
KAM theory for the

Hamiltonian derivative wave equation

Massimiliano Berti, Luca Biasco, Michela Procesi

Abstract: We prove an infinite dimensional KAM theorem which implies the existence of Cantor
families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave
equations.
2000AMS subject classification: 37K55, 35L05.

1 Introduction

In the last years many progresses have been done concerning KAM theory for nonlinear Hamiltonian
PDEs. The first existence results were given by Kuksin [20] and Wayne [32] for semilinear wave (NLW)
and Schrödinger equations (NLS) in one space dimension (1d) under Dirichlet boundary conditions,
see [27]-[28] and [23] for further developments. The approach of these papers consists in generating
iteratively a sequence of symplectic changes of variables which bring the Hamiltonian into a constant
coefficients (=reducible) normal form with an elliptic (=linearly stable) invariant torus at the origin.
Such a torus is filled by quasi-periodic solutions with zero Lyapunov exponents. This procedure
requires to solve, at each step, constant-coefficients linear “homological equations” by imposing the
“second order Melnikov” non-resonance conditions. Unfortunately these (infinitely many) conditions
are violated already for periodic boundary conditions.

In this case, existence of quasi-periodic solutions for semilinear 1d-NLW and NLS equations, was
first proved by Bourgain [5] by extending the Newton approach introduced by Craig-Wayne [11] for
periodic solutions. Its main advantage is to require only the “first order Melnikov” non-resonance
conditions (the minimal assumptions) for solving the homological equations. Actually, developing this
perspective, Bourgain was able to prove in [6], [8] also the existence of quasi-periodic solutions for
NLW and NLS (with Fourier multipliers) in higher space dimensions, see also the recent extensions
in [2], [3], [31]. The main drawback of this approach is that the homological equations are linear
PDEs with non-constant coefficients. Translated in the KAM language this implies a non-reducible
normal form around the torus and then a lack of informations about the stability of the quasi-periodic
solutions.

Later on, existence of reducible elliptic tori was proved by Chierchia-You [9] for semilinear 1d-
NLW, and, more recently, by Eliasson-Kuksin [14] for NLS (with Fourier multipliers) in any space
dimension, see also Procesi-Xu [30], Geng-Xu-You [16].

An important problem concerns the study of PDEs where the nonlinearity involves derivatives. A
comprehension of this situation is of major importance since most of the models coming from Physics
are of this kind.

In this direction KAM theory has been extended to deal with KdV equations by Kuksin [21]-[22],
Kappeler-Pöschel [19], and, for the 1d-derivative NLS (DNLS) and Benjiamin-Ono equations, by Liu-
Yuan [24]. The key idea of these results is again to provide only a non-reducible normal form around
the torus. However, in this cases, the homological equations with non-constant coefficients are only
scalar (not an infinite system as in the Craig-Wayne-Bourgain approach). We remark that the KAM
proof is more delicate for DNLS and Benjiamin-Ono, because these equations are less “dispersive” than
KdV, i.e. the eigenvalues of the principal part of the differential operator grow only quadratically at
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infinity, and not cubically as for KdV. As a consequence of this difficulty, the quasi-periodic solutions
in [21], [19] are analytic, in [24], only C∞. Actually, for the applicability of these KAM schemes, the
more dispersive the equation is, the more derivatives in the nonlinearity can be supported. The limit
case of the derivative nonlinear wave equation (DNLW) -which is not dispersive at all- is excluded by
these approaches.

In the paper [5] (which proves the existence of quasi-periodic solutions for semilinear 1d-NLS
and NLW), Bourgain claims, in the last remark, that his analysis works also for the Hamiltonian
“derivation” wave equation

ytt − yxx + g(x)y =
(
− d2

dx2

)1/2

F (x, y) ,

see also [7], page 81. Unfortunately no details are given. However, Bourgain [7] provided a detailed
proof of the existence of periodic solutions for the non-Hamiltonian equation

ytt − yxx + my + y2
t = 0 , m 6= 0 .

These kind of problems have been then reconsidered by Craig in [10] for more general Hamiltonian
derivative wave equations like

ytt − yxx + g(x)y + f(x,Dβy) = 0 , x ∈ T ,

where g(x) ≥ 0 and D is the first order pseudo-differential operator D :=
√
−∂xx + g(x). The

perturbative analysis of Craig-Wayne [11] for the search of periodic solutions works when β < 1. The
main reason is that the wave equation vector field gains one derivative and then the nonlinear term
f(Dβu) has a strictly weaker effect on the dynamics for β < 1. The case β = 1 is left as an open
problem. Actually, in this case, the small divisors problem for periodic solutions has the same level
of difficulty of quasi-periodic solutions with 2 frequencies.

The goal of this paper is to extend KAM theory to deal with the Hamiltonian derivative wave
equation

ytt − yxx + my + f(Dy) = 0 , m > 0 , D :=
√
−∂xx + m , x ∈ T , (1.1)

with real analytic nonlinearities (see Remark 7.1)

f(s) = as3 +
∑
k≥5

fks
k , a 6= 0 . (1.2)

We write equation (1.1) as the infinite dimensional Hamiltonian system

ut = −i∂ūH , ūt = i∂uH ,

with Hamiltonian
H(u, ū) :=

∫
T
ūDu+ F

(u+ ū√
2

)
dx , F (s) :=

∫ s

0

f , (1.3)

in the complex unknown

u :=
1√
2

(Dy + iyt) , ū :=
1√
2

(Dy − iyt) , i :=
√
−1 .

Setting u =
∑
j∈Z

uje
ijx (similarly for ū), we obtain the Hamiltonian in infinitely many coordinates

H =
∑
j∈Z

λjuj ūj +
∫

T
F
( 1√

2

∑
j∈Z

(ujeijx + ūje
−ijx)

)
dx (1.4)
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where
λj :=

√
j2 + m (1.5)

are the eigenvalues of the diagonal operator D. Note that the nonlinearity in (1.1) is x-independent im-

plying, for (1.3), the conservation of the momentum −i
∫

T
ū∂xu dx. This symmetry allows to simplify

somehow the KAM proof (a similar idea was used by Geng-You [15]).
For every choice of the tangential sites I := {j1, . . . , jn} ⊂ Z, n ≥ 2, the integrable Hamiltonian∑

j∈Z
λjuj ūj has the invariant tori {uj ūj = ξj , for j ∈ I , uj = ūj = 0 for j 6∈ I} parametrized by the

actions ξ = (ξj)j∈I ∈ Rn. The next KAM result states the existence of nearby invariant tori for the
complete Hamiltonian H in (1.4).

Theorem 1.1. The equation (1.1)-(1.2) admits Cantor families of small-amplitude, analytic, quasi-
periodic solutions with zero Lyapunov exponents and whose linearized equation is reducible to constant
coefficients. Such Cantor families have asymptotically full measure at the origin in the set of param-
eters.

The proof of Theorem 1.1 is based on the abstract KAM Theorem 4.1, which provides a reducible
normal form (see (4.12)) around the elliptic invariant torus, and on the measure estimates Theorem
4.2. The key point in proving Theorem 4.2 is the asymptotic bound (4.9) on the perturbed normal
frequencies Ω∞(ξ) after the KAM iteration. This allows to prove that the second order Melnikov
non-resonance conditions (4.11) are fulfilled for an asymptotically full measure set of parameters
(see (4.16)). The estimate (4.9), in turn, is achieved by exploiting the quasi-Töplitz property of the
perturbation. This notion has been introduced by Procesi-Xu [30] in the context of NLS in higher
space dimensions and it is similar, in spirit, to the Töplitz-Lipschitz property in Eliasson-Kuksin
[14]. The precise formulation of quasi-Töplitz functions, adapted to the DNLW setting, is given in
Definition 3.4 below.

Let us roughly explain the main ideas and techniques for proving Theorems 4.1, 4.2. These
theorems concern, as usual, a parameter dependent family of analytic Hamiltonians of the form

H = ω(ξ) · y + Ω(ξ) · zz̄ + P (x, y, z, z̄; ξ) (1.6)

where (x, y) ∈ Tn × Rn, z, z̄ are infinitely many variables, ω(ξ) ∈ Rn, Ω(ξ) ∈ R∞ and ξ ∈ Rn. The
frequencies Ωj(ξ) are close to the unperturbed frequencies λj in (1.5).

As well known, the main difficulty of the KAM iteration which provides a reducible KAM normal
form like (4.12) is to fulfill, at each iterative step, the second order Melnikov non-resonance conditions.
Actually, following the formulation of the KAM theorem given in [4], it is sufficient to verify

|ω∞(ξ) · k + Ω∞i (ξ)− Ω∞j (ξ)| ≥ γ

1 + |k|τ
, γ > 0 , (1.7)

only for the “final” frequencies ω∞(ξ) and Ω∞(ξ), see (4.11), and not along the inductive iteration.
The application of the usual KAM theory (see e.g. [20], [27]-[28]), to the DNLW equation provides

only the asymptotic decay estimate

Ω∞j (ξ) = j +O(1) for j → +∞ . (1.8)

Such a bound is not enough: the set of parameters ξ satisfying (1.7) could be empty. Note that for
the semilinear NLW equation (see e.g. [27]) the frequencies decay asymptotically faster, namely like
Ω∞j (ξ) = j +O(1/j).

The key idea for verifying the second order Melnikov non-resonance conditions (1.7) for DNLW is
to prove the higher order asymptotic decay estimate (see (4.9), (4.2))

Ω∞j (ξ) = j + a+(ξ) +
m
2j

+O(
γ2/3

j
) for j ≥ O(γ−1/3) (1.9)
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where a+(ξ) is a constant independent of j (an analogous expansion holds for j → −∞ with a
possibly different limit constant a−(ξ)). In this way infinitely many conditions in (1.7) are verified
by imposing only first order Melnikov conditions like |ω∞(ξ) · k + h| ≥ 2γ2/3/|k|τ , h ∈ Z. Indeed, for
i > j > O(|k|τγ−1/3), we get

|ω∞(ξ) · k + Ω∞i (ξ)− Ω∞j (ξ)| = |ω∞(ξ) · k + i− j +
m(i− j)

2ij
+O(γ2/3/j)|

≥ 2γ2/3|k|−τ −O(|k|/j2)−O(γ2/3/j) ≥ γ2/3|k|−τ

noting that i− j is integer and |i− j| = O(|k|) (otherwise no small divisors occur). We refer to section
6 for the precise arguments, see in particular Lemma 6.2.

The asymptotic decay (4.9) for the perturbed frequencies Ω∞(ξ) is achieved thanks to the “quasi-
Töplitz” property of the perturbation (Definition 3.4). Let us roughly explain this notion. The new
normal frequencies after each KAM step are Ω+

j = Ωj+P 0
j where the corrections P 0

j are the coefficients
of the quadratic form

P 0zz̄ :=
∑
j

P 0
j zj z̄j , P 0

j :=
∫

Tn
(∂2
zj z̄jP )(x, 0, 0, 0; ξ) dx .

We say that a quadratic form P 0 is quasi-Töplitz if it has the form

P 0 = T +R

where T is a Töplitz matrix (i.e. constant on the diagonals) and R is a “small” remainder satisfying
Rjj = O(1/j) (see Lemma 5.2). Then (1.9) follows with a := Tjj which is independent of j. The rate
of decay O(1/j) is the natural one for the application to the DNLW equation, due to the asymptotic
expansion

√
j2 + m = j + m/(2j) + O(1/j3) as j → +∞, see (5.12). We expect that the class of

quasi-Töplitz functions defined with a weaker decay, say O(1/|j|β), β > 0, would still be closed under
Poisson brackets, see below.

Since the quadratic perturbation P 0 along the KAM iteration does not depend only on the
quadratic perturbation at the previous steps, we need to extend the notion of quasi-Töplitz to general
(non-quadratic) analytic functions. The preservation of the quasi-Töplitz property of the perturba-
tions P at each KAM step (with just slightly modified parameters) holds in view of the following key
facts:

1. the Poisson bracket of two quasi-Töplitz functions is quasi-Töplitz (Proposition 3.1),

2. the hamiltonian flow generated by a quasi-Töplitz function preserves the quasi-Töplitz property
(Proposition 3.2),

3. the solution of the homological equation with a quasi-Töplitz perturbation is quasi-Töplitz
(Proposition 5.1).

We note that, in [14], the analogous properties 1 (and therefore 2) for Töplitz-Lipschitz functions is
proved only when one of them is quadratic.

The definition of quasi-Töplitz functions heavily relies on properties of projections. However, for
an analytic function in infinitely many variables, such projections may not be well defined unless the
Taylor-Fourier series (see (2.28)) is absolutely convergent. For such reason, instead of the sup-norm,
we use the majorant norm (see (2.12), (2.54)), for which the bounds (2.14) and (2.55) on projections
hold (see also Remark 2.4).

We underline that the majorant norm of a vector field introduced in (2.54) is very different from
the weighted norm introduced by Pöschel in [26]-Appendix C, which works only in finite dimension,
see comments in [26] after Lemma C.2 and Remark 2.3. In Section 2 we show its properties, in
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particular the key estimate of the majorant norm of the commutator of two vector fields (see Lemma
2.15). A related majorant norm for functions and vector fields is introduced in Bambusi-Grébert [1]
in a context of Sobolev spaces (and with tame modulus properties), see also [25].

Before concluding this introduction we also mention the recent KAM theorem of Grebért-Thomann
[18] for the quantum harmonic oscillator with semilinear nonlinearity. Also here the eigenvalues grow
to infinity only linearly. We quote the normal form results of Delort-Szeftel [12], Delort [13], for
quasi-linear wave equations, where only finitely many steps of normal form can be performed. Finally
we mention also the recent work by Gérard-Grellier [17] on Birkhoff normal form for a degenerate
“half-wave” equation.

The paper is organized as follows:

• In section 2 we define the majorant norm of formal power series of scalar functions (Defini-
tion 2.2) and vector fields (Definition 2.6) and we investigate the relations with the notion of
analiticity, see Lemmata 2.1, 2.2, 2.3, 2.11 and Corollary 2.1. Then we prove Lemma 2.15 on
commutators.

• In section 3 we define the Töplitz (Definition 3.3) and Quasi-Töplitz functions (Definition 3.4).
Then we prove that this class of functions is closed under Poisson brackets (Proposition 3.1) and
composition with the Hamiltonian flow (Proposition 3.2).

• In section 4 we state the abstract KAM Theorem 4.1. The first part of Theorem 4.1 follows by
the KAM Theorem 5.1 in [4]. The main novelty is part II, in particular the asymptotic estimate
(4.9) of the normal frequencies.

• In section 5 we prove the abstract KAM Theorem 4.1.
We first perform (as in Theorem 5.1 in [4]) a first normal form step, which makes Theorem 4.1
suitable for the direct application to the wave equation.
In Proposition 5.1 we prove that the solution of the homological equation with a quasi-Töplitz
perturbation is quasi-Töplitz. Then the main results of the KAM step concerns the asymptotic
estimates of the perturbed frequencies (section 5.2.3) and the Töplitz estimates of the new
perturbation (section 5.2.4).

• In section 6 we prove Theorem 4.2: the second order Melnikov non-resonance conditions are
fulfilled for a set of parameters with large measure, see (4.16). We use the conservation of
momentum to avoid the presence of double eigenvalues.

• In section 7 we finally apply the abstract KAM Theorem 4.1 to the DNLW equation (1.1)-(1.2),
proving Theorem 1.1. We first verify that the Hamiltonian (1.4) is quasi-Töplitz (Lemma 7.1),
as well as the Birkhoff normal form Hamiltonian (7.8) of Proposition 7.1. The main technical
difficulties concern the proof in Lemma 7.4 that the generating function (7.17) of the Birkhoff
symplectic transformation is also quasi-Töplitz (and the small divisors Lemma 7.2). In section
7.2 we prove that the perturbation, obtained after the introduction of the action-angle variables,
is still quasi-Töplitz (Proposition 7.2). Finally in section 7.3 we prove Theorem 1.1 applying
Theorems 4.1 and 4.2.

Acknowledgments : We thank Benoit Grébert for pointing out a technical mistake in the previous
version.

2 Functional setting

Given a finite subset I ⊂ Z (possibly empty), a ≥ 0, p > 1/2, we define the Hilbert space

`a,pI :=
{
z = {zj}j∈Z\I , zj ∈ C : ‖z‖2a,p :=

∑
j∈Z\I

|zj |2e2a|j|〈j〉2p <∞
}
.
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When I = ∅ we denote `a,p := `a,pI . We consider the direct product

E := Cn × Cn × `a,pI × `
a,p
I (2.1)

where n is the cardinality of I. We endow the space E with the (s, r)-weighted norm

v = (x, y, z, z̄) ∈ E , ‖v‖E := ‖v‖E,s,r =
|x|∞
s

+
|y|1
r2

+
‖z‖a,p
r

+
‖z̄‖a,p
r

(2.2)

where, 0 < s, r < 1, and |x|∞ := max
h=1,...,n

|xh|, |y|1 :=
n∑
h=1

|yh|. Note that, for all s′ ≤ s, r′ ≤ r,

‖v‖E,s′,r′ ≤ max{s/s′, (r/r′)2}‖v‖E,s,r . (2.3)

We shall also use the notations
z+
j = zj , z−j = z̄j .

We identify a vector v ∈ E with the sequence {v(j)}j∈J with indices in

J :=

{
j = (j1, j2), j1 ∈ {1, 2, 3, 4}, j2 ∈

{
{1, . . . , n} if j1 = 1, 2
Z \ I if j1 = 3, 4

}
(2.4)

and components

v(1,j2) := xj2 , v
(2,j2) := yj2 (1 ≤ j2 ≤ n), v(3,j2) := zj2 , v

(4,j2) := z̄j2 (j2 ∈ Z \ I) ,

more compactly
v(1,·) := x , v(2,·) := y, , v(3,·) := z, , v(4,·) := z̄ .

We denote by {ej}j∈J the orthogonal basis of the Hilbert space E, where ej is the sequence with
all zeros, except the j2-th entry of its j1-th components, which is 1. Then every v ∈ E writes
v =

∑
j∈J

v(j)ej , v(j) ∈ C. We also define the toroidal domain

D(s, r) := Tns ×D(r) := Tns ×Br2 ×Br ×Br ⊂ E (2.5)

where D(r) := Br2 ×Br ×Br,

Tns :=
{
x ∈ Cn : max

h=1,...,n
|Imxh| < s

}
, Br2 :=

{
y ∈ Cn : |y|1 < r2

}
(2.6)

and Br ⊂ `a,pI is the open ball of radius r centered at zero. We think Tn as the n-dimensional torus
Tn := 2πRn/Zn, namely f : D(s, r)→ C means that f is 2π-periodic in each xh-variable, h = 1, . . . , n.

Remark 2.1. If n = 0 then D(s, r) ≡ Br ×Br ⊂ `a,p × `a,p.

2.1 Majorant norm

2.1.1 Scalar functions

We consider formal power series with infinitely many variables

f(v) = f(x, y, z, z̄) =
∑

(k,i,α,β)∈I

fk,i,α,β e
ik·xyizαz̄β (2.7)

with coefficients fk,i,α,β ∈ C and multi-indices in

I := Zn × Nn × N(Z\I) × N(Z\I) (2.8)
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where
N(Z\I) :=

{
α := (αj)j∈Z\I ∈ NZ with |α| :=

∑
j∈Z\I

αj < +∞
}
. (2.9)

In (2.7) we use the standard multi-indices notation zαz̄β := Πj∈Z\I z
αj
j z̄

βj
j . We denote the monomials

mk,i,α,β(v) = mk,i,α,β(x, y, z, z̄) := eik·xyizαz̄β . (2.10)

Remark 2.2. If n = 0 the set I reduces to NZ×NZ and the formal series to f(z, z̄) =
∑

(α,β)∈I

fα,β z
αz̄β.

We define the “majorant” of f as(
Mf

)
(v) =

(
Mf

)
(x, y, z, z̄) :=

∑
(k,i,α,β)∈I

|fk,i,α,β |eik·xyizαz̄β . (2.11)

We now discuss the convergence of formal series.

Definition 2.1. A series ∑
(k,i,α,β)∈I

ck,i,α,β , ck,i,α,β ∈ C ,

is absolutely convergent if the function I 3 (k, i, α, β) 7→ ck,i,α,β ∈ C is in L1(I, µ) where µ is the
counting measure of I. Then we set ∑

(k,i,α,β)∈I

ck,i,α,β :=
∫

I
ck,i,α,β dµ .

By the properties of the Lebesgue integral, given any sequence {Il}l≥0 of finite subsets Il ⊂ I with
Il ⊂ Il+1 and ∪l≥0Il = I, the absolutely convergent series∑

k,i,α,β

ck,i,α,β :=
∑

(k,i,α,β)∈I

ck,i,α,β = lim
l→∞

∑
(k,i,α,β)∈Il

ck,i,α,β .

Definition 2.2. (Majorant-norm: scalar functions) The majorant-norm of a formal power series
(2.7) is

‖f‖s,r := sup
(y,z,z̄)∈D(r)

∑
k,i,α,β

|fk,i,α,β |e|k|s|yi||zα||z̄β | (2.12)

where |k| := |k|1 := |k1|+ . . .+ |kn|.

By (2.7) and (2.12) we clearly have ‖f‖s,r = ‖Mf‖s,r.
For every subset of indices I ⊂ I, we define the projection

(ΠIf)(x, y, z, z̄) :=
∑

(k,i,α,β)∈I

fk,i,α,βe
ik·xyizαz̄β (2.13)

of the formal power series f in (2.7). Clearly

‖ΠIf‖s,r ≤ ‖f‖s,r (2.14)

and, for any I, I ′ ⊂ I, it results
ΠIΠI′ = ΠI∩I′ = ΠI′ΠI . (2.15)

Property (2.14) is one of the main advantages of the majorant-norm with respect to the usual sup-norm

|f |s,r := sup
v∈D(s,r)

|f(v)| . (2.16)

We now define useful projectors on the time Fourier indices.
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Definition 2.3. Given ς = (ς1, . . . , ςn) ∈ {+,−}n we define

fς := Πςf := ΠZnς ×Nn×N(Z\I)×N(Z\I)f =
∑

k∈Znς ,i,α,β
fk,i,α,β e

ik·xyizαz̄β (2.17)

where

Znς :=
{
k ∈ Zn with

{
kh ≥ 0 if ςh = +
kh < 0 if ςh = −

∀ 1 ≤ h ≤ n
}
. (2.18)

Then any formal series f can be decomposed as

f =
∑

ς∈{+,−}n
Πςf (2.19)

and (2.14) implies ‖Πςf‖s,r ≤ ‖f‖s,r.
We now investigate the relations between formal power series with finite majorant norm and

analytic functions. We recall that a function f : D(s, r)→ C is

• analytic, if f ∈ C1(D(s, r),C), namely the Fréchet differential D(s, r) 3 v 7→ df(v) ∈ L(E,C)
is continuous,

• weakly analytic, if ∀v ∈ D(s, r), v′ ∈ E \ {0}, there exists ε > 0 such that the function

{ξ ∈ C , |ξ| < ε } 7→ f(v + ξv′) ∈ C

is analytic in the usual sense of one complex variable.

A well known result (see e.g. Theorem 1, page 133 of [29]) states that a function f is

analytic ⇐⇒ weakly analytic and locally bounded . (2.20)

Lemma 2.1. Suppose that the formal power series (2.7) is absolutely convergent for all v ∈ D(s, r).
Then f(v) and Mf(v), defined in (2.7) and (2.11), are well defined and weakly analytic in D(s, r).
If, moreover, the sup-norm |f |s,r <∞, resp. |Mf |s,r <∞, then f , resp. Mf , is analytic in D(s, r).

Proof. Since the series (2.7) is absolutely convergent the functions f , Mf , and, for all ς ∈ {+,−}n,
fς := Πςf , Mfς (see (2.17)) are well defined (also the series in (2.17) is absolutely convergent).

We now prove that each Mfς is weakly analytic, namely ∀v ∈ D(s, r), v′ ∈ E \ {0},

Mfς(v + ξv′) =
∑

k∈Znς ,i,α,β
|fk,i,α,β |mk,i,α,β(v + ξv′) (2.21)

is analytic in {|ξ| < ε}, for ε small enough (recall the notation (2.10)). Since each ξ 7→ mk,i,α,β(v +
ξv′) is entire, the analyticity of Mfς(v + ξv′) follows once we prove that the series (2.21) is totally
convergent, namely ∑

k∈Znς ,i,α,β
|fk,i,α,β | sup

|ξ|<ε
|mk,i,α,β(v + ξv′)| < +∞ . (2.22)

Let us prove (2.22). We claim that, for ε small enough, there is vς ∈ D(s, r) such that

sup
|ξ|<ε

∣∣mk,i,α,β(v + ξv′)
∣∣ ≤ mk,i,α,β(vς) , ∀k ∈ Znς , i, α, β . (2.23)

Therefore (2.22) follows by∑
k∈Znς ,i,α,β

|fk,i,α,β | sup
|ξ|<ε

|mk,i,α,β(v + ξv′)| ≤
∑

k∈Znς ,i,α,β
|fk,i,α,β |mk,i,α,β(vς)

= Mfς(vς) < +∞ .
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Let us construct vς ∈ D(s, r) satisfying (2.23). Since v = (x, y, z, z̄) ∈ D(s, r) we have x ∈ Tns and,
since Tns is open, there is 0 < s′ < s such that |Im(xh)| < s′, ∀1 ≤ h ≤ n. Hence, for ε small enough,

sup
|ξ|<ε

∣∣Im(x+ ξx′)h
∣∣ ≤ s′ < s , ∀ 1 ≤ h ≤ n . (2.24)

The vector vς := (xς , yς , zς , z̄ς) with components

xςh := −iςhs′ , yςh := |yh|+ ε|y′h| , 1 ≤ h ≤ n ,
zςh := |zh|+ ε|z′h| , z̄ςh := |z̄h|+ ε|z̄′h| , h ∈ Z , (2.25)

belongs to D(s, r) because |Imxςh| = s′ < s, ∀ 1 ≤ h ≤ n, and also (yς , zς , z̄ς) ∈ D(r) for ε small
enough, because (y, z, z̄) ∈ D(r) and D(r) is open. Moreover, ∀k ∈ Znς , by (2.24), (2.18) and (2.25),

sup
|ξ|<ε

∣∣eik·(x+ξx′)
∣∣ ≤ e|k|s′ = eik·xς . (2.26)

By (2.10), (2.25), (2.26), we get (2.23). Hence each Mfς is weakly analytic and, by the decomposition
(2.19), also f and Mf are weakly analytic. The final statement follows by (2.20).

Corollary 2.1. If ‖f‖s,r < +∞ then f and Mf are analytic and

|f |s,r, |Mf |s,r ≤ ‖f‖s,r . (2.27)

Proof. For all v = (x, y, z, z̄) ∈ Tns ×D(r), we have |eik·x| ≤ e|k|s and

|f(v)| , |Mf(v)| ≤
∑
k,i,α,β

|fk,i,α,β |e|k|s|yi||zα||z̄β |
(2.12)

≤ ‖f‖s,r < +∞

by assumption. Lemma 2.1 implies that f , Mf are analytic.
Now, we associate to any analytic function f : D(s, r)→ C the formal Taylor-Fourier power series

f(v) :=
∑

(k,i,α,β)∈I

fk,i,α,β e
ik·xyizαz̄β (2.28)

(as (2.7)) with Taylor-Fourier coefficients

fk,i,α,β :=
1

(2π)n

∫
Tn
e−ik·x 1

i!α!β!
(∂iy∂

α
z ∂

β
z̄ f)(x, 0, 0, 0) dx (2.29)

where ∂iy∂
α
z ∂

β
z̄ f are the partial derivatives1.

What is the relation between f and its formal Taylor-Fourier series f ?

Lemma 2.2. Let f : D(s, r) → C be analytic. If its associated Taylor-Fourier power series (2.28)-
(2.29) is absolutely convergent in D(s, r), and the sup-norm∣∣∣ ∑

k,i,α,β

fk,i,α,β e
ik·xyizαz̄β

∣∣∣
s,r

<∞ , (2.31)

then f = f, ∀ v ∈ D(s, r).

1For a multi-index α =
X

1≤j≤k
eij , |α| = k, the partial derivative is

∂αz f(x, y, z, z̄) :=
∂k

∂τ1 . . . ∂τk |τ=0

f(x, y, z + τ1ei1 + . . .+ τkeik , z̄) . (2.30)
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Proof. Since the Taylor-Fourier series (2.28)-(2.29) is absolutely convergent and (2.31) holds, by
Lemma 2.1 the function f : D(s, r)→ C is analytic. The functions f = f are equal if the Taylor-Fourier
coefficients

fk,i,α,β = fk,i,α,β , ∀ k, i, α, β , (2.32)

where the coefficients fk,i,α,β are defined from f as in (2.29). Let us prove (2.32). Indeed, for example,

f0,0,eh,0 =
1

(2π)n

∫
Tn

d

dξ |ξ=0

∑
k∈Zn,m∈N

fk,0,meh,0e
ik·xξm (2.33)

=
∑

k∈Zn,m∈N

1
(2π)n

∫
Tn

d

dξ |ξ=0

fk,0,meh,0e
ik·xξm = f0,0,eh,0 ,

using that the above series totally converge for r′ < r, namely∑
k∈Zn,m∈N

sup
x∈R, |ξ|≤r′

|fk,0,meh,0eik·xξm| ≤
∑

k∈Zn,m∈N
|fk,0,meh,0|(r′)m

≤
∑
k,i,α,β

|fk,i,α,βmk,i,α,β(0, 0, r′eh, 0)| <∞

recall (2.10). For the others k, i, α, β in (2.32) is analogous.
The above arguments also show the unicity of the Taylor-Fourier expansion.

Lemma 2.3. If an analytic function f : D(s, r) → C equals an absolutely convergent formal series,
i.e. f(v) =

∑
k,i,α,β

f̃k,i,α,βe
ik·xyizαz̄β, then its Taylor-Fourier coefficients (2.29) are fk,i,α,β = f̃k,i,α,β.

The majorant norm of f is equivalent to the sup-norm of its majorant Mf .

Lemma 2.4.
|Mf |s,r ≤ ‖f‖s,r ≤ 2n|Mf |s,r . (2.34)

Proof. The first inequality in (2.34) is (2.27). The second one follows by

‖Πςf‖s,r ≤ |Mf |s,r , ∀ ς ∈ {+,−}n , (2.35)

where Πςf is defined in (2.17). Let us prove (2.35). Let

D+(r) :=
{

(y, z, z̄) ∈ D(r) : yh ≥ 0 , ∀ 1 ≤ h ≤ n , zl, z̄l ≥ 0 ,∀ l ∈ Z \ I
}
.

For any 0 ≤ σ < s, we have

|Mf |s,r = sup
(x,y,z,z̄)∈D(s,r)

∣∣∣ ∑
k,i,α,β

|fk,i,α,β |eik·xyizαz̄β
∣∣∣

≥ sup
x1=−iς1σ,...,xn=−iςnσ,(y,z,z̄)∈D+(r)

∣∣∣ ∑
k,i,α,β

|fk,i,α,β |eik·xyizαz̄β
∣∣∣

(2.18)

≥ sup
(y,z,z̄)∈D+(r)

∑
k∈Znς ,i,α,β

|fk,i,α,β |e|k|σ|yi||zα||z̄β |

= sup
(y,z,z̄)∈D(r)

∑
k∈Znς ,i,α,β

|fk,i,α,β |e|k|σ|yi||zα||z̄β | = ‖Πςf‖σ,r .

Then (2.35) follows since for every function g we have sup
0≤σ<s

‖g‖σ,r = ‖g‖s,r .
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Definition 2.4. (Order relation: scalar functions) Given formal power series

f =
∑
k,i,α,β

fk,i,α,β e
ik·xyizαz̄β , g =

∑
k,i,α,β

gk,i,α,β e
ik·xyizαz̄β ,

with gk,i,α,β ∈ R+, we say that

f ≺ g if |fk,i,α,β | ≤ gk,i,α,β , ∀k, i, α, β . (2.36)

Note that, by the definition (2.11) of majorant series,

f ≺ g ⇐⇒ f ≺Mf ≺ g . (2.37)

Moreover, if ‖g‖s,r < +∞, then f ≺ g =⇒ ‖f‖s,r ≤ ‖g‖s,r.
For any ς ∈ {+,−}n define qς := (q(j)

ς )j∈J as

q(j)
ς :=

{
−ςh i if j = (1, h) , 1 ≤ h ≤ n ,
1 otherwise .

(2.38)

Lemma 2.5. Assume ‖f‖s,r, ‖g‖s,r < +∞. Then

f + g ≺Mf +Mg , f · g ≺Mf ·Mg (2.39)

and
M
(
∂j(Πςf)

)
= q(j)

ς ∂j
(
M(Πςf)

)
, j ∈ J , (2.40)

where ∂j is short for ∂v(j) and q(j)
ς are defined in (2.38).

Proof. Since the series which define f and g are absolutely convergent, the bounds (2.39) follow
by summing and multiplying the series term by term. Next (2.40) follows by differentiating the series
term by term.

An immediate consequence of (2.39) is

‖f + g‖s,r ≤ ‖f‖s,r + ‖g‖s,r , ‖f g‖s,r ≤ ‖f‖s,r‖g‖s,r . (2.41)

The next lemma extends property (2.39) for infinite series.

Lemma 2.6. Assume that f (j), g(j) are formal power series satisfying

1. f (j) ≺ g(j), ∀j ∈ J ,

2. ‖g(j)‖s,r <∞, ∀j ∈ J ,

3.
∑
j∈J
|g(j)(v)| <∞, ∀ v ∈ D(s, r),

4. g(v) :=
∑
j∈J

g(j)(v) is bounded in D(s, r), namely |g|s,r <∞.

Then the function g : D(s, r)→ C is analytic, its Taylor-Fourier coefficients (defined as in (2.29)) are

gk,i,α,β =
∑
j∈J

g
(j)
k,i,α,β ≥ 0 , ∀ (k, i, α, β) ∈ I , (2.42)

and ‖g‖s,r <∞. Moreover

1.
∑
j∈J
|f (j)(v)| <∞, ∀ v ∈ D(s, r),
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2. f(v) :=
∑
j∈J

f (j)(v) is analytic in D(s, r),

3. f ≺ g and ‖f‖s,r ≤ ‖g‖s,r <∞.

Proof. For each monomial mk,i,α,β(v) (see (2.10)) and v = (x, y, z, z̄) ∈ D(s, r), we have

|mk,i,α,β(v)| = mk,i,α,β(v+) , (2.43)

where v+ := (i Imx, |y|, |z|, |z̄|) ∈ D(s, r) with |y| := (|y1|, . . . , |yn|) and |z|, |z̄| are similarly defined.
Since ‖g(j)‖s,r <∞ (and f (j) ≺ g(j)) the series

g(j)(v) :=
∑
k,i,α,β

g
(j)
k,i,α,βmk,i,α,β(v) , g

(j)
k,i,α,β ≥ 0 (2.44)

is absolutely convergent. For all v ∈ D(s, r) we prove that∑
j∈J

∑
k,i,α,β

|g(j)
k,i,α,βmk,i,α,β(v)| (2.44),(2.43)

=
∑
j∈J

∑
k,i,α,β

g
(j)
k,i,α,βmk,i,α,β(v+)

(2.44)
=

∑
j∈J

g(j)(v+) = g(v+) <∞ (2.45)

by assumption 3. Therefore, by Fubini’s theorem, we exchange the order of the series

g(v) =
∑
j∈J

∑
k,i,α,β

g
(j)
k,i,α,βmk,i,α,β(v) =

∑
k,i,α,β

(∑
j∈J

g
(j)
k,i,α,β

)
mk,i,α,β(v) (2.46)

proving that g is equal to an absolutely convergent series. Lemma 2.1 and the assumption |g|s,r <∞
imply that g is analytic in D(s, r). Moreover (2.46) and Lemma 2.3 imply (2.42). The gk,i,α,β ≥ 0
because g(j)

k,i,α,β ≥ 0, see (2.44). Therefore Mg = g, and, by (2.34) and the assumption |g|s,r <∞, we
deduce ‖g‖s,r <∞.

Concerning f we have∑
j∈J
|f (j)(v)| ≤

∑
j∈J

∑
k,i,α,β

∣∣∣f (j)
k,i,α,βmk,i,α,β(v)

∣∣∣ ≤∑
j∈J

∑
k,i,α,β

g
(j)
k,i,α,β |mk,i,α,β(v)|

(2.45)
< ∞

and, arguing as for g, its Taylor-Fourier coefficients are fk,i,α,β =
∑
j∈J

f
(j)
k,i,α,β , ∀(k, i, α, β) ∈ I. Then

|fk,i,α,β | ≤
∑
j∈J
|f (j)
k,i,α,β | ≤

∑
j∈J

g
(j)
k,i,α,β

(2.42)
= gk,i,α,β .

Hence f ≺ g and ‖f‖s,r ≤ ‖g‖s,r <∞. Finally f is analytic by Lemma 2.1.

Lemma 2.7. Let ‖f‖s,r <∞. Then, ∀0 < s′ < s, 0 < r′ < r, we have ‖∂jf‖s′,r′ <∞.

Proof. It is enough to prove the lemma for each fς = Πςf defined in (2.17). By ‖f‖s,r < ∞ and
Corollary 2.1 the functions fς , Mfς are analytic and

‖∂jfς‖s′,r′
(2.34)

≤ 2n|M(∂jfς)|s′,r′
(2.40)

= 2n|∂j(Mfς)|s′,r′ ≤ c|Mfς |s,r
(2.34)

≤ c‖fς‖s,r

for a suitable c := c(n, s, s′, r, r′), having used the Cauchy estimate (in one variable).
We conclude this subsection with a simple result on representation of differentials.
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Lemma 2.8. Let f : D(s, r)→ C be Fréchet differentiable at v0. Then

df(v0)[v] =
∑
j∈J

∂jf(v0)v(j) , ∀v =
∑
j∈J

v(j)ej ∈ E , (2.47)

and ∑
j∈J
|∂jf(v0)v(j)| ≤ ‖df(v0)‖L(E,C)‖v‖E . (2.48)

Proof. (2.47) follows by the continuity of the differential df(v0) ∈ L(E,C). Next, consider a vector
ṽ = (ṽ(j))j∈J ∈ E such that |ṽj | = |vj | and

ṽ(j)(∂jf)(v0) = |(∂jf)(v0)v(j)| , ∀ j ∈ J .

Hence df(v0)[ṽ] =
∑
j∈J

ṽ(j)(∂jf)(v0) =
∑
j∈J
|(∂jf)(v0)v(j)| which gives (2.48) because ‖ṽ‖E = ‖v‖E .

2.1.2 Vector fields

We now consider a formal vector field

X(v) :=
(
X(j)(v)

)
j∈J

(2.49)

where each component X(j) is a formal power series

X(j)(v) = X(j)(x, y, z, z̄) =
∑
k,i,α,β

X
(j)
k,i,α,β e

ik·xyizαz̄β (2.50)

as in (2.7). We define its “majorant” vector field componentwise, namely

MX(v) :=
(

(MX)(j)(v)
)
j∈J

:=
(
MX(j)(v)

)
j∈J

. (2.51)

We consider vector fields X : D(s, r) ⊂ E → E, see (2.1).

Definition 2.5. The vector field X is absolutely convergent at v if every component X(j)(v), j ∈ J ,
is absolutely convergent (see Definition 2.1) and∥∥∥(X(j)(v)

)
j∈J

∥∥∥
E
< +∞ .

The properties of the space E in (2.1) (as target space), that we will use are:

1. E is a separable Hilbert space times a finite dimensional space,

2. the “monotonicity property” of the norm

v0, v1 ∈ E with |v(j)
0 | ≤ |v

(j)
1 | , ∀ j ∈ J =⇒ ‖v0‖E ≤ ‖v1‖E . (2.52)

For X : D(s, r)→ E we define the sup-norm

|X|s,r := sup
v∈D(s,r)

‖X(v)‖E,s,r . (2.53)
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Definition 2.6. (Majorant-norm: vector field) The majorant norm of a formal vector field X
as in (2.49) is

‖X‖s,r := sup
(y,z,z̄)∈D(r)

∥∥∥( ∑
k,i,α,β

|X(j)
k,i,α,β |e

|k|s|yi||zα||z̄β |
)
j∈J

∥∥∥
E,s,r

= sup
(y,z,z̄)∈D(r)

∥∥∥ ∑
k,i,α,β

|Xk,i,α,β |e|k|s|yi||zα||z̄β |
∥∥∥
E,s,r

(2.54)

where
Xk,i,α,β :=

(
X

(j)
k,i,α,β

)
j∈J and |Xk,i,α,β | :=

(
|X(j)

k,i,α,β |
)
j∈J .

Remark 2.3. The stronger norm (see [27])

||X||s,r :=
∥∥∥( sup

(y,z,z̄)∈D(r)

∑
k,i,α,β

|X(j)
k,i,α,β |e

|k|s|yi||zα||z̄β |
)
j∈J

∥∥∥
E,s,r

is not suited for infinite dimensional systems: for X = Id we have ||X||s,r = +∞.

By (2.54) and (2.51) we get ‖X‖s,r = ‖MX‖s,r. For a subset of indices I ⊂ I we define the projection

(ΠIX)(x, y, z, z̄) :=
∑

(k,i,α,β)∈I

Xk,i,α,β e
ik·xyizαz̄β .

Lemma 2.9. (Projection) ∀I ⊂ I,

‖ΠIX‖s,r ≤ ‖X‖s,r . (2.55)

Proof. See (2.54).

Remark 2.4. The estimate (2.55) may fail for the sup-norm | |s,r and suitable I.

Let us define the “ultraviolet” reps. infrared projections

(Π|k|≥KX)(x, y, z, z̄) :=
∑

|k|≥K,i,α,β

Xk,i,α,β e
ik·xyizαz̄β , Π|k|<K := Id−Π|k|≥K . (2.56)

Lemma 2.10. (Smoothing) ∀ 0 < s′ < s,

‖Π|k|≥KX‖s′,r ≤
s

s′
e−K(s−s′)‖X‖s,r . (2.57)

Proof. Recall (2.54) and use e|k|s
′
≤ e|k|se−K(s−s′), ∀|k| ≥ K.

We decompose each formal vector field

X =
∑

ς∈{+,−}n
ΠςX (2.58)

applying (2.19) componentwise
Xς := ΠςX :=

(
ΠςX

(j)
)
j∈J

(2.59)

recall (2.17). Clearly (2.55) implies
‖Xς‖s,r ≤ ‖X‖s,r . (2.60)

In the next lemma we prove that, if X has finite majorant norm, then it is analytic.
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Lemma 2.11. Assume
‖X‖s,r < +∞ . (2.61)

Then the series in (2.49)-(2.50), resp. (2.51), absolutely converge to the analytic vector field X(v),
resp. MX(v), for every v ∈ D(s, r). Moreover the sup-norm defined in (2.53) satisfies

|X|s,r, |MX|s,r ≤ ‖X‖s,r . (2.62)

Proof. By (2.61) and Definition 2.6, for each j ∈ J , we have

sup
(y,z,z̄)∈D(r)

∑
k,i,α,β

|X(j)
k,i,α,β |e

|k|s|yi||zα||z̄β | < +∞

and Lemma 2.1 (and Corollary 2.1) implies that each coordinate function X(j), (MX)(j) : D(s, r)→ C
is analytic. Moreover (2.62) follows applying (2.27) componentwise. By (2.61) the maps

X , MX : D(s, r)→ E

are bounded. Since E is a separable Hilbert space (times a finite dimensional space), Theorem 3-
Appendix A in [29], implies that X, MX : D(s, r)→ E are analytic.

Viceversa, we associate to an analytic vector field X : D(s, r)→ E a formal Taylor-Fourier vector
field (2.49)-(2.50) developing each component X(j) as in (2.28)-(2.29).

Definition 2.7. (Order relation: vector fields) Given formal vector fields X, Y , we say that

X ≺ Y

if each coordinate X(j) ≺ Y (j), j ∈ J , according to Definition 2.4.

If ‖Y ‖s,r < +∞ and
X ≺ Y =⇒ ‖X‖s,r ≤ ‖Y ‖s,r . (2.63)

Applying Lemma 2.5 component-wise we get

Lemma 2.12. If ‖X‖s,r, ‖Y ‖s,r <∞ then X + Y ≺MX +MY and ‖X + Y ‖s,r ≤ ‖X‖s,r + ‖Y ‖s,r.

Lemma 2.13.
|MX|s,r ≤ ‖X‖s,r ≤ 2n|MX|s,r . (2.64)

Proof. As for Lemma 2.4 with f  X, |
∑
k,i,α,β

| ‖
∑
k,i,α,β

‖E and using (2.52).

We define the space of analytic vector fields

Vs,r := Vs,r,E :=
{
X : D(s, r)→ E with norm ‖X‖s,r < +∞

}
.

By Lemma 2.11 if X ∈ Vs,r then X is analytic, namely the Fréchet differential D(s, r) 3 v 7→ dX(v) ∈
L(E,E) is continuous. The next lemma bounds its operator norm from (E, s, r) := (E, ‖ ‖E,s,r) to
(E, s′, r′), see (2.2).

Lemma 2.14. (Cauchy estimate) Let X ∈ Vs,r. Then, for s/2 ≤ s′ < s, r/2 ≤ r′ < r,

sup
v∈D(s′,r′)

‖dX(v)‖L((E,s,r),(E,s′,r′)) ≤ 4δ−1|X|s,r (2.65)

where the sup-norm |X|s,r is defined in (2.53) and

δ := min
{

1− s′

s
, 1− r′

r

}
. (2.66)
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Proof. In the Appendix.
The commutator of two vector fields X,Y : D(s, r)→ E is

[X,Y ](v) := dX(v)[Y (v)]− dY (v)[X(v)] , ∀ v ∈ D(s, r) . (2.67)

The next lemma is the fundamental result of this section.

Lemma 2.15. (Commutator) Let X,Y ∈ Vs,r. Then, for r/2 ≤ r′ < r, s/2 ≤ s′ < s,

‖[X,Y ]‖s′,r′ ≤ 22n+3δ−1‖X‖s,r‖Y ‖s,r (2.68)

where δ is defined in (2.66).

Proof. The lemma follows by

‖dX[Y ]‖s′,r′ ≤ 4n+2δ−1‖X‖s,r‖Y ‖s,r , (2.69)

the analogous estimate for dY [X] and (2.67).
We claim that, for each ς ∈ {+,−}n, the vector field Xς defined in (2.59) satisfies

‖dXς [Y ]‖s′,r′ ≤ 2n+2δ−1‖Xς‖s,r‖Y ‖s,r (2.70)

which implies (2.69) because

‖dX[Y ]‖s′,r′
(2.58)

≤
∑

ς∈{+,−}n
‖dXς [Y ]‖s′,r′

(2.70)

≤
∑

ς∈{+,−}n
2n+2δ−1‖Xς‖s,r‖Y ‖s,r

(2.60)

≤
∑

ς∈{+,−}n
2n+2δ−1‖X‖s,r‖Y ‖s,r ≤ 4n+2δ−1‖X‖s,r‖Y ‖s,r .

Let us prove (2.70). First note that, since ‖Xς‖s,r
(2.60)

≤ ‖X‖s,r < +∞ and ‖Y ‖s,r < +∞ by
assumption, Lemma 2.11 implies that the vector fields

Xς ,MXς , Y,MY : D(s, r)→ E , ∀ς ∈ {+,−}n , (2.71)

are analytic, as well as each component X(i)
ς ,MX(i)

ς , Y (i),MY (i) : D(s, r)→ C, i ∈ J .
The key for proving the lemma is the following chain of inequalities:

dXς [Y ](i) ≺M(dXς [Y ])(i) (2.47)
= M

(∑
j∈J

(∂jX(i)
ς )Y (j)

)
Lemma 2.6
≺

∑
j∈J

M(∂jX(i)
ς )MY (j) (2.72)

(2.40)
=

∑
j∈J

q(j)
ς ∂j

(
MX(i)

ς

)
MY (j) (2.47)

= d
(
MX(i)

ς

)[
Ỹq]

where
Ỹq := (Ỹ (j)

q )j∈J := (q(j)
ς MY (j))j∈J ∈ E . (2.73)

Actually, since |q(j)
ς | = 1 (see (2.38)), then

‖Ỹq(v)‖E = ‖MY (v)‖E
(2.71)
< +∞ , ∀v ∈ D(s, r) . (2.74)

In (2.72) above we applied Lemma 2.6 with

s s′ , r  r′ , f (j)  (∂jX(i)
ς )Y (j) , g(j)  M(∂jX(i)

ς )MY (j) . (2.75)

Let us verify that the hypotheses of Lemma 2.6 hold:
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1. f (j) ≺ g(j) follows by (2.39) and since ‖f (j)‖s′,r′ , ‖g(j)‖s′,r′ < +∞ because ‖X(i)
ς ‖s,r ≤ ‖X‖s,r <

+∞, ‖Y (j)‖s,r ≤ ‖Y ‖s,r < +∞, and Lemma 2.7.

2. ‖g(j)‖s′,r′ <∞ is proved above.

3. We have
∑
j∈J
|g(j)(v)| <∞, for all v ∈ D(s′, r′), because

∑
j∈J
|g(j)(v)| (2.75)

=
∑
j∈J
|M(∂jX(i)

ς )(v)MY (j)(v)|(2.40)
=
∑
j∈J
|q(j)
ς ∂j

(
MX(i)

ς

)
(v)MY (j)(v)|

(2.38)
=

∑
j∈J
|∂j
(
MX(i)

ς

)
(v)MY (j)(v)|

(2.48)

≤ ‖dMX(i)
ς (v)‖L(E,C)‖MY (v)‖E < +∞

by (2.71), (2.74). Actually we also proved that g(j) = q(j)
ς ∂j

(
MX(i)

ς

)
MY (j).

4. The function

g(v) :=
∑
j∈J

g(j)(v) =
∑
j∈J

q(j)
ς ∂j

(
MX(i)

ς

)
MY (j) (2.47)

= d
(
MX(i)

ς

)[
Ỹq]

since MX(i)
ς is differentiable (see (2.71)) and Ỹq ∈ E (see (2.74)).

Moreover the bound |g|s′,r′ <∞ follows by

|g|s′,r′ = |d
(
MX(i)

ς

)[
Ỹq]|s′,r′ ≤ |d

(
MXς

)[
Ỹq]|s′,r′

and

|d
(
MXς

)[
Ỹq]|s′,r′

(2.53)
= sup

v∈D(s′,r′)

∥∥∥d(MXς

)
(v)
[
Ỹq(v)

]∥∥∥
E,s′,r′

≤ sup
v∈D(s′,r′)

∥∥∥d(MXς

)
(v)
∥∥∥
L((E,s,r),(E,s′,r′))

‖Ỹq(v)‖E,s,r

(2.65)

≤ 4δ−1|MXς |s,r sup
v∈D(s′,r′)

‖Ỹq(v)‖E,s,r

(2.62),(2.74)

≤ 4δ−1‖Xς‖s,r sup
v∈D(s′,r′)

‖
(
MY

)
(v)‖E,s,r

(2.53)

≤ 4δ−1‖Xς‖s,r|MY |s,r
(2.64)

≤ 4δ−1‖Xς‖s,r‖Y ‖s,r < +∞ (2.76)

because ‖Y ‖s,r < +∞ and ‖Xς‖s,r ≤ ‖X‖s,r < +∞ by assumption.

Hence Lemma 2.6 implies

dX(i)
ς [Y ]

(2.47)
=

∑
j

(∂jX(i)
ς )Y (j) =: f

Lemma 2.6
≺ g := d

(
MX(i)

ς

)[
Ỹq] , ∀i ∈ J ,

namely, by (2.37) and Definition 2.7,

dXς [Y ] ≺M(dXς [Y ]) ≺ d
(
MXς

)[
Ỹq] . (2.77)

Hence (2.73) is fully justified. By (2.77) and (2.63) we get

‖dXς [Y ]‖s′,r′ ≤ ‖d
(
MXς

)[
Ỹq]‖s′,r′

(2.64)

≤ 2n
∣∣∣M(d(MXς

)[
Ỹq]
)∣∣∣
s′,r′

= 2n
∣∣∣d(MXς

)[
Ỹq]
∣∣∣
s′,r′

(2.78)

because d
(
MXς

)[
Ỹq] coincides with its majorant by (2.77). Finally (2.70) follows by (2.78), (2.76).
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2.2 Hamiltonian formalism

Given a function H : D(s, r) ⊂ E → C we define the associated Hamiltonian vector field

XH := (∂yH,−∂xH,−i∂z̄H, i∂zH) (2.79)

where the partial derivatives are defined as in (2.30).
For a subset of indices I ⊂ I, the bound (2.55) implies

‖XΠIH‖s,r ≤ ‖XH‖s,r . (2.80)

The Poisson brackets are defined by

{H,K} := {H,K}x,y + {H,K}z,z̄

:=
(
∂xH · ∂yK − ∂xK · ∂yH

)
+ i
(
∂zH · ∂z̄K − ∂z̄H · ∂zK

)
= ∂xH · ∂yK − ∂xK · ∂yH + i∂z+H · ∂z−K − i∂z−H · ∂z+K

= ∂xH · ∂yK − ∂xK · ∂yH + i
∑

σ=±, j∈Z\I

σ∂zσj H ∂z−σj
K (2.81)

where “ · ” denotes the standard pairing a · b :=
∑
j

ajbj . We recall the Jacobi identity

{{K,G}, H}+ {{G,H},K}+ {{H,K}, G} = 0 . (2.82)

Along this paper we shall use the Lie algebra notations

adF := { , F} , eadF :=
∞∑
k=0

adkF
k!

. (2.83)

Given a set of indices
I := {j1, . . . , jn} ⊂ Z , (2.84)

we define the momentum

M :=MI :=
n∑
l=1

jl yl +
∑
j∈Z\I

jzj z̄j =
n∑
l=1

jl yl +
∑
j∈Z\I

jz+
j z
−
j .

We say that a function H satisfies momentum conservation if {H,M} = 0.
By (2.81), any monomial eik·xyizαz̄β is an eigenvector of the operator adM, namely

{eik·xyizαz̄β ,M} = π(k, α, β)eik·xyizαz̄β (2.85)

where

π(k, α, β) :=
n∑
l=1

jlkl +
∑
j∈Z\I

j(αj − βj) . (2.86)

We refer to π(k, α, β) as the momentum of the monomial eik·xyizαz̄β . A monomial satisfies momentum
conservation if and only if π(k, α, β) = 0. Moreover, a power series (2.7) with ‖f‖s,r < +∞ satisfies
momentum conservation if and only if all its monomials have zero momentum.

Let O ⊂ Rn be a subset of parameters, and

f : D(s, r)×O → C with Xf : D(s, r)×O → E . (2.87)
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For λ > 0, we consider

|Xf |λs,r,O := |Xf |λs,r := sup
O
|Xf |s,r + λ|Xf |lips,r (2.88)

:= sup
ξ∈O
|Xf (ξ)|s,r + λ sup

ξ,η∈O, ξ 6=η

|Xf (ξ)−Xf (η)|s,r
|ξ − η|

.

Note that | · |λs,r is only a semi-norm on spaces of functions f because the Hamiltonian vector field
Xf = 0 when f is constant.

Definition 2.8. A function f as in (2.87) is called

• regular, if the sup-norm |Xf |s,r,O := sup
O
|Xf |s,r <∞, see (2.53).

• M-regular, if the majorant norm ‖Xf‖s,r,O := sup
O
‖Xf‖s,r <∞, see (2.54).

• λ-regular, if the Lipschitz semi-norm |Xf |λs,r,O <∞, see (2.88).

We denote by Hs,r the space of M-regular Hamiltonians and by Hnull
s,r its subspace of functions satisfying

momentum conservation.
When I = ∅ (namely there are no (x, y)-variables) we denote the space of M-regular functions

simply by Hr, similarly Hnull
r , and we drop s form the norms, i.e. | · |r, ‖ · ‖r, | · |r,O, etc.

Note that, by (2.62) and (2.88), we have

M− regular =⇒ regular ⇐= λ− regular . (2.89)

If H, F satisfy momentum conservation, the same holds for {H,K}. Indeed by the Jacobi identity
(2.82),

{M, H} = 0 and {M,K} = 0 =⇒ {M, {H,K}} = 0 . (2.90)

For H,K ∈ Hs,r we have

X{H,K} = dXH [XK ]− dXK [XH ] = [XH , XK ] (2.91)

and the commutator Lemma 2.15 implies the fundamental lemma below.

Lemma 2.16. Let H,K ∈ Hs,r. Then, for all r/2 ≤ r′ < r, s/2 ≤ s′ < s

‖X{H,K}‖s′,r′ = ‖[XH , XK ]‖s′,r′ ≤ 22n+3δ−1‖XH‖s,r‖XK‖s,r (2.92)

where δ is defined in (2.66).

Unlike the sup-norm, the majorant norm of a function is very sensitive to coordinate transforma-
tions. For our purposes, we only need to consider close to identity canonical transformations that are
generated by an M -regular Hamiltonian flow. We show below that the M -regular functions are closed
under this group and we estimate the majorant norm of the transformed Hamiltonian vector field.

Lemma 2.17. (Hamiltonian flow) Let r/2 ≤ r′ < r, s/2 ≤ s′ < s, and F ∈ Hs,r with

‖XF ‖s,r < η := δ/(22n+5e) (2.93)

with δ defined in (2.66). Then the time 1-hamiltonian flow

Φ1
F : D(s′, r′)→ D(s, r)

is well defined, analytic, symplectic, and, ∀H ∈ Hs,r, we have H ◦ Φ1
F ∈ Hs′,r′ and

‖XH◦Φ1
F
‖s′,r′ ≤

‖XH‖s,r
1− η−1‖XF ‖s,r

. (2.94)

Finally if F,H ∈ Hnull
s,r then H ◦ Φ1

F ∈ Hnull
s′,r′ .
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Proof. We estimate by Lie series the Hamiltonian vector field of

H ′ = H ◦ Φ1
F = eadFH =

∞∑
k=0

adkFH
k!

=
∞∑
k=0

H(k)

k!
, i.e. XH′ =

∞∑
k=0

XH(k)

k!
, (2.95)

where H(i) := adiF (H) = adF (H(i−1)), H(0) := H.
For each k ≥ 0, divide the intervals [s′, s] and [r′, r] into k equal segments and set

si := s− i s− s
′

k
, ri := r − i r − r

′

k
, i = 0, . . . , k .

By (2.92) we have

‖XH(i)‖si,ri = ‖[XF , XH(i−1) ]‖si,ri ≤ 22n+3δ−1
i ‖XH(i−1)‖si−1,ri−1‖XF ‖si−1,ri−1 (2.96)

where

δi := min
{

1− si
si−1

, 1− ri
ri−1

}
≥ δ

k
. (2.97)

By (2.96)-(2.97) we deduce

‖XH(i)‖si,ri ≤ 22n+3kδ−1‖XH(i−1)‖si−1,ri−1‖XF ‖si−1,ri−1 , i = 1, . . . , k .

Iterating k-times, and using ‖XF ‖si−1,ri−1 ≤ 4‖XF ‖s,r (see (2.3))

‖XH(k)‖s′,r′ ≤ (22n+5kδ−1)k‖XH‖s,r‖XF ‖ks,r . (2.98)

By (2.95), using kk ≤ ekk! and recalling the definition of η in (2.93), we estimate

‖XH′‖s′,r′
(2.95)

≤
∞∑
k=0

‖XH(k)‖s′,r′
k!

(2.98)

≤ ‖XH‖s,r
∞∑
k=0

(22n+5kδ−1‖XF ‖s,r)k

k!

≤ ‖XH‖s,r
∞∑
k=0

(η−1‖XF ‖s,r)k
(2.93)

=
‖XH‖s,r

1− η−1‖XF ‖s,r

proving (2.94).
Finally, if F and H satisfy momentum conservation then each adkFH, k ≥ 1, satisfy momentum

conservation. For k = 1 it is proved in (2.90) and, for k > 1, it follows by induction and the Jacobi
identity (2.82). By (2.95) we conclude that also H ◦ Φ1

F satisfies momentum conservation.
We conclude this section with two simple lemmata.

Lemma 2.18. Let P =
∑

|k|≤K,i,α,β

Pk,i,α,βe
ik·xyizαz̄β and |∆k,i,α,β | ≥ γ〈k〉−τ , ∀|k| ≤ K, i, α, β. Then

F :=
∑

|k|≤K,i,α,β

Pk,i,α,β
∆k,i,α,β

eik·xyizαz̄β satisfies ‖XF ‖s,r ≤ γ−1Kτ‖XP ‖s,r .

Proof. By Definition 2.6 and |∆k,i,α,β | ≥ γK−τ for all |k| ≤ K.

Lemma 2.19. Let P =
∑
j∈Z\I

Pjzj z̄j with ‖XP ‖r <∞. Then |Pj | ≤ ‖XP ‖r.

Proof. By (2.79) and Definition 2.6 we have

‖XP ‖2r = 2 sup
‖z‖a,p<r

∑
h∈Z\I

|Ph|2
|zh|2

r2
e2a|h|〈h〉2p ≥ |Pj |2

by evaluating at z(j)
h := δjhe

−a|j|〈j〉pr/
√

2.
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3 Quasi-Töplitz functions

Let N0 ∈ N, θ, µ ∈ R be parameters such that

1 < θ, µ < 6 , 12NL−1
0 + 2κN b−1

0 < 1 , κ := max
1≤l≤n

|jl| , (3.1)

(the jl are defined in (2.84)) where
0 < b < L < 1 . (3.2)

For N ≥ N0, we decompose
`a,pI × `

a,p
I = `a,pL ⊕ `

a,p
R ⊕ `

a,p
H (3.3)

where
`a,pL := `a,pL (N) :=

{
w = (z+, z−) ∈ `a,pI × `

a,p
I : zσj = 0 , σ = ± , ∀|j| ≥ 6NL

}
`a,pR := `a,pR (N) :=

{
w = (z+, z−) ∈ `a,pI × `

a,p
I : zσj = 0 , σ = ± , unless 6NL < |j| < N

}
`a,pH := `a,pH (N) :=

{
w = (z+, z−) ∈ `a,pI × `

a,p
I : zσj = 0 , σ = ± , ∀|j| ≤ N

}
.

Note that by (3.1)-(3.2) the subspaces `a,pL ∩ `
a,p
H = 0 and `a,pR 6= 0. Accordingly we decompose any

w ∈ `a,p × `a,p as w = wL + wR + wH

and we call wL ∈ `a,pL the “low momentum variables” and wH ∈ `a,pH the “high momentum variables”.
We split the Poisson brackets in (2.81) as

{·, ·} = {·, ·}x,y + {·, ·}L + {·, ·}R + {·, ·}H

where
{H,K}H := i

∑
σ=±, |j|>cN

σ∂zσj H ∂z−σj
K . (3.4)

The other Poisson brackets {·, ·}L, {·, ·}R are defined analogously with respect to the splitting (3.3).

Lemma 3.1. Consider two monomials m = ck,i,α,βe
ik·xyizαz̄β and m′ = c′k′,i′,α′,β′e

ik′·xyi
′
zα
′
z̄β
′
.

The momentum of mm′, {m,m′}, {m,m′}x,y, {m,m′}L, {m,m′}R, {m,m′}H , equals the sum of the
momenta of each monomial m, m′.

Proof. By (2.86), (2.81), and

π(k + k′, α+ α′, β + β′) = π(k, α, β) + π(k′, α′, β′) = π(k, α− ej , β) + π(k′, α′, β′ − ej) ,

for any j ∈ Z.
We now define subspaces of Hs,r (recall Definition 2.8).

Definition 3.1. (Low-momentum) A monomial eik·xyizαz̄β is (N,µ)-low momentum if∑
j∈Z\I

|j|(αj + βj) < µNL , |k| < N b . (3.5)

We denote by
Ls,r(N,µ) ⊂ Hs,r

the subspace of functions
g =

∑
gk,i,α,βe

ik·xyizαz̄β ∈ Hs,r (3.6)
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whose monomials are (N,µ)-low momentum. The corresponding projection

ΠL
N,µ : Hs,r → Ls,r(N,µ) (3.7)

is defined as ΠL
N,µ := ΠI (see (2.13)) where I is the subset of I (see (2.8)) satisfying (3.5). Finally,

given h ∈ Z, we denote by
Ls,r(N,µ, h) ⊂ Ls,r(N,µ)

the subspace of functions whose monomials satisfy

π(k, α, β) + h = 0 . (3.8)

By (3.5), (3.1)-(3.2), any function in Ls,r(N,µ), 1 < µ < 6, only depends on x, y, wL and therefore

g, g′ ∈ Ls,r(N,µ) =⇒ gg′, {g, g′}x,y, {g, g′}L do not depend on wH . (3.9)

Moreover, by (2.86), (3.1), (3.5), if

|h| ≥ µNL + κN b =⇒ Ls,r(N,µ, h) = ∅ . (3.10)

Definition 3.2. ((N, θ, µ)-bilinear) We denote by

Bs,r(N, θ, µ) ⊂ Hnull
s,r

the subspace of the (N, θ, µ)-bilinear functions defined as

f :=
∑

|m|,|n|>θN,σ,σ′=±

fσ,σ
′

m,n (x, y, wL)zσmz
σ′

n with fσ,σ
′

m,n ∈ Ls,r(N,µ, σm+ σ′n) (3.11)

and we denote the projection
ΠN,θ,µ : Hs,r → Bs,r(N, θ, µ) .

Explicitely, for g ∈ Hs,r as in (3.6), the coefficients in (3.11) of f := ΠN,θ,µg are

fσ,σ
′

m,n (x, y, wL) :=
∑

(k,i,α,β) s.t. (3.5) holds
and π(k,α,β)=−σm−σ′n

fσ,σ
′

k,i,α,β,m,ne
ik·xyizαz̄β (3.12)

where

f+,+
k,i,α,β,m,n := (2− δmn)−1gk,i,α+em+en,β , f+,−

k,i,α,β,m,n := gk,i,α+em,β+en ,

f−,−k,i,α,β,m,n := (2− δmn)−1gk,i,α,β+em+en , f−,+k,i,α,β,m,n := gk,i,α+en,β+em . (3.13)

For parameters 1 < θ < θ′, 6 > µ > µ′, we have

Bs,r(N, θ′, µ′) ⊂ Bs,r(N, θ, µ) .

Remark 3.1. The projection ΠN,θ,µ can be written in the form ΠI , see (2.13), for a suitable I ⊂ I.
The representation in (3.11) is not unique. It becomes unique if we impose the “symmetric” conditions

fσ,σ
′

m,n = fσ
′,σ

n,m . (3.14)

Note that the coefficients in (3.12)-(3.13) satisfy (3.14).

22



3.1 Töplitz functions

Let N ≥ N0.

Definition 3.3. (Töplitz) A function f ∈ Bs,r(N, θ, µ) is (N, θ, µ)-Töplitz if the coefficients in
(3.11) have the form

fσ,σ
′

m,n = fσ,σ
′(
s(m), σm+ σ′n

)
for some fσ,σ

′
(ς, h) ∈ Ls,r(N,µ, h) , (3.15)

with s(m) := sign(m), ς = +,− and h ∈ Z. We denote by

Ts,r := Ts,r(N, θ, µ) ⊂ Bs,r(N, θ, µ)

the space of the (N, θ, µ)-Töplitz functions.

For parameters N ′ ≥ N , θ′ ≥ θ, µ′ ≤ µ, r′ ≤ r, s′ ≤ s we have

Ts,r(N, θ, µ) ⊆ Ts′,r′(N ′, θ′, µ′) . (3.16)

Lemma 3.2. Consider f, g ∈ Ts,r(N, θ, µ) and p ∈ Ls,r(N,µ1, 0) with 1 < µ, µ1 < 6. For all
0 < s′ < s , 0 < r′ < r and θ′ ≥ θ, µ′ ≤ µ one has

ΠN,θ′,µ′{f, p}L , ΠN,θ′,µ′{f, p}x,y ∈ Ts′,r′(N, θ′, µ′) . (3.17)

If moreover
µNL + κN b < (θ′ − θ)N (3.18)

then
ΠN,θ′,µ′{f, g}H ∈ Ts′,r′(N, θ′, µ′) . (3.19)

Proof. Write f ∈ Ts,r(N, θ, µ) as in (3.11) where fσ,σ
′

m,n satisfy (3.15) and (3.14), namely

fσ,σ
′

m,n = fσ
′,σ

n,m = fσ,σ
′
(s(m), σm+ σ′n) ∈ Ls,r(N,µ, σm+ σ′n) , (3.20)

similarly for g.
Proof of (3.17). Since the variables zσm, zσ

′

n , |m|, |n| > θN , are high momentum,

{fσ,σ
′

m,n z
σ
mz

σ′

n , p}L = {fσ,σ
′

m,n , p}L zσmzσ
′

n

and {fσ,σ
′

m,n , p}L does not depend on wH by (3.9) (recall that fσ,σ
′

m,n , p ∈ Ls,r(N,µ)). The coefficient
of zσmz

σ′

n in ΠN,θ′,µ′{f, p}L is

ΠL
N,µ′{fσ,σ

′

m,n , p}L
(3.20)

= ΠL
N,µ′{fσ,σ

′
(s(m), σm+ σ′n) , p}L ∈ Ls′,r′(N,µ′, σm+ σ′n)

using Lemma 3.1 (recall that p has zero momentum). The proof that ΠN,θ′,µ′{f, p}x,y ∈ Ts′,r′(N, θ′, µ′)
is analogous.
Proof of (3.19). A direct computation, using (3.4), gives

{f, g}H =
∑

|m|,|n|>θN, σ,σ′=±

pσ,σ
′

m,nz
σ
mz

σ′

n

with
pσ,σ

′

m,n = 2i
∑

|l|>θN , σ1=±

σ1

(
fσ,σ1
m,l g

−σ1,σ
′

l,n + fσ
′,σ1

n,l g−σ1,σ
l,m

)
. (3.21)
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By (3.9) the coefficient pσ,σ
′

m,n does not depend on wH . Therefore

ΠN,θ′,µ′{f, g}H =
∑

|m|,|n|>θ′N, σ,σ′=±

qσ,σ
′

m,nz
σ
mz

σ′

n with qσ,σ
′

m,n := ΠL
N,µ′p

σ,σ′

m,n (3.22)

(recall (3.7)). It results qσ,σ
′

m,n ∈ Ls′,r′(N,µ′, σm+ σ′n) by (3.22), (3.21), and Lemma 3.1 since, i.e.,

fσ,σ1
m,l ∈ Ls,r(N,µ, σm+ σ1l) and g−σ1,σ

′

l,n ∈ Ls,r(N,µ,−σ1l + σ′n) .

Hence the (N, θ′, µ′)-bilinear function ΠN,θ′,µ′{f, g}H in (3.22) is written in the form (3.11). It remains
to prove that it is (N, θ′, µ′)-Töplitz, namely that for all |m|, |n| > θ′N , σ, σ′ = ±,

qσ,σ
′

m,n = qσ,σ
′(
s(m), σm+ σ′n

)
for some qσ,σ

′
(ς, h) ∈ Ls,r(N,µ′, h) . (3.23)

Let us consider in (3.21)-(3.22) the term (with m,n, σ, σ′, σ1 fixed)

ΠL
N,µ′

∑
|l|>θN

fσ,σ1
m,l g

−σ1,σ
′

l,n (3.24)

(the other is analogous). Since f, g ∈ Ts,r(N, θ, µ) we have

fσ,σ1
m,l = fσ,σ1

(
s(m), σm+ σ1l

)
∈ Ls,r(N,µ, σm+ σ1l) (3.25)

g−σ1,σ
′

l,n = g−σ1,σ
′(
s(l),−σ1l + σ′n

)
∈ Ls,r(N,µ,−σ1l + σ′n) . (3.26)

By (3.10), (3.25), (3.26), if the coefficients fσ,σ1
m,l , g−σ1,σ

′

l,n are not zero then

|σm+ σ1l| , | − σ1l + σ′n| < µNL + κN b . (3.27)

By (3.27), (3.1), we get cN > |σm+σ1l| = |σσ1s(m)|m|+s(l)|l||, which implies, since |m| > θ′N > N
(see (3.22)), that the sign

s(l) = −σσ1s(m) . (3.28)

Moreover

|l| ≥ |m| − |σm+ σ1l|
(3.27)
> θ′N − µNL − κN b

(3.18)
> θN .

This shows that the restriction |l| > θN in the sum (3.24) is automatically met. Then

ΠL
N,µ′

∑
|l|>θN

fσ,σ1
m,l g

−σ1,σ
′

l,n

(3.26)
= ΠL

N,µ′

∑
l∈Z

fσ,σ1
(
s(m), σm+ σ1l

)
g−σ1,σ

′(
s(l),−σ1l + σ′n

)
= ΠL

N,µ′

∑
j∈Z

fσ,σ1
(
s(m), j

)
g−σ1,σ

′(
s(l), σm+ σ′n− j

)
(3.28)

= ΠL
N,µ′

∑
j∈Z

fσ,σ1
(
s(m), j

)
g−σ1,σ

′(
− σσ1s(m), σm+ σ′n− j

)
depends only on s(m) and σm+ σ′n, i.e. (3.23).

3.2 Quasi-Töplitz functions

Given f ∈ Hs,r and f̃ ∈ Ts,r(N, θ, µ) we set

f̂ := N(ΠN,θ,µf − f̃) . (3.29)

All the functions f ∈ Hs,r below possibly depend on parameters ξ ∈ O, see (2.87). For simplicity we
shall often omit this dependence and denote ‖ ‖s,r,O = ‖ ‖s,r.
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Definition 3.4. (Quasi-Töplitz) A function f ∈ Hnull
s,r is called (N0, θ, µ)-quasi-Töplitz if the quasi-

Töplitz semi-norm

‖f‖Ts,r := ‖f‖Ts,r,N0,θ,µ := sup
N≥N0

[
inf

f̃∈Ts,r(N,θ,µ)

(
max{‖Xf‖s,r, ‖Xf̃‖s,r, ‖Xf̂‖s,r}

)]
(3.30)

is finite. We define

QTs,r := QTs,r(N0, θ, µ) :=
{
f ∈ Hnull

s,r : ‖f‖Ts,r,N0,θ,µ <∞
}
.

In other words, a function f is (N0, θ, µ)-quasi-Töplitz with semi-norm ‖f‖Ts,r if, for all N ≥ N0,
∀ε > 0, there is f̃ ∈ Ts,r(N, θ, µ) such that

ΠN,θ,µf = f̃ +N−1f̂ and ‖Xf‖s,r , ‖Xf̃‖s,r , ‖Xf̂‖s,r ≤ ‖f‖
T
s,r + ε . (3.31)

We call f̃ ∈ Ts,r(N, θ, µ) a “Töplitz approximation” of f and f̂ the “Töplitz-defect”. Note that, by
Definition 3.3 and (3.29)

ΠN,θ,µf̃ = f̃ , ΠN,θ,µf̂ = f̂ .

By the definition (3.30) we get
‖Xf‖s,r ≤ ‖f‖Ts,r (3.32)

and we complete (2.89) noting that

quasi-Töplitz =⇒ M− regular =⇒ regular ⇐= λ− regular . (3.33)

Clearly, if f is (N0, θ, µ)-Töplitz then f is (N0, θ, µ)-quasi-Töplitz and

‖f‖Ts,r,N0,θ,µ = ‖Xf‖s,r . (3.34)

Then we have the following inclusions

Ts,r ⊂ QTs,r , Bs,r ⊂ Hnull
s,r ⊂ Hs,r .

Note that neither Bs,r ⊆ QTs,r nor Bs,r ⊇ QTs,r.

Lemma 3.3. For parameters N1 ≥ N0, µ1 ≤ µ, θ1 ≥ θ, r1 ≤ r, s1 ≤ s, we have

QTs,r(N0, θ, µ) ⊂ QTs1,r1(N1, θ1, µ1)

and
‖f‖Ts1,r1,N1,θ1,µ1

≤ max{s/s1, (r/r1)2}‖f‖Ts,r,N0,θ,µ . (3.35)

Proof. By (3.31), for all N ≥ N1 ≥ N0 (since θ1 ≥ θ, µ1 ≤ µ)

ΠN,θ1,µ1f = ΠN,θ1,µ1ΠN,θ,µf = ΠN,θ1,µ1 f̃ +N−1ΠN,θ1,µ1 f̂ .

The function ΠN,θ1,µ1 f̃ ∈ Ts1,r1(N, θ1, µ1) and

‖XΠN,θ1,µ1 f̃
‖s1,r1

(2.80)

≤ ‖Xf̃‖s1,r1
(3.31)

≤ ‖f‖Ts1,r1 + ε ,

‖XΠN,θ1,µ1 f̂
‖s1,r1

(2.80)

≤ ‖Xf̂‖s1,r1
(3.31)

≤ ‖f‖Ts1,r1 + ε .

Hence, ∀N ≥ N1,

inf
f̃∈Ts1,r1 (N,θ1,µ1)

(
max{‖Xf‖s1,r1 , ‖Xf̃‖s1,r1 , ‖Xf̂‖s1,r1}

)
≤ ‖f‖Ts1,r1 + ε ,
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applying (2.3) we have (3.35), because ε > 0 is arbitrary.
For f ∈ Hs,r we define its homogeneous component of degree l ∈ N,

f (l) := Π(l)f :=
∑

k∈Zn , 2|i|+|α|+|β|=l

fk,i,α,β e
ik·xyizαz̄β , (3.36)

and the projections

fK := Π|k|≤Kf :=
∑

|k|≤K,i,α,β

fk,i,α,β e
ik·xyizαz̄β , Π>Kf := f −Π|k|≤Kf . (3.37)

We also set
f≤2
K := Π|k|≤Kf≤2 , f≤2 := f (0) + f (1) + f (2) . (3.38)

The above projectors Π(l), Π|k|≤K , Π>K have the form ΠI , see (2.13), for suitable subsets I ⊂ I.

Lemma 3.4. (Projections) Let f ∈ QTs,r(N0, θ, µ). Then, for all l ∈ N, K ∈ N,

‖Π(l)f‖Ts,r,N0,θ,µ ≤ ‖f‖
T
s,r,N0,θ,µ (3.39)

‖f≤2‖Ts,r,N0,θ,µ , ‖f − f
≤2
K ‖

T
s,r,N0,θ,µ ≤ ‖f‖

T
s,r,N0,θ,µ (3.40)

‖Π|k|≤Kf‖Ts,r,N0,θ,µ ≤ ‖f‖
T
s,r,N0,θ,µ (3.41)

‖Πk=0Π|α|=|β|=1Π(2)f‖Tr,N0,θ,µ ≤ ‖Π
(2)f‖Ts,r,N0,θ,µ (3.42)

and, ∀ 0 < s′ < s,
‖Π>Kf‖Ts′,r,N0,θ,µ ≤ e

−K(s−s′) s

s′
‖f‖Ts,r,N0,θ,µ . (3.43)

Proof. We first note that by (2.15) (recall also Remark 3.1) we have

Π(l) ΠN,θ,µg = ΠN,θ,µ Π(l)g , ∀ g ∈ Hs,r . (3.44)

Then, applying Π(l) in (3.31), we deduce that, ∀N ≥ N0, ∀ε > 0, there is f̃ ∈ Ts,r(N, θ, µ) such that

Π(l)ΠN,θ,µf = ΠN,θ,µΠ(l)f = Π(l)f̃ +N−1Π(l)f̂ (3.45)

and, by (2.80), (3.31),

‖XΠ(l)f‖s,r , ‖XΠ(l)f̃‖s,r , ‖XΠ(l)f̂‖s,r ≤ ‖f‖
T
s,r + ε . (3.46)

We claim that Π(l)f̃ ∈ Ts,r(N, θ, µ), ∀l ≥ 0. Hence (3.45)-(3.46) imply Π(l)f ∈ QTs,r(N0, θ, µ) and

‖Π(l)f‖Ts,r ≤ ‖f‖Ts,r + ε ,

i.e. (3.39). Let us prove our claim. For l = 0, 1 the projection Π(l)f̃ = 0 because f̃ ∈ Ts,r(N, θ, µ)
is bilinear. For l ≥ 2, write f̃ in the form (3.11) with coefficients f̃σ,σ

′

m,n satisfying (3.15). Then also
g := Π(l)f̃ has the form (3.11) with coefficients

gσ,σ
′

m,n = Π(l−2)f̃σ,σ
′

m,n

which satisfy (3.15) noting that Π(l)Ls,r(N,µ, h) ⊂ Ls,r(N,µ, h). Hence g ∈ Ts,r(N, θ, µ), ∀l ≥ 0,
proving the claim. The proof of (3.40), (3.41), (3.42), and (3.43) are similar (use also (2.57)).
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Lemma 3.5. Assume that, ∀N ≥ N∗, we have the decomposition

G = G′N +G′′N with ‖G′N‖Ts,r,N,θ,µ ≤ K1 , N‖XΠN,θ,µG′′N
‖s,r ≤ K2 . (3.47)

Then ‖G‖Ts,r,N∗,θ,µ ≤ max{‖XG‖s,r,K1 +K2}.

Proof. By assumption, ∀N ≥ N∗, we have ‖G′N‖Ts,r,N,θ,µ ≤ K1. Then, ∀ε > 0, there exist
G̃′N ∈ Ts,r(N, θ, µ), Ĝ′N , such that

ΠN,θ,µG
′
N = G̃′N +N−1Ĝ′N and ‖XG̃′N

‖s,r, ‖XĜ′N
‖s,r ≤ K1 + ε . (3.48)

Therefore, ∀N ≥ N∗,

ΠN,θ,µG = G̃N +N−1ĜN , G̃N := G̃′N , ĜN := Ĝ′N +NΠN,θ,µG
′′
N

where G̃N ∈ Ts,r(N, θ, µ) and

‖XG̃N
‖s,r = ‖XG̃′N

‖s,r
(3.48)

≤ K1 + ε, (3.49)

‖XĜN
‖s,r ≤ ‖XĜ′N

‖s,r +N‖XΠN,θ,µG′′N
‖s,r

(3.48),(3.47)

≤ K1 + ε+K2 . (3.50)

Then G ∈ QTs,r,N∗,θ,µ and

‖G‖Ts,r,N∗,θ,µ ≤ sup
N≥N∗

max
{
‖XG‖s,r, ‖XG̃N

‖s,r, ‖XĜN
‖s,r
}

(3.49),(3.50)

≤ max{‖XG‖s,r,K1 +K2 + ε} .

Since ε > 0 is arbitrary the lemma follows.
The Poisson bracket of two quasi-Töplitz functions is quasi-Töplitz.

Proposition 3.1. (Poisson bracket) Assume that f (1), f (2) ∈ QTs,r(N0, θ, µ) and N1 ≥ N0, µ1 ≤ µ,
θ1 ≥ θ, s/2 ≤ s1 < s, r/2 ≤ r1 < r satisfy

κN b−L
1 < µ− µ1, µN

L−1
1 + κN b−1

1 < θ1 − θ, 2N1e
−Nb1

s−s1
2 < 1, b(s− s1)N b

1 > 2 . (3.51)

Then
{f (1), f (2)} ∈ QTs1,r1(N1, θ1, µ1)

and
‖{f (1), f (2)}‖Ts1,r1,N1,θ1,µ1

≤ C(n)δ−1‖f (1)‖Ts,r,N0,θ,µ‖f
(2)‖Ts,r,N0,θ,µ (3.52)

where C(n) ≥ 1 and
δ := min

{
1− s1

s
, 1− r1

r

}
. (3.53)

The proof is based on the following splitting Lemma for the Poisson brackets.

Lemma 3.6. (Splitting lemma) Let f (1), f (2) ∈ QTs,r(N0, θ, µ) and (3.51) hold. Then, for all
N ≥ N1,

ΠN,θ1,µ1{f (1), f (2)} =

ΠN,θ1,µ1

({
ΠN,θ,µf

(1),ΠN,θ,µf
(2)
}H

+
{

ΠN,θ,µf
(1),ΠL

N,2µf
(2)
}L

+
{

ΠL
N,2µf

(1),ΠN,θ,µf
(2)
}L

+
{

ΠN,θ,µf
(1),ΠL

N,µf
(2)
}x,y

+
{

ΠL
N,µf

(1),ΠN,θ,µf
(2)
}x,y

+
{

Π|k|≥Nbf
(1), f (2)

}
+
{

Π|k|<Nbf
(1),Π|k|≥Nbf

(2)
})

. (3.54)
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Proof. We have

{f (1), f (2)} = {Π|k|<Nbf (1),Π|k|<Nbf
(2)} (3.55)

+ {Π|k|≥Nbf (1), f (2)}+ {Π|k|<Nbf (1),Π|k|≥Nbf
(2)} .

The last two terms correspond to the last line in (3.54). We now study the first term in the right
hand side of (3.55). We replace each f (i), i = 1, 2, with single monomials (with zero momentum) and
we analyze under which conditions the projection

ΠN,θ1,µ1

{
eik(1)·xyi

(1)
zα

(1)
z̄β

(1)
, eik(2)·xyi

(2)
zα

(2)
z̄β

(2)
}
, |k(1)|, |k(2)| < N b ,

is not zero. By direct inspection, recalling the Definition 3.2 of ΠN,θ1,µ1 and the expression (2.81)
of the Poisson brackets { , } = { , }x,y + { , }z,z̄, one of the following situations (apart from a trivial
permutation of the indexes 1, 2) must hold:

1. one has zα
(1)
z̄β

(1)
= zα̃

(1)
z̄β̃

(1)
zσmz

σ1
j and zα

(2)
z̄β

(2)
= zα̃

(2)
z̄β̃

(2)
zσ
′

n z
−σ1
j where |m|, |n| ≥ θ1N ,

σ, σ1, σ
′ = ±, and zα̃

(1)
z̄β̃

(1)
zα̃

(2)
z̄β̃

(2)
is of (N,µ1)-low momentum. We consider the Poisson

bracket { , }z,z̄ (in the variables (z+
j , z

−
j )) of the monomials.

2. one has zα
(1)
z̄β

(1)
= zα̃

(1)
z̄β̃

(1)
zσmz

σ′

n z
σ1
j and zα

(2)
z̄β

(2)
= zα̃

(2)
z̄β̃

(2)
z−σ1
j where |m|, |n| ≥ θ1N and

zα̃
(1)
z̄β̃

(1)
zα̃

(2)
z̄β̃

(2)
is of (N,µ1)–low momentum. We consider the Poisson bracket { , }z,z̄.

3. one has zα
(1)
z̄β

(1)
= zα̃

(1)
z̄β̃

(1)
zσmz

σ′

n and zα
(2)
z̄β

(2)
= zα̃

(2)
z̄β̃

(2)
, where |m|, |n| ≥ θ1N and

zα̃
(1)
z̄β̃

(1)
zα̃

(2)
z̄β̃

(2)
is of (N,µ1)-low momentum. We consider the Poisson bracket { , }x,y, i.e. in

the variables (x, y).

Note that when we consider the { , }x,y Poisson bracket, the case

zα
(1)
z̄β

(1)
= zα̃

(1)
z̄β̃

(1)
zσm and zα

(2)
z̄β

(2)
= zα̃

(2)
z̄β̃

(2)
zσ
′

n , |m|, |n| ≥ θ1N ,

and zα̃
(1)
z̄β̃

(1)
zα̃

(2)
z̄β̃

(2)
is of (N,µ1)-low momentum, does not appear. Indeed, the momentum conser-

vation −σm = π(α̃(1), β̃(1), k(1)), (2.86) and |k(1)| < N b, give

θ1N < |m| ≤
∑
l∈Z\I

|l|(|α̃(1)
l |+ |β̃

(1)
l |) + κN b ≤ µ1N

L + κN b ,

which contradicts (3.1).
Case 1. The momentum conservation of each monomial gives

σ1j = −σm− π(α̃(1), β̃(1), k(1)) = σ′n+ π(α̃(2), β̃(2), k(2)) . (3.56)

Since zα̃
(1)
z̄β̃

(1)
zα̃

(2)
z̄β̃

(2)
is of (N,µ1)-low momentum (Definition 3.1),∑

l∈Z\I

|l|(α̃(1)
l + β̃

(1)
l + α̃

(2)
l + β̃

(2)
l ) ≤ µ1N

L =⇒
∑
l∈Z\I

|l|(α̃(i)
l + β̃

(i)
l ) ≤ µ1N

L , i = 1, 2 ,

which implies, by (3.56), (2.86), |k(1)| < N b, |j| ≥ θ1N − µ1N
L − κN b > θN by (3.51). Hence

|m|, |n|, |j| > θN . Then eik(h)·xyi
(h)
zα

(h)
z̄β

(h)
, h = 1, 2, are (N, θ, µ)-bilinear. Moreover the (zj , z̄j)

are high momentum variables, namely { , }z,z̄ = { , }H , see (3.4). As m,n run over all Z \ I with
|m|, |n| ≥ θ1N , we obtain the first term in formula (3.54).
Case 2. The momentum conservation of the second monomial reads

− σ1j = −π(α̃(2), β̃(2), k(2)) . (3.57)

28



Then, using also (2.86), |k(2)| < N b, that zα̃
(1)
z̄β̃

(1)
zα̃

(2)
z̄β̃

(2)
is of (N,µ1)-low momentum,

|j|+
∑
l∈Z\I

|l|(α̃(1)
l + β̃

(1)
l )

(3.57)
= |π(α̃(2), β̃(2), k(2))|+

∑
l∈Z\I

|l|(α̃(1)
l + β̃

(1)
l ) ≤

∑
l∈Z\I

|l|(α̃(1)
l + β̃

(1)
l + α̃

(2)
l + β̃

(2)
l ) + κN b ≤ µ1N

L + κN b
(3.51)
< µNL .

Then zα̃
(1)
z̄β̃

(1)
zσ1
j is of (N,µ1)-low momentum and the first monomial

eik(1)·xyi
(1)
zα

(1)
z̄β

(1)
= eik(1)·xyi

(1)
zα̃

(1)
z̄β̃

(1)
zσ1
j zσmz

σ′

n

is (N, θ, µ)-bilinear (µ1 ≤ µ). The second monomial

eik(2)·xyi
(2)
zα

(2)
z̄β

(2)
= eik(2)·xyi

(2)
zα̃

(2)
z̄β̃

(2)
z−σ1
j

is (N, 2µ)-low-momentum because, arguing as above,

|j|+
∑
l

|l|(α̃(2)
l + β̃

(2)
l )

(3.57)
= |π(α̃(2), β̃(2), k(2))|+

∑
l

|l|(α̃(2)
l + β̃

(2)
l )

≤ 2µ1N
L + κN b

(3.51)
< 2µNL .

The (zj , z̄j) are low momentum variables, namely { , }z,z̄ = { , }L, and we obtain the second and third
contribution in formula (3.54).
Case 3. We have, for i = 1, 2, that∑

l

|l|(α̃(i)
l + β̃

(i)
l ) ≤

∑
l

|l|(α̃(1)
l + β̃

(1)
l + α̃

(2)
l + β̃

(2)
l ) ≤ µ1N

L ≤ µNL .

Then eik(1)·xyi
(1)
zα

(1)
z̄β

(1)
is (N, θ, µ)-bilinear and eik(2)·xyi

(2)
zα

(2)
z̄β

(2)
is (N,µ)-low-momentum. We

obtain the fourth and fifth contribution in formula (3.54).

Proof of Proposition 3.1. Since f (i) ∈ QTs,r(N0, θ, µ), i = 1, 2, for all N ≥ N1 ≥ N0 there exist
f̃ (i) ∈ Ts,r(N, θ, µ) and f̂ (i) such that (see (3.31))

ΠN,θ,µf
(i) = f̃ (i) +N−1f̂ (i) , i = 1, 2 , (3.58)

and
‖Xf(i)‖s,r, ‖Xf̃(i)‖s,r, ‖Xf̂(i)‖s,r ≤ 2‖f (i)‖Ts,r . (3.59)

In order to show that {f (1), f (2)} ∈ QTs1,r1(N1, θ1, µ1) and prove (3.52) we have to provide a decom-
position

ΠN,θ1,µ1{f (1), f (2)} = f̃ (1,2) +N−1f̂ (1,2) , ∀N ≥ N1 ,

so that f̃ (1,2) ∈ Ts1,r1(N, θ1, µ1) and

‖X{f(1),f(2)}‖s1,r1 , ‖Xf̃(1,2)‖s1,r1 , ‖Xf̂(1,2)‖s1,r1 < C(n)δ−1‖f (1)‖Ts,r‖f (2)‖Ts,r (3.60)

(for brevity we omit the indices N1, θ1, µ1, N0, θ, µ). By (2.92) we have (δ is defined in (3.53))

‖X{f(1),f(2)}‖s1,r1 ≤ 22n+3δ−1‖Xf(1)‖s,r‖Xf(2)‖s,r .
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Considering (3.58) and (3.54), we define the candidate Töplitz approximation

f̃ (1,2) := ΠN,θ1,µ1

({
f̃ (1), f̃ (2)

}H
+
{
f̃ (1),ΠL

N,2µf
(2)
}L

+
{

ΠL
N,2µf

(1), f̃ (2)
}L

+
{
f̃ (1),ΠL

N,µf
(2)
}x,y

+
{

ΠL
N,µf

(1), f̃ (2)
}x,y

(3.61)

and Töplitz-defect

f̂ (1,2) := N
(

ΠN,θ1,µ1{f (1), f (2)} − f̃ (1,2)
)
. (3.62)

Lemma 3.2 and (3.51) imply that f̃ (1,2) ∈ Ts1,r1(N, θ1, µ1). The estimate (3.60) for f̃ (1,2) follows by
(3.61), (2.92), (2.80), (3.59). Next

f̂ (1,2) = ΠN,θ1,µ1

({
f̃ (1), f̂ (2)

}H
+
{
f̂ (1), f̃ (2)

}H
+N−1

{
f̂ (1), f̂ (2)

}H
+

{
f̂ (1),ΠL

N,2µf
(2)
}L

+
{

ΠL
N,2µf

(1), f̂ (2)
}L

+
{
f̂ (1),ΠL

N,µf
(2)
}x,y

+
{

ΠL
N,µf

(1), f̂ (2)
}x,y

+ N
{

Π|k|≥Nbf
(1), f (2)

}
+N

{
Π|k|<Nbf

(1),Π|k|≥Nbf
(2)
})

and the bound (3.60) follows again by (2.92), (2.80), (3.59), (2.57), (3.51). Let consider only the term
N
{

Π|k|≥Nbf
(1), f (2)

}
=: g, the last one being analogous. We first use Lemma 2.16 with r′  r1,

r  r, s′  s1 and s s1 + σ/2, where σ := s− s1. Since
(

1− s1

s1 + σ/2

)−1

≤ 2
(

1− s1

s

)−1

≤ 2δ−1

with the δ in (3.53), by (2.92) we get

‖Xg‖s1,r1 ≤ C(n)δ−1N‖XΠ|k|≥Nbf
(1)‖s1+σ/2,r‖Xf(2)‖s,r

(2.57)

≤ C(n)δ−1N
s

s1
e−N

b(s−s1)/2‖Xf(1)‖s,r‖Xf(2)‖s,r

(3.51)

≤ C(n)δ−1‖Xf(1)‖s,r‖Xf(2)‖s,r ,

for every N ≥ N1. The proof of Proposition 3.1 is complete.

The quasi-Töplitz character of a function is preserved under the flow generated by a quasi-Töplitz
Hamiltonian.

Proposition 3.2. (Lie transform) Let f, g ∈ QTs,r(N0, θ, µ) and let s/2 ≤ s′ < s, r/2 ≤ r′ < r.
There is c(n) > 0 such that, if

‖f‖Ts,r,N0,θ,µ ≤ c(n) δ , (3.63)

with δ defined in (2.66), then the hamiltonian flow of f at time t = 1, Φ1
f : D(s′, r′)→ D(s, r) is well

defined, analytic and symplectic, and, for

N ′0 ≥ max{N0, N̄} , N̄ := exp
(

max
{2
b
,

1
L− b

,
1

1− L
, 8
})

, (3.64)

(recall (3.2)), µ′ < µ, θ′ > θ, satisfying

κ(N ′0)b−L lnN ′0 ≤ µ− µ′ , (6 + κ)(N ′0)L−1 lnN ′0 ≤ θ′ − θ , 2(N ′0)−b ln2N ′0 ≤ b(s− s′) , (3.65)

we have eadf g ∈ QTs′,r′(N ′0, θ′, µ′) and

‖eadf g‖Ts′,r′,N ′0,θ′,µ′ ≤ 2‖g‖Ts,r,N0,θ,µ . (3.66)
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Moreover, for h = 0, 1, 2, and coefficients 0 ≤ bj ≤ 1/j!, j ∈ N,∥∥∥∑
j≥h

bj adjf (g)
∥∥∥T
s′,r′,N ′0,θ

′,µ′
≤ 2(Cδ−1‖f‖Ts,r,N0,θ,µ)h‖g‖Ts,r,N0,θ,µ . (3.67)

Note that (3.66) is (3.67) with h = 0, bj := 1/j!
Proof. Let us prove (3.67). We define

G(0) := g , G(j) := adjf (g) := adf (G(j−1)) = {f,G(j−1)} , j ≥ 1 ,

and we split, for h = 0, 1, 2,

G≥h :=
∑
j≥h

bjG
(j) =

J−1∑
j=h

bjG
(j) +

∑
j≥J

bjG
(j) =: G≥h<J +G≥J . (3.68)

As in (2.98) we deduce

‖XG(j)‖s′,r′ ≤ (C(n)jδ−1)j‖Xf‖js,r‖Xg‖s,r , ∀j ≥ 0 , (3.69)

where δ is defined in (2.66). Let

η := C(n)eδ−1‖Xf‖s,r < 1/(2e) (3.70)

(namely take c(n) small in (3.63)). By 3.69, using jjbj ≤ jj/j! < ej , we get

‖XG≥J‖s′,r′ ≤
∑
j≥J

bj(C(n)jδ−1‖Xf‖s,r)j‖Xg‖s,r ≤ 2ηJ‖Xg‖s,r . (3.71)

In particular, for J = h = 0, 1, 2, we get

‖XG≥h‖s′,r′ ≤ 2ηh‖Xg‖s,r . (3.72)

For any N ≥ N ′0 we choose
J := J(N) := lnN , (3.73)

and we set
G′N := G≥h<J , G′′N := G≥J , G≥h = G′N +G′′N .

Then (3.67) follows by Lemma 3.5 (with N∗  N ′0, s  s′, r  r′, θ  θ′, µ  µ′) and (3.72), once
we show that

‖G′N‖Ts′,r′,N,θ′,µ′ ≤
3
2
ηh‖g‖Ts,r , N‖XG′′N

‖s′,r′ ≤
1
2
ηh‖g‖Ts,r (3.74)

with h = 0, 1, 2 (for simplicity ‖g‖Ts,r := ‖g‖Ts,r,N0,θ,µ).
For all N ≥ N ′0 ≥ e8 (recall (3.64)),

N‖XG≥J‖s′,r′
(3.71)

≤ N2ηJ‖Xg‖s,r ≤ ηh(N2ηJ−h)‖g‖Ts,r
(3.70)

≤ ηh2−J+h+1ehNe−J‖g‖Ts,r ≤
ηh

2
‖g‖Ts,r , (3.75)

proving the second inequality in (3.74). Let us prove the first inequality in (3.74).
Claim: ∀j = 1, . . . , J − 1, we have G(j) ∈ QTs′,r′(N, θ′, µ′) and

‖G(j)‖Tr′,s′,N,θ′,µ′ ≤ ‖g‖Ts,r(C ′jδ−1‖f‖Ts,r)j (3.76)
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(for simplicity ‖f‖Ts,r := ‖f‖Ts,r,N0,θ,µ). This claim implies (using jjbj < ej)∥∥∥ J−1∑
j=h

bj G
(j)
∥∥∥T
s′,r′,N,θ′,µ′

(3.76)

≤
J−1∑
j=h

bj‖g‖Ts,r(C ′jδ−1‖f‖Ts,r)j

(3.70)

≤ ‖g‖Ts,r
+∞∑
j=h

ηj ≤ 3
2
ηh‖g‖Ts,r

for c small enough in (3.63). This proves the first inequality in (3.74).
Let us prove the claim. Fix 0 ≤ j ≤ J − 1. We define, ∀i = 0, . . . , j,

µi := µ− i µ− µ
′

j
, θi := θ + i

θ′ − θ
j

, ri := r − i r − r
′

j
, si := s− i s− s

′

j
, (3.77)

and we prove inductively that, for all i = 0, . . . , j,

‖adif (g)‖Tsi,ri,N,θi,µi ≤ (C ′jδ−1‖f‖Ts,r)i‖g‖Ts,r , (3.78)

which, for i = j, gives (3.76). For i = 0, formula (3.78) follows because g ∈ QTs,r(N0, θ, µ) and Lemma
3.3.

Now assume that (3.78) holds for i and prove it for i+ 1. We want to apply Proposition 3.1 to the
functions f and adif (g) with N1  N , s  si, s1  si+1, θ  θi, θ1  θi+1, etc. We have to verify
conditions (3.51) that reads

κN b−L < µi − µi+1 , µiN
L−1 + κN b−1 < θi+1 − θi , (3.79)

2Ne−N
b si−si+1

2 < 1 , b(si − si+1)N b > 2 . (3.80)

Since, by (3.77),

µi − µi+1 =
µ− µ′

j
, θi+1 − θi =

θ − θ′

j
, si − si+1 =

s− s′

j

and j < J = lnN (see (3.73)), 0 < b < L < 1 (recall (3.2)), µ′ ≤ µ ≤ 6, the above conditions
(3.79)-(3.80) are implied by

κN b−L lnN < µ− µ′ , (6 + κ)NL−1 lnN < θ′ − θ ,

2Ne−N
b(s−s′)/2 lnN < 1 , b(s− s′)N b > 2 lnN . (3.81)

The last two conditions (3.81) are implied by b(s − s′)N b > 2 ln2N and since N ≥ e1/1−b (recall
(3.64)). Recollecting we have to verify

κN b−L lnN ≤ µ− µ′ , (6 + κ)NL−1 lnN ≤ θ′ − θ , 2N−b ln2N ≤ b(s− s′) . (3.82)

Since the function N 7→ N−γ lnN is decreasing for N ≥ e1/γ , we have that (3.82) follows by (3.64)-
(3.65). Therefore Proposition 3.1 implies that adi+1

f (g) ∈ QTsi+1,ri+1
(N, θi+1, µi+1) and, by (3.52),

(3.35), we get
‖adi+1

f (g)‖Tsi+1,ri+1,N,θi+1,µi+1
≤ C ′δ−1

i ‖f‖
T
s,r‖adif (g)‖Tsi,ri,N,θi,µi (3.83)

where

δi := min
{

1− si+1

si
, 1− ri+1

ri

}
≥ δ

j
(3.84)

and δ is defined in (2.66). Then

‖adi+1
f (g)‖Tsi+1,ri+1,N,θi+1,µi+1

(3.83),(3.84)

≤ C ′jδ−1‖f‖Ts,r,N0,θ,µ‖adif (g)‖Tsi,ri,N,θi,µi
(3.78)

≤ (C ′jδ−1‖f‖Ts,r)i+1‖g‖Ts,r
proving (3.78) by induction.
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4 An abstract KAM theorem

We consider a family of integrable Hamiltonians

N := N (x, y, z, z̄; ξ) := e(ξ) + ω(ξ) · y + Ω(ξ) · zz̄ (4.1)

defined on Tns×Cn×`a,pI ×`
a,p
I , where I is defined in (2.84), the tangential frequencies ω := (ω1, . . . , ωn)

and the normal frequencies Ω := (Ωj)j∈Z\I depend on n-parameters

ξ ∈ O ⊂ Rn .

For each ξ there is an invariant n-torus T0 = Tn × {0} × {0} × {0} with frequency ω(ξ). In its
normal space, the origin (z, z̄) = 0 is an elliptic fixed point with proper frequencies Ω(ξ). The aim is
to prove the persistence of a large portion of this family of linearly stable tori under small analytic
perturbations H = N + P .

(A1) Parameter dependence. The map ω : O → Rn, ξ 7→ ω(ξ), is Lipschitz continuous.

With in mind the application to NLW we assume

(A2) Frequency asymptotics. We have

Ωj(ξ) =
√
j2 + m + a(ξ) ∈ R , j ∈ Z \ I , (4.2)

for some Lipschitz continuous functions a(ξ) ∈ R.

By (A1) and (A2), the Lipschitz semi-norms of the frequency maps satisfy, for some 1 ≤M0 <∞,

|ω|lip , |Ω|lip∞ ≤M0 (4.3)

where the Lipschitz semi-norm is

|Ω|lip∞ := |Ω|lip∞,O := sup
ξ,η∈O,ξ 6=η

|Ω(ξ)− Ω(η)|∞
|ξ − η|

(4.4)

and |z|∞ := sup
j∈Z\I

|zj |. Note that by the Kirszbraun theorem (see e.g. [23]) applied componentwise

we can extend ω,Ω on the whole Rn with the same bound (4.3).

(A3) Regularity. The perturbation P : D(s, r)×O → C is λ-regular (see Definition 2.8).

In order to obtain the asymptotic expansion (4.9) for the perturbed frequencies we also assume

(A4) Quasi-Töplitz. The perturbation P (preserves momentum and) is quasi-Töplitz (see Defini-
tion 3.4).

Thanks to the conservation of momentum we restrict to the set of indices

I :=
{

(k, l) ∈ Zn × Z∞, (k, l) 6= (0, 0) , |l| ≤ 2, where (4.5)

or l = 0 , k · j = 0 ,
or l = σem ,m ∈ Z \ I , k · j + σm = 0 ,

or l = σem + σ′en ,m, n ∈ Z \ I , k · j + σm+ σ′n = 0
}
.

Let
P = P00(x) + P̄ (x, y, z, z̄) where P̄ (x, 0, 0, 0) = 0 . (4.6)

33



Theorem 4.1. (KAM theorem) Suppose that H = N + P satisfies (A1)-(A4) with s, r > 0,
1 < θ, µ < 6, N > 0. Let γ > 0 be a small parameter and set

ε := max
{
γ−2/3|XP00 |λs,r , γ−2/3‖XP00‖s,r , γ−1|XP̄ |λs,r , γ−1‖P̄‖Ts,r,N,θ,µ

}
, λ := γ/M0 . (4.7)

If ε is small enough, then there exist:
• (Frequencies) Lipschitz functions ω∞ : Rn → Rn, Ω∞ : Rn → `∞, a∞± : Rn → R, such that

|ω∞ − ω|+ λ|ω∞ − ω|lip , |Ω∞ − Ω|∞ + λ|Ω∞ − Ω|lip∞ ≤ Cγε , |a∞± | ≤ Cγε , (4.8)

sup
ξ∈Rn

|Ω∞j (ξ)− Ωj(ξ)− a∞s(j)(ξ)| ≤ γ
2/3ε

C

|j|
, ∀|j| ≥ C?γ−1/3 . (4.9)

• (KAM normal form) A Lipschitz family of analytic symplectic maps

Φ : D(s/4, r/4)×O∞ 3 (x∞, y∞, w∞; ξ) 7→ (x, y, w) ∈ D(s, r) (4.10)

close to the identity where

O∞ :=
{
ξ ∈ O : |ω∞(ξ) · k + Ω∞(ξ) · l| ≥ 2γ

1 + |k|τ
, ∀ (k, l) ∈ I defined in (4.5) ,

|ω∞(ξ) · k + p| ≥ 2γ2/3

1 + |k|τ
, ∀k ∈ Zn, p ∈ Z , (k, p) 6= (0, 0) , τ > 1/b see (3.2),

|ω(ξ) · k| ≥ 2γ2/3

1 + |k|n
, ∀ 0 < |k| < γ−1/(7n)

}
(4.11)

such that, ∀ξ ∈ O∞:

H∞(·; ξ) := H ◦ Φ(·; ξ) = ω∞(ξ) · y∞ + Ω∞(ξ) · z∞z̄∞ + P∞ has P∞≤2 = 0 . (4.12)

Then, ∀ξ ∈ O∞, the map x∞ 7→ Φ(x∞, 0, 0; ξ) is a real analytic embedding of an elliptic, n-dimensional
torus with frequency ω∞(ξ) for the system with Hamiltonian H.

The main novelty of Theorem 4.1 is the asymptotic decay (4.9) of the perturbed frequencies. In
order to prove (4.9) we use the quasi-Töplitz property (A4) of the perturbation. The reason for
introducing in (4.7) conditions for both the Lipschitz-sup and the Töplitz-norms is the following. For
the measure estimates, we need the usual Lipschitz dependence of the perturbed frequencies with
respect to the parameters, see (4.8). This is derived as in [27] and [4]. On the other hand, we do not
need (in section 6) a Lipschitz estimate on a∞± (that, in any case, could be obtained). For this reason,
we do not introduce the Lipschitz dependence in the Töplitz norm.

In the next Theorem 4.2 we verify the second order Melnikov non-resonance conditions thanks to

1. the asymptotic decay (4.9) of the perturbed frequencies,

2. the restriction to indices (k, l) ∈ I in (4.11) which follows by momentum conservation, see (A4).

As in [4], the Cantor set of “good” parameters O∞ in (4.11), is expressed in terms of the final
frequencies ω∞(ξ), Ω∞(ξ) (and of the initial tangential frequencies ω(ξ)) and not inductively as, for
example, in [27]. This simplifies the measure estimates.

Theorem 4.2. (Measure estimate) Let O := [ρ/2, ρ]n, ρ > 0. Suppose

ω(ξ) = ω̄ +Aξ , ω̄ ∈ Rn , A ∈ Mat(n× n) , Ωj(ξ) =
√
j2 + m + ~a · ξ , a ∈ Rn (4.13)
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and assume the non-degeneracy condition:

A invertible and 2(A−1)T~a /∈ Zn \ {0} . (4.14)

Then, the Cantor like set O∞ defined in (4.11), with exponent

τ > max{2n+ 1, 1/b} (4.15)

(b is fixed in (3.2)), satisfies
|O \ O∞| ≤ C(τ)ρn−1γ2/3 . (4.16)

Theorem 4.2 is proved in section 6. The asymptotic estimate (4.9) is used for the key inclusion (6.12).

5 Proof of the KAM Theorem 4.1

In the following by al b we mean that there exists c > 0 depending only on n,m, κ such that a ≤ cb.

5.1 First step

We perform a preliminary change of variables to improve the smallness conditions. For all ξ in

O∗ :=
{
ξ ∈ O : |ω(ξ) · k| ≥ γ2/3

1 + |k|n
, ∀ 0 < |k| < γ−1/(7n)

}
(5.1)

we consider the solution
F00(x) :=

∑
0<|k|<γ−1/(7n)

P00,k

iω(ξ) · k
eik·x (5.2)

of the homological equation

− adNF00 + Π|k|<γ−1/(7n)P00(x) = 〈P00〉 . (5.3)

Here P00 is defined in (4.6) and 〈·〉 denotes the mean value on the angles. Note that for any function
F00(x) we have ‖F00‖Ts,r = ‖XF00‖s,r, see Definition 3.4. We want to apply Proposition 3.2 with
s, r, s′, r′  3s/4, 3r/4, s/2, r/2. The condition (3.63) is verified because

‖F00‖T3s/4,r = ‖XF00‖3s/4,r
(5.2),(5.1),(2.55)

≤ C(n, s)γ−2/3‖XP00‖s,r
(4.7)

≤ C(n, s)ε

and ε is sufficiently small. Hence the time–one flow

Φ00 := Φ1
F00

: D(s0, r0)×O∗ → D(s, r) with s0 := s/2 , r0 := r/2 , (5.4)

is well defined, analytic, symplectic. Let µ0 < µ, θ0 > θ, N0 > N large enough, so that (3.65) is
satisfied with s, r,N0, θ, µ, s, r,N, θ, µ and s′, r′, N ′0, θ

′, µ′  s0, r0, N0, θ0, µ0. Note that here N0 is
independent of γ. Hence (3.66) implies

‖eadF00 P̄‖Ts0,r0,N0,θ0,µ0
≤ 2‖P̄‖Ts,r,N,θ,µ . (5.5)

Noting that eadF00P00 = P00 and eadF00N = N + adF00N the new Hamiltonian is

H0 := eadF00H = eadF00N + eadF00P00 + eadF00 P̄ = N + adF00N + P00 + eadF00 P̄

(5.3)
=

(
〈P00〉+N

)
+
(

Π|k|≥γ−1/(7n)P00 + eadF00 P̄
)

=: N0 + P0 . (5.6)
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By (2.57) (and since P00(x) depends only on x)∥∥∥Π|k|≥γ−1/(7n)P00

∥∥∥T
3s/4,r

≤ 4e−sγ
−1/(7n)/4‖XP00‖s,r

(4.7)

≤ 4γ2/3e−sγ
−1/(7n)/4ε ≤ γε , (5.7)

for γ small. By (5.7), (5.5) and (4.7) we get

‖P0‖Ts0,r0,N0,θ0,µ0
< 3γε . (5.8)

In the same way, since |XF00 |λ3s/4,r ≤ C(n, s)γ−2/3|XP00 |λs,r, we also obtain the Lipschitz estimate

|XP0 |λs0,r0 < 3γε . (5.9)

5.2 KAM step

We now consider the generic KAM step for an Hamiltonian

H = N + P = N + P≤2
K + (P − P≤2

K ) (5.10)

where P≤2
K are defined as in (3.38).

5.2.1 Homological equation

Lemma 5.1. Assume that

|Ωj −
√
j2 + m− as(j)| ≤

γ

|j|
, ∀ |j| ≥ j∗ , (5.11)

for some a+, a− ∈ R. Let ∆k,m,n := ω · k + Ωm − Ωn, ∆̃k,m,n := ω · k + |m| − |n|.
If |m|, |n| ≥ max{j∗,

√
m} and s(m) = s(n), then

|∆k,m,n − ∆̃k,m,n| ≤
m
2
|m− n|
|n||m|

+ γ
( 1
|m|

+
1
|n|

)
+

m2

2

(
1
|m|3

+
1
|n|3

)
. (5.12)

Proof. For 0 ≤ x ≤ 1 we have |
√

1 + x − 1 − x/2| ≤ x2/2. Setting x := m/n2 (which is ≤ 1) and
using (5.11), we get ∣∣∣∣Ωn − |n| − m

2|n|
− as(n)

∣∣∣∣ ≤ γ

|n|
+

m2

2|n|3
.

An analogous estimates holds for Ωm. Since |∆k,m,n − ∆̃k,m,n| = |Ωm − |m| − Ωn + |n|| the estimate
(5.12) follows noting that as(m) = as(n).

For a monomial mk,i,α,β := eik·xyizαz̄β we set

[mk,i,α,β ] :=

{
mk,i,α,β if k = 0 , α = β

0 otherwise.
(5.13)

The following key proposition proves that the solution of the homological equation with a quasi-Töplitz
datum is quasi-Töplitz.

Proposition 5.1. (Homological equation) Let K ∈ N. For all ξ ∈ O such that

|ω(ξ) · k + Ω(ξ) · l| ≥ γ

〈k〉τ
, ∀(k, l) ∈ I (see (4.5)), |k| ≤ K , (5.14)

then ∀P (h)
K ∈ Hnull

s,r , h = 0, 1, 2 (see (3.36), (3.37)), the homological equations

− adNF
(h)
K + P

(h)
K = [P (h)

K ] , h = 0, 1, 2 , (5.15)
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have a unique solution of the same form F
(h)
K ∈ Hnull

s,r with [F (h)
K ] = 0 and

‖X
F

(h)
K

‖s,r < γ−1Kτ‖X
P

(h)
K

‖s,r , |X
F

(h)
K

|λs,r l γ−1Kτ+1|X
P

(h)
K

|λs,r (5.16)

where 2γλ−1 ≥ |ω|lip, |Ω|lip∞ . In particular F≤2
K := F

(0)
K + F

(1)
K + F

(2)
K solves

− adNF
≤2
K + P≤2

K = [P≤2
K ] . (5.17)

Assume now that P (h)
K ∈ QTs,r(N0, θ, µ) and Ω(ξ) satisfies (5.11) for all |j| ≥ θN∗0 where

N∗0 := max
{
N0 , ĉγ

−1/3Kτ+1
}

(5.18)

for a constant ĉ := ĉ(m, κ) ≥ 1. Then, ∀ξ ∈ O such that

|ω(ξ) · k + p| ≥ γ2/3

〈k〉τ
, ∀|k| ≤ K, p ∈ Z , (5.19)

we have F (h)
K ∈ QTs,r(N∗0 , θ, µ), h = 0, 1, 2, and

‖F (h)
K ‖

T
s,r,N∗0 ,θ,µ

≤ 4ĉγ−1K2τ‖P (h)
K ‖

T
s,r,N0,θ,µ . (5.20)

Proof. The solution of the homological equation (5.15) is

F
(h)
K := −i

∑
|k|≤K,(k,i,α,β)6=(0,i,α,α)

2i+|α|+|β|=h

Pk,i,α,β
∆k,i,α,β

eik·xyizαz̄β , ∆k,i,α,β := ω(ξ) · k + Ω(ξ) · (α− β) .

The divisors ∆k,i,α,β 6= 0, ∀(k, i, α, β) 6= (0, i, α, α), because (k, i, α, β) 6= (0, i, α, α) is equivalent to
(k, α − β) ∈ I, and the bounds (5.14) hold. Then the first estimates in (5.16) follows by Lemma
2.18. The Lipsichtz estimate in (5.16) is standard, see e.g. Lemma 1 (and the first comment after
the statement) of [27]. We just note that the Melnikov condition used in [27] follows by (5.14) and
momentum consevation, e.g.

|ω · k + Ωm − Ωn|
(5.14)

≥ γ

〈k〉τ
(5.22)

=
γ|m− n|
|j · k|〈k〉τ

≥ γ |m− n|
κ〈k〉τ+1

.

For the Töplitz estimate notice that the cases h = 0, 1 are trivial since ΠN,θ,µF
≤1
K = 0. When h = 2

we first consider the subtlest case when P
(2)
K contains only the monomials with i = 0, |α| = |β| = 1

(see (3.36)), namely
P := P

(2)
K =

∑
|k|≤K,m,n∈Z\I

Pk,m,ne
ik·xzmz̄n , (5.21)

and, because of the conservation of momentum, the indices k,m, n in (5.21) are restricted to

j · k +m− n = 0 . (5.22)

The unique solution F
(2)
K of (5.15) with [F (2)

K ] = 0 is

F := F
(2)
K := −i

∑
|k|≤K,(k,m,n) 6=(0,m,m)

Pk,m,n
∆k,m,n

eik·xzmz̄n , ∆k,m,n := ω(ξ) · k + Ωm(ξ)− Ωn(ξ) (5.23)

Note that by (5.14) and (5.22) we have ∆k,m,n 6= 0 if and only if (k,m, n) 6= (0,m,m).
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Let us prove (5.20). For all N ≥ N∗0

ΠN,θ,µF = −i
∑

|k|≤K,|m|,|n|>θN

Pk,m,n
∆k,m,n

eik·xzmz̄n, (5.24)

and note that eik·x is (N,µ)-low momentum since |k| ≤ K < (N∗0 )b ≤ N b by (5.18) and τ > 1/b. By
assumption P ∈ QTs,r,N0,θ,µ and so, recalling formula (3.45), we may write, ∀N ≥ N∗0 ≥ N0,

ΠN,θ,µP = P̃ +N−1P̂ with P̃ :=
∑

|k|≤K,|m|,|n|>θN

P̃k,m−ne
ik·xzmz̄n ∈ Ts,r(N, θ, µ) (5.25)

and
‖XP‖s,r, ‖XP̃‖s,r, ‖XP̂‖s,r ≤ 2‖P‖Ts,r . (5.26)

We now prove that

F̃ :=
∑

|k|≤K,|m|,|n|>θN

P̃k,m−n

∆̃k,m,n

eik·xzmz̄n , ∆̃k,m,n := ω(ξ) · k + |m| − |n| , (5.27)

is a Töplitz approximation of F . Since |m|, |n| > θN ≥ θN∗0 > N∗0
(5.18)
> κK ≥ |j · k| by (3.1), we

deduce by (5.22) that m,n have the same sign. Then

∆̃k,m,n = ω(ξ) · k + |m| − |n| = ω(ξ) · k + s(m)(m− n) , s(m) := sign(m) ,

and F̃ in (5.27) is (N, θ, µ)-Töplitz (see (3.15)). Moreover, since |m| − |n| ∈ Z, by (5.19), we get

|∆̃k,m,n| ≥ γ2/3〈k〉−τ , ∀|k| ≤ K, m, n, (5.28)

and Lemma 2.18 and (5.27) imply

‖XF̃‖s,r ≤ γ
−2/3Kτ‖XP̃‖s,r . (5.29)

The Töplitz defect is

N−1F̂ := ΠN,θ,µF − F̃ (5.30)

(5.24),(5.27)
=

∑
|k|≤K,|m|,|n|>θN

( Pk,m,n
∆k,m,n

− P̃k,m−n

∆̃k,m,n

)
eik·xzmz̄n

=
∑

|k|≤K,|m|,|n|>θN

[( Pk,m,n
∆k,m,n

− Pk,m,n

∆̃k,m,n

)
+
(Pk,m,n − P̃k,m−n

∆̃k,m,n

)]
eik·xzmz̄n

(5.25)
=

∑
|k|≤K,|m|,|n|>θN

[
Pk,m,n

(∆̃k,m,n −∆k,m,n

∆k,m,n∆̃k,m,n

)
+N−1 P̂k,m,n

∆̃k,m,n

]
eik·xzmz̄n .

By (5.12), |m|, |n| ≥ θN ≥ N , and |m− n| ≤ κK (see (5.22)) we get, taking ĉ large enough,

|∆̃k,m,n −∆k,m,n| ≤
mκK
2N2

+
2γ
N

+
m2

N3
≤ ĉ

4N

(
K

N
+ γ

)
(5.18)

≤ min
{
ĉγ1/3

2N
,
γ2/3

2Kτ

}
. (5.31)

Hence

|∆k,m,n| ≥ |∆̃k,m,n| − |∆̃k,m,n −∆k,m,n|
(5.28),(5.31)

≥ γ2/3

〈k〉τ
− γ2/3

2Kτ
≥ γ2/3

2〈k〉τ
. (5.32)
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Therefore (5.31), (5.28), (5.32) imply

|∆̃k,m,n −∆k,m,n|
|∆k,m,n||∆̃k,m,n|

≤ ĉγ1/3

2N
2〈k〉τ

γ2/3

〈k〉τ

γ2/3
≤ ĉ

Nγ
K2τ

and (5.30), (5.28), and Lemma 2.18, imply

‖XF̂‖s,r ≤ ĉγ
−1K2τ‖XP‖s,r + γ−2/3Kτ‖XP̂‖s,r

(5.26)

≤ 4ĉγ−1K2τ‖P‖Ts,r . (5.33)

In conclusion (5.16), (5.29), (5.33) prove (5.20) for F .
Let us briefly discuss the case when h = 2 and P

(2)
K contains only the monomials with i = 0,

|α| = 2, |β| = 0 or viceversa (see (3.36)). Denoting

P := P
(2)
K :=

∑
|k|≤K,m,n∈Z\I

Pk,m,ne
ik·xzmzn , (5.34)

we have
ΠN,θ,µF = −i

∑
|k|≤K,|m|,|n|>θN

Pk,m,n
ω · k + Ωm + Ωn

eik·xzmzn

where |ω · k + Ωm + Ωn| > (|m|+ |n|)/2 > θN/2 since |m|, |n| > θN and |k| ≤ K < N b. In this case
we may take as Töplitz approximation F̃ = 0.

5.2.2 The new Hamiltonian H+

Let F = F≤2
K be the solution of the homological equation (5.17). If, for s/2 ≤ s+ < s, r/2 ≤ r+ < r,

the condition
‖F‖Ts,r,N∗0 ,θ,µ ≤ c(n) δ+ , δ+ := min

{
1− s+

s
, 1− r+

r

}
(5.35)

holds (see (3.63)), then Proposition 3.2 (with s′  s+, r
′  r+, N0  N∗0 defined in (5.18)) implies

that the Hamiltonian flow Φ1
F : D(s+, r+) → D(s, r) is well defined, analytic and symplectic. We

transform the Hamiltonian H in (5.10), obtaining

H+ := eadFH
(2.83)

= H + adF (H) +
∑
j≥2

1
j!

adjF (H)

(5.10)
= N + P≤2

K + (P − P≤2
K ) + adFN + adFP +

∑
j≥2

1
j!

adjF (H)

(5.17)
= N + [P≤2

K ] + P − P≤2
K + adFP +

∑
j≥2

1
j!

adjF (H) := N+ + P+

with new normal form

N+ := N + N̂ , N̂ := [P≤2
K ] = ê+ ω̂ · y + Ω̂z · z̄

ω̂i := ∂yi| y=0,z=z̄=0〈P 〉 , i = 1, . . . n , Ω̂ := (Ω̂j)j∈Z\I , Ω̂j := [P ]j := ∂2
zj z̄j | y=0,z=z̄=0〈P 〉 (5.36)

(the 〈 〉 denotes the average with respect to the angles x) and new perturbation

P+ := P − P≤2
K + adFP≤2 + adFP≥3 +

∑
j≥2

1
j!

adjF (H) (5.37)

having decomposed P = P≤2 + P≥3 with P≥3 :=
∑
h≥3

P (h), see (3.36).
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5.2.3 The new normal form N+

Lemma 5.2. Let P ∈ QTs,r(N0, θ, µ) with 1 < θ, µ < 6, N0 ≥ 9. Then

|ω̂|, |Ω̂|∞ ≤ 2‖P (2)‖Ts,r,N0,θ,µ (5.38)

and there exist â± ∈ R satisfying
|â±| ≤ 2‖P (2)‖Ts,r,N0,θ,µ

such that
|Ω̂j − âs(j)| ≤

40
|j|
‖P (2)‖Ts,r,N0,θ,µ , ∀ |j| ≥ 6(N0 + 1) . (5.39)

Moreover |ω̂|lip, |Ω̂|lip∞ l |XP (2) |lips,r.

Lemma 5.2 is based on the following elementary Lemma, whose proof is postponed.

Lemma 5.3. Suppose that, ∀N ≥ N0 ≥ 9, j ≥ θN ,

Ωj = aN + bN,jN
−1 with aN , bN,j ∈ R , |aN | ≤ c1 , |bN,j | ≤ c1 , (5.40)

for some c1 > 0 (independent of j). Then there exists a ∈ R, satisfying |a| ≤ c1, such that

|Ωj − a| ≤
20c1
|j|

, ∀ |j| ≥ 6(N0 + 1) . (5.41)

proof of Lemma 5.2. The estimate on ω̂ is trivial. Regarding Ω̂ we set (recall (3.36), (3.42))

P
(2)
0 := Πk=0Π|α|=|β|=1Π(2)P =

∑
j

[P ]jzj z̄j

since, by the momentum conservation (2.86), all the monomials in P
(2)
0 have α = β = ej . Note that

[P ]j is defined in (5.36). By Lemma 2.19

|[P ]j | ≤ ‖XP
(2)
0
‖r

(3.30)

≤ ‖P (2)
0 ‖Tr

(3.42)

≤ ‖P (2)‖Ts,r . (5.42)

We now prove (5.39) for j > 0 (the case j < 0 is similar). Since P (2)
0 ∈ QTr (N, θ, µ), for all N ≥ N0,

we may write ΠN,θ,µP
(2)
0 = P̃

(2)
0,N +N−1P̂

(2)
0,N with

P̃
(2)
0,N :=

∑
j>θN

P̃jzj z̄j ∈ Tr(N, θ, µ) , P̂
(2)
0,N :=

∑
j>θN

P̂jzj z̄j

and
‖X

P
(2)
0
‖r , ‖XP̃

(2)
0,N
‖r , ‖XP̂

(2)
0,N
‖r ≤ 2‖P (2)

0 ‖Tr ≤ 2‖P (2)‖Ts,r . (5.43)

For |j| > θN , since all the quadratic forms in (5.43) are diagonal, we have

Ω̂j = [P ]j = P̃j +N−1P̂j := aN,+ +N−1bN,j

where aN,+ := P̃j is independent of j > 0 because P̃ (2)
0,N ∈ Tr(N, θ, µ) (see (3.15)). Applying Lemma

2.19 to P̃ (2)
0,N and P̂

(2)
0,N , we obtain

|aN,+| ≤ ‖XP̃
(2)
0,N
‖s,r

(5.43)

≤ 2‖P (2)‖Ts,r , |bN,j | = |P̂j | ≤ ‖XP̂
(2)
0,N
‖r

(5.43)

≤ 2‖P (2)‖Tr .

Hence the assumptions of Lemma 5.3 are satisfied with c1 = 2‖P (2)‖Ts,r and (5.39) follows.
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The final Lipschitz estimate is standard, see e.g. [4], [27].

Proof of Lemma 5.3. For all N1 > N ≥ N0, j ≥ θN1 we get, by (5.40),

|aN − aN1 | = |bN1,jN
−1
1 − bN,jN−1| ≤ 2c1N−1 . (5.44)

Therefore aN is a Cauchy sequence. Let a := lim
N→+∞

aN be its limit. Since |aN | ≤ c1 we have |a| ≤ c1.

Moreover, letting N1 → +∞ in (5.44), we derive |a−aN | ≤ 2c1N−1, ∀N ≥ N0, and, using also (5.40),

|Ωj − a| ≤ |Ωj − aN |+ |aN − a| ≤ 3c1N−1, ∀N ≥ N0 , j ≥ 6N . (5.45)

For all j ≥ 6(N0 + 1) let N := [j/6] (where [·] denotes the integer part). Since N ≥ N0, j ≥ 6N ,

|Ωj − a|
(5.45)

≤ 3c1
[j/6]

≤ 3c1
(j/6)− 1

≤ 18c1
j

(
1 +

1
N0

)
≤ 20c1

j

for all j ≥ 6(N0 + 1).

5.2.4 The new perturbation P+

We introduce, for h = 0, 1, 2,

ε(h) := γ−1 max
{
‖P (h)‖Ts,r,N0,θ,µ , |XP (h) |λs,r

}
, ε̄ :=

2∑
h=0

ε(h) , (5.46)

Θ := γ−1 max
{
‖P‖Ts,r,N0,θ,µ , |XP |λs,r

}
,

(λ defined in (4.7)) and the corresponding quantities for P+ with indices r+, s+, N
+
0 , θ+, µ+. The

P (h) denote the homogeneous components of P of degree h (see (3.36)).

Proposition 5.2. (KAM step) Suppose (s, r,N0, θ, µ), (s+, r+, N
+
0 , θ+, µ+) satisfy s/2 ≤ s+ < s,

r/2 ≤ r+ < r,

N+
0 > max{N∗0 , N̄} (recall (5.18), (3.64)) , 2(N+

0 )−b ln2N+
0 ≤ b(s− s+) , (5.47)

κ(N+
0 )b−L lnN+

0 ≤ µ− µ+, (6 + κ)(N+
0 )L−1 lnN+

0 ≤ θ+ − θ . (5.48)

Assume that
ε̄K τ̄δ−1

+ ≤ c small enough , Θ ≤ 1 , (5.49)

where τ̄ := 2τ + n+ 1 and δ+ is defined in (5.35). Suppose also that (5.11) holds for |j| ≥ θN∗0 .
Then, for all ξ ∈ O satisfying (5.14),(5.19), denoting by F := F≤2

K the solution of the homological
equation (5.17), the Hamiltonian flow Φ1

F : D(s+, r+)→ D(s, r), and the transformed Hamiltonian

H+ := H ◦ Φ1
F = eadFH = N+ + P+

satisfies

ε
(0)
+ l δ−2

+ K2τ̄ ε̄2 + ε(0)e−(s−s+)K

ε
(1)
+ l δ−2

+ K2τ̄
(
ε(0) + ε̄2

)
+ ε(1)e−(s−s+)K

ε
(2)
+ l δ−2

+ K2τ̄
(
ε(0) + ε(1) + ε̄2

)
+ ε(2)e−(s−s+)K (5.50)

Θ+ ≤ Θ(1 + Cδ−2
+ K2τ̄ ε̄) . (5.51)
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We focus on the quasi-Töplitz estimates, the Lipschitz ones follow formally in the same way. The
proof splits in several lemmas where we analyze each term of P+ in (5.37). We note first that

‖P≤2
K ‖

T
s,r,N0,θ,µ

(3.41)

≤ ‖P≤2‖Ts,r,N0,θ,µ

(3.38),(5.46)

≤ γε̄ . (5.52)

Moreover, the solution F = F (0) + F (1) + F (2) of the homological equation (5.17) (for brevity F (h) ≡
F

(h)
K and F ≡ F≤2

K ) satisfies, by (5.20) (with N∗0 defined in (5.18)), (3.41), (5.46),

‖F (h)‖Ts,r,N∗0 ,θ,µ lK τ̄ε(h) , h = 0, 1, 2, ‖F‖Ts,r,N∗0 ,θ,µ lK τ̄ ε̄ . (5.53)

Hence (5.49) and (5.53) imply condition (5.35) and therefore Φ1
F : D(s+, r+)→ D(s, r) is well defined.

We now estimate the terms of the new perturbation P+ in (5.37).

Lemma 5.4.∥∥∥adF (P≤2)
∥∥∥T
s+,r+,N

+
0 ,θ+,µ+

+
∥∥∥∑
j≥2

1
j!

adjF (H)
∥∥∥T
s+,r+,N

+
0 ,θ+,µ+

l δ−2
+ γK2τ̄ ε̄2 .

Proof. We have∑
j≥2

1
j!

adjF (H) =
∑
j≥2

1
j!

adjF (N + P ) =
∑
j≥2

1
j!

adj−1
F (adFN ) +

∑
j≥2

1
j!

adjF (P )

(5.17)
=

∑
j≥2

1
j!

adj−1
F ([P≤2

K ]− P≤2
K ) +

∑
j≥2

1
j!

adjF (P ) .

By (5.47), (5.48) and (5.35) we can apply Proposition 3.2 with N0, N
′
0, s
′, r′, θ′, µ′, δ  N∗0 , N

+
0 , s+,

r+, θ+, µ+, δ+. We get (recall N∗0 ≥ N0)∥∥∥∑
j≥2

1
j!

adjF (P )
∥∥∥T
s+,r+,N

+
0 ,θ+,µ+

(3.67),(3.35)
l

(
δ−1
+ ‖F‖Ts,r,N∗0 ,θ,µ

)2

‖P‖Ts,r,N0,θ,µ

(5.53),(5.46)
l δ−2

+ K2τ̄ ε̄2γΘ (5.54)

and, similarly,∥∥∥∑
j≥2

1
j!

adj−1
F (P≤2

K )
∥∥∥T
s+,r+,N

+
0 ,θ+,µ+

=
∥∥∥∑
j≥1

1
(j + 1)!

adjF (P≤2
K )

∥∥∥T
s+,r+,N

+
0 ,θ+,µ+

(3.67)
l δ−1

+ ‖F‖Ts,r,N∗0 ,θ,µ‖P
≤2
K ‖

T
s,r,N0,θ,µ

(5.53),(5.52)
l δ−1

+ K τ̄γε̄2 . (5.55)

Finally, by Proposition 3.1, applied with

N0, N1, s1, r1, θ1, µ1, δ  N∗0 , N
+
0 , s+, r+, θ+, µ+, δ+ , (5.56)

we get ∥∥∥adF (P≤2)
∥∥∥T
s+,r+,N

+
0 ,θ+,µ+

(3.52)
l δ−1

+ ‖F‖Ts,r,N∗0 ,θ,µ‖P
≤2‖Ts,r,N0,θ,µ

(5.53),(5.52)
l δ−1

+ K τ̄γ ε̄2 . (5.57)

The bounds (5.54), (5.55), (5.57), and Θ ≤ 1 (see (5.49)), prove the lemma.
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Lemma 5.5. (5.51) holds.

Proof. By Proposition 3.1 (applied with (5.56)) we have∥∥∥adF (P≥3)
∥∥∥T
s+,r+,N

+
0 ,θ+,µ+

l δ−1
+ ‖F‖Ts,r,N∗0 ,θ,µ‖P

≥3‖Ts,r,N0,θ,µ

(5.53),(3.40),(5.46)
l δ−1

+ K τ̄γ ε̄Θ , (5.58)

and (5.51) follows by (5.37), (3.40), (3.35), (5.46) (5.58), Lemma 5.4 and ε̄ ≤ 3Θ (which follows by
(5.46) and (3.39)).

We now consider P (h)
+ , h = 0, 1, 2. The term adFP≥3 in (5.37) does not contribute to P (0)

+ . On
the contrary, its contribution to P (1)

+ is
{F (0), P (3)} (5.59)

and to P (2)
+ is

{F (1), P (3)}+ {F (0), P (4)} . (5.60)

Lemma 5.6. ‖{F (0), P (3)}‖T
s+,r+,N

+
0 ,θ+,µ+

l δ−1
+ γK τ̄ε(0)Θ and

∥∥∥{F (1), P (3)}+ {F (0), P (4)}
∥∥∥T
s+,r+,N

+
0 ,θ+,µ+

l δ−1
+ K τ̄γ(ε(0) + ε(1))Θ .

Proof. By (3.52) (applied with (5.56)), (5.53), (5.46) and (3.39).

The contribution of P − P≤2
K in (5.37) to P (h)

+ , h = 0, 1, 2, is P (h)
>K .

Lemma 5.7. ‖P (h)
>K‖

T
s+,r+,N

+
0 ,θ+,µ+

≤ 2e−K(s−s+)γε(h)

Proof. By (3.43) and (5.46).
Proof of Proposition 5.2 completed. Finally, (5.50) follows by (5.37), Lemmata 5.4, 5.6

(and (5.59)-(5.60)), Lemma 5.7 and Θ ≤ 1.

5.3 KAM iteration

Lemma 5.8. Suppose that ε(0)
i , ε

(1)
i , ε

(2)
i ≥ 0, i = 0, . . . , ν, satisfy

ε
(0)
i+1 ≤ C∗ K

i ε̄2
i + C∗ε

(0)
i e−K∗2

i

(5.61)

ε
(1)
i+1 ≤ C∗ K

i
(
ε

(0)
i + ε̄2

i

)
+ C∗ε

(1)
i e−K∗2

i

ε
(2)
i+1 ≤ C∗ K

i
(
ε

(0)
i + ε

(1)
i + ε̄2

i

)
+ C∗ε

(2)
i e−K∗2

i

, i = 0, . . . , ν − 1 ,

where ε̄i := ε
(0)
i + ε

(1)
i + ε

(2)
i , for some K, C∗,K∗ > 1. Then there exist ε̄? < 1, C? > 0, χ ∈ (1, 2),

depending only on K, C∗,K∗ (and not on ν and satisfying 1 ≤ C?e−K∗), such that, if

ε̄0 ≤ ε̄? =⇒ ε̄i ≤ C? ε̄0 e
−K∗χi , ∀i = 0, . . . , ν . (5.62)

Proof. Iterating three times (5.61) we get

ε̄j+3 ≤ c1C
c1
∗ Kc1j

(
ε

(0)
j+2 + ε

(1)
j+2 + ε̄2

j+2 + ε̄j+2e
−K∗2j+2

)
≤ c2C

c2
∗ Kc2j

(
ε

(0)
j+1 + ε̄2

j+1 + ε̄4
j+1 + ε̄j+1e

−K∗2j+1
)

≤ c3C
c3
∗ Kc3j

(
ε̄2
j + ε̄8

j + ε̄je
−K∗2j

)
, ∀ 0 ≤ j ≤ ν − 3 , (5.63)
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for suitable constants 1 < c1 < c2 < c3.
We first claim that (5.62) holds with χ := 6/5 for all i = 3j ≤ ν. Setting aj := ε̄3j , we prove that

there exist C? large and ε̄? small (as in the statement) such that if a0 ≤ ε̄? then

(S)j aj ≤ cj+1
4 a0e

−K∗χ̃3j
, ∀ 0 ≤ j ≤ ν/3

for a suitable c4 = c4(K, C∗,K∗) ≥ 1 large enough and χ̃ < 21/3, e.g. χ̃ := 5/4. We proceed by
induction. The statement (S)0 is trivial. Now suppose (S)j holds true. Note that aj ≤ 1 taking

ε̄? ≤ min
j≥0

eK∗χ̃
3j
/cj+1

4 . Then (S)j+1 follows by

aj+1 = ε̄3j+3

(5.63)

≤ c3C
c3
∗ K3c3j

(
a2
j + a8

j + aje
−K∗23j

) aj≤1

≤ 2c3Cc3∗ K3c3j
(
a2
j + aje

−K∗23j
)

(S)j
≤ 2c3Cc3∗ K3c3j

(
(cj+1

4 a0e
−K∗χ̃3j

)2 + (cj+1
4 a0e

−K∗χ̃3j
)e−K∗2

3j
)
≤ cj+2

4 a0e
−K∗χ̃3j+3

since 4c3Cc3∗ K3c3j(cj+1
4 a0e

−K∗χ̃3j
)e−K∗2

3j
≤ cj+2

4 a0e
−K∗χ̃3j+3

taking c4 large enough (use χ̃ < 2) and

4c3Cc3∗ K3c3j(cj+1
4 a0e

−K∗χ̃3j
)2 ≤ cj+2

4 a0e
−K∗χ̃3j+3

taking a0 ≤ ε̄? small enough. We have proved inductively (S)j . Then (5.62) for i = 3j follows since
6/5 =: χ < χ̃ := 5/4 and taking C? large enough. The cases i = 3j + 1 and i = 3j + 2 follow
analogously noting that ε̄1, ε̄2 can be made small by (5.61) taking ε̄? small.

For ν ∈ N, we define

• sν+1 := sν − s02−ν−2 ↘ s0

2
, rν+1 := rν − r02−ν−2 ↘ r0

2
, Dν := D(sν , rν) ,

• Kν := K04ν , Nν := N02νρ with N0 := ĉγ−1/3Kτ+1
0 , ρ := max

{
2(τ + 1),

1
L− b

,
1

1− L

}
,

• µν+1 := µν − µ02−ν−2 ↘ µ0

2
, θν+1 := θν + θ02−ν−2 ↗ 3

θ0

2
. (5.64)

We consider H0 = N0 + P0 : D0 ×O∗ → C with N0 := e0 + ω(0)(ξ) · y + Ω(0)(ξ) · zz̄. We suppose
that ω(0) and Ω(0) are defined on the whole Rn (using in case the Kirszbraun extension theorem),
that Ω(0) satisfies (4.2) and |ω(0)|lip, |Ω(0)|lip∞ ≤ M0 on Rn. Let O0 ⊆ {ξ ∈ O∗ : Bγ/M0(ξ) ⊂ O∗}
where O∗ is defined in (5.1) and Br(ξ) denotes the open ball in Rn of center ξ and radius r > 0.

Lemma 5.9. (Iterative lemma) Let H0 be as above and let ε̄0, Θ0 be defined as in (5.46) for P0.
Then there are K0 > 0 large enough, ε0 > 0 small enough, such that, if

ε̄0,Θ0 ≤ ε0 , (5.65)

then
(S1)ν ∀0 ≤ i ≤ ν, there exist ω(i), Ω(i), a(i)

± defined for all ξ ∈ Rn, satisfying

|ω(i) − ω(0)|+ λ|ω(i) − ω(0)|lip, |Ω(i) − Ω(0)|∞ + λ|Ω(i) − Ω(0)|lip∞ ≤ C(1− 2−i)γε̄0 (5.66)

|a(i)
± | ≤ C(1− 2−i)γε̄0 , |ω(i)|lip , |Ω(i)|lip∞ ≤ (2− 2−i)M0 . (5.67)

There exists Hi := Ni + Pi : Di ×Oi → C with Ni := ei + ω(i)(ξ) · y + Ω(i)(ξ) · zz̄ in normal form,
where, for i > 0,

Oi :=
{
ξ ∈ Oi−1 : |ω(i−1)(ξ) · k + Ω(i−1)(ξ) · l| ≥ (1− 2−i)

2γ
1 + |k|τ

,∀(k, l) ∈ I , |k| ≤ Ki−1 ,

|ω(i−1)(ξ) · k + p| ≥ (1− 2−i)
2γ2/3

1 + |k|τ
,∀(k, p) 6= (0, 0) , |k| ≤ Ki−1, p ∈ Z

}
. (5.68)
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Moreover, ∀ 1 ≤ i ≤ ν, Hi = Hi−1 ◦Φi where Φi : Di×Oi → Di−1 is a (Lipschitz) family (in ξ ∈ Oi)
of close-to-the-identity analytic symplectic maps. Setting, for h = 0, 1, 2,

ε
(h)
i := γ−1 max

{
‖P (h)

i ‖
T
si,ri,Ni,θi,µi , |XP

(h)
i
|λsi,ri

}
, ε̄i :=

2∑
h=0

ε
(h)
i , (5.69)

Θi := γ−1 max
{
‖Pi‖Tsi,ri,Ni,θi,µi , |XPi |λsi,ri

}
,

∀ 1 ≤ i ≤ ν and ∀ ξ ∈ Rn

|ω(i)(ξ)− ω(i−1)(ξ)| , |Ω(i)(ξ)− Ω(i−1)(ξ)|∞ , |a(i)
± (ξ)− a(i−1)

± (ξ)| ≤ 2γε̄i−1 ,

|Ω(i)
j (ξ)− a(i)

s(j)(ξ)− Ω(i−1)
j (ξ) + a

(i−1)
s(j) (ξ)| ≤ 40γ

ε̄i−1

|j|
, ∀|j| ≥ 6(Ni−1 + 1) . (5.70)

(S2)ν ∀0 ≤ i ≤ ν − 1, the ε(0)
i , ε

(1)
i , ε

(2)
i satisfy (5.61) with K = 42τ̄+1, τ̄ := 2τ + n + 1, C∗ = 4K2τ̄

0 ,
K∗ = s0K0/4.

(S3)ν ∀0 ≤ i ≤ ν, we have ε̄i ≤ C?ε̄0e
−K∗χi and Θi ≤ 2Θ0 (recall that C?e−K∗ ≥ 1, see Lemma 5.8).

Proof. The statement (S1)0 follows by the hypotheses setting a
(0)
± (ξ) := 0, ∀ξ ∈ Rn. (S2)0 is

empty. (S3)0 is trivial. We then proceed by induction.

(S1)ν+1. We denote ω̂(ν) := ∇y〈Pν(ξ)〉|y=0,z=z̄=0 and Ω̂(ν)
j (ξ) := ∂2

zj z̄j | y=0,z=z̄=0〈Pν(ξ)〉, see (5.36),
for all ξ ∈ Oν if ν ≥ 1 and ξ ∈ O∗ (see (5.1)) if ν = 0. By Lemma 5.2 and (5.69) there exist constants
â

(ν)
± (ξ) ∈ R such that

|ω̂(ν)(ξ)| , |Ω̂(ν)(ξ)|∞ , |â(ν)
± (ξ)| ≤ 2γε̄ν , |Ω̂(ν)

j (ξ)− â(ν)
s(j)(ξ)| ≤ 40γ

ε̄ν
|j|

, ∀|j| ≥ 6(Nν + 1) , (5.71)

uniformly in ξ ∈ Oν (resp. O∗ if ν = 0), and

|ω̂(ν)|lip , |Ω̂(ν)|lip∞ ≤ Cε̄ν . (5.72)

Let
η0 := λ = γ/M0 , ην := γ/(2ν+3M0K

τ+1
ν−1) , ν ≥ 1 . (5.73)

We claim that, for ν ≥ 1, the ην-neighborhood of Oν+1

Õν+1 :=
⋃

ξ∈Oν+1

{
ξ̃ ∈ Rn : ξ̃ = ξ + ξ̂ , |ξ̂| < ην

}
⊆ Oν . (5.74)

Note that the definitions of O0, O1 in (5.68), and (5.73) imply Õ1 ⊂ O∗. Recalling (5.68), we have to
prove that for ν ≥ 1, for every ξ̃ = ξ + ξ̂, ξ ∈ Oν+1, |ξ̂| ≤ ην , we have

|ω(ν−1)(ξ̃) · k + Ω(ν−1)(ξ̃) · l| ≥ (1− 2−ν)
2γ

1 + |k|τ
, ∀(k, l) ∈ I , |k| ≤ Kν−1 , (5.75)

and the analogous estimate for |ω(ν−1)(ξ̃) · k + p|. By the expression (5.77) (at the previous step) for
ω(ν), Ω(ν), and since χν−1 ∈ [0, 1], we get

|ω(ν−1)(ξ̃) · k + Ω(ν−1)(ξ̃) · l| ≥ |ω(ν)(ξ̃) · k + Ω(ν)(ξ̃) · l| − |χν−1(ξ̃)||ω̂(ν−1)(ξ̃) · k + Ω̂(ν−1)(ξ̃) · l|
(5.71)

≥ |ω(ν)(ξ) · k + Ω(ν)(ξ) · l| −
∣∣∣(ω(ν)(ξ̃)− ω(ν)(ξ)) · k + (Ω(ν)(ξ̃)− Ω(ν)(ξ)) · l

∣∣∣− 2γε̄ν−1(Kν−1 + 2)

ξ∈Oν+1,(5.68),(S1)ν
≥ (1− 2−ν−1)

2γ
1 + |k|τ

− (Kν−1 + 2)2M0ην − 2γε̄ν−1(Kν−1 + 2)

(5.73),(S3)ν
≥ (1− 2−ν)

2γ
1 + |k|τ
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taking ε0 small enough, and (5.75) follows. The estimate for |ω(ν−1)(ξ̃) · k + p| follows similarly.
We define a smooth cut-off function χν : Rn → [0, 1] which takes value 1 on Oν+1 and value 0

outside Õν+1. Thanks to (5.74) and recalling (5.73) we can construct χν , ν ≥ 0, in such a way that

|χν |lip l γ−1M02νKτ+1
ν−1 (5.76)

where K−1 := 1. We extend ω̂(ν), Ω̂(ν), â
(ν)
± to zero outside Oν for ν ≥ 1 and, for ν = 0 outside O?.

Then we define on the whole Rn

ω(ν+1) := ω(ν) + χν ω̂
(ν) , Ω(ν+1) := Ω(ν) + χνΩ̂(ν) , a

(ν+1)
± := a

(ν)
± + χν â

(ν)
± . (5.77)

By (5.76), (5.72), (5.71), we get

|ω(ν+1) − ω(ν)|lip ≤ |χν |lip|ω̂(ν)|+ |χν ||ω̂(ν)|lip ≤ CKτ+1
ν−1M0ε̄ν + Cε̄ν ≤ 2−ν−1M0

by (S3)ν and ε̄0 small enough. Similarly for |Ω(ν+1)−Ω(ν)|lip∞ . Recalling also (5.71), we get (5.66) and
(5.67) with i = ν + 1. Moreover (5.71)-(5.77) imply (5.70) for i = ν + 1 and ∀|j| > 6(Nν + 1).

We wish to apply the KAM step Proposition 5.2 with N = Nν , P = Pν , N0 = Nν , θ = θν . . .
and N+

0 = Nν+1, θ+ = θν+1, . . . Our definitions in (5.64) (and τ > 1/b) imply that the conditions2

(5.47)-(5.48) are satisfied, for all ν ∈ N, taking K0 large enough. Moreover, since

δ+ = δν+1 := min
{

1− sν+1

sν
, 1− rν+1

rν

}
so that 2−ν−2 ≤ δν+1 ≤ 2−ν−1 , (5.78)

and (S3)ν the condition (5.49) is satisfied, for ε̄0 ≤ ε0 small enough, ∀ν ∈ N. By (5.70), the condition
(5.11) holds for |j| ≥ θνNν , and (5.14) and (5.19) hold for all ξ ∈ Oν+1 (it is the definition of Oν+1,
see (5.68)). Hence Proposition 5.2 applies. For all ξ ∈ Oν+1 the Hamiltonian flow Φν+1 := Φ1

Fν :
Dν+1 ×Oν+1 → Dν and we define

Hν+1 := Hν ◦ Φν+1 = eadFνHν = Nν+1 + Pν+1 : Dν+1 ×Oν+1 → C .

(S2)ν+1 follows by (5.50) and (5.64).

(S3)ν+1. By (S2)ν we can apply Lemma 5.8 and (5.62) implies ε̄ν+1 ≤ C?ε̄0e
−K∗χν+1

. Moreover, for

ε0 small enough, Θν+1

(5.51)

≤ Θ0Πν
i=0

(
1 + Cδ−2

i+1K
2τ̄
i ε̄i

) (5.78),(S3)ν
≤ 2Θ0 .

Proof of the KAM Theorem 4.1 completed. We apply the iterative Lemma 5.9 to the Hamil-
tonian H0 in (5.6) where ω(0) = ω and Ω(0) = Ω are defined in (4.1). We choose

O0 :=
{
ξ ∈ O : |ω(ξ) · k| ≥ 2γ2/3

1 + |k|n
, ∀ 0 < |k| < γ−1/(7n)

}
(5.79)

so that O0 ⊆ {ξ ∈ O∗ : Bγ/M0(ξ) ⊂ O∗}, see (5.1) and (4.3). The smallness assumption (5.65) holds
by (5.8)-(5.9) (use also Lemma 3.4) and ε small enough. Then the iterative Lemma 5.9 applies. Let
us define

ω∞ := lim
ν→∞

ω(ν) , Ω∞ := lim
ν→∞

Ω(ν) , a∞± := lim
ν→∞

a
(ν)
± .

It could happen that Oν0 = ∅ for some ν0. In such a case O∞ = ∅ and the iterative process stops after
finitely many steps. However, we can always set ω(ν) := ω(ν0), Ω(ν) := Ω(ν0), a(ν)

± := a
(ν0)
± , ∀ν ≥ ν0,

and ω∞, Ω∞, a∞± are always well defined.
The bounds (4.8) follow by (5.66) (with a different constant C). We now prove (4.9). We consider

the case j > 0. For all ∀ν ≥ 0, j ≥ 6(Nν + 1), we have (recall that a(0)
+ = 0)

|Ω∞j − Ω(0)
j − a

∞
+ | ≤

∑
0≤i≤ν

|Ω(i+1)
j − a(i+1)

+ − Ω(i)
j + a

(i)
+ |+

∑
i>ν

|Ω(i+1)
j − Ω(i)

j |+ |a
(i+1)
+ − a(i)

+ |

(5.70)

≤ 40γ
∑

0≤i≤ν

ε̄i
j

+ 4γ
∑
i>ν

ε̄i
(S3)ν

l
ε̄0γ

j
+ γ

∑
i>ν

ε̄i .

2For example the first inequality in (5.47) reads Nν+1 ≥ max{Nν , ĉγ−1/3Kτ+1
ν , N̄}.
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Therefore, ∀ν ≥ 0, 6(Nν + 1) ≤ j < 6(Nν+1 + 1),

|Ω∞j − Ω(0)
j − a

∞
+ |l

ε̄0γ

j
+ γ

Nν+1

j

∑
i>ν

ε̄i
(5.64)

l
ε̄0γ

j
+
γ

j
γ−1/3Kτ+1

0 2ρ(ν+1)
∑
i>ν

ε̄i

and (4.9) follows by (S3)ν .
The symplectic transformation Φ in (4.10) is defined by

Φ := lim
ν→∞

Φ00 ◦ Φ0 ◦ Φ1 ◦ · · · ◦ Φν

with Φ00 defined in (5.4). We now verify that Φ is defined on O∞, see (4.11).

Lemma 5.10. O∞ ⊂ ∩iOi (defined in (5.68)).

Proof. We have O∞ ⊆ O0 by (4.11) and (5.79). For i ≥ 1, if ξ ∈ O∞ then, for all |k| ≤ Ki, |l| ≤ 2,

|ω(i)(ξ) · k + Ω(i)(ξ) · l|
≥ |ω∞(ξ) · k + Ω∞(ξ) · l| − |k|

∑
n≥i

|ω(n+1)(ξ)− ω(n)(ξ)| − 2
∑
n≥i

|Ω(n+1)(ξ)− Ω(n)(ξ)|∞

(4.11),(5.70)

≥ 2γ
1 + |k|τ

−Ki2γ
∑
n≥i

ε̄n − 4γ
∑
n≥i

ε̄n ≥ (1− 2−i)
2γ

1 + |k|τ

by the definition of Ki in (5.64), (S3)ν and ε small enough. The other estimate is analogous.
Finally P∞≤2 = 0 (see (4.12)) follows by ε̄i → 0 as i→∞. This concludes the proof of Theorem 4.1.

6 Measure estimates: proof of Theorem 4.2

We have to estimate the measure of

O \ O∞ =
⋃

(k,l)∈Λ0∪Λ1∪Λ+
2 ∪Λ−2

Rkl(γ)
⋃

(k,p)∈Zn+1\{0}

R̃kp(γ2/3)
⋃

(O \ O0) (6.1)

where
Rkl(γ) := Rτkl(γ) :=

{
ξ ∈ O : |ω∞(ξ) · k + Ω∞(ξ) · l| < 2γ

1 + |k|τ
}

(6.2)

R̃kp(γ2/3) := R̃τkp(γ2/3) :=
{
ξ ∈ O : |ω∞(ξ) · k + p| < 2γ2/3

1 + |k|τ
}

(6.3)

and
Λh :=

{
(k, l) ∈ I (see (4.5)) , |l| = h

}
, h = 0, 1, 2 , Λ2 = Λ+

2 ∪ Λ−2 , (6.4)

Λ+
2 :=

{
(k, l) ∈ Λ2 , l = ±(ei + ej)

}
, Λ−2 :=

{
(k, l) ∈ Λ2 , l = ei − ej

}
.

We first consider the most difficult case Λ−2 . Setting Rk,i,j(γ) := Rk,ei−ej (γ) we show that∣∣∣ ⋃
(k,l)∈Λ−2

Rk,l(γ)
∣∣∣ =

∣∣∣ ⋃
(k,i,j)∈ I

Rk,i,j(γ)
∣∣∣l γ2/3ρn−1 (6.5)

where
I :=

{
(k, i, j) ∈ Zn × (Z \ I)2 : (k, i, j) 6= (0, i, i) , j · k + i− j = 0

}
. (6.6)

Note that the indices in I satisfy

||i| − |j|| ≤ κ |k| and k 6= 0 . (6.7)

Since the matrix A in (4.13) is invertible, the bound (4.8) implies, for ε small enough, that

ω∞ : O → ω∞(O) is invertible and |(ω∞)−1|lip ≤ 2‖A−1‖ . (6.8)
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Lemma 6.1. For (k, i, j) ∈ I, η ∈ (0, 1), we have

|Rτk,i,j(η)|l ηρn−1

1 + |k|τ+1
. (6.9)

Proof. By (4.8) and (4.13)

ω∞(ξ) · k + Ω∞i (ξ)− Ω∞j (ξ) = ω∞(ξ) · k +
√
i2 + m−

√
j2 + m + ri,j(ξ)

where
|ri,j(ξ)| = O(εγ) , |ri,j |lip = O(ε) . (6.10)

We introduce the final frequencies ζ := ω∞(ξ) as parameters (see (6.8)), and we consider

fk,i,j(ζ) := ζ · k +
√
i2 + m−

√
j2 + m + r̃i,j(ζ)

where also r̃i,j := ri,j ◦(ω∞)−1 satisfies (6.10). In the direction ζ = sk|k|−1 +w, w ·k = 0, the function
f̃k,i,j(s) := fk,i,j(sk|k|−1 + w) satisfies

f̃k,i,j(s2)− f̃k,i,j(s1)
(6.10)

≥ (s2 − s1)(|k| − Cε) ≥ (s2 − s1)|k|/2 .

Since |k| ≥ 1 (recall (6.7)), by Fubini theorem,∣∣∣{ζ ∈ ω∞(O) : |fk,i,j(ζ)| ≤ 2η
1 + |k|τ

}∣∣∣l ηρn−1

1 + |k|τ+1
.

By (6.8) the bound (6.9) follows.
We split

I = I> ∪ I< where I> :=
{

(k, i, j) ∈ I : min{|i|, |j|} > C]γ
−1/3(1 + |k|τ0)

}
(6.11)

where C] > C? in (4.9) and τ0 := n+ 1. We set I< := I \ I>.

Lemma 6.2. For all (k, i, j) ∈ I> we have

Rτ0k,i,j(γ
2/3) ⊂ Rτ0k,i0,j0(2γ2/3) (6.12)

(see (6.2)), i0, j0 ∈ Z \ I satisfy

s(i0) = s(i) , s(j0) = s(j) , |i0| − |j0| = |i| − |j| (6.13)

and
min{|i0|, |j0|} =

[
C]γ

−1/3(1 + |k|τ0)
]
. (6.14)

Proof. Since |j| ≥ γ−1/3C?, by (4.9) and (4.13) we have the frequency asymptotic

Ω∞j (ξ) = |j|+ m
2|j|

+ ~a · ξ + a∞s(j)(ξ) +O

(
m2

|j|3

)
+O

(
ε
γ2/3

|j|

)
. (6.15)

By (6.7) we have ||i|− |j|| = ||i0|− |j0|| ≤ C|k|, |k| ≥ 1. If ξ ∈ O\Rτ0k,i0,j0(2γ2/3), since |i|, |j| ≥ µ0 :=
min{|i0|, |j0|} (recall (6.11) and (6.14)), we have

|ω∞(ξ) · k + Ω∞i (ξ)− Ω∞j (ξ)| ≥ |ω∞(ξ) · k + Ω∞i0 (ξ)− Ω∞j0 (ξ)|
−|Ω∞i (ξ)− Ω∞i0 (ξ)− Ω∞j (ξ) + Ω∞j0 (ξ)|

(6.15)

≥ 4γ2/3

1 + |k|τ0
− ||i| − |i0| − |j|+ |j0||

−|a∞s(i) − a
∞
s(i0) − a

∞
s(j) + a∞s(j0)|

−Cεγ
2/3

µ0
− Cm2

µ3
0

− m
2
||i| − |j||
|i| |j|

− m
2
||i0| − |j0||
|i0| |j0|

(6.13)

≥ 4γ2/3

1 + |k|τ0
− Cεγ

2/3

µ0
− C |k|

µ2
0

(6.14)

≥ 2γ2/3

1 + |k|τ0
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taking C] in (6.14) large enough. Therefore ξ ∈ O \ Rτ0k,i,j(γ
2/3) proving (6.12).

As a corollary we deduce:

Lemma 6.3.
∣∣∣ ⋃

(k,i,j)∈I>

Rτk,i,j(γ)
∣∣∣l γ2/3ρn−1 .

Proof. Since 0 < γ ≤ 1 and τ ≥ τ0 (see (4.15)), we have (see (6.2)) Rτk,i,j(γ) ⊂ Rτ0k,i,j(γ
2/3). Then

Lemma 6.2 and (6.9) imply that, for each k ∈ Zn, p ∈ Z fixed∣∣∣ ⋃
(k,i,j)∈I>, |i|−|j|=p

Rτk,i,j(γ)
∣∣∣l γ2/3ρn−1

1 + |k|τ0+1
.

Therefore ∣∣∣ ⋃
(k,i,j)∈I>

Rτk,i,j(γ)
∣∣∣l ∑

k,|p|≤C|k|

γ2/3ρn−1

1 + |k|τ0+1
l
∑
k

γ2/3ρn−1

1 + |k|τ0

proving the lemma.

Lemma 6.4.
∣∣∣ ⋃

(k,i,j)∈I<

Rτk,i,j(γ)
∣∣∣l γ2/3ρn−1.

Proof. For all (k, i, j) ∈ I< such that Rτk,i,j(γ) 6= ∅ we have (see (6.6))

min{|i|, |j|} < C]γ
−1/3(1 + |k|τ0) , j − i = k · j =⇒ max{|i|, |j|} < C ′γ−1/3(1 + |k|τ0) .

Therefore, using also Lemma 6.1 and (6.7)∣∣∣ ⋃
(k,i,j)∈I<

Rτk,i,j(γ)
∣∣∣l∑

k

∑
|i|≤C′γ−1/3(1+|k|τ0 )

j=i+k·j

γρn−1

1 + |k|τ+1
l
∑
k

γ2/3ρn−1

1 + |k|τ−τ0+1

which, by (4.15), gives the lemma.
Lemmata 6.3, 6.4 imply (6.5). This concludes the case (k, l) ∈ Λ−2 . Let consider the other cases.

The analogue of Lemma 6.1 is

Lemma 6.5. For (k, l) ∈ Λ0 ∪ Λ1 ∪ Λ+
2 , η ∈ (0,

√
m/2), we have

|Rkl(η)|l ηρn−1

1 + |k|τ
. (6.16)

Proof. We consider only the case (k, l) ∈ Λ+
2 , l = ei + ej . By (4.8) and (4.13)

fk,i,j(ξ) := ω∞(ξ) · k + Ω∞i (ξ) + Ω∞j (ξ) = ω∞(ξ) · k +
√
i2 + m +

√
j2 + m + 2~a · ξ + ri,j(ξ)

where |ri,j(ξ)| = O(εγ) , |ri,j |lip = O(ε). Changing variables ζ := ω∞(ξ) we find

fk,i,j(ζ) := ζ · k +
√
i2 + m +

√
j2 + m + 2~a ·A−1(ζ − ω̄) + r̃i,j(ζ) (6.17)

where also
r̃i,j(ζ) = O(εγ) , |r̃i,j |lip = O(ε) . (6.18)

If k = ~a = 0 then the function in (6.17) is bigger than
√

m and R0l(η) = ∅, for 0 ≤ η ≤
√

m/2.
Otherwise, by (4.14), the vector

ã := AT k + 2~a = AT
(
k + 2(A−1)T~a

)
satisfies |ã| ≥ c = c(A,~a) > 0 , ∀k 6= 0 . (6.19)

49



The function f̃k,i,j(s) := fk,i,j(sã|ã|−1 +w), ã ·w = 0, satisfies f̃k,i,j(s2)− f̃k,i,j(s1) ≥ (s2 − s1)(|ã| −
Cε) ≥ (s2 − s1)|ã|/2 by (6.18). Then (6.16) follows by (6.19) and Fubini theorem.

By Lemma 6.5, (6.2), (6.3), (5.79) and standard arguments (as above)∣∣∣ ⋃
(k,l)∈Λ0∪Λ1∪Λ+

2

Rkl(γ)
∣∣∣l γρn−1,

∣∣∣ ⋃
(k,p)∈Zn+1\{0}

R̃kp(γ2/3)
∣∣∣ , |O \ O0|l γ2/3ρn−1 . (6.20)

Finally (6.1), (6.5), (6.20) imply (4.16).

7 Application to DNLW

For ~ = (j1, . . . , jd) ∈ Zd, ~σ = (σ1, . . . , σd) ∈ {±}d we denote ~σ · ~ := σ1j1 + . . . + σdjd, and, given
(uj , ūj)j∈Z = (u+

j , u
−
j )j∈Z, we define the monomial u~σ~ := uσ1

j1
· · ·uσdjd (of degree d).

7.1 The partial Birkhoff normal form

We now consider the Hamiltonian (1.4) when F (s) = s4/4 since terms of order five or more will not
make any difference, see remark 7.1.

After a rescaling of the variables (and of the Hamiltonian) it becomes

H =
∑
j∈Z

λju
+
j u
−
j +

∑
~∈Z4,~σ∈{±}4,~σ·~=0

u~σ~ =: N +G (7.1)

=
∑
j∈Z

λjuj ūj +
∑

|α|+|β|=4, π(α,β)=0

Gα,βu
αūβ , Gα,β :=

(|α|+ |β|)!
α!β!

=
4!
α!β!

,

where (u+, u−) = (u, ū) ∈ `a,p × `a,p for some a > 0, p > 1/2, and the momentum is (see (2.86))

π(α, β) =
∑
j∈Z

j(αj − βj) .

Note that 0 ≤ Gα,β ≤ 4! (recall α! = Πi∈Zαi!)

Lemma 7.1. For all R > 0, N0 satisfying (3.1), the Hamiltonian G defined in (7.1) belongs to
QTR(N0, 3/2, 4) and

‖G‖TR,N0,3/2,4
= ‖XG‖R l R2 . (7.2)

Proof. The Hamiltonian vector field XG := (−i∂ūG, i∂uG) has components

iσ∂uσl G = iσ
∑

|α|+|β|=3,π(α,β)=−σl

Gl,σα,βu
αūβ , σ = ± , l ∈ Z ,

where
Gl,+α,β = (αl + 1)Gα+el,β , Gl,−α,β = (βl + 1)Gα,β+el .

Note that 0 ≤ Gl,σα,β ≤ 5! By Definitions 2.6, 2.8 and (2.2)

‖XG‖R =
1
R

sup
‖u‖a,p,‖ū‖a,p<R

( ∑
l∈Z,σ=±

e2a|l|〈l〉2p
( ∑
|α|+|β|=3 ,π(α,β)=−σl

Gl,σα,β |u
α||ūβ |

)2
)1/2

.

For each component ∑
|α|+|β|=3 ,π(α,β)=−σl

Gl,σα,β |u
α||ūβ | l

∑
σ1j1+σ2j2+σ3j3=−σl

|uσ1
j1
||uσ2

j2
||uσ3

j3
|

l
(
ũ ∗ ũ ∗ ũ

)
−σl
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where ũ := (ũl)l∈Z, ũj := |uj |+ |ūj |, and ∗ denotes the convolution of sequences. Note that ‖ũ‖a,p ≤
‖u‖a,p + ‖ū‖a,p. Since `a,p is an Hilbert algebra, ‖ũ ∗ ũ ∗ ũ‖a,p l ‖ũ‖3a,p, and

‖XG‖R l R−1 sup
‖u‖a,p,‖ū‖a,p<R

( ∑
l∈Z,σ=±

e2a|l|〈l〉2p
∣∣(ũ ∗ ũ ∗ ũ)−σl

∣∣2)1/2

(7.3)

l R−1 sup
‖u‖a,p,‖ū‖a,p<R

‖ũ ∗ ũ ∗ ũ‖a,p lR−1 sup
‖u‖a,p,‖ū‖a,p<R

‖ũ‖3a,p lR2 .

Moreover G ∈ Hnull
R , namely G Poisson commutes with the momentumM :=

∑
j∈Z

juj ūj , because (see

(2.81))
{M, u~σ~ } = −i~σ · ~ u~σ~ . (7.4)

We now prove that, for all N ≥ N0, the projection ΠN,3/2,4G ∈ TR(N, 3/2, 4). Hence (7.2) follows by
(7.3) (see Definition 3.4). By Definition 3.2 (with g  G, no (x, y)-variables and z = u, z̄ = ū), in
particular (3.12), (3.13), we get

ΠN,3/2,4G =
∑

|m|,|n|>3N/2,σ,σ′=±

Gσ,σ
′

m,n(wL)uσmū
σ′

n with

Gσ,σ
′

m,n(wL) =
∑

P
j∈Z |j|(αj+βj)<4NL,

π(α,β)=−σm−σ′n

Gσ,σ
′

α,β,m,nu
αūβ and

G+,+
α,β,m,n =

1
2− δmn

Gα+em+en,β =
1

2− δmn
4!

(1 + δmn)!
= 12 = G−,−α,β,m,n

G+,−
α,β,m,n = Gα+em,β+en = 24 = G−,+α,β,m,n .

These coefficients trivially satisfy (3.15) (with f  G), so ΠN,3/2,4G ∈ TR(N, 3/2, 4).
We now perform a Birkhoff semi–normal form on the tangential sites

I := {j1, . . . , jn} ⊂ Z , j1 < · · · < jn , (7.5)

recall (2.84). Let Ic := Z \ I.
Set

G :=
1
2

∑
i or j∈I

Giju
+
i u
−
i u

+
j u
−
j , Gij := 12(2− δij) , Ĝ :=

∑
~∈Z4, ~σ∈{+,−}4,
~σ·~=0, ~∈(Ic)4

u~σ~ . (7.6)

By (7.2) and noting that G, Ĝ are projections of G, for R > 0, N0 satisfying (3.1), we have

‖G‖TR,N0,3/2,4
, ‖Ĝ‖TR,N0,3/2,4

lR2 . (7.7)

Proposition 7.1. (Birkhoff normal form) For any I ⊂ Z and m > 0, there exists R0 > 0 and a
real analytic, symplectic change of variables

Γ : BR/2 ×BR/2 ⊂ `a,p × `a,p → BR ×BR ⊂ `a,p × `a,p , 0 < R < R0 ,

that takes the Hamiltonian H = N +G in (7.1) into

HBirkhoff := H ◦ Γ = N +G+ Ĝ+K (7.8)

where G, Ĝ are defined in (7.6) and

K :=
∑

~∈Z2d, ~σ∈{+,−}2d,
d≥3, ~σ·~=0

K~,~σu
~σ
~ (7.9)

satisfies, for N ′0 := N ′0(m, I, L, b) large enough,

‖K‖TR/2,N ′0,2,3 lR4 . (7.10)
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The rest of this subsection is devoted to the proof of Proposition 7.1. We start following the
strategy of [28]. By (2.81) the Poisson bracket

{N, u~σ~ } = −i~σ · λ~ u~σ~ (7.11)

where λ~ := (λj1 , . . . , λjd) and λj := λj(m) :=
√
j2 + m.

The following lemma extends Lemma 4 of [28].

Lemma 7.2. (Small divisors) Let ~ ∈ Z4, ~σ ∈ {±}4 be such that ~σ · ~ = 0 and (up to permutation
of the indexes)

~ = 0 ,
4∑
i=1

σi 6= 0 , (7.12)

or ~ = (0, 0, q, q) , q 6= 0 , σ1 = σ2 , (7.13)

or ~ = (p, p,−p,−p) , p 6= 0 , σ1 = σ2 , (7.14)

or ~ 6= (p, p, q, q) . (7.15)

Then, there exists an absolute constant c∗ > 0, such that, for every m ∈ (0,∞),

|~σ · λ~(m)| ≥ c∗m
(n2

0 + m)3/2
> 0 where n0 := min{〈j1〉, 〈j2〉, 〈j3〉, 〈j4〉} . (7.16)

Proof. In the Appendix.
The map Γ := Φ1

F is obtained as the time-1 flow generated by the Hamiltonian

F := −
∑

~·~σ=0 ,~σ·λ~ 6=0

and ~/∈(Ic)4

i
~σ · λ~

u~σ~ (7.17)

We notice that the condition ~ ·~σ = 0 , ~σ ·λ~ 6= 0 is equivalent to requiring that ~ ·~σ = 0 and ~, ~σ satisfy
(7.12)-(7.15). By Lemma 7.2 there is a constant c̄ > 0 (depending only on m and I) such that

~ · ~σ = 0 , ~σ · λ~ 6= 0 and ~ /∈ (Ic)4 =⇒ |~σ · λ~| ≥ c̄ > 0 . (7.18)

We have proved that the moduli of the small divisors in (7.17) are uniformly bounded away from zero.
Hence F is well defined and, arguing as in Lemma 7.1, we get

‖XF ‖R lR2 . (7.19)

Moreover F ∈ Hnull
R because in (7.17) the sum is restricted to ~σ · ~ = 0 (see also (7.4)).

Lemma 7.3. F in (7.17) solves the homological equation

{N,F}+G = adF (N) +G = G+ Ĝ (7.20)

where G, Ĝ are defined in (7.6).

Proof. We claim that the only ~ ∈ Z4, ~σ ∈ {±}4 with ~ · ~σ = 0 which do not satisfy (7.12)-(7.15)
have the form

j1 = j2 , j3 = j4 , σ1 = −σ2 , σ3 = −σ4 (or permutations of the indexes) . (7.21)
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Indeed:
If ~ = 0,

∑
i

σi = 0: the σi are pairwise equal and (7.21) holds.

If ~ = (0, 0, q, q), q 6= 0, and σ1 = −σ2: by ~ · ~σ = 0 we have also σ3 = −σ4 and (7.21) holds.
If ~ = (p, p,−p,−p), p 6= 0 and σ1 = −σ2: by ~ · ~σ = 0 we have also σ3 = −σ4 and (7.21) holds.
If j1 = j2, j3 = j4, j1, j3 6= 0, j1 6= −j3:

Case 1: j1 6= j3. Then 0 = ~σ · ~ = (σ1 + σ2)j1 + (σ3 + σ4)j3 implies σ1 = −σ2, σ3 = −σ4.
Case 2: j1 = j3 and so j1 = j2 = j3 = j4 6= 0. Hence 0 = (σ1 + σ2 + σ3 + σ4)j1 and (7.21) follows.

By (7.17) and (7.11) all the monomials in {N,F} cancel the monomials of G in (7.1) except for
those in Ĝ (see (7.6)) and those of the form |up|2|uq|2, p or q ∈ I, which contribute to G. The
expression in (7.6) of G follows by counting the multiplicities.

The Hamiltonian F ∈ Hnull
R in (7.17) is quasi-Töplitz:

Lemma 7.4. Let R > 0. If N0 := N0(m, I, L, b) is large enough, then F defined in (7.17) belongs to
QTR(N0, 3/2, 4) and

‖F‖TR,N0,3/2,4
lR2 . (7.22)

Proof. We have to show that F ∈ Hnull
R verifies Definition 3.4. For all N ≥ N0, we compute, by

(7.17) and Definition 3.2 (in particular (3.12)), the projection

ΠN,3/2,4F =
∑

|n|,|m|>CN/4 ,
σ,σ′=± ,|σm+σ′n|<4NL

Fσ,σ
′

m,n (wL)uσmu
σ′

n (7.23)

where

Fσ,σ
′

m,n (wL) := −12i
∑

|i|+|j|<4NL, i or j∈I ,
σii+σjj+σm+σ′n=0, i6=j ifm=n

uσii u
σj
j

σiλi + σjλj + σλm + σ′λn
(7.24)

=
∑

P
j |j|(αj+βj)<4NL,

P
j∈I(αj+βj)>0 ,

σm+σ′n=−π(α,β), |α|+|β|=2, α6=β ifm=n

Fσ,σ
′

α,β,m,nu
αūβ (7.25)

and
Fσ,σ

′

α,β,m,n := − 24i
α!β!

1
λα,β + σλm + σ′λn

, λα,β :=
∑
h

λh(αh − βh) . (7.26)

Notice that in (7.24) the restriction i 6= j if m = n is equivalent to requiring

{(i, j,m, n), (σi, σj , σ, σ′)} 6= {(i, i,m,m), (σi,−σi, σ,−σ)} ,

see Formula (7.17) and (7.21). Indeed if m = n , |i|+ |j| < 4NL and |m| > CN/4 then, by momentum
conservation, we have a contribution to (7.24) only if σ = −σ′ and hence |i| = |j|.

We define the Töplitz approximation

F̃ :=
∑

F̃σ,σ
′

m,n (wL)uσmu
σ′

n with F̃σ,σ
′

m,n (wL) :=
∑

F̃σ,σ
′

α,β,m,nu
αūβ (7.27)

where the indexes in the two sums have the same restrictions as in (7.23), (7.25), respectively, and
the coefficients are

F̃σ,−σα,β,m,n := − 24i
α!β!

1
λα,β + σ|m| − σ|n|

, F̃σ,σα,β,m,n := 0 . (7.28)

The coefficients in (7.28) are well defined for N ≥ N0 large enough, because

|λα,β + σ|m| − σ|n|| ≥ |λα,β + σλm − σλn| − |λm − |m|| − |λn − |n||
(7.18),(7.30)

≥ c̄− m
2

(
1
|m|

+
1
|n|

)
≥ c̄− 2

3
m
N0
≥ c̄

2
, (7.29)
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(c̄ defined in (7.18)) having used the elementary inequality

|
√
n2 + m− |n|| ≤ 1/(2|n|) . (7.30)

Then (7.27), (7.28), (7.29) imply, arguing as in the proof of Lemma 7.1, that

‖XF̃ ‖R lR2 . (7.31)

For proving that F̃ ∈ TR(N0, 3/2, 4) we have to show (3.15) (with f  F̃ ), namely

F̃σ,σ
′

α,β,m,n = F̃σ,σ
′

α,β (s(m), σm+ σ′n) (7.32)

with
F̃σ,−σα,β (s, h) := − 24i

α!β!
1

λα,β + sh
, F̃σ,σα,β (s, h) = 0 , s = ± , h ∈ Z .

Recalling (7.28), this is obvious when σ′ = σ. When σ′ = −σ we first note that s(m) = s(n). Indeed
the restriction on the first sum in (7.27) is (recall (7.23)) |m|, |n| > 3N/2, |σm − σn| < 4NL, which
implies s(m) = s(n) by (3.1). Then

σ|m| − σ|n| = σs(m)m− σs(n)n = s(m)(σm− σn)

and (7.32) follows. We have proved that F̃ ∈ TR(N0, 3/2, 4).
The Töplitz defect, defined by (3.29), is

F̂ :=
∑

F̂σ,σ
′

m,n (wL)uσmu
σ′

n with F̂σ,σ
′

m,n (wL) :=
∑

F̂σ,σ
′

α,β,m,nu
αūβ (7.33)

where the indexes in the two sums have the same restrictions as in (7.23)-(7.25), and

F̂σ,σα,β,m,n = − 24i
α!β!

N

λα,β + σλm + σλn
(7.34)

F̂σ,−σα,β,m,n = −N 24i
α!β!

(
1

λα,β + σλm − σλn
− 1
λα,β + σ|m| − σ|n|

)
=

24i
α!β!

Nσ(λm − |m| − λn + |n|)
(λα,β + σλm − σλn)(λα,β + σ|m| − σ|n|)

(7.35)

We now proof that the coefficients in (7.34)-(7.35) are bounded by a constant independent of N .
The coefficients in (7.34) are bounded because

|λα,β | ≤
∑
h

λh(|αh|+ |βh|) ≤
∑
h

|h|(|αh|+ |βh|) +
√

m
∑
h

(|αh|+ |βh|) ≤ 4NL + 2
√

m

by (7.26)-(7.25) (note that λh ≤ |h|+
√

m) and

|λα,β + σλm + σλn| ≥ |λm + λn| − |λα,β | ≥ 3N − 4NL − 2
√

m ≥ 3N/2

for N ≥ N0 large enough.
The coefficients in (7.35) are bounded by (7.18), (7.29), and

N |λm − |m| − λn + |n||
(7.30)

≤ N
m
2

( 1
|m|

+
1
|m|

)
≤ 2

3
m .

Hence arguing as in the proof of Lemma 7.1 we get

‖XF̂ ‖R lR2 . (7.36)
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In conclusion, (7.19), (7.31), (7.36) imply (7.22) (recall (3.30)).

Proof of Proposition 7.1 completed. We have

eadFH = eadFN + eadFG = N + {N,F}+
∑
i≥2

1
i!

adiF (N) +G+
∑
i≥1

1
i!

adiF (G)

(7.20)
= N +G+ Ĝ+

∑
i≥1

1
(i+ 1)!

adiF
(
adF (N)

)
+
∑
i≥1

1
i!

adiF (G)

= N +G+ Ĝ+K

where, using again (7.20),

K :=
∑
i≥1

1
(i+ 1)!

adiF (G+ Ĝ−G) +
∑
i≥1

1
i!

adiFG =: K1 +K2 . (7.37)

Proof of (7.9). We claim that in the expansion of K in (7.37) there are only monomials u~σ~ with
~ ∈ Z2d, ~σ ∈ {+,−}2d, d ≥ 3. Indeed F,G,G, Ĝ contain only monomials of degree four and, for any
monomial m, adF (m) contains only monomials of degree equal to the deg(m) + 2. The restriction
~σ · ~ = 0 follows by the Jacobi identity (2.82), since F,G,G, Ĝ preserve momentum, i.e. Poisson
commute with M .
Proof of (7.10). We apply Proposition 3.2 with (no (x, y) variables and)

f  F , g  

{
G+ Ĝ−G for K1 ,

G for K2 ,
r  R , r′  R/2 , δ  1/2 ,

θ  3/2 , θ′  2 , µ 4 , µ′  3 ,

N0 defined in Lemma 7.4 and N ′0 ≥ N0 satisfying (3.64) and

κ(N ′0)b−L lnN ′0 ≤ 1 , (6 + κ)(N ′0)L−1 lnN ′0 ≤ 1/2 . (7.38)

Note that (3.65) follows by (7.38). By (7.22), the assumption (3.63) is verified for every 0 < R < R0,
with R0 small enough. Then Proposition 3.2 applies and (7.10) follows by (3.67) (with h 1), (7.2),
(7.22) and (7.7).

7.2 Action–angle variables

We introduce action-angle variables on the tangential sites I := {j1, . . . , jn} (see (7.5)) via the analytic
and symplectic map

Φ(x, y, z, z̄; ξ) := (u, ū) (7.39)

defined by

ujl :=
√
ξl + yl e

ixl , ūjl :=
√
ξl + yl e

−ixl , l = 1, . . . , n , uj := zj , ūj := z̄j , j ∈ Z \ I . (7.40)

Let
Oρ :=

{
ξ ∈ Rn :

ρ

2
≤ ξl ≤ ρ , l = 1, . . . , n

}
. (7.41)

Lemma 7.5. (Domains) Let r,R, ρ > 0 satisfy

16r2 < ρ , ρ = C∗R
2 with C−1

∗ := 48nκ2pe2(s+aκ) . (7.42)

Then, for all ξ ∈ Oρ ∪ O2ρ, the map

Φ( · ; ξ) : D(s, 2r)→ D(R/2) := BR/2 ×BR/2 ⊂ `a,p × `a,p (7.43)

is well defined and analytic (D(s, 2r) is defined in (2.5) and κ in (3.1)).
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Proof. Note first that for (x, y, z, z̄) ∈ D(s, 2r) we have (see (2.6)) that |yl| < 4r2
(7.42)
< ρ/4 < ξl,

∀ξ ∈ Oρ ∪ O2ρ. Then the map yl 7→
√
ξl + yl is well defined and analytic. Moreover, for ξl ≤ 2ρ,

|jl| ≤ κ, x ∈ Tns , ‖z‖a,p < 2r, we get

‖u(x, y, z, z̄; ξ)‖2a,p
(7.39)

=
n∑
l=1

(ξl + yl)|e2ixl ||jl|2pe2a|jl| +
∑
j∈Z\I

|zj |2〈j〉2pe2a|j|

≤ n
(

2ρ+
ρ

4

)
e2sκ2pe2aκ + 4r2

(7.42)
< R2/4

proving (7.43) (the bound for ū is the same).
Given a function F : D(R/2) → C, the previous Lemma shows that the composite map F ◦ Φ :

D(s, 2r)→ C. The main result of this section is Proposition 7.2: if F is quasi-Töplitz in the variables
(u, ū) then the composite F ◦ Φ is quasi-Töplitz in the variables (x, y, z, z̄) (see Definition 3.4).

We write
F =

∑
α,β

Fα,βmα,β , mα,β := (u(1))α
(1)

(ū(1))β
(1)

(u(2))α
(2)

(ū(2))β
(2)
, (7.44)

where
u = (u(1), u(2)) , u(1) := {uj}j∈I , u(2) := {uj}j∈Z\I , similarly for ū ,

and

(α, β) = (α(1) + α(2), β(1) + β(2)) , (α(1), β(1)) := {αj , βj}j∈I , (α(2), β(2)) := {αj , βj}j∈Z\I . (7.45)

We define
HdR :=

{
F ∈ HR : F =

∑
|α(2)+β(2)|≥d

Fα,βu
αūβ

}
. (7.46)

Proposition 7.2. (Quasi–Töplitz) Let N0, θ, µ, µ
′ satisfying (3.1) and

(µ′ − µ)NL
0 > N b

0 , N02−
Nb0
2κ +1 < 1 . (7.47)

If F ∈ QTR/2(N0, θ, µ
′) ∩HdR/2 with d = 0, 1, then f := F ◦ Φ ∈ QTs,r(N0, θ, µ) and

‖f‖Ts,r,N0,θ,µ,Oρ l (8r/R)d−2‖F‖TR/2,N0,θ,µ′
. (7.48)

The rest of this section is devoted to the proof of Proposition 7.2. Introducing the action-angle
variables (7.40) in (7.44), and using the Taylor expansion

(1 + t)γ =
∑
h≥0

(
γ

h

)
th ,

(
γ

0

)
:= 1 ,

(
γ

h

)
:=

γ(γ − 1) . . . (γ − h+ 1)
h!

, h ≥ 1 , (7.49)

we get
f := F ◦ Φ =

∑
k,i,α(2),β(2)

fk,i,α(2),β(2)eik·xyizα
(2)
z̄β

(2)
(7.50)

with Taylor–Fourier coefficients

fk,i,α(2),β(2) :=
∑

α(1)−β(1)=k

Fα,β

n∏
l=1

ξ
α
(1)
l

+β(1)
l

2 −il
l

(α(1)
l +β

(1)
l

2

il

)
. (7.51)

We need an upper bound on the binomial coefficients.
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Lemma 7.6. For |t| < 1/2 we have

(i)
∑
h≥0

|t|h
∣∣∣(k2
h

)∣∣∣ ≤ 2k , ∀k ≥ 0 , (ii)
∑
h≥1

|t|h
∣∣∣(k2
h

)∣∣∣ ≤ 3k|t| , ∀k ≥ 1 . (7.52)

Proof. By (7.49) and the definition of majorant (see (2.11)) we have

∑
h≥0

∣∣∣(k2
h

)∣∣∣th = M(1 + t)
k
2

(2.39)
≺ (M(1 + t)

1
2 )k =

(∑
h≥0

∣∣∣( 1
2

h

)∣∣∣th)k ≺ (∑
h≥0

th
)k

(7.53)

because
∣∣∣( 1

2

h

)∣∣∣ ≤ 1 by (7.49). For |t| < 1/2 the bound (7.53) implies (7.52)-(i). Ne

∑
h≥1

|t|h
∣∣∣(k2
h

)∣∣∣ ≤ |t|∑
h≥0

|t|h
∣∣∣( k

2

h+ 1

)∣∣∣ (7.49)
= |t|

∑
h≥0

|t|h
∣∣∣(k2
h

)∣∣∣ |k2 − h|
h+ 1

≤ k|t|
∑
h≥0

|t|h
∣∣∣(k2
h

)∣∣∣ (7.52)−(i)

≤ k2k|t|

which implies (7.52)-(ii) for k ≥ 1.

Lemma 7.7. (M-regularity) If F ∈ HdR/2 then f := F ◦ Φ ∈ Hs,2r and

‖Xf‖s,2r,Oρ∪O2ρ l (8r/R)d−2‖XF ‖R/2 . (7.54)

Moreover if F preserves momentum then so does F ◦ Φ.

Proof. We first bound the majorant norm

‖f‖s,2r,Oρ∪O2ρ

(7.50),(7.46)
:= sup

ξ∈Oρ∪O2ρ

sup
(y,z,z̄)∈D(2r)

∑
k,i,|α(2)+β(2)|≥d

|fk,i,α(2),β(2) |e|k|s|yi||zα
(2)
||z̄β

(2)
| . (7.55)

Fix α(2), β(2). Since for all ξ ∈ Oρ ∪ O2ρ, y ∈ B(2r)2 , we have |yl/ξl| < 1/2 by (7.42), we have∑
k

e|k|s
∑
i

|fk,i,α(2),β(2) ||y|i (7.56)

(7.51)

≤
∑

α(1),β(1)

es(|α
(1)|+|β(1)|)|Fα,β |ξ

α(1)+β(1)

2

n∏
l=1

∑
il≥0

∣∣∣∣ylξl
∣∣∣∣il ∣∣∣(α

(1)
l +β

(1)
l

2

il

)∣∣∣ (7.57)

(7.52)

≤
∑

α(1),β(1)

es(|α
(1)|+|β(1)|)|Fα,β |ξ

α(1)+β(1)

2

n∏
l=1

2α
(1)
l +β

(1)
l (7.58)

≤
∑

α(1),β(1)

es(|α
(1)|+|β(1)|)|Fα,β |(2ρ)

|α(1)|+|β(1)|
2 2|α

(1)|+|β(1)| =
∑

α(1),β(1)

(2es
√

2ρ)|α
(1)|+|β(1)||Fα,β | .

Then, substituting in (7.55),

‖f‖s,2r,Oρ∪O2ρ ≤ sup
‖z‖a,p,‖z̄‖a,p<2r

G(z, z̄) where (7.59)

G(z, z̄) :=
∑

|α(2)+β(2)|≥d

(2es
√

2ρ)|α
(1)|+|β(1)||Fα,β ||zα

(2)
||z̄β

(2)
| . (7.60)

By (7.42), for all ‖z‖a,p, ‖z̄‖a,p < 2r, the vector (u∗, ū∗) defined by

u∗j = ū∗j := 2es
√

2ρ , j ∈ I , u∗j := (R/(8r))|zj | , ū∗j := (R/(8r))|z̄j | , j ∈ Z \ I (7.61)
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belongs to BR/2 × BR/2. Then, by (7.60), recalling (2.11), Definition 2.2 (and since R/(8r) > 1 by
(7.42)),

G(z, z̄) ≤ (8r/R)d(MF )(u∗, ū∗) ≤ (8r/R)d‖F‖R/2 , ∀ ‖z‖a,p, ‖z̄‖a,p < 2r .

Hence by (7.59)
‖f‖s,2r,Oρ∪O2ρ ≤ (8r/R)d‖F‖R/2 . (7.62)

This shows that f is M -regular. Similarly we get

‖∂zf‖s,2r,Oρ∪O2ρ ≤ ‖∂u(2)F‖R/2(8r/R)d−1 , same for ∂z̄ . (7.63)

Moreover, by the chain rule, and (7.62)

‖∂xif‖s,2r,Oρ∪O2ρ ≤ (‖∂
u

(1)
i
F‖R/2 + ‖∂

ū
(1)
i
F‖R/2)

√
2ρ+ ρ/4es(8r/R)d

‖∂yif‖s,2r,Oρ∪O2ρ ≤ (‖∂
u

(1)
i
F‖R/2 + ‖∂

ū
(1)
i
F‖R/2)

es√
ρ/2− ρ/4

(8r/R)d .

Then (7.54) follows by (7.42) (recalling (2.2)).

Definition 7.1. For a monomial mα,β := (u(1))α
(1)

(ū(1))β
(1)

(u(2))α
(2)

(ū(2))β
(2)

(as in (7.44)) we set

p(mα,β) :=
n∑
l=1

〈jl〉(α(1)
jl

+ β
(1)
jl

) , 〈j〉 := max{1, |j|} . (7.64)

For any F as in (7.44), K ∈ N, we define the projection

Πp≥KF :=
∑

p(mα,β)≥K

Fα,βmα,β , Πp<K := I −Πp≥K . (7.65)

Lemma 7.8. Let F ∈ HR/2. Then

‖X(Πp≥KF )◦Φ‖s,r,Oρ ≤ 2−
K
2κ+1‖XF◦Φ‖s,2r,O2ρ . (7.66)

Proof. For each monomial mα,β as in (7.44) with p(mα,β) ≥ K we have

|α(1) + β(1)| (7.45)
=

n∑
l=1

α
(1)
jl

+ β
(1)
jl

(3.1)

≥ κ−1
n∑
l=1

〈jl〉(α(1)
jl

+ β
(1)
jl

)
(7.64)

= κ−1p(mα,β) ≥ κ−1K

and then, ∀ξ ∈ Oρ, y ∈ Br2 ,

|(mα,β ◦ Φ)(x, y, z, z̄; ξ)| (7.40)
= |(ξ + y)

α(1)+β(1)

2 ei(α(1)−β(1))·xzα
(2)
z̄β

(2)
| (7.67)

= 2−
|α(1)+β(1)|

2 |(2ξ + 2y)
α(1)+β(1)

2 ei(α(1)−β(1))·xzα
(2)
z̄β

(2)
|

≤ 2−
K
2κ |(mα,β ◦ Φ)(x, 2y, z, z̄; 2ξ)| .

The bound (7.66) for the Hamiltonian vector field follows applying the above rescaling argument to
each component, and noting that the derivatives with respect to y in the vector field decrease the
degree in ξ by one.

Let N0, θ, µ, µ
′ be as in Proposition 7.2. For N ≥ N0 and F ∈ HR/2 we set

f∗ := ΠN,θ,µ

(
(F −ΠN,θ,µ′F ) ◦ Φ

)
. (7.68)

Note that ΠN,θ,µ′ is the projection on the bilinear functions in the variables u, ū, while ΠN,θ,µ in the
variables x, y, z, z̄.
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Lemma 7.9. We have
‖Xf∗‖s,r,Oρ ≤ 2−

Nb

2κ +1‖XF◦Φ‖s,2r,O2ρ . (7.69)

Proof. We first claim that if F = mα,β is a monomial as in (7.44) with p(mα,β) < N b then f∗ = 0.
Case 1: mα,β is (N, θ, µ′)–bilinear, see Definition 3.2. Then ΠN,θ,µ′mα,β = mα,β and f∗ = 0, see

(7.68).
Case 2: mα,β is not (N, θ, µ′)–bilinear. Then ΠN,θ,µ′mα,β = 0 and f∗ = ΠN,θ,µ(mα,β ◦ Φ), see

(7.68). We claim that mα,β ◦ Φ is not (N, θ, µ)–bilinear, and so f∗ = ΠN,θ,µ(mα,β ◦ Φ) = 0. Indeed,

mα,β ◦ Φ = (ξ + y)
α(1)+β(1)

2 ei(α(1)−β(1))·xzα
(2)
z̄β

(2)
(7.70)

is (N, θ, µ)–bilinear if and only if (see Definitions 3.2 and 3.1)

zα
(2)
z̄β

(2)
= zα̃

(2)
z̄β̃

(2)
zσmz

σ′

n ,∑
j∈Z\I

|j|(α̃(2)
j + β̃

(2)
j ) < µNL , |m|, |n| > θN , |α(1) − β(1)| < N b . (7.71)

We deduce the contradiction that mα,β = (u(1))α
(1)

(ū(1))β
(1)

(u(2))α̃
(2)

(ū(2))β̃
(2)
uσmu

σ′

n is (N, θ, µ′)-
bilinear because (recall that we suppose p(mα,β) < N b)

n∑
l=1

|jl|(α(1)
jl

+ β
(1)
jl

) +
∑
j∈Z\I

|j|(α̃(2)
j + β̃

(2)
j )

(7.64),(7.71)
< p(mα,β) + µNL < N b + µNL

(7.47)
< µ′NL .

For the general case, we divide F = Πp<NbF + Πp≥NbF . By the above claim

f∗ = ΠN,θ,µ

((
(Id−ΠN,θ,µ′)Πp≥NbF

)
◦ Φ
)

= ΠN,θ,µ

((
Πp≥Nb(Id−ΠN,θ,µ′)F

)
◦ Φ
)
.

Finally, (7.69) follows by (2.80) and applying Lemma 7.8 to
(
Πp≥Nb(Id−ΠN,θ,µ′)F

)
◦ Φ.

Lemma 7.10. Let F ∈ TR/2(N, θ, µ′) with Πp≥NbF = 0. Then F ◦ Φ(·; ξ) ∈ Ts,2r(N, θ, µ′), ∀ ξ ∈
Oρ ∪ O2ρ .

Proof. Recalling Definition 3.3 we have

F =
∑

|m|,|n|>θN,σ,σ′=±

Fσ,σ
′
(s(m), σm+ σ′n)uσmu

σ′

n with Fσ,σ
′
(ς, h) ∈ LR/2(N,µ′, h) .

Composing with the map Φ in (7.40), since m,n /∈ I, we get

F ◦ Φ =
∑

σ,σ′=± ,|m|,|n|>θN

Fσ,σ
′
(s(m), σm+ σ′n) ◦ Φ zσmz

σ′

n .

Each coefficient Fσ,σ
′
(s(m), σm+ σ′n) ◦Φ depends on n,m, σ, σ′ only through s(m), σm+ σ′n, σ, σ′.

Hence, in order to conclude that F ◦Φ ∈ Ts,2r(N, θ, µ′) it remains only to prove that Fσ,σ
′
(s(m), σm+

σ′n)◦Φ ∈ Ls,2r(N,µ′, σm+σ′n), see Definition 3.1. Each monomial mα,β of Fσ,σ
′
(s(m), σm+σ′n) ∈

LR/2(N,µ′, σm+ σ′n) satisfies

n∑
l=1

(αjl + βjl)|jl|+
∑
j∈Z\I

(αj + βj)|j| < µ′NL and p(mα,β) < N b

by the hypothesis Πp≥NbF = 0. Hence mα,β ◦ Φ (see (7.70)) is (N,µ′)-low momentum, in particular
|α(1) − β(1)| ≤ p(mα,β) < N b.
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Proof of Proposition 7.2. Since F ∈ QTR/2(N0, θ, µ
′) (see Definition 3.4), for all N ≥ N0, there

is a Töplitz approximation F̃ ∈ TR/2(N, θ, µ′) of F , namely

ΠN,θ,µ′F = F̃ +N−1F̂ with ‖XF ‖R/2, ‖XF̃ ‖R/2, ‖XF̂ ‖R/2 < 2‖F‖TR/2,N0,θ,µ′
. (7.72)

In order to prove that f := F ◦ Φ ∈ QTs,r(N0, θ, µ) we define its candidate Töplitz approximation

f̃ := ΠN,θ,µ((Πp<Nb F̃ ) ◦ Φ) , (7.73)

see (7.65). Lemma 7.10 applied to Πp<Nb F̃ ∈ TR/2(N, θ, µ′) implies that (Πp<Nb F̃ )◦Φ ∈ Ts,2r(N, θ, µ′)
and then, applying the projection ΠN,θ,µ we get f̃ ∈ Ts,2r(N, θ, µ) ⊂ Ts,r(N, θ, µ). Moreover, by (7.73)
and applying Lemma 7.7 to Πp<Nb F̃ (note that Πp<Nb F̃ is either zero or it is in HdR/2 with d ≥ 2
because it is bilinear), we get

‖Xf̃‖s,r,Oρ
(2.80)

≤ ‖X(Π
p<Nb

F̃ )◦Φ)‖s,r,Oρ
(7.54)

l (8r/R)d−2‖XΠ
p<Nb

F̃ ‖R/2
(2.80),(7.72)

l (8r/R)d−2‖F‖TR/2,N0,θ,µ′
. (7.74)

Moreover the Töplitz defect is

f̂ := N(ΠN,θ,µf − f̃)
(7.73)

= N ΠN,θ,µ

(
(F −Πp<Nb F̃ ) ◦ Φ

)
= NΠN,θ,µ

(
(F − F̃ ) ◦ Φ

)
+NΠN,θ,µ

(
(F̃ −Πp<Nb F̃ ) ◦ Φ

)
(7.72),(7.65)

= ΠN,θ,µ(F̂ ◦ Φ) +NΠN,θ,µ

((
F −ΠN,θ,µ′F

)
◦ Φ
)

+NΠN,θ,µ

(
(Πp≥Nb F̃ ) ◦ Φ

)
(7.68)

= ΠN,θ,µ(F̂ ◦ Φ) +Nf∗ +NΠN,θ,µ

(
(Πp≥Nb F̃ ) ◦ Φ

)
.

Using (2.80), Lemmata 7.8 and 7.9 imply that, since N2−
Nb

2κ +1 ≤ 1, ∀N ≥ N0 by (7.47),

‖Xf̂‖s,r,Oρ ≤ ‖XF̂◦Φ‖s,r,Oρ +N2−
Nb

2κ +1(‖XF◦Φ‖s,2r,O2ρ + ‖XF̃◦Φ‖s,2r,O2ρ)

l ‖XF̂◦Φ‖s,2r,Oρ + ‖XF◦Φ‖s,2r,O2ρ + ‖XF̃◦Φ‖s,2r,O2ρ

(7.54)
l (8r/R)d−2(‖XF̂ ‖R/2 + ‖XF ‖R/2 + ‖XF̃ ‖R/2) (7.75)

(7.72)
l (8r/R)d−2‖F‖TR/2,N0,θ,µ′

(7.76)

(to get (7.75) we also note that F, F̂ , F̃ ∈ HdR/2 with d = 0, 1, unless are zero).
The bound (7.48) follows by (7.54), (7.74), (7.76).

We conclude this subsection with a lemma, similar to Lemma 7.7, used in Lemma 7.12 (see (7.90)).

Lemma 7.11. Let F ∈ HR/2, f := F ◦ Φ and f̃(x, y) := f(x, y, 0, 0) − f(x, 0, 0, 0). Then, assuming
(7.42),

‖Xf̃‖s,2r,Oρ∪O2ρ l ‖XF ‖R/2 . (7.77)

Moreover if F preserves momentum then so does f̃ .

Proof. We proceed as in Lemma 7.7. The main difference is that here there are no (z, z̄)-variables
and the sum in (7.56) runs over i 6= 0. Then in the product in (7.57) (at least) one of the sums
is on il ≥ 1. Therefore we can use the second estimate in (7.52) gaining a factor3 8r2/ρ (since
|yl|/|ξl| ≤ 8r2/ρ by (7.41)). Continuing as in the proof of Lemma 7.7 we get (recall (7.54) with d = 0)

‖Xf̃‖s,2r,Oρ∪O2ρ l (r2/ρ)(r/R)−2‖XF ‖R/2
(7.42)

l ‖XF ‖R/2
proving (7.77).

3Actually we have the constant 3 instead of 2 in (7.58) and 3es instead of 2es in (7.59) and (7.61).
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7.3 Proof of Theorem 1.1

We now introduce the action-angle variables (7.40) (via the map (7.39)) in the Birkhoff normal form
Hamiltonian (7.8). Hence we obtain the parameter dependent family of Hamiltonians

H ′ := HBirkhoff ◦ Φ = N + P (7.78)

where (up to a constant), by (7.6),

N := ω(ξ) · y + Ω(ξ)zz̄ , P :=
1
2
Ay · y +By · zz̄ + Ĝ(z, z̄) +K ′(x, y, z, z̄; ξ) , (7.79)

ω(ξ) := ω̄ +Aξ , ω̄ := (λj1 , . . . , λjn) , Ω(ξ) := Ω̄ +Bξ , Ω̄ := (λj)j∈Z\I , (7.80)

A = (Alh)1≤l,h≤n , Alh := 12(2− δlh) , B = (Bjl)j∈Z\I,1≤l≤n , Bjl := 24 , K ′ := K ◦ Φ . (7.81)

The parameters ξ stay in the set Oρ defined in (7.41) with ρ = C∗R
2 as in (7.42). As in (4.6) we

decompose the perturbation

P = P00 + P̄ where P00(x; ξ) := K ′(x, 0, 0, 0; ξ) , P̄ := P − P00 . (7.82)

Lemma 7.12. Let s, r > 0 as in (7.42) and N large enough (w.r.t. m, I, L, b). Then

‖XP00‖s,r lR6r−2 , ‖P̄‖Ts,r,N,2,2 l r2 +R5r−1 (7.83)

and, for λ > 0,

|XP00 |λs,r l (1 + λ/ρ)R6r−2 , |XP̄ |λs,r l (1 + λ/ρ)(r2 +R5r−1) , (7.84)

for ξ belonging to

O(ρ) :=
{
ξ ∈ Rn :

2
3
ρ ≤ ξl ≤

3
4
ρ , l = 1, . . . , n

}
⊂ Oρ . (7.85)

Proof. By the definition (7.82) we have

‖XP00‖s,r
(2.55)

≤ ‖XK′‖s,r
(3.32)

≤ ‖K ′‖Ts,r,N,2,2
(7.81)

= ‖K ◦ Φ‖Ts,r,N,2,2
(7.48)

l
( r
R

)−2

‖K‖TR/2,N,2,2 (7.86)

(applying (7.48) with d  0, N0  N , θ  2, µ  2, µ′  3) and taking N large enough so that
(7.47) holds. Take also N ≥ N ′0 defined in Proposition 7.1. Then by (7.86) we get

‖XP00‖s,r
(3.35)

l
( r
R

)−2

‖K‖TR/2,N ′0,2,2
(7.10)

l
( r
R

)−2

R4 l
R6

r2

proving the first estimate in (7.83). Let us prove the second bound. By (7.82) and (7.79) we write

P̄ =
1
2
Ay · y +By · zz̄ + Ĝ(z, z̄) +K1 +K2 (7.87)

where

K1 := K ′(x, y, z, z̄; ξ)−K ′(x, y, 0, 0; ξ) , K2 := K ′(x, y, 0, 0; ξ)−K ′(x, 0, 0, 0; ξ) .

Using (7.7) (note that r < R by (7.42)) for N ≥ N0 large enough to fulfill (3.1), we have by (3.35)∥∥∥1
2
Ay · y +By · zz̄ + Ĝ(z, z̄)

∥∥∥T
s,r,N,2,2

l r2 . (7.88)
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By (7.48) (with d 1, N0  N , µ 2, µ′  3), for N ≥ N0(m, I, L, b) large enough, we get

‖K1‖Ts,r,N,2,2 l
( r
R

)−1

R4 l
R5

r
. (7.89)

Moreover, since K2 does not depend on (z, z̄), we have

‖K2‖Ts,r,N,2,2
(3.34)

= ‖XK2‖s,r
(7.77)

l ‖XK‖R/2
(3.32)

l ‖K‖TR/2,N ′0,2,3
(7.10)

l R4 . (7.90)

In conclusion, (7.87), (7.88), (7.89), (7.90) imply the second estimate in (7.83):

‖P̄‖Ts,r,N,2,2 l r2 +
R5

r
+R4

(7.42)
l r2 +

R5

r
.

Let us prove the estimates (7.84) for the Lipschitz norm defined in (2.88) (which involves only the
sup-norm of the vector fields). First

|XP00 |s,r
(2.62)

≤ ‖XP00‖s,r
(7.83)

l R6r−2 , |XP̄ |s,r
(2.62)

≤ ‖XP̄ ‖s,r
(3.32)

≤ ‖P̄‖Ts,r,N,2,2
(7.83)

l r2 +R5r−1

Next, since the vector fields XP00 , XP̄ are analytic in the parameters ξ ∈ Oρ, Cauchy estimates in
the domain O(ρ) ⊂ Oρ (see (7.85)) imply

|XP00 |
lip
s,r,O(ρ) l ρ−1|XP00 |s,r,Oρ lR6r−2, |XP̄ |

lip
s,r,O(ρ) l ρ−1|XP̄ |s,r,Oρ l r2 +R5r−1

and (7.84) are proved.

All the assumptions of Theorems 4.1-4.2 are fulfilled by H ′ in (7.78) with parameters ξ ∈ O(ρ)
defined in (7.85). Note that the sets O = [ρ/2, ρ]n defined in Theorem 4.2 and O(ρ) defined in (7.85)
are diffeomorphic through ξi 7→ (7ρ + 2ξi)/12. The hypothesis (A1)-(A2) follow from (7.80), (7.81)
with

a(ξ) = 24
∑

l=1,...,n

ξl , and M0 = 24 + ‖A‖ .

Then (A3)-(A4) and the quantitative bound (4.7) follow by (7.83)-(7.84), choosing

s = 1, r = R1+ 3
4 , ρ = C∗R

2 as in (7.42), N as in Lemma 7.12, θ = 2, µ = 2, γ = R3+ 1
5 , (7.91)

and taking R small enough. Hence Theorem 4.1 applies.
Let us verify that also the assumptions of Theorem 4.2 are fulfilled. Indeed (4.13) follows by (7.80),

(7.81) with ~a = 24(1, . . . , 1) ∈ Rn. The matrix A defined in (7.81) is invertible and

A−1 = (A−1
lh )1≤l,h≤n , A−1

lh =
1
12

( 2
2n− 1

− δlh
)
.

Finally the non-degeneracy assumption (4.14) is satisfied because A = AT and

2A−1~a =
4

2n− 1
(1, . . . , 1) /∈ Zn \ 0 .

We deduce that the Cantor set of parameters O∞ ⊂ O in (4.11) has asymptotically full density because

|O \ O∞|
|O|

(4.16)
l ρ−1γ2/3

(7.91)
l R−2R

2
3 (3+ 1

5 ) = R
2
15 → 0 .

The proof of Theorem 1.1 is now completed.

Remark 7.1. The terms
∑
k≥5

fks
k in (1.2) contribute to the Hamiltonian (7.1) with monomials of

order 6 or more and (7.8) holds (with a possibly different K satisfying (7.10)). On the contrary, the
term f4s

4 in (1.2) would add monomials of order 5 to the Hamiltonian in (7.1). Hence (7.10) holds
with R3 instead of R4. This estimate is not sufficient. These 5-th order terms should be removed by
a Birkhoff normal form. For simplicity, we did not pursue this point.
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8 Appendix

Proof of Lemma 2.14. We need some notation: we write E = ⊕4
j=1Ej , E1 := (Cn, | |∞), E2 :=

(Cn, | |1), E3 := E4 := `a,pI so that a vector v = (x, y, z, z̄) ∈ E can be expressed by its four components
v(j) ∈ Ej , v(1) := x, v(2) := y, v(3) := z, v(4) := z̄, and the norm (2.2) is

‖v‖E,s,r :=
4∑
j=1

|v(j)|Ej
ρj

, where ρ1 = s , ρ2 = r2 , ρ3 = ρ4 = r . (8.1)

We are now ready to prove (2.65). By definition

‖dX(v)‖L((E,s,r);(E,s′,r′)) := sup
‖Y ‖E,s,r≤1

‖dX(v)[Y ]‖E,s′,r′
(8.1)
= sup
‖Y ‖E,s,r≤1

4∑
i=1

|dX(i)(v)[Y ]|Ei
ρ′i

= sup
‖Y ‖E,s,r≤1

4∑
i=1

|
∑4
j=1 dv(j)X

(i)(v)Y (j)|Ei
ρ′i

≤ sup
‖Y ‖E,s,r≤1

4∑
i,j=1

|dv(j)X(i)(v)Y (j)|Ei
ρ′i

≤ sup
‖Y ‖E,s,r≤1

4∑
i,j=1

1
ρ′i
‖dv(j)X(i)(v)‖L(Ej ,Ei)|Y

(j)|Ej

≤ sup
‖Y ‖E,s,r≤1

sup
ṽ∈D(s,r)

4∑
i,j=1

1
ρ′i

|X(i)(ṽ)|Ei
(ρj − ρ′j)

|Y (j)|Ej

by the Cauchy estimates in Banach spaces. Then

‖dX(v)‖L((E,s,r);(E,s′,r′)) ≤ sup
ṽ∈D(s,r)

4∑
i=1

ρi
ρ′i

|X(i)(ṽ)|Ei
ρi

sup
‖Y ‖E,s,r≤1

4∑
j=1

(
1−

ρ′j
ρj

)−1 |Y (j)|Ej
ρj

(8.1)

≤ max
i=1,...,4

ρi
ρ′i

max
j=1,...,4

(
1−

ρ′j
ρj

)−1

sup
ṽ∈D(s,r)

‖X(ṽ)‖E,s,r ≤ 4δ−1|X|s,r

by (2.53), (2.66). This proves (2.65).

Proof of Lemma 7.2. We first extend Lemma 4 of [28] proving that:

Lemma 8.1. If 0 ≤ i ≤ j ≤ k ≤ l with i ± j ± k ± l = 0 for some combination of plus and minus
signs and (i, j, k, l) 6= (p, p, q, q) for p, q ∈ N, then, there exists an absolute constant c > 0, such that

| ± λi(m)± λj(m)± λk(m)± λl(m)| ≥ cm(i2 + m)−3/2 (8.2)

for all possible combinations of plus and minus signs

Proof. When i > 0 it is a reformulation of the statement of Lemma 4 of [28]. Let us prove it also for
i = 0. Then j ± k ± l = 0 for some combination of plus and minus signs. Since (i, j, k, l) 6= (0, 0, q, q),
the only possibility is l = j + k with j ≥ 1 (otherwise i = j = 0 and k = l). We have to study

δ(m) := ±λ0(m)± λj(m)± λk(m)± λl(m)

for all possible combinations of plus and minus signs. To this end, we distinguish them according to
their number of plus and minus signs. To shorten notation we let, for example, δ++−+ = λ0 + λj −
λk + λl, similarly for the other combinations. The only interesting cases are when there are one or
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two minus signs. The case when there are no (or four) minus signs is trivial. When there are 3 minus
signs we reduce to the case with one minus sign by a global sign change.
One minus sign. Since δ++−+, δ+−++, δ−+++ ≥ δ+++− := δ we study only the last case. We have

δ(0) = j + k − l = 0 , δ′(m) =
1
2

(
1
λ0

+
1
λj

+
1
λk
− 1
λl

)
≥ 1

2λ0
=

1
2
√

m
.

Therefore δ(m) ≥
√

m ≥ cm(1 + m)−3/2 for an absolute constant c > 0.
Two minus signs. Now we have δ−+−+, δ−−++ ≥ δ+−−+ and all other cases reduce to these ones by
inverting signs. So we consider only δ = δ+−−+. Since the function f(t) :=

√
t2 + m is monotone

increasing and convex for t ≥ 0, we have the estimate

λl − λk ≥ λl−p − λk−p , ∀ 0 ≤ p ≤ k . (8.3)

Hence λl − λk ≥ λj+1 − λ1 and λj+1 − λj ≥ λ2 − λ1 (using j = l − k ≥ 1). Therefore

δ = λ0 − λj − λk + λl ≥ λ0 − λj − λ1 + λj+1 ≥ λ2 − 2λ1 + λ0 ≥ m(4 + m)−3/2 .

The last inequality follows since f ′′(t) = m(t2 + m)−3/2 is decreasing and λ2 − 2λ1 + λ0 = f(2) −
2f(1) + f(0) = f ′′(ξ) ≥ f ′′(2) for some ξ ∈ (0, 2).
We complete the proof of Lemma 7.2. We first consider the trivial cases (7.12)-(7.14).

case (7.12). Since
∑
i

σi 6= 0 is even, (7.16) follows by

|σ · λ~| = |
∑
i

σiλ~0| ≥ 2λ~0 = 2
√

m ≥ m(1 + m)−3/2 .

case (7.13). By ~σ · ~ = (σ3 + σ4)q = 0, q 6= 0, we deduce σ3 = −σ4. Hence (7.16) follows by

|σ · λ~| = |(σ1 + σ2)λ0| = 2
√

m ≥ m(1 + m)−3/2

case (7.14). Since ~ = (p, p,−p,−p) and σ1 = σ2 then ~σ · ~ = 0 implies σ3 = σ4 = σ2 and

|σ · λ~| = |4λp| = 4
√
p2 + m ≥ m(p2 + m)−3/2 .

case (7.15). Set |j1| =: i , |j2| =: j, |j3| =: k, |j4| =: l. After reordering we can assume 0 ≤ i ≤
j ≤ k ≤ l. Since, by assumption, ~σ · ~ = 0, the following combination of plus and minus signs gives
s(j1)σ1i + s(j2)σ2j + s(j3)σ3k + s(j4)σ4l = 0. Hence Lemma 8.1 implies (7.16) for every ~ except
when |j1| = |j2| and |j3| = |j4| (in this case i = j and k = l and Lemma 8.1 does not apply). We now
prove that (7.16) holds also in these cases. We have that ~σ · λ~ = (σ1 + σ2)λj1 + (σ3 + σ4)λj3 where
σa + σb = 0,±2 so that (7.16) holds trivially unless σ1 + σ2 = −(σ3 + σ4). We consider this last case.
If σ1 +σ2 = −(σ3 +σ4) = 0 then the equality ~σ ·~ = σ1(j1−j2)+σ3(j3−j4) = 0 implies that j1, . . . , j4
are pairwise equal, contrary to our hypothesis. If σ1 + σ2 = ±2 and i := |j1| < k := |j3| then

|~σ · λ~| ≥ 2λj3 − 2λj1 = 2λk − 2λi
(8.3)

≥ 2λk−i − 2λ0

(k>i)

≥ 2λ1 − 2λ0 ≥ 1/
√

1 + m

giving (7.16). If |j1| = |j2| = |j3| = |j4| and σ1 + σ2 = −(σ3 + σ4) = ±2 then the relation ~σ · ~ =
σ1(j1 + j2 − j3 − j4) = 0 implies that the j1, . . . , j4 are pairwise equal, contrary to the hypothesis.
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[19] Kappeler T., Pöschel J., KAM and KdV, Springer, 2003.

[20] Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spec-
trum, Funktsional. Anal. i Prilozhen. 21, no. 3, 22–37, 95, 1987.

[21] Kuksin S., A KAM theorem for equations of the Korteweg-de Vries type, Rev. Math-Math Phys.,
10, 3, 1-64, 1998.

65



[22] Kuksin S., Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Appli-
cations, 19. Oxford University Press, 2000.
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[29] Pöschel J., Trubowitz E., Inverse spectral theory, Academic Press, Orlando, 1987.
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