 1terat1ve Lemma [5.9] to the Hamil-
tonian HY in where w® = w and Q© = Q are defined in . We choose
2/3

o . al
OO'—{§€O~ |W(§)k‘ZWa

so that Op C {€£ € O, : By, (§) C Oy}, see (5.1)) and (4.3). The smallness assumption (5.65) holds
by (5.8)-(5.9) (use also Lemma and ¢ small enough. Then the iterative Lemma applies. Let
us define

VO < k| < 7*1/“")} (5.79)

w® = lim o™, Q% := lim Q" ay = lim aij).
It could happen that O,, = 0 for some vy. In such a case O, = 0 and the iterative process stops after
finitely many steps. However, we can always set w) := w®0) Q) .= Qo) ai’) = a(i'j°)7 Vv > v,
and w™, Q°°, aF° are always well defined.

The bounds (4.8]) follow by (5.66|) (with a different constant C'). We now prove (4.9)). We consider

the case j > 0. For all Vv > 0, j > 6(IV,, + 1), we have (recall that a(o) 0)

|Qoo — a3 | < Z |Q(z+1 z+1) Q(z + a( )| + Z |Q (i4+1) Qgi)l + |a$+1) _ a$)|
0<i<v i>v
B0 (Sg)u
S 40+ Z —+4’yz 507 ZEZ.
O<z<u i>v P>V

2For example the first inequality in (5.47) reads N, 41 > max{N,, 6771/3K5+1, N}.
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Therefore, Vv > 0, 6(N, + 1) < j < 6(Ny41 + 1),

3 N, B-64) g0y v
X — QO o) SO0 | LN o BT B0T T 13 frrtlop(vd ) N &
o5 0l —az) < 2 > u BB W g S,

>V >V

and (4.9) follows by (S3),.
The symplectic transformation ® in (4.10) is defined by

® := lim @000@00@10---0@”

V—00

with ®gp defined in . We now verify that ® is defined on O, see (4.11)).

Lemma 5.10. O C N;O; (defined in )

PrROOF. We have Oy, C Oy by and . For i > 1, if £ € Oy then, for all |k| < K, |I| < 2,
w®(€) - k+QO(€) -1
> W (&) -k + Q%) -1 = [k Y_ [w" D (€) —w™ ()] -2 120V (E) - 2 ()]

n>i n>i

EED 2, gy
> — K;2 c, — 4 s > (1—-27"
= 1—|—|k"7— i 725'@ 'YZEn_( )1—|-|k“7'

n>t n>i

by the definition of K; in (5.64), (53), and ¢ small enough. The other estimate is analogous. B
Finally P25 = 0 (see (4.12))) follows by & — 0 as i — oo. This concludes the proof of Theorem {.1

6 Measure estimates: proof of Theorem [4.2

We have to estimate the measure of

O\ O = U Ru() U R0\ 00) (6.1)
(k1) EAQUALUAT UAS (k,p)ezZn+1\{0}
where
Ria() = Riy() = {€ € 0+ [w=(6) -k + () - 1] <~} (62)
ki 1+ |k|7
B _ 2,}/2/3
2/3 T 2/3 — . 0o .
Rap(17/%) 1= R, (7% = {€.€ 0+ |(©) k] < 1| (6.3)
and
Ah::{(kz,l)el(see),|l\:h}, h=0,1,2, A=A7UA;, (6.4)

A; = {(k,l) € AQ, = :|:(€Z +6j)}7 A; = {(k,l) € AQ, l=¢e; — 6j} .
We first consider the most difficult case A; . Setting Ry ; j(7) := Rp,e;—e, (7) we show that

U R =] U Reas] <0 (6.5)
(k,)EAS (kyij)eT
where
1= {(k,ij) € 27 x (Z\T)? ¢ (ki) # (0,0.0), 5 k+i—j=0}. (6.6)
Note that the indices in I satisfy
lil = jll < 51kl and k0. (6.7)
Since the matrix A in (4.13) is invertible, the bound (4.8) implies, for € small enough, that
w®: 0 — w>e(0) is invertible and |(w™)7![MP < 2|A7Y. (6.8)
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Lemma 6.1. For (k,i,j) € I, n € (0,1), we have

n—1
R (M < 1% kPt Zplkrﬂ . (6.9)
Proor. By and
W (€) -k + Q) — QF(E) = w®(€) -k + Vi2 +m — /52 + m+ 1 (€)
where .
ri; ()] = O(7) , Iri;I"™ =O(e). (6.10)

We introduce the final frequencies ¢ := w*°(§) as parameters (see (6.8))), and we consider

Frig(€) = ¢k Vi 4 m = V2 m 7 (C)
where also 7; ; 1= 1; ;0 (w™) ! satisfies (6.10)). In the direction ¢ = sk|k|™* +w, w-k = 0, the function
Frij(s) i= fr.ij(sk|k|™" + w) satisfies

Frij(s2) = frij(s1) (82 = s1)(|k] — Ce) = (s2 — s1)|k/2.

Since |k| > 1 (recall (6.7))), by Fubini theorem,
2
{cew=(0) i 1fras (Ol < 7} < 8

TR T R
By the bound follows. m
We split

n—1

I=1I.UTI. where I. = {(k,z‘,j) e 1 : min{lil,|j|} > Coy 31 + \k|T°)} (6.11)

where Cy > C, in (4.9) and 7o :==n+ 1. Weset I :=1I\I.
Lemma 6.2. For all (k,i,7) € I we have

RZ?i,j(ng) - RZ?io,jo(272/3) (6.12)
(566 )7 Z.OajO € Z\I Sati‘sfy
s(io) = s(1), s(jo) =s(j), liol = [dol = li] — |/ (6.13)
and
min{liol, ljol} = [y~ /3(1 + [k|™)] . (6.14)
PROOF. Since |j| > 7~ V3C,, by (4.9) and (4.13) we have the frequency asymptotic
- LMo oo m’ 7/
Q7°(&) = il + T §+aH(€)+0 <|J|3> +0 (5 o > : (6.15)

By (6:7) we have [[i| —|jl| = |lio| —|jol| < CIK|, [k > 1. If € € O\RJY, ; (29*/%), since i, |j| = po =
min{|ig|, |jo|} (recall (6.11]) and (6.14])), we have
W) -k + Q) - QO] = WwT(E) -k +QF(E) - QF ()]
—195°(8) = QT (€) — Q&) + QT ()]

2/3
8~ il 131+ il
—lagtsy = a5is) — (i) T el
o om?_mlli =il _ m liol ~ Lol
Ho py 20 il ] 2 liol |70l
ED A 572/3_ @ 2~2/3
SN 110 pg — 1+ [kl
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taking Cy in (6.14) large enough. Therefore { € O\ R}, ; (%) proving (6.12)). m

As a corollary we deduce:
Lemma 6.3. ‘ U sz(v)‘ <3t
(ki,j)€ETL>

PROOF. Since 0 <y <1 and 7 > 79 (see (4.15))), we have (see (6.2)) R}, ;(7v) C R}’ (v*/3). Then

ki.j
Lemma [6.2] and imply that, for each k € Z", p € Z fixed

2/3 n—1
U E,i,j(’Y)’ < P

1 k|mo+1 °
(kyi,5)E€Ls, |il—|il=p + [k]
Therefore 23 . 23 .
- et e
U Rk,i,j(’Y)‘ < Z T+ ko < T
(kyi,5) €I~ k,|p|<Clk| k

proving the lemma. H

Lemma 6.4. ‘ U Rzﬂ-’j(’y)‘ <231,
(k,i,5)€T<

ProOF. For all (k,i,j) € I< such that R, ;(y) # 0 we have (see (6.6))
min{|i], [j|} < Coy P+ K™), J—i=k-3 = max{lil[j]} < C'y P+ k™).

Therefore, using also Lemma and (6.7

,.anfl ,_y2/3pn71
U R;€—7i7j (7)‘ < T+1 < T—To+1
A Z Z 1+ |k 1+ |k
(k,i,j)€I< k \iISC”Y’l/?’k(IJrIk\TO) k
j=i+k-j

which, by (4.15)), gives the lemma. W

Lemmata imply (6.5). This concludes the case (k,I) € A5 . Let consider the other cases.
The analogue of Lemma [6.1] is

Lemma 6.5. For (k,1) € AgUA; UAS, n € (0,v/m/2), we have
np"

[Ri(n)] < TR (6.16)

PROOF. We consider only the case (k,1) € A, | = e; +¢;. By (£8) and (£.13)

Frig(€) = w™(€) -k + QX () + Q°(€) =w™(&)  k+ V2 +m+ V2 +m+23- £ +7:4(€)

where |r; ;(€)] = O(e7), |ri;|"P = O(g). Changing variables ( := ww(£) we find

Frig(Q) =Chk+ V2 +m+/j2+m+2d- A7 - @) +75,4(C) (6.17)

where also .
7i,5(C) = O(e7) , |7 ;" = O(e) . (6.18)

If K = @ = 0 then the function in (6.17) is bigger than v/m and R, (n) = 0, for 0 < n < /m/2.
Otherwise, by (4.14)), the vector

a:=A"k+2d=A"(k+2(A"")"a) satisfies |a| >c=c(A,d@) >0, Vk#0. (6.19)
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The function fi; ;(s) = fr.i;(salal ™ + w) cw =0, satlsﬁes Frij(82) = frij(s1) > (s2 —s1)(la| —
Ce) > (s2 — s1)|al/2 by (6.18). Then (6.16) follows by (6.19) and Fubini theorem.

By Lemma[6.5] (6.2), (6.3), (5.79) and standard arguments (as above)

U mRaG) < | U RG] 10\ 0 < (6.20)
(k,1)EAQUALUAS (k,p)ezn+1\{0}
Finally (6.1)), (6.5)), (6.20) imply (4.16).
7 Application to DNLW
For 7= (ji,...,ja) € Z%, & = (01,...,04) € {£}¢ we denote & - J:= o1j1 + ... + 04ja, and, given
(uj,45)jez = (u ;L,uj )jez, we define the monomial u~ =uj!---uj? (of degree d)

7.1 The partial Birkhoff normal form

We now consider the Hamiltonian (T.4) when F(s) = s*/4 since terms of order five or more will not
make any difference, see remark
After a rescaling of the variables (and of the Hamiltonian) it becomes

H = Z)\ju;ru; + Z u;f =N+G (7.1)
JEL JezA Ge{£}4,5-7=0
_ T e _ (al+spt 4!
= D Nuylij + > Gagu”,  Gap = Bl alpl’
JEZ la|+]8|=4, m(ct,8)=0

where (u™,u”) = (u,u) € £*? x £*P for some a > 0, p > 1/2, and the momentum is (see (2-36)))
B)=>_ila
JEL
Note that 0 < Gqo,g < 4! (recall a! = I;ez0y!)

Lemma 7.1. For all R > 0, Ny satisfying (3.1} ., the Hamiltonian G defined in ) belongs to
QF(No,3/2,4) and
G vp.3/2.4 = 1 Xcllr < R?. (7.2)

PROOF. The Hamiltonian vector field X¢ := (—i0;G, 10, G) has components
100,y G = io Z Gl ﬂuu c=+,1€7,
la|+]8|=3,7(a,8)=—0l

where
Gfx—z = (o + 1)Ga+ez757 GZ;? = (6 + 1)G0¢w3+51 :

Note that 0 < Glofﬁ < 5! By Definitions and

1 a o ol = 2 1/2
Xola=g sw (S e Y clguen)’)
l€Z,0=%

R fulla.plllap <R | +181=3 7(c,8)=—o1
For each component

l, _
> GLoslu|a’| < > [ [[ug? [ Jug?

lal+]8|=3 ,m(a,B)=—0l o1j1+02j2+03j3=—0l

< (ﬂ*ﬂ*ﬂ)fcl
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where @ = (U;)iez, @; := |u;| + |4;], and * denotes the convolution of sequences. Note that ||i||4, <
ullap + [|t@lla,p- Since €7 is an Hilbert algebra, ||@ * @ * i|q,, < [|@]3 ,, and

1/2
_ o 2
|Xcllr < R sup ( Z eQa‘ll(l>2p’(u*u*u)_01’ ) (7.3)
lulla,pll@llap<B \jez o4
< R! sup i * @ * il qp < R™1 sup al|?, < R*.

llulla,p,ll@lla,p <R lwlla,pllEla,p<R

Moreover G € Hm! namely G Poisson commutes with the momentum M := Z Ju;uj, because (see
JEZ
@231) ) )
{Moul} = —id - Juf . (7.4)
We now prove that, for all N > Ny, the projection Iy 3/24G € Tr(N,3/2,4). Hence (7.2)) follows by
(7.3) (see Definition [3.4). By Definition (with g ~ G, no (z,y)-variables and z = u, Z = @), in
particular (3.12]), (3.13]), we get

! !
Oy 324G = E G0 (wr )usg, s, with
m|,|n|>3N/2,0,0'==+

o0’ _ 0,0’ a3

Gro(wr) = Z GG m U™l and
Sjezlila;+B8;)<anNl,
w(a,f)=—om—oc'n
1 1 4!

GhF = — Gate = —12=G";
a,B,m,n 2 — S atemten,S 2 — Smn (1 + 5mn)' a,B,m,n
+,— _ _ _ et

Ga,ﬁ,mm - GO“*‘emﬂ‘*‘en =24= Gaﬂ,m,n ’

These coefficients trivially satisfy (3.15) (with f ~ G), so [y 3/24G € Tr(N,3/2,4). &
We now perform a Birkhoff semi—normal form on the tangential sites

I:{Jhan}CZa J1<<Jn7 (75)
recall (2.84). Let Z¢:=Z\ .
Set )
G:= 3 Z Glju;‘ul—ujuj_, Gij =122 —-4;;), G:= Z uf (7.6)
iorje€T yezt, se{+,—14,

&-7=0, 7e(T¢)4

By (7.2) and noting that G, G are projections of G, for R > 0, Ny satisfying (3.1), we have

||é‘|rfrz,No,3/2,4a HGH}F{,NO,S/ZA <R®. (7.7)

Proposition 7.1. (Birkhoff normal form) For any Z C Z and m > 0, there exists Ry > 0 and a
real analytic, symplectic change of variables

T: Brjy X By C 097 x %7 — Bp x B C %" x {*?, 0< R< Ry,

that takes the Hamiltonian H = N + G in (7.1) into

Hgiihot = HoT = N+G+G+ K (7.8)
where 6,(}' are defined in (7.6) and
K = Z Kjﬁug (7.9)
jez2d, ge{+,-}2d,
d>3, &-7=0
satisfies, for N{| := N{(m,Z, L,b) large enough,
||K||£/2,N(’),2,3 <R". (7.10)
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The rest of this subsection is devoted to the proof of Proposition We start following the

strategy of [28]. By (2.81) the Poisson bracket
{N,uG} = —id - \ju (7.11)

where A\j:= (Aj,,...,Aj,) and A\j := A\j(m) := /4% + m.

The following lemma extends Lemma 4 of [28].
Lemma 7.2. (Small divisors) Let 7€ Z* & € {+}* be such that & - 7= 0 and (up to permutation

of the indexes)
(7.12)

4
=0, 0 #0,
i=1
or .7:(0707an)7 q#O,Uleg, (713)
or j: (p7p7 _p7_p)a p#()?Ul =02, (714>
or  J# (p.p,q,q)- (7.15)
Then, there exists an absolute constant c. > 0, such that, for every m € (0, 00),
. Cxm . . . :
|G- Ap(m)| > 2+ m)2 >0 where mng:=min{{j1), (52), (J3), (a) } - (7.16)
PrOOF. In the Appendix. B
The map T' := @}v is obtained as the time-1 flow generated by the Hamiltonian
1 "
ug (7.17)

Fi== > G A

J-5=0,5-2;7#0
and 7¢(Z¢)*

We notice that the condition 7-6 = 0,0 Ay # 0 is equivalent to requiring that & = 0 and 7, & satisfy
(7.18)

(7.12)-(7.15). By Lemma there is a constant ¢ > 0 (depending only on m and Z) such that
76=0,0-A\;#0and j¢ (29" |-\ >¢>0.

We have proved that the moduli of the small divisors in ((7.17)) are uniformly bounded away from zero.
(7.19)

—

Hence F' is well defined and, arguing as in Lemma we get
| Xrlr < R?.

Moreover F € H3" because in (7.17) the sum is restricted to & - 7= 0 (see also (7.4))

Lemma 7.3. F in (7.17)) solves the homological equation

{N,F} +G =adp(N) +G =G +G (7.20)

where G, G are defined in (7.6)).

PrOOF. We claim that the only 7€ Z*, & € {#}* with 7- & = 0 which do not satisfy (7.12))-(7.15)
(7.21)

have the form
J1=1J2, js =ja, 01 = —09, 03 = —0oy4 (or permutations of the indexes).
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Indeed:
If7=0, Z o; = 0: the o; are pairwise equal and (7.21]) holds.

If 7= (0, OZ,q, q), ¢ # 0, and 01 = —03: by J- & = 0 we have also 05 = —04 and lds.
If 7= (p,p,—p,—p), p # 0 and 01 = —g9: by J- & = 0 we have also o3 = —0oy and || holds.
It j1 = j2, J3 = Ja, J1,J3 # 0, J1 # —Jjs:
CASE 1: j1 # j3. Then 0 =& 7= (01 + 02)j1 + (03 + 04)J3 implies 01 = —09, 03 = —04.
CASE 2: j; = j3 and 80 j1 = jo = j3 = js # 0. Hence 0 = (01 + 03 + 03 + 04)71 and follows.
By and (7.11)) all the monomials in {N, F'} cancel the monomials of G in except for

those in G (see (7.6)) and those of the form lup|?|ug|?, p or ¢ € Z, which contribute to G. The
expression in (|7.6) of G follows by counting the multiplicities. B

The Hamiltonian F € H3" in (7.17) is quasi-Toplitz:

Lemma 7.4. Let R > 0. If Ny := No(m,Z, L,b) is large enough, then F defined in (7.17)) belongs to
0% (Ny,3/2,4) and

||F||£,N073/274 <R®. (7.22)
PrROOF. We have to show that F € H% verifies Definition For all N > Ny, we compute, by
(7.17) and Definition (in particular (3.12)), the projection

E o0’ Ly, o, o
HN’3/2’4F: Fm,n (w )umun (723)
|n],/m|>CN/4,
o,0’=+ ,|om+o/n|<4aNL

where
Ti,,93
’ ui U -
Foo(wh) = —12i > z (7.24)
i (07) giXi + 0N+ oAy, + 0N\,
li|+|jl<aNL| iorjez,
o',ii+ajj+am+<7/n:0, i#j if m=n
P ag, 0' 7/8
= E Eg o uu (7.25)
T lil(ej+8)<4aNL, Ticr(a;+8;)>0,
om+o/n=—n(a,B), |a|+|B8|=2, a#Bif m=n
and .
oo’ 24i 1

(7.26)

= — s )\ = )\ op — .
a,B,m,n O['ﬂ' )\a,,B ¥ U)\m + UI)\n a,B Xh: h( h ﬂh)
Notice that in ((7.24)) the restriction ¢ # j if m = n is equivalent to requiring

{(i,4,m,n), (0s,05,0,0")} #{(i,i,m,m), (0;, —0;,0,—0)},

see Formula (7.17) and (7.21)). Indeed if m = n, |i|+|j| < 4N and |m| > C'N/4 then, by momentum
conservation, we have a contribution to (7.24) only if 0 = —¢’ and hence |i| = |7].
We define the Toplitz approximation

F=Y Fgo (whyugug  with E9 (wh) =Y F75 . utu (7.27)

where the indexes in the two sums have the same restrictions as in (7.23)), (7.25), respectively, and
the coefficients are

o 24i 1 .
B =~ , F =0. (7.28)

a,B,m,n

alfB! Ao g + olm| — o|n
The coefficients in ([7.28]) are well defined for N > Ny large enough, because

|Aa,s + olm| — aln]] > [Aa,g + 0Am = 0An] = [Am — |m[ — [An — |n]|
(718),(7:39) 1 1 2 m ¢
= P (LTI e (7.29)
2 \Im|] = |n| 3Ny — 2
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(¢ defined in ([7.18])) having used the elementary inequality

[Vn2+m— |n|| <1/(2|n|). (7.30)
Then (7.27), (7.28)), (7.29) imply, arguing as in the proof of Lemma that
|Xzllr < R%. (7.31)

For proving that ' € Tr(No,3/2,4) we have to show (3.15)) (with f ~ F), namely

FG n=FE25 (s(m),om + o'n) (7.32)
with o )
o,—0 1 0,0
F,B (s,h) := Fo3(s,h) =0, s==x, helZ.

S alB Ao+ sh’

Recalling (7.28)), this is obvious When o' = 0. When ¢’ = —o we first note that s(m) = s(n). Indeed
the rebtrlctlon on the first sum in is (recall (7:23)) |m|, |n| > 3N/2, |om — on| < 4N*, which
implies s(m) = s(n) by (3.1). Then

olm| — o|n| = os(m)m — os(n)n = s(m)(om — on)

and (|7.32)) follows. We have proved that Fe Tr(No,3/2,4).
The Toplitz defect, defined by (3.29)), is

=Y B (whugug  with  Fg9( ZF”mnu Tl (7.33)

where the indexes in the two sums have the same restrictions as in ((7.23)-(7.25)), and

24i N
FoC = - 7.34
o,B,m,n QB! Nag + 0Am + 0N, (7:34)
24i 1 1
o = —-N -
@,8,m,n alp! ()\a”3+0'>\m0’)\n Aa,g + o|m| O’|Tl>
24i No(Am — Im| — A + |n|)

= a8 O+ hon — ohn) oy + o] — o)) (7.35)

We now proof that the coefficients in (7.34)-(7.35)) are bounded by a constant independent of N.
The coefficients in ([7.34) are bounded because

Aol < Z)\h(|ah| +18n]) < Z |hl(Jen] + 1Bnl) + \/IHZOOM +6n]) <4N* +2y/m
3 3 3

by (7.26)-(7.25) (note that A, < |h|+ +/m) and
Ma.s + A+ 0An] > A+ An| — [Aagl > 3N — AN — 2¢/m > 3N/2

for N > Ny large enough.

The coefficients in (|7.35)) are bounded by ([7.18)), (7.29)), and

- 1 2
N — || = Aa + || Nm( +oo) < sm,
2 \|m[ ~ |m[/ =3
Hence arguing as in the proof of Lemma we get
| Xzllr<R2. (7.36)
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In conclusion, (7.19)), (7.31)), (7.36) imply (7.22) (recall (3.30))). m

PROOF OF PROPOSITION [7.1] COMPLETED. We have

1 1 .
U H = N4 G = N+ {N,FH 4+ ) ~adip(N) + G+ ) —adp(G)
= 7! = 7!
[720) — A 1 i 1
= N+G+G+ZmadF(adF(N))+ZﬂadF(G)
i>1 i>1
= N+G+G+K
where, using again (7.20)),
1 S o— oA 1

K = ——ad%>(G+G -G —ad%G =: K1 + K. 7.37

;(Hl)!a (G H;uaF SR (7.37)

PROOF OF (|7.9). We claim that in the expansion of K in (7.37) there are only monomials u? with

7e7* ge {+, —}Zd, d > 3. Indeed F,G, G, G contain only monomials of degree four and, for any
monomial m, adp(m) contains only monomials of degree equal to the deg(m) 4+ 2. The restriction
& -7 = 0 follows by the Jacobi identity , since F,G,G,G preserve momentum, i.e. Poisson
commute with M.

Proor oF (7.10). We apply Propositionwith (no (x,y) variables and)

fom F gw{ngGG fforII({u P R, 1w RJ2, 512,
or Ao,

0~3/2, 0 ~2, p~4a, p~3,
Ny defined in Lemma and N{ > Ny satisfying (3.64) and
k(N TIn Ny <1, (6+rK)(NHEFTIn N, <1/2. (7.38)

Note that (3.65) follows by (7.38]). By (7.22)), the assumption (3.63) is verified for every 0 < R < Ry,
with Ry small enough. Then Proposition applies and ([7.10]) follows by (3.67)) (with h ~ 1), (7.2)),
[22) and (77). w

7.2 Action—angle variables

We introduce action-angle variables on the tangential sites Z := {j1,..., jn} (see (7.5))) via the analytic
and symplectic map
(z,y,2,%€) = (u, 1) (7.39)

defined by
Uy, 1= VE +y e, Uy, = V& +ye ™ 1=1,...,n, uj =2z, U =2, € Z\T. (7.40)

Let
Op::{feR”:ggflgp,lzl,...7n}. (7.41)

Lemma 7.5. (Domains) Let r, R, p > 0 satisfy
16r2 <p, p=C,R® with C7!:=48nk?Pe2(tan) (7.42)
Then, for all § € O, U Os,, the map
O(-5€) : D(s,2r) — D(R/2) := Brya x Bgyy C L4F x L*P (7.43)
is well defined and analytic (D(s,2r) is defined in and r in (3.1)).
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()
ProOF. Note first that for (z,y,2,2) € D(s,2r) we have (see (2.6)) that |y| < 47 "< p/4 < &,
V¢ € O, U Oy,. Then the map y; — /& + v is well defined and analytic. Moreover, for § < 2p,
l31| <k, z € TY, ||2]lap < 2r, we get

lu(z,y, 2, Z; €) ||2 Z € + y1)|e?im || |2Pe2alitl 4 Z B (j)2p e2alil
=1 JEZNT
S n(2p+§)e 2p62an 42-R2/4

proving (7.43) (the bound for @ is the same). W

Given a function F' : D(R/2) — C, the previous Lemma shows that the composite map F o ® :
D(s,2r) — C. The main result of this section is Proposition if F'is quasi-Toplitz in the variables
(u, 1) then the composite F o ® is quasi-Toplitz in the variables (z,y, z, Z) (see Definition .

We write
F=3% Fapmap, mapi= ()" @) @) @), (7.44)
o,
where
w=(uMu®), uM = {u}jer, u® = {uj}jen\z, similarly for @,
and

(@,8) = (@V +a®, 80 4+ 5@) (W, W) = {a;, B;}jez, (P, 8%)) :={a;,Bi}jemz - (7.45)
We define
MY = {FEHR . F= Y R 5uauﬁ} (7.46)
|2 480 |>d

Proposition 7.2. (Quasi—Toplitz) Let Ny, 0, u, i’ satisfying (3.1)) and
/ L b /Y
(W — )Ny > Ny, No27 2T < 1. (7.47)
If F € Qhy(No, 0, 1') N HE jp with d = 0,1, then f:= Fo® e QF (No,0,u) and

1F 1% N0 0,00, < BT/ B2 IF N R 2,0 0,0 - (7.48)

The rest of this section is devoted to the proof of Proposition Introducing the action-angle
variables ([7.40)) in (7.44]), and using the Taylor expansion

N (7 gl 1y =1)...(y=h+1)
1+¢t) = t =1 = h>1 7.49
arr= () (5) =1 () . bzl (a9
we get
bz i a® _g®
f =Fod= Z fk,i,a(2>,ﬁ(2)6 k yz Zﬁ (7.50)
ki), B(2)

with Taylor—Fourier coefficients

L T e/
_“<2

Tria® g = Z Fop Hﬁl

aM) g =k =1

: (7.51)
i

We need an upper bound on the binomial coefficients.
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Lemma 7.6. For |t| < 1/2 we have
: nl (5 k . e k
0) h%%m ‘(h)‘ <2 WE>0, (i) };m ‘(h)‘ < 3*[t|, Yk > 1. (7.52)
ProOF. By and the definition of majorant (see (2.11))) we have

Z‘( )‘th M(1+1t)® (M( £)z)* (ZK )‘th) < (Zth>k (7.53)

h>0 h>0 h>0

1
because ’(Z)‘ <1 by (7.49). For |t| < 1/2 the bound (7.53) implies ((7.52)-(¢). Ne

k k E_p EN | @32-0)
Z|t|h|(;>\s|t|2|t|h\(hil)\-t|Z|t| ()[BT <o (2)) BF
h>1 h>0 h>0

which implies (7.52))-(i7) for k > 1. B
Lemma 7.7. (M-regularity) If F € H‘Z—i/Q then f:= Fo® € Hg o, and

1X1lls.2r,0,00., < (87/R)* 2| XFllr/2 - (7.54)
Moreover if F' preserves momentum then so does F o ®.

PrOOF. We first bound the majorant norm

759).([7.16) i Lo )58
I£lls.2r,0,00., = sup sup Yo friae g ™y 2L (7.55)
£€0,UO02, (y,z,2)€ED(2r) ki |0 4B | >d
Fix o'?, 8 Since for all £ € 0, U Ogp, y € Bapy2, we have |y /&] < 1/2 by (7.42)), we have
> N f i a@ s |yl (7.56)
k i
, (1) 5

751 it i

( 2 ) Z (la(l)H_w(l)D'F o1 )+f3( ) H Z ( )’ (757>
a(l),ﬂ(l) 1=14,>0

7. n

{ SE’Q 3 es(la(“\+\ﬂ“’\)|Faﬁ|§7“(1)§"(l) H2a§1)+5§” (7.58)
a) g =1

< Y e R, l(2) ST Y0 VA = S (aet /)l AN B ).

O o) g

Then, substituting in ([7.55),

I flls,2r0,00,, < o sHuIH) G(z,2) where (7.59)
Zlla,p,l|Zlla,p<27
_ s 2413 @ 3@
Gz2) = 3 ety IR, 61250 (7.60)

a5 |>d

By (7.42)), for all ||z||a,p, |Z]la,p < 27, the vector (u*,u*) defined by

uj = u; = 2e°\/2p, j€T, uj = (R/(87))|z;], uj = (R/(87))|Z|, j€Z\T (7.61)
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belongs to Br/p X Brjs. Then, by (7.60)), recalling (2.11]), Definition (and since R/(8r) > 1 by
(7.42)),

G(2,2) < (8r/R)UMF)(u*,a*) < (8r/R)F|rj2s Y 2llagp: 1Zllap < 27
Hence by (7.59)
1£1ls.2r0,00s, < 8r/R)|F| /- (7.62)
This shows that f is M-regular. Similarly we get
102 fls,2r,0,00,, < ||8u(z>F||R/2(8r/R)d_1 , same for 05 . (7.63)

Moreover, by the chain rule, and (7.62)

102 flls.2r.0,005, < (10,0 Fllr/2 + 118500 Fllr/2) v 2p+ p/4e*(8r/R)"
eS
10y, flls.2r 000, < (18,0 Fllrs2 + ||3ﬂ51>F||R/2)7(87"/R)d~

p/2—p/4
Then (7.54)) follows by (7.42)) (recalling (2.2])). ®

(1)

@) (@) (@28 (45 in (744)) we set

Definition 7.1. For a monomial m, g := (u)"
p(ma,s) = () (o5 + 857, () := max{Ljl}. (7.64)

For any F as in (7.44), K € N, we define the projection

My>xFi= > Fapap, Mpeg:=1-T>k. (7.65)
p(ma,g)>K

Lemma 7.8. Let F' € Hg/o. Then

K
50, <2 2 X pop

|s.2r,0s, - (7.66)
PROOF. For each monomial m, g as in (7.44) with p(mg,g) > K we have

HX(HPEKF)O@

Ji

1) (1 NN @D _ _
la® 4 g0 = Za§})+ﬁ§f)gn NGl + 850) =k p(mays) > kUK
=1 =1

and then, V¢ € O, y € B2,
o) 451
|(ma“@ e} @)(x,y,z,é; §)| " |(§ +y) ;ﬁ el(au)_ﬁ(l))'wza(Z)25(2)| (767)

2_|a<1>+ﬂ<1>‘ W) 150
2 2

(26 +2y)°
< 2% |(map 0 D) (2, 2y, 2, 7 26)] .

(oM M)y, (2) _g2)
el(oc 8 )xza Zﬁ |

The bound (|7.66|) for the Hamiltonian vector field follows applying the above rescaling argument to
each component, and noting that the derivatives with respect to y in the vector field decrease the
degree in £ by one. B

Let Ny, 0, u, 1’ be as in Proposition For N > Ng and F' € Hpg 2 we set

f* = HNVQ,'U‘ ((F — HN,QM/F) o @) . (768)

Note that IIn g, is the projection on the bilinear functions in the variables u, %, while Il g, in the
variables x,y, z, Z.
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Lemma 7.9. We have ,
_nt
||Xf* ||S,r‘,(9p <277 +1HXFO¢'||5727"702¢7 : (7'69)

Proor. We first claim that if F = m, g is a monomial as in (7.44)) with p(m, ) < N® then f* = 0.
CASE 1: my g is (N, 0, /)-bilinear, see Deﬁnition Then Iy g vMa,g = Me g and f* =0, see
(7-63).
CASE 2: mq g is not (N, 0, p')-bilinear. Then IIn g, me 3 = 0 and f* = Iy, (Mag 0 D), see
(7.68). We claim that m,, g o ® is not (NN, 6, p)-bilinear, and so f* =Ty, (Ma,g 0 @) = 0. Indeed,

a(1)+[3(1)

mego®=({+y) 2 eil@V =)z a® 6@ (7.70)

s (N, 0, u)-bilinear if and only if (see Definitions and

La® 2@ a® 3(2)2;'”,22 7
ST il@EP + 8% < uNE, - |ml,[n] > 0N, o™ — g < NP (7.71)

FEINT

o) (1) &2

@) ugug is (N0, 1)-

n

We deduce the contradiction that m, 5 = (uM)* " (a1))?
bilinear because (recall that we suppose p(ma,5) < N°)

(u)?

1) --
ZIJ:\ Vs + Y il () p(Mma. ) + uNE < Nb 4+ uNE = (/NE .

JEZNT

For the general case, we divide F' = I, yo I + I, > no F'. By the above claim
I =Ty (((1d = Ty )Ty 5o F) 0 @) = T (T o (Td = T ) F) 0 @)

Finally, (7.69) follows by (2:80) and applying Lemma [7.8|to (IL,> y¢(Id — Iy g,/ )F) o . W

Lemma 7.10. Let F' € Tg/5(N,0, 1) with HysyeF = 0. Then F o ®(¢) € To0.(N,0,p'), VE €
0,U0,, .

PRrOOF. Recalling Definition we have
F= Z F? (s(m),om + o'n)ulul with F%7 (¢,h) € Lr>(N,i' h).
Im|,|n|>0N,0,0' =%
Composing with the map ® in , since m,n ¢ 7, we get
Fod= Z F7% (s(m),om + o'n) o ® 27, 2°

o,0'=%,|m|,|n|>0N

Each coefficient F7° (s(m),om + o'n) o ® depends on n,m, o, o’ only through s(m),om + o'n, 0,0’
Hence, in order to conclude that Fo® € 7, 5,(N, 0, 1') it remains only to prove that F“U/(s(m), om+
o'n)o® € L o.(N,u',om+0'n), see Deﬁnition Each monomial m, g of F7 (s(m),om+o'n) €
Lr/2(N, i ,om+ o'n) satisfies

n
> (g, + B3l + Y (a;+8)lil < W/ NF and  p(ma ) < N
=1 JEZ\T

by the hypothesis IT,> yo F' = 0. Hence mq 50 ® (see (7.70)) is (N, u)-low momentum, in particular
la) — M| < p(m,5) < N°. m
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PROOF OF PROPOSITION Since F' € QE/Q(NO,H,;/) (see Definition , for all N > Ny, there
is a Toplitz approximation F' € Tg /o (N,0,1) of F, namely
UnowF =F+NTE with | Xrllrs | Xalrso X pllrsz < 201 25,6, (7.72)
In order to prove that f:= Fo® € er(No, 0, 1) we define its candidate Toplitz approximation
fi=TNpu(Myene F) 0 @), (7.73

)
see ([7.65)). Lemmaapplied to M,y I € Try2(N, 0, ') implies that (M, nv F)o® € T, 5,(N, 0, 1))
and then, applying the projection Iy g, we get f € T.2.(N,0, 1) C T; (N, 6, 11). Moreover, by
and applying Lemma to Hp<NbF (note that Hp<Nbﬁ‘ is either zero or it is in H%/Q with d > 2
because it is bilinear), we get

759 _
IXfllsro, < 1Xm,_.,#osllsro, < (8r/R)* Xy, 7llry
50, @ ~
< Br/R) "2 FlI % 2.N0.0.0 - (7.74)

Moreover the Toplitz defect is

~ (7.73) ~
N(ygnf — F) B2 N1y (F — Ty ) 0 @)
NIy, ((F = F)o®) + NIy, ((F — oo ) 0 ®)

—~
|

S
3
&)
<
[=2]
<

=
[

T g u(F 0 ®) + Ny, ((F Ty F)o @) + Ny g (s o F) 0 @)

HN,G,M(F [e] q)) + Nf* -+ NHN797#((HPZNI7F) o (I)) .

b
Using (2.80)), Lemmata and imply that, since N2~ 2 t1 <1,VN > Ny by (7.47),

_Nb
1 X¢lsro, < I Xpogllsno, + N27 = ([ Xroslls 2r.0,, + 1 X poplls 2r,0.,)
< ||Xﬁo<p||s,2r,0p + ||XFO<I>||S,2r,(92,) + ||Xﬁ'oq>||s,2r,02,)
(7.54) _
< /R Xpllrs2 + 1XElRs2 + 1 X5l r/2) (7.75)
2 B
< /R T F N Ry, no 0, (7.76)

(to get ([7.75) we also note that F, P Fe HdR/2 with d = 0,1, unless are zero).

The bound ([7.48)) follows by (7.54)), (7.74])), (7.76). ®
We conclude this subsection with a lemma, similar to Lemma [7.7} used in Lemma (see (7.90)).
Lemma 7.11. Let ' € Hp)y, f = F o ® and f(z,y) == f(z,y,0,0) — f(z,0,0,0). Then, assuming
2}

1 Xflls.2r.0,000, <[IXFllRs2- (7.77)
Moreover if F preserves momentum then so does f.

PRrOOF. We proceed as in Lemma The main difference is that here there are no (z, z)-variables
and the sum in (7.56) runs over i # 0. Then in the product in (7.57) (at least) one of the sums

is on 4, > 1. Therefore we can use the second estimate in (7.52)) gaining a factor’| 8%/p (since
Iyl /1] < 8r%/p by (7.41)). Continuing as in the proof of Lemmal7.7| we get (recall (7.54) with d = 0)

)
1 X flls.2r.0,000, < (2 /p)(r/R) 2| XFllRs2 < I1XFlRs2

proving (7.77). ®

3 Actually we have the constant 3 instead of 2 in (7.58) and 3e® instead of 2¢* in (7.59) and (7.61).
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7.3 Proof of Theorem 1.1l

We now introduce the action-angle variables (7.40)) (via the map (7.39)) in the Birkhoff normal form
Hamiltonian (7.8]). Hence we obtain the parameter dependent family of Hamiltonians

H = Hpirkhos © P = N+P (778)
where (up to a constant), by (7.6),
1 N
Ni=w(@) -y + &2z, Pi=gAy-y+ By 22+ G(22) + K'(z,y,2,%8), (7.79)
W(f) ::®+A€7 W= ()\j13"'7)\j ), Q(f) :Q+B£a Q:: ()‘j)jEZ\Ia (780)

A = (Alh)lﬁl,hfru Alh = 12(2 — 5lh)7 B = (le)jeZ\I,lglgna le = 24, K, = K [¢] ‘I) . (781)

The parameters ¢ stay in the set O, defined in (7-41) with p = C.R? as in (7.42). As in (46) we
decompose the perturbation

P =Py + P where Py(z;€):=K'(2,0,0,0;¢), P:=P— Py. (7.82)

Lemma 7.12. Let s,r > 0 as in (7.42) and N large enough (w.r.t. m,Z,L,b). Then

1Xpo llsr < RO 72, |IPIIS 20 <r® + ROrTH (7.83)
and, for A\ >0,
[Xpoolar <(LHMPRT2, | Xp[0, < (L+A/p)(r? + Rr ), (7.84)
for & belonging to
2 3
O(p)::{feR" L SP<&< e, zz1,...,n}cc9p. (7.85)

PrROOF. By the definition (7.82)) we have

=1
IXpollsr < 1Xeollar < 1K IS n2s = 1K0®l5, N

[3) ry -2
T (5) 1K R e (7.36)
applying (7.48) with d ~ 0, Ng ~ N, 0 ~» 2, u ~ 2, u/ ~ 3) and taking N large enough so that
u [
(7.47) holds. Take also N > N{ defined in Proposition Then by (7.86) we get

(r

R
proving the first estimate in (7.83). Let us prove the second bound. By (7.82)) and (7.79) we write

3. (7o) ,r\—2 RS
HXP00||377' < ( ) R4<7

-2
T
=) KRy < 2

]5:%Ay-y+By.z2+é(z,2)+K1+K2 (7.87)
where
Ky = K'(z,y,2,%§) — K'(2,9,0,0;§), Kz := K'(z,9,0,0;§) — K'(,0,0,0;¢) .
Using (note that r < R by ) for N > Ny large enough to fulfill 7 we have by

T
<r?. (7.88)

1 N
HfAy-y—i-By 22+ G(z,2)
2 5,7 N,2,2
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By (7.48) (with d ~ 1, Ng ~ N, pp~ 2, i’ ~ 3), for N > No(m,Z, L, b) large enough, we get

r\ 1 R
1K o2 < () B <—- (7.89)
Moreover, since Ko does not depend on (z, Z), we have
&5 o
1K lsrnze = Xl < 1Xxllre < K Rp2n2s < R (7.90)
In conclusion, (7.87), (7-88), (7.89), (7.90) imply the second estimate in (|7.83):
T3 o

||P||er22<r +

Let us prove the estimates ) for the Llpschltz norm defined in (2.88]) (which involves only the
sup-norm of the vector ﬁelds). First

262 3 62) [733) B
Xeglsr < I Xpeollsr < B2, [ Xplsr < [Xpllsr < IIPIISTNM < 4+ R

Next, since the vector fields Xp,,, Xp are analytic in the parameters £ € O,, Cauchy estimates in

the domain O(p) C O, (see (7.85))) imply
|XpOO |s 00 < p M Xpy, ls,r0, < RSr—2, |XP|IS‘P; ) <P |Xp|5,r,op <r?+ Ror7t

and are proved. ]

All the assumptions of Theorems are fulfilled by H' in (7.78) with parameters & € O(p
defined in (7.85)). Note that the sets O = [p/2, p|™ defined in Theorem and O(p) defined in :|7.85

are diffeomorphic through & — (7p + 2¢;)/12. The hypothesis (A1)-(A2) follow from (7.80),
with

a@ =24 Y &, and My=24+|A|.

I=1,...,n

Then (A3)-(A4) and the quantitative bound (4.7)) follow by (7.83))-(7.84)), choosing

s=1,r=R"T p=C,R*asin (7.42), N asin Lemma(7.12l 6 =2, p=2, y=R*"5, (7.91)

and taking R small enough. Hence Theorem applies.
Let us verify that also the assumptions of Theorem [4.2)are fulfilled. Indeed (4.13)) follows by (7.80),
(7.81) with @ = 24(1,...,1) € R". The matrix A defined in (7.81) is invertible and

- - — 1 2
A7 = (A h<inen, A= ﬁ(% — - 5zh> .

Finally the non-degeneracy assumption (4.14) is satisfied because A = A7 and
4
1,....,1)¢&z" .
(L) ¢ 20
We deduce that the Cantor set of parameters O, C @ in (4.11)) has asymptotically full density because
|O|\O(|9<>o| g ~1,2/3 R2REIG+HYH _ pE 0.
The proof of Theorem [I.1] is now completed.

Remark 7.1. The terms kask in (1.2) contribute to the Hamiltonian (7.1)) with monomials of
k>5

order 6 or more and . holds (with a possibly different K satisfying (7.10)) ). On the contmry, the

term f4s m would add monomials of order 5 to the Hamiltonian in (7.1). Hence ) holds

with R? znstead ofR This estimate is not sufficient. These 5-th order terms should be Temoved by

a Birkhoff normal form. For simplicity, we did not pursue this point.

247G =
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8 Appendix

PROOF OF LEMMA We need some notation: we write £ = @J_lE Ey = (C")] |w), B2 :=
(C*| ), B5 :=E4 := é ” 50 that a vector v = (z,y, 2, Z) € E can be expressed by its four components

) e Ej, oM = g, v(2) =y, v®) =z, 0™ := z, and the norm (12.2) is
4 1@
v E;
follper = S 0B et py =5, =12, s =g (s.1)

We are now ready to prove (2.65). By definition

8 1)) |dX(Z | i
[4X @) lez ooy = s [dX@F )z Z
Y llE,s,-<1 \Y\IEST 4
LY dy X0 ()Y 9,
Cuima |
IV lls.r<1 )
d. o XD ()Y@ |,
S sup |'u(1) (/U) |Ez
1Y e,sr<1 =1 12
4
< sup Nl dyir X ()| (8, g,
HY“E,S,TSli;l p
4

11X . .
sup sup Z —7| (U)|E1|Y(3)\E

- / . 3
1Y llz.e r<1oeD(s,r) 520 Pi (P = 1))

by the Cauchy estimates in Banach spaces. Then

4 (i) 4 !\ —1]y )
pi | X (9|, p LY W|g,
ldX )l e(msmimery < sup Y= A Sup Z(l_pj-> P J
j

BeD(s,r) 51 pz Pi IYlle.«r <1525 j

L /' 71

S max 2 max (1- ] sup (| X (D)) g5, < 467X s

) 7. p 385 )
i=1,....4 p. j=1,...,4 Py BED(s,r)

7
by (2.53), (2.66). This proves (2.65). m
PROOF OF LEMMA [7.2] We first extend Lemma 4 of [28] proving that:

Lemma 8.1. If0<i<j<k<lwithitjtkxl=0 for SOME combination of plus and minus
signs and (i,7,k,1) # (p,p,q,q) for p,q € N, then, there exists an absolute constant ¢ > 0, such that

|+ Ai(m) 4+ \;(m) £ A\ (m) £ A\ (m)| > em(i2 + m)~3/2 (8.2)
for ALL possible combinations of plus and minus signs

PROOF. When i > 0 it is a reformulation of the statement of Lemma 4 of [28]. Let us prove it also for
1 =0. Then j + k £ = 0 for some combination of plus and minus signs. Since (3, j, k,1) # (0,0, ¢, q),
the only possibility is I = j + k with j > 1 (otherwise i = j = 0 and k = ). We have to study

O(m) := £Ao(m) £ \;(m) £ Ap(m) £ A\ (m)

for all possible combinations of plus and minus signs. To this end, we distinguish them according to
their number of plus and minus signs. To shorten notation we let, for example, 44—y = Ao + Aj —
Ak + A, similarly for the other combinations. The only interesting cases are when there are one or
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two minus signs. The case when there are no (or four) minus signs is trivial. When there are 3 minus
signs we reduce to the case with one minus sign by a global sign change.

One minus sign. Since 044 —4+,04+—44,0—444 > d444+— = 0 we study only the last case. We have
1/1 1 1 1 1 1
00)=4+k—-1=0, 5 = |-ttt |25 =
0) =7+ (m) 2<A0+Aj+xk )\l>2/\0 o/m

Therefore §(m) > v/m > em(1 + m)~%/2 for an absolute constant ¢ > 0.
Two minus signs. Now we have d_; _,0__,4 > d4__4 and all other cases reduce to these ones by

inverting signs. So we consider only § = d;__ 4. Since the function f(t) := v/t?> + m is monotone
increasing and convex for ¢ > 0, we have the estimate

>\l_)\k Z)\l,p—/\k,p, Vnggk (83)
Hence \j — A\, > X\j11 — Ay and A\jp1 — A > Ag — Ay (using j =1 —k > 1). Therefore
F=X0—A =AM > A=A — AL+ A1 > Ao — 20 + Ao > m(4+m) %2,

The last inequality follows since f”(t) = m(t?> + m)™%/? is decreasing and Ay — 2X; + Ao = f(2) —
20(1) + £(0) = [(€) > 1"(2) for some & € (0,2). m
We complete the proof of Lemma We first consider the trivial cases (7.12))-(7.14).

CASE ([7.12)). Since Z o; # 0 is even, ([7.16) follows by
oMl =13 0idgl = 205 = 2v/m > m(1 4+ m) "3/,

CASE . By &-7= (03 +04)qg=0, g # 0, we deduce o5 = —04. Hence follows by
lo - A7l = (01 + 02)Xo| = 2y/m > m(1 + m)_3/2

cask (7.14). Since 7= (p,p, —p, —p) and 01 = 03 then & - 7= 0 implies 03 = 04 = 0 and
o A = 40 = 422 + m > m(p? + m)~¥2 .

cAsE (7.15). Set |j1]| =: i, |j2| =: 4, |js| =: k, |ja| = I. After reordering we can assume 0 < i <
j < k <. Since, by assumption, & - 7= 0, the following combination of plus and minus signs gives
s(j1)o1i + s(j2)o2j + s(js)osk + s(ja)oal = 0. Hence Lemma implies for every 7 except
when [j1| = [j2] and [j3| = |ja| (in this case i = j and k = [ and Lemma [8.1] does not apply). We now
prove that holds also in these cases. We have that ¢ - A\; = (01 + 02) A, + (03 + 04)Aj, where
0q+0p = 0,12 so that holds trivially unless o1 + 03 = —(03 + 04). We consider this last case.
If 01 + 09 = —(03+04) = 0 then the equality ¢- 7= 01(j1 — j2) + 03(js — ja) = 0 implies that j1,...,js
are pairwise equal, contrary to our hypothesis. If o1 + 09 = £2 and i := |j1| < k := |j3| then

@B:3) (k>i)
‘52 )\f‘ 2 2)‘j3 — 2>‘j1 = 2)\k — 2)\Z g 2)\]@72' — 2)\0 Z 2)\1 — 2)\0 Z 1/\/1 +m
giving (7.16). If |j1]| = |j2| = |js] = |ja| and o1 + 02 = —(03 + 04) = £2 then the relation & - 7 =
o1(j1 + jo — js — ja) = 0 implies that the ji,...,js4 are pairwise equal, contrary to the hypothesis. B
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