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Abstract

We present new architectures for feedforward
neural networks built from products of learned
or random low-dimensional rotations that of-
fer substantial space compression and com-
putational speedups in comparison to the un-
structured baselines. Models using them are
also competitive with the baselines and often,
due to imposed orthogonal structure, outper-
form baselines accuracy-wise. We propose to
use our architectures in two settings. We show
that in the non-adaptive scenario (random
neural networks) they lead to asymptotically
more accurate, space-efficient and faster esti-
mators of the so-called PNG-kernels (for any
activation function defining the PNG). This
generalizes several recent theoretical results
about orthogonal estimators (e.g. orthogonal
JLTs, orthogonal estimators of angular ker-
nels and more). In the adaptive setting we
propose efficient algorithms for learning prod-
ucts of low-dimensional rotations and show
how our architectures can be used to improve
space and time complexity of state of the
art reinforcement learning (RL) algorithms
(e.g. PPO, TRPO). Here they offer up to
7x compression of the network in comparison
to the unstructured baselines and outperform
reward-wise state of the art structured neural
networks offering similar computational gains
and based on low displacement rank matrices.

1 Introduction

Structured transforms play an important role in
many machine learning algorithms. Several re-
cently proposed scalable kernel methods using
random feature maps [Rahimi and Recht, 2007]
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apply structured matrices to either reduce time
& space complexity of kernels’ estimators or im-
prove their accuracy [Choromanska et al., 2016,
Choromanski et al., 2018b, Bojarski et al., 2017,
Choromanski et al., 2017, Choromanski et al., 2018a,
Yu et al., 2016, Choromanski and Sindhwani, 2016,
Vybíral, 2011, Zhang and Cheng, 2013]. Struc-
tured matrices are also applied in some of
the fastest known cross-polytope LSH algo-
rithms [Andoni et al., 2015] and neural networks
[Sindhwani et al., 2015, Choromanski et al., 2018a,
Choromanski et al., 2018c]. In the latter set-
ting they were used in particular to scale
up architectures for mobile speech recognition
[Sindhwani et al., 2015], predictive state recurrent
neural networks [Choromanski et al., 2018a] and
more recently, to encode policy architectures for RL
tasks [Choromanski et al., 2018c]. Compressed neural
networks encoded by structured matrices enable
practitioners to train RL policies with the use of
evolutionary strategy algorithms (recently becoming a
serious alternative to state of the art policy gradient
methods [Salimans et al., 2017, Mania et al., 2018])
on a single machine instead of clusters of thou-
sands of machines. Time & space complexity
reduction is obtained by applying structured ma-
trices where matrix-vector multiplication can be
conducted in sub-quadratic time with the use of
Fast Fourier Transform (e.g. low displacement rank
matrices from [Choromanski and Sindhwani, 2016,
Sindhwani et al., 2015, Choromanski et al., 2018c])
or Fast Walsh-Hadamard Transform (e.g. ran-
dom Hadamard matrices from [Andoni et al., 2015,
Choromanski et al., 2017]).

However, time & space complexity reduction as well as
accuracy improvements over unstructured baselines at
the same time were recently theoretically proven only
for random Hadamard matrices and only for the linear
kernel (see: dimensionality reduction mechanisms in
[Choromanski et al., 2017]). Furthermore, it is known
that obtained accuracy gains are due to the orthogonal-
ity and similar guarantees cannot be achieved for low
displacement rank matrices. Other orthogonal trans-
forms for which accuracy improvements were proven
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(angular kernel estimators and asymptotically estima-
tors of certain classes of RBF-kernels) were built from
random orthogonal matrices constructed via Gram-
Schmidt orthogonalization [Yu et al., 2016]. These do
not offer any compression of the number of parameters
and computational gains.

We propose here a class of structured neural network
architectures, called, KAMA-NNs, where matrices of
connections can be decomposed as products of low-
dimensional learned or random rotations. We show
that the best features of all the aforementioned struc-
tured families are encapsulated in this class. First, it
provides orthogonality and we show that in the non-
adaptive scenario (random neural networks) it con-
sequently leads to the asymptotically more accurate,
space-efficient and faster estimators of the so-called
PNG (Pointwise Nonlinear Gaussian) kernels (for any
activation function defining the PNG) and RBF-kernels.
This generalizes several recent theoretical results about
orthogonal estimators (e.g. orthogonal JLTs, orthogo-
nal estimators for angular, gaussian kernels and more).
Furthermore, it achieves time & space complexity gains
over unstructured baselines, matching or outperform-
ing accuracy-wise low displacement rank matrices. Fi-
nally, in the adaptive setting, where low-dimensional
rotations are learned, it improves state of the art rein-
forcement learning algorithms (e.g. PPO, TRPO). In
the RL setting our architectures offer up to 7x com-
pression of the network in comparison to the unstruc-
tured baselines and outperform reward-wise state of
the art structured neural networks offering similar com-
putational gains and based on low displacement rank
matrices [Choromanski et al., 2018c]. In the adaptive
setting, we also give an interesting geometric interpre-
tation of our algorithms. We explain how optimizing
over a sequence of low dimensional rotations is akin
to performing coordinate descent/ascent on the man-
ifold of all rotation-matrices. This sheds light on the
effectiveness of the KAMA-NN mechanism also in the
adaptive setting.

We highlight our main contributions below:

• In Section 2 we formally introduce KAMA-NN
architectures and discuss their space and time
complexity.

• In Section 3 we discuss the capacity of models
based on products of low dimensional rotations in
both: adaptive and non-adaptive setting and the
connection to random matrix theory.

• In Section 4 we establish the connection between
random neural networks and PNG kernels and
show that random KAMA-NNs lead to asymptoti-
cally more accurate estimators of these kernels.

• In Section 5 we analyze adaptive mechanism,
where low dimensional rotations defining KAMA-
NN architectures are trained and provide conver-
gence results for optimizing certain classes of black-
box functions via KAMA-NNs.

• In Section 6 we given an exhaustive empirical
evaluation of KAMA-NN architectures. In the
non-adaptive setting (random KAMA-NNs) we
perform an empirical study of the accuracy of
PNG kernels’ estimators with KAMA-NNs. In the
adaptive setting we apply KAMA-NNs to encode
RL policies and compare them to unstructured and
other structured architectures for different policy
gradient algorithms and on several RL tasks.

2 KAMA-NN architectures

KAMA-NNs are feedforward neural networks, with
matrices of connections constructed from products of 2-
dimensional learned or random rotations called Givens
rotations. For fixed I, J ∈ {0, 1, ..., d− 1} (I 6= J) and
Θ ∈ [0, 2π) we define a Givens rotation GΘ

I,J ∈ R
d×d

as follows:

GΘ
I,J [i, j] =





1, if i = j and i 6∈ {I, J}
0, if i 6= j and {i, j} 6= {I, J}
cosΘ, if i = j and i ∈ {I, J}
sinΘ, if i = J, j = I
− sinΘ, if i = I, j = J

,

Givens random rotation is a Givens rotation, where Θ ∼
Unif [0, 2π) and I, J are chosen uniformly at random.

Each matrix M ∈ R
d1×d2 of connections of the KAMA-

NN is obtained from the product of k Givens rotations
of max(d1, d2) rows and columns each (where k may
differ form layer to layer) by taking its first d1 rows (d2
columns) if d1 ≤ d2 (d1 > d2) and then renormalizing
these min(d1, d2) rows (columns). The renormaliza-
tion is conducted by multiplying these rows (columns)
by fixed min(d1, d2) scalars: s1, ..., smin(d1,d2). Ran-
dom KAMA-NNs apply matrices M using Givens ran-
dom rotations chosen independently and with scalars
s1, ..., smin(d1,d2) chosen independently from a given
probabilistic 1D-distribution Φ. In general these as
well as angles Θ and indices I, J of Givens rotations are
learned. Notice that products of independent Givens
random rotations are sometimes called Kac’s random
walk matrices since they correspond to the Kac’s ran-
dom walk Markov Chain [Kac, 1954]. KAMA stands
for: Kacs Asymptotic Matrix Approximators, since,
as we will see in Section 3, these constructions can be
used to approximate many classes of matrices.
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Space and time complexity gains: Matrix-vector
mutliplication with matrices M = G1 · ...Gk ∈ R

d,
where Gis are Givens rotations, can be conducted in
time O(k), since mutliplication by each Givens rotation
can be trivially done in time O(1) (it requires exactly
four scalar multiplications and two additions). Further-
more, the total number of parameters needed to encode
matrix M together with renormalization parameters
si (see: above discussion) equals 3k + d (two indices
and one angle per Givens rotation and d renormaliza-
tion scalars). We will see later (see: Section 3) that
in practice k = O(d log(d)) Givens matrices suffice to
encode architectures capable of learning good quality
models. Thus KAMA-NNs provide faster inference
than unstructured counterparts and form a class of
compact yet expressible neural network architectures.

3 Capacity of KAMA-NNs

Products of low dimensional rotations have been
the subject of voluminous research, partially be-
cause of their applications in physics [Kac, 1954,
Janvresse, 2001, Mischler and Mouhot, 2013]. Kac’s
random walk, where transitions from previous to next
d-dimensional states are defined by independent Givens
random rotations, was introduced in [Kac, 1954]. It
was shown that products of such rotations converge
(in certain sense) to the truly random rotation, yet are
much more efficient to compute. For instance, it was re-
cently proven that Kac’s random walk on the d-sphere
mixes in d log(d) steps [Pillai and Smith, 2015]. This
result suggests that products of relatively small number
of low dimensional rotations may serve as a good proxy
for truly random rotation matrices sampled from the
distribution corresponding to the Haar measure and
providing solid theoretical guarantees at the same time
(as opposed to other structured random matrices giv-
ing computational speedups such as random Hadamard
matrices, but for which only vague theoretical guaran-
tees were given so far). This suggest straightforward
applications in machine learning (for instance to pro-
duce fast random feature map based estimators of RBF
or PNG kernels [Rahimi and Recht, 2007]), yet surpris-
ingly to the best of our knowledge, so far mechanisms
based on Givens random rotations were proposed only
in the context of dimensionality reduction and Johnson-
Lindenstrauss Transforms [Ailon and Chazelle, 2006].

Not much is also known regarding the adaptive
setting, where Givens rotations are learned. In
[Mathieu and LeCun, 2014] learned Givens rotations
were applied to approximate Hessian matrices for cer-
tain optimization problems. It is believed though that
products of relatively small number of learned Givens
rotations can accurately approximate matrices from
many classes of rotations. In particular, we will focus

on the following family.

Definition 1. Denote by GIV(d) the class of all
Givens rotations from R

d × R
d. For a constant C > 0,

let GC be a family of matrices in R
d×d defined as:

GC = {G1 · ... ·Gk : Gi ∈ GIV(d), i = 1, ..., k}, where

k = ⌈C d log(d)
2 ⌉.

Even though those families are not dense in the set of
all rotation matrices, as we will show later, in prac-
tice they can accurately approximate many rotation
matrices in both adaptive and non-adaptive setting.
The renormalization scalars si defined by us in Section
2 can then "stretch" certain dimensions of the input
vectors rotated by such matrices. This mechanism has
sufficient capacity to provide accurate and superior
performance to unstructured baselines estimators of
all PNG kernels that correspond to random neural net-
works, as we will see next. We then show that it also
suffices in the adaptive setting to learn good quality
RL policies.

4 Random KAMA-NNs

Consider a random neural network with input
and output layer of size d, nonlinearity f ap-
plied to neurons in the output layer and weights
taken independently at random from the gaus-
sian distribution N (0, 1√

d
). This is a standard

choice for weights initialization in feedforward neu-
ral networks. We call it unstructured random NN.
Several recent results [Pennington and Worah, 2017],
[Pennington et al., 2017], [Pennington et al., 2018] fo-
cus on understanding statistical properties of unstruc-
tured random NNs and their connection to random
matrix theory. Recent work [Pennington et al., 2017,
Xiao et al., 2018, Chen et al., 2018] shows also that or-
thogonal random initialization of neural networks leads
to better learning profiles, even though not much is
known about this phenomenon from the theoretical
point of view. We shed light on it, by showing that
random KAMA-NNs as well as previously analyzed ran-
dom orthogonal constructions lead to asymptotically
as d → ∞ more accurate estimators of the so-called
PNG (Pointwise nonlinear Gaussian) kernels.

Definition 2 (PNG-kernels). The PNG kernel
(shortly: PNG) defined by the mapping f is a func-
tion: K : Rd × R

d → R given as follows for x,y ∈ R
d:

Kf (x,y) = Eg∼N (0,Id)[f(g
⊤x)f(g⊤y)]. (1)

PNG kernels are important in the analysis of unstruc-
tured random NNs since such networks can be equiv-
alently thought of as transformations that translate
one of the most basic similarity measures between fea-
ture vectors, namely the linear (dot-product) kernel
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by the PNG corresponding to the particular mapping
f . Indeed, consider a linear kernel between activation
vectors a(x) and a(y) corresponding to given input
vectors x,y ∈ R

d. The following is true:

a(x)⊤a(y) =
1

d

d∑

i=1

f(g⊤
i x)f(g

⊤
i y), (2)

where gi is the ith row of the connection matrix. There-
fore unstructured random NNs become unbiased Monte
Carlo (MC) estimators of the values of particular
PNG kernels. We denote these unbiased estimators
as URNf (x,y). Notice that URNs choose values of
weights independently from N (0, 1). The so-called
orthogonal random NN is obtained by replacing Gaus-
sian matrix of connections G by its orthogonal variant
Gort. Matrix Gort is obtained from G by conduct-
ing Gram-Schmidt orthogonalization and then using
scalars s1, ..., sd to renormalize rows of the obtained
orthonormal matrix, where si are sampled indepen-
dently from ‖g‖2 for g ∼ N (0, Id). We will denote
the corresponding estimator as ORNf (x,y). Finally, if
instead we use random KAMA-NNs constructed from
k blocks and with scalars si chosen in the same way
as for orthogonal random NNs, then the corresponding
estimator will be denoted as KRNk

f (x,y).

For ǫ > 0, we denote by B(ǫ) a ball centered at 0 and
of radius ǫ. Our main theoretical results in this section
are given below.

Theorem 1 (orthogonal random NNs for PNGs). Let
f : R → R be a function and B ⊆ R

d be bounded region
(for instance a unit sphere). Then for every constant
ǫ > 0 there exists a constant K(ǫ) > 0 such that for
every x,y ∈ B\B(ǫ) the following holds for d large
enough:

MSE(ORNf (x,y)) ≤ MSE(URNf (x,y))−
K(ǫ)

d
, (3)

where MSE stands for the mean squared error.

If instead of orthogonal random NNs, we use KAMA-
NNs then the following is true:

Theorem 2 (KAMA-NNs for PNGs). Let f : R →
R be a function and B ⊆ R

d be bounded region (for
instance a unit sphere). Then for every constant ǫ > 0
there exist constants K(ǫ), L(ǫ) > 0 such that for k =
L(ǫ)d log(d) and for every x,y ∈ B\B(ǫ) the following
holds for d large enough:

MSE(KRNk
f (x,y)) ≤ MSE(URNf (x,y))−

K(ǫ)

d
. (4)

The above theorems show that orthogonal random
NNs as well as random KAMA-NNs provide asymp-
totically as d → ∞ more accurate estimators of

PNG kernels for any nonlinear function f . Previ-
ously these results were known only for orthogonal
random NNs with sin / cos nonlinear mappings corre-
sponding to RBF kernels [Choromanski et al., 2018b]
and with f(x) = sgn(x) corresponding to angular PNG
kernels [Choromanski et al., 2017]. Not only do ran-
dom KAMA-NNs give accuracy gains, but they also
lead to faster inference (O(d log(d)) versus O(d2) time)
and compression of the model (O(d log(d)) versus O(d2)
space) that orthogonal random NNs are not capable of.
Our empirical results in Section 6 confirm all our theo-
retical findings and show also that mean squared error
guarantees translate to more downstream guarantees.

5 Learning KAMA-NNs

5.1 Givens rotations and manifold coordinate
ascent

The space of d×d dimensional orthogonal matrices with
positive determinant form a connected manifold known
as the special orthogonal matrix group, also denoted

as SO(d) [Gallier and Xu, 2003]. This set is a (d−1)d
2

dimensional manifold with the property that each point
M ∈ SO(d) has an associated tangent space, which is

a (d+1)d
2 dimensional vector space where the tangent

directions to SO(d) live. The tangent space is denoted
as TMSO(d) is defined as TMSO(d) = {A ∈ R

d×d, A =
MΩ : Ω = −Ω⊤}, the set of Skew Symmetric matrices
premultiplied by M.

We show that maximizing a function F : SO(d) →
R by performing coordinate gradient ascent over the
manifold SO(d) naturally yields a solution that equals
a product of Givens rotations.

5.1.1 Ascent and descent directions in the
manifold.

When moving along a manifold, the right generalization
of a straight line between two points is the notion of
geodesic curves. For any given point M ∈ SO(d) and
direction MΩ ∈ TMSO(d), there is a single geodesic
that passes through M in direction MΩ. In the case of
the Special Orthogonal Group of matrices these curves
can be written in the parameteric form γΩ : R → SO(d),
such that γΩ(Θ) = M exp(ΘΩ). The expression exp(A)
for A ∈ R

d×d denotes the matrix exponential of A.

exp(·) maps any skew symmetric matrix Ω to an orthog-
onal matrix. As a consequence, γΩ(Θ) = M exp(ΘΩ)
is an orthogonal matrix for all Θ ∈ R provided
M ∈ SO(d). Let {AI,J}1≤I<J≤d be the following basis
for the space of skew symmetric d× d matrices:
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AI,J [i, j] =





1 if i = I, j = J

−1 if i = J, j = I

0 o.w.

The exponential of scalar multiples of these basis ele-
ments equal Givens rotations: exp(−ΘAI,J) = GΘ

I,J .
As a result, the geodesic passing through M in direction
AI,J equals γI,J(Θ) = MGΘ

J,I [Gallier and Xu, 2003].

Let F : SO(d) → R be a differentiable function over the
manifold of Special Orthogonal matrices. Similar to the
Euclidean space definition, the directional derivative
along AI,J and evaluated at M ∈ SO(d) is a scalar
taking the value:

∇I,JF (M) :=
d

dΘ
F (γI,J(Θ))|Θ=0

:=
d

dΘ
F (MGΘ

J,I)|Θ=0

The Reimannian gradient of F at M, denoted as
∇F (M) is a matrix in TMSO(d) of the form MΩ with
Ω =

∑
1≤I<J≤d AI,J∇I,JF (M). The Frobenius norm

of ∇F (M) equals the Frobenius norm of Ω.

Algorithm 1 Givens coordinate gradient descent on
SO(d).

Input: M0 ∈ SO(d), F : SO(d) → R

for t = 1, 2, . . . do
for I, J s.t. 1 ≤ I < J ≤ d do.

2. ΘI,J
t = argminΘ F (Mt−1G

Θ
J,I).

3. Let BI,J
t = F (Mt−1G

ΘI,J
t

J,I )

4. Let It, Jt = argminI,J BI,J
t

5. Mt = Mt−1G
Θ

It,Jt
t

Jt,It

Assume that for all I, J and M ∈ SO(d), the func-
tion ΦI,J(Θ) = F (MGΘ

I,J) has second derivative
bounded by a constant B. The following theo-
rem holds, a derandomized version of Theorem 2 in
[Shalit and Chechik, 2014]:

Theorem 3.

F (M0)− F (Mt) ≥
t−1∑

u=0

‖∇F (Mu)‖
2

2d(d− 1)B

As a consequence, if throughout the algorithm’s run
‖∇F (Mu)‖

2 ≥ D for some constant D, then an objec-
tive gain of Ω(1/d2) is guaranteed at each step. Since
SO(d) is compact and F continuous, it must be lower
bounded by a finite value and therefore Algorithm 1
must converge to a stationary point M∗ with gradient
‖∇F (M∗)‖2F = 0.

(a) boston (b) wine

Figure 1: Empirical MSE (mean squared error) for
the pointwise evaluation of the angular kernel. The
following estimators are compared: baseline using in-
dependent Gaussian vectors (URN), structured using
random Hadamard matrices with renormalized rows
(HORN), structured using k = 5d log(d) Givens ran-
dom rotations (KAMA) and structured using matrices
Gort (ORN). We use datasets: boston and wine.

6 Experiments

6.1 The non-adaptive setting: random
KAMA-NNs

Here we consider KAMA-NNs using products of ran-
dom Givens rotations (Kac’s random walk matrices)
and show that they outperform unstructured PNG ker-
nel estimators on the example of the angular kernel,
matching the most accurate orthogonal estimators pro-
posed recently, yet superior to them in terms of space
and time complexity.

Pointwise kernel approximation: In the first set
of experiments we computed empirical mean squared
error (MSE) of several random matrix based estima-
tors of the angular kernel defined as Kang(x,y) =

1 − 2θx,y

π
, where θx,y stands for an angle between

x and y. This kernel can be equivalently rewritten
as: Kang(x,y) = Eg∼N (0,Id)[f(g

⊤x)f(g⊤y)], where
f(x) = sgn(x). We compared the following estimators:
KRNk

f with k = 5d log(d) Givens random rotations and
corresponding to random KAMA-NNs, baseline URN
using unstructured Gaussian matrices, estimator ORN
built on matrices Gort as well as estimators applying
random Hadamard matrices (HORN) [Yu et al., 2016].
Experiments were conducted on the following datasets:
boston and wine. Results are presented on Figure 1.
We see that KAMA-NNs provide moderate accuracy
gains over unstructured baselines. Next we show that
these moderate gains translate to more substantial
accuracy gains on more downstream tasks.

Approximating kernel matrices: Here we test the
relative error of kernel matrix estimation via different
angular kernel estimators based on random matices, in
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particular those applying random KAMA-NNs.

For a given dataset X = {x1, ...,xN} and
an angular kernel Kang denote by K(X ) =
{Kang(xi,xj)}i,j∈{1,...,N} the corresponding kernel ma-

trix and by K̂(X ) its approximate version obtained by
using values proposed by a given estimator. The rel-
ative error of the kernel matrix estimation is given

as: ǫ = ‖K(X )−K̂(X )‖F

‖K(X̂)‖F

, where ‖‖F stands for the

Frobenius norm. We use the following datasets: g50,
boston, cpu, insurance, wine and parkinson. Following
[Choromanski et al., 2017], we plot the mean error ob-
tained from r = 1000 repetitions for each mechanism.
Kernel matrices are computed on a randomly selected
subset of N = 550 datapoint from each datasets.

Results are presented on Figure 2. In all plots differ-
ent orthogonal mechanisms show similar performance
(almost identical curves substantially better than for
the URN mechanism), while KAMA-NNs outperform
other orthogonal transforms speed-wise.

6.2 The adaptive setting: learning RL
policies

We show that KAMA-NNs can substantially reduce
the number of policy parameters in reinforcement
learning (RL) benchmark tasks, while still provid-
ing good performance. We choose standard un-
structured fully connected feedforward neural net-
work policy architectures and structured neural net-
work policies with Toeplitz matrices as baselines
[Choromanski et al., 2018c]. With many more param-
eters, fully-connected policies can represent a much
larger policy space, which facilitates easier optimiza-
tion and leads to better performance in practice. On the
other hand, Toeplitz policies greatly compress parame-
ters’ space, but at the cost of significant degradation
of policy performance. We show that KAMA-NNs pol-
icy achieves a desirable middle ground between these
two extremes: drastically reducing the number of pa-
rameters compared to a fully-connected policy, while
achieving better performance than Toeplitz policy and
providing the same computational speed-ups.

Our fully-connected neural network policies consist of
two hidden layers, each with h = 64 hidden units for
PPO algorithm and h = 32 hidden units for TRPO al-
gorithm (see: below). Let x and y = σ(Wx+b) be the
activations at the first and second hidden layer respec-
tively, where W ∈ R

h×h is a weight matrix, b ∈ R
h

is a bias vector and σ(·) is the non-linear activation
function. To construct a compact policy using KAMA
mechanism, we replace the unstructured weight matrix
W by a sequence of K Givens rotations. We do the
same for the first and last matrix of connections, but

(a) g50 (b) boston

(c) cpu (d) insurance

(e) wine (f) parkinson

Figure 2: Normalized Frobenius norm error for the
angular PNG kernel matrix approximation. The follow-
ing estimators are compared: baseline using indepen-
dent Gaussian vectors (URN), structured using random
Hadamard matrices with renormalized rows (HORN),
structured using k = 5d log(d) Givens random rotations
(KAMA) and structured using matrices Gort (ORN).
Experiments are run on six datasets: g50, boston, cpu,
insurance, wine and parkinson.

this time apply also the truncation mechanism, as de-
scribed in Section 2. While using Toeplitz mechanism,
we replace all three matrices of connections by Toeplitz
matrices.

Learning low dimensional rotations: We now in-
troduce the way to parameterize and learn rotations
for the KAMA mechanism. Upon initialization, we
randomly sample 2D-linear subspaces, where rotations
defined by Givens matrices Gi are conducted, from
the set of subspaces spanned by two vectors from the
canonical basis {e1, ..., en}. For each Gi only angle Θi

of the rotation is learned. Unstructured matrices are re-
placed by (truncated) matrices of the form G1G2...GK .
All rotation angles Θi are learned by back-propagation.
For each matrix we also learn renormalization scalars
si (see: Section 2).

Remark 1. Note that in the above setting we do
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not need to explicitly store structured matrices S =
G1G2...GK . It suffices to keep: θ1, ..., θK to efficiently
compute Sx for any input x.

Algorithms and Tasks: We test our policy for
state of the art RL algorithms: Trust Region Policy
Optimization [Schulman et al., 2015] (TRPO) and
Proximal Policy Optimization [Schulman et al., 2017]
(PPO). Using these two algorithms, we compare
different policy architectures. All implementations are
using OpenAI baseline [Dhariwal et al., 2017].
The benchmark tests are based on MuJoCo
locomotion tasks provided by OpenAI Gym
[Brockman et al., 2016, Todorov et al., 2012] and
Roboschool [Schulman et al., 2017]. We take the
following environments: Double Pendulum, Inverted
Pendulum, Swimmer, Hopper, HalfCheetah.

6.2.1 Proximal Policy Optimization (PPO)

In Figure 3, we show training results on MuJoCo bench-
mark tasks with Proximal Policy Optimization (PPO)
[Schulman et al., 2017]. Here we use K = 200 Givens
rotations to construct all three structured matrices in
the policy. We train the policy on each task for a
fixed number of time steps and record the cumulative
rewards during training. We show the mean ± std
performance across 5 random seeds. As seen from Fig-
ure 3, across most tasks KAMA-NNs policies achieve
better performance than Toeplitz policies.

6.2.2 Trust Region Policy Optimization
(TRPO)

In Figure 4, we show training results on MuJoCo bench-
marks with Trust Region Policy Optimization (TRPO)
[Schulman et al., 2015]. Here we use K = 100 Givens
rotations to construct all three structured matrices. As
before, we train the policy on each task for a fixed num-
ber of time steps and record the cumulative rewards
during training. We show the mean ± std performance
across 5 random seeds. As seen from Figure 4, across
most tasks KAMA-NNs policies achieve significantly
betters performance than Toeplitz policies.

6.2.3 Parameter Compression

By replacing unstructured matrices in the fully con-
nected architecture, structured policies can achieve
significant compression in the number of parameters.
In the settings where unstructured models are large,
structured models can offer much faster inference dur-
ing training and require much less storage. In Table 1,
we list the ratio of the total number of parameters used
by structured policies relative to unstructured policies.
The two structured policies that we compare (built

(a) DoublePen. (b) InvertedPen.

(c) Swimmer (d) Hopper

(e) HalfCheetah (f) Walker

Figure 3: Illustration of KAMA-NNs policies on MuJoCo
benchmarks with PPO. KAMA-NNs are compared with
unstructured baselines and architectures based on low dis-
placement rank matrices (Toeplitz). For each task we train
the policy with PPO for a fixed number of steps and show
the mean ± std performance. Vertical axis is the cumulative
reward and horizontal axis stands for the # of time steps.

from KAMA-NNs and Toeplitz networks) provide the
same computational speed-ups for the inference (similar
number of floating point multiplications).

On benchmark tasks, KAMA-NN based policies achieve
7x compression relative to the unstructured model.
Though Toeplitz policy reduces the number of parame-
ters even further, the significant drop in performance
observed in Figure 3 and Figure 4 is not desirable. We
also show in the Appendix that we can further reduce
the number of the parameters in the KAMA-NNs by
decreasing the number of Givens rotations in the first
and third structured matrix, without affecting learned
policy and at the same time, further compressing the
model.

6.2.4 Ablation Analysis

One advantage of KAMA-NN architectures over struc-
tured architectures based on low displacement rank
matrices (such as Toeplitz), is that it easily allows
to adjust the trade-off between the capacity of the
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(a) Swimmer (b) Walker

(c) Hopper (d) HalfCheetah

(e) Hopper (R) (f) HalfCheetah (R)

Figure 4: Illustration of KAMA-NNs policies on MuJoCo
benchmarks with TRPO. The same setup as for PPO exper-
iments from Fig 3. Experiments with (R) are taken from
Roboschool.

model and its compactness by simply varying the num-
ber of rotations K. Intuitively, when K is large, the
architecture becomes more expensive to use and the
performance improves; when K is small, it becomes
more compact at the cost of worse performance.

We carry out an ablation study on the effect of the
number of rotations K. In Figure 5, we show the
training curves of varying K ∈ {10, 20, 50, 100, 200}
with both PPO and TRPO on a set of benchmark tasks
from OpenAI Gym. We see that the policy performance
improves as the number of rotations K increases.

PPO HalfCheetah Walker Hopper

KAMA-NN 15 % 15% 17%
Toeplitz 7 % 7% 8%

TRPO HalfCheetah Walker Hopper

KAMA-NN 24 % 24% 28%
Toeplitz 12 % 12% 13%

Table 1: Ratio of the total number of parameters used in
the structured matrices relative to the unstructured model.
KAMA-NN architectures apply K = 200 Givens rotations

for PPO and K = 100 rotations for TRPO.

(a) PPO-Hopper (b) TRPO-Hopper

(c) PPO-HalfCheetah (d) TRPO-HalfCheetah

Figure 5: Ablation study on the effect of the number of
rotations K. The experiments are performed with both
PPO and TRPO and on a set of benchmark tasks from
OpenAI Gym. Vertical axis is the cumulative reward and
horizontal axis stands for the # of time steps.

6.3 Learning low-dimensional subspaces for
rotations

We also conducted experiments, where not only rota-
tion angles θ, but also 2-dimensional subspaces where
rotations were conducted, were learned. We did not ob-
serve any quality gains in comparison to the proposed
algorithm (where 2-dimensional subspaces were cho-
sen randomly), proving empirically that models with
random subspaces and learned angles have sufficient
capacity.

7 Conclusions

We presented a new class of compact architectures
for feedforward fully connected neural networks based
on low dimensional learned or random rotations. We
empirically showed their advantages over state of the art
in both: adaptive (where the parameters are learned)
as well as non-adaptive regime on various tasks such as
PNG-kernel approximation and RL policies learning.
We further provided theoretical guarantees shedding a
new light on the effectiveness of (random) orthogonal
compact transforms in machine learning. In particular,
we showed that KAMA-NNs lead to asymptotically
faster and more accurate estimators of PNG-kernels
related to random neural networks. Our architectures
provide practitioners with an easy way of adjusting
the complexity (and thus also capacity) of the neural
network model to their needs by changing the number
of low dimensional rotations used (that are building
blocks of KAMA-NNs).
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