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Abstract We construct a holographic dark energy scenario
based on Kaniadakis entropy, which is a generalization of
Boltzmann-Gibbs entropy that arises from relativistic statis-
tical theory and is characterized by a single parameter K
which quantifies the deviations from standard expressions,
and we use the future event horizon as the Infrared cutoff. We
extract the differential equation that determines the evolution
of the effective dark energy density parameter, and we pro-
vide analytical expressions for the corresponding equation-
of-state and deceleration parameters. We show that the uni-
verse exhibits the standard thermal history, with the sequence
of matter and dark-energy eras, while the transition to accel-
eration takes place at z ≈ 0.6. Concerning the dark-energy
equation-of-state parameter we show that it can have a rich
behavior, being quintessence-like, phantom-like, or experi-
ence the phantom-divide crossing in the past or in the future.
Finally, in the far future dark energy dominates completely,
and the asymptotic value of its equation of state depends on
the values of the two model parameters.
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1 Introduction

It is now well established that the Universe at late times expe-
rienced the transition from the matter era to the accelerated
expansion phase. Although the simplest explanation would
be the consideration of the cosmological constant, the cor-
responding problem related to the quantum-field-theoretical
calculation of its value, as well as the possibility of a dynam-
ical nature, led to two main paths of constructing extended
scenarios. The first is to maintain general relativity as the
underlying theory of gravity, and consider new, exotic forms
of matter that constitute the concept of dark energy [1–3].
The second is to construct extended or modified theories of
gravity, that posses general relativity as a low-energy limit,
but which in general provide the extra degrees of freedom
that can drive the dynamical universe acceleration [4–7].

Nevertheless, one can acquire an alternative explanation
of the dark energy origin, through the cosmological appli-
cation [8–10] of the holographic principle [11–13]. The cor-
responding framework is based on the thermodynamics of
black holes and the connection of the Ultraviolet cutoff of a
quantum field theory (related to the vacuum energy), with the
largest distance of the theory (which in turn is a requirement
in order for the theory to be applicable at large distances)
[14]. In particular, in a given system whose entropy is pro-
portional to its volume, the total energy should not be larger
than the mass of a black hole with the same size, whose
entropy is proportional to its area, since in such a case the
system would collapse to a black hole. If one considers the
whole Universe as the system one extracts a vacuum energy
of holographic origin, namely a form of holographic dark
energy with dynamical nature [15,16].

The cosmological implications of holographic dark energy
proves to be very interesting [15–26] and it proves to be in
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agreement with observations [27–32]. In this scenario one
is free of the naturalness problem of the cosmological con-
stant [33], as well as from pathologies that may arise in var-
ious modified gravity constructions [7]. Additionally, it has
been shown to be able to alleviate the H0 and growth ten-
sions between �CDM scenario and some direct measure-
ments [34]. That is why a large amount of research has been
devoted to these investigations, and the basic models have
been extended in various ways [35–71].

The basic expression in the construction of holographic
dark energy is the one that connects the entropy of a sys-
tem with geometrical quantities such as its radius. The stan-
dard one is the Bekenstein–Hawking entropy, which arises
as the black-hole and cosmological application of the stan-
dard Boltzmann–Gibbs entropy. However, Kaniadakis has
proposed a one-parameter generalization of the Boltzmann–
Gibbs entropy, called Kaniadakis entropy [72,73]. This
results from a self-consistent and coherent relativistic sta-
tistical theory, in which the basic features of standard statis-
tical theory are maintained. In such an extended statistical
theory, the distribution functions are a one-parameter con-
tinuous deformation of the usual Maxwell–Boltzmann ones,
and hence standard statistical theory is recovered in a partic-
ular limit.

In the present work we will use Kaniadakis entropy in
order to formulate Kaniadakis holographic dark energy, and
study its cosmological implications. Although in the liter-
ature there were some first attempts towards this direction
[74–76] the resulting models were not correct. The reason
for this failure was the fact that the authors used the Hubble
horizon instead of the future event horizon in the basic holo-
graphic expression. Therefore, not only the resulting models
could not recover usual holographic dark energy in the limit
where Kaniadakis entropy becomes standard entropy, as it
should, but in order to be able to describe the universe evolu-
tion one needs unacceptably large values of the Kaniadakis
parameter, namely unacceptably large deviations from stan-
dard entropy. Hence, in this work we proceed to the consistent
formulation of Kaniadakis holographic dark energy, which is
indeed a well-defined extension of standard holographic dark
energy, recovering it as a particular limit in the case where
Kaniadakis entropy becomes standard Bekenstein-Hawking
entropy.

The plan of the manuscript is the following: In Sect. 2 we
formulate Kaniadakis holographic dark energy, we present
the corresponding cosmological equations and we extract
analytical relations for the dark energy density and equation-
of-state parameters. Then in Sect. 3 we proceed to the study
of the resulting cosmological behavior. Finally, in Sect. 4 we
discuss our results and we summarize.

2 Kaniadakis holographic dark energy

In this section we proceed to the formulation of Kaniadakis
holographic dark energy. The basic idea behind holographic
dark energy is the inequality ρDE L4 ≤ S, where L is the
largest distance of the theory (the Infrared cutoff) and S
the entropy relation applied in a black hole of radius L
[15,16]. In the case of standard Bekenstein-Hawking entropy
SBH ∝ A/(4G) = πL2/G, with G the Newton’s constant,
the saturation of the above inequality gives standard holo-
graphic dark energy, namely ρDE = 3c2M2

pL
−2, with Mp

the Planck mass and c the model parameter. Hence, we can
see that if instead of standard entropy we use a modified one,
we will obtain a modified holographic dark energy.

As we mentioned in the Introduction, Kaniadakis entropy
is a one-parameter generalization of the classical entropy. It
is given by [72,73]

SK = −kB

∑

i

ni ln{K }ni , (2.1)

with kB the Boltzmann constant, and where we have defined
ln{K }x = (xK − x−K )/2K . Kaniadakis entropy is character-
ized by the single dimensionless parameter K , which quanti-
fies the deviation from the case of standard statistical mechan-
ics. Hence, standard entropy is recovered in the limit K → 0,
while K can vary in the range −1 < K < 1. Additionally, in
such a generalized statistical theory the distribution function
reads as ni = α exp{K } [−β(Ei − μ)], where exp{K }(x) =
(√

1 + K 2x2 + Kx
)1/K

, α = [(1 − K )/(1 + K )]1/2K ,

1/β = √
1 − K 2 kBT , and the chemical potential μ can be

fixed by normalization [72,73]. Kaniadakis entropy can be
expressed as [77–82]

SK = −kB

W∑

i=1

P1+K
i − P1−K

i

2K
, (2.2)

where Pi is the probability the system to be in a specific
microstate and W the total number of configurations.

Let us apply Kaniadakis entropy in the black-hole frame-
work, which will then be needed for the holographic
application. Assuming that Pi = 1/W , using the fact
that Boltzmann-Gibbs entropy is S ∝ ln(W ), while the
Bekenstein-Hawking entropy is given by SBH = A/(4G),
we acquire W = exp [A/(4G)] [74], where from now on
we impose units in which the Boltzmann constant, the light
speed, and the reduced Planck constant are set to kB = c =
h̄ = 1. Hence, inserting these into (2.2) we find

SK = 1

K
sinh (K SBH ). (2.3)
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As expected in the limit K → 0 one recovers standard
Bekenstein-Hawking entropy, i.e. SK→0 = SBH . Since in
reality one expects the above modified entropy to be close
to the standard Bekenstein-Hawking value, we expect that
K � 1 (we remind that −1 < K < 1). Thus, it is justified to
expand the above Kaniadakis entropy for small K , obtaining

SK = SBH + K 2

6
S3
BH + O(K 4). (2.4)

As one can see, the first term is the usual entropy, while the
second term is the lowest-order Kaniadakis correction.

It is now easy to extract the relation of Kaniadakis holo-
graphic dark energy. In particular, inserting (2.4) into the
inequality ρDE L4 ≤ S, we obtain

ρDE = 3c2M2
pL

−2 + 3c̃2K 2M6
pL

2, (2.5)

with c and c̃ constants. As mentioned above, for K = 0 the
above expression gives the usual holographic dark energy
ρDE = 3c2M2

pL
−2. In the following we absorb the constant

c̃ inside the parameter K , by setting 3c̃2K 2 ≡ K̃ 2 and we
drop the tildes for simplicity.

We proceed by considering a flat homogeneous and
isotropic Friedmann–Robertson–Walker (FRW) geometry
with metric

ds2 = −dt2 + a2(t)δi j dx
i dx j , (2.6)

with a(t) the scale factor. As a next step, in any holographic
dark energy scenario, one needs to determine the length L
that appears in the corresponding relations. In the case of
standard holographic dark energy models it is well known
that L cannot be the Hubble horizon H−1 (where H ≡ ȧ/a
is the Hubble function), since this choice leads to obvious
inconsistencies [83], such as no acceleration. Thus, one must
use the future event horizon [15]

Rh ≡ a
∫ ∞

t

dt

a
= a

∫ ∞

a

da

Ha2 . (2.7)

As we mentioned in the Introduction, in some recent attempts
to construct Kaniadakis holographic dark energy the authors
used (2.3) but then they considered the Hubble horizon to
be L [74–76]. Thus, the obtained models do not have stan-
dard holographic dark energy and standard thermodynam-
ics as a sub-case, and this is a serious disadvantage. One
can verify that in a clear way by observing that in order
to have reasonable observational results the authors demand
K values of the order of 103, namely a huge deviation from
standard Bekenstein-Hawking entropy, which is not observed
(not mentioning the fact that the initial K parameter of Kani-
adakis entropy is bounded in −1 < K < 1).

In the present work we desire to formulate Kaniadakis
holographic dark energy in a consistent way, and hence we
use as L the future event horizon (2.7). In this way, as we will

see, standard holographic dark energy is included as a sub-
case, and can be obtained for K → 0. However, let us com-
ment here that using the future event horizon does have the
disadvantage that the dark-energy density at present depends
on the future expansion of the Universe [16], in a similar way
that the use of the Hubble horizon has the disadvantage that
the dark-energy density, which is a local concept, depends
on the global picture of the whole Universe, namely on the
global expansion scale. Nevertheless, we mention that the
use of both horizons, as well as other horizons, such as the
Granda–Oliveros cutoff [84], is in principle justified exactly
by the concept of holography and the dualities known from
string theory, that relate the very small with the very large in
space and time.

According to the above discussion, and using (2.5) with
L the Rh , the energy density of Kaniadakis holographic dark
energy writes as

ρDE = 3c2M2
p R

−2
h + K 2M6

p R
2
h . (2.8)

The Friedmann equations in a universe containing the dark
energy and matter perfect fluids are

3M2
pH

2 = ρm + ρDE (2.9)

−2M2
p Ḣ = ρm + pm + ρDE + pDE , (2.10)

with pDE the pressure of Kaniadakis holographic dark
energy, and ρm and pm respectively the energy density and
pressure of the matter sector. The equations close by consid-
ering the matter conservation equation

ρ̇m + 3H(ρm + pm) = 0. (2.11)

It proves convenient to introduce the dark energy and mat-
ter density parameters through

�m ≡ 1

3M2
pH

2 ρm (2.12)

�DE ≡ 1

3M2
pH

2 ρDE . (2.13)

Using these definitions, relations (2.7), (2.8), (2.13) lead to

∫ ∞

x

dx

Ha
= 1

a

⎛

⎝
3H2�DE −

√
9H4�2

DE − 12c2K 2M4
p

2K 2M4
p

⎞

⎠

1
2

,

(2.14)

where x ≡ ln a. Note that solving the fourth-degree alge-
braic equation (2.8) we have kept only the solutions that give
positive Rh and moreover with the usual limiting result for
K → 0. Indeed, as one can see, in the limit K → 0 the
above relation gives the standard holographic dark energy
result

∫ ∞
x

dx
Ha = c

aH
√

�DE
.

We focus on the physically interesting dust matter case,
where the matter equation-of-state parameter is set to zero.
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Therefore, (2.11) leads to ρm = ρm0/a3, where ρm0 is the
matter energy density at the current scale factor a0 = 1
(we use the subscript “0” to denote the present value of a
quantity). Hence, substituting into (2.12) leads to �m =
�m0H2

0 /(a3H2), and then, using the Friedmann equation
�m + �DE = 1, we find

1

Ha
=

√
a(1 − �DE )

H0
√

�m0
. (2.15)

Inserting (2.15) into (2.14) leads to
∫ ∞

x

dx

H0
√

�m0

√
a(1 − �DE )

= 1

a

⎛

⎝
3H2�DE −

√
9H4�2

DE − 12c2K 2M4
p

2K 2M4
p

⎞

⎠

1
2

.

(2.16)

In the following we use x = ln a as the independent variable,
and therefore for a quantity f we acquire ḟ = f ′H , with
primes denoting derivatives with respect to x . Differentiating
(2.16) in terms of x we obtain

�′
DE = �DE (1 − �DE )

{
3 − 2(A − 2K 2M4

pB)

A

×
[

1 − √
3

(
�DE

AB
) 1

2
]}

, (2.17)

with

A = 3e−3x H2
0 �m0�DE

1 − �DE
,

B =
A −

√
A2 − 12c2K 2M4

p

2K 2M4
p

.

Differential equation (2.17) determines the evolution of
Kaniadakis holographic dark energy as a function of x =
ln a, in the case of flat spatial geometry and for dust matter.
We mention that in the limit K → 0 we have B|K→0 =
3c2

A , and hence (2.17) recovers the corresponding differ-
ential equation of usual holographic dark energy [15], i.e.

�′
DE |K→0 = �DE (1 − �DE )

(
1 + 2

√
3M2

p�DE

3c2M2
p

)
, which,

since the x-dependence is absent, accepts an analytic solu-
tion in an implicit form [15].

We proceed by examining the behavior of the equation-
of-state parameter wDE ≡ pDE/ρDE of Kaniadakis holo-
graphic dark energy. From the conservation of the matter
sector (2.11), and using the two Friedmann equations (2.9),
(2.10), we deduce that the dark energy sector is conserved
too, i.e.

ρ̇DE + 3HρDE (1 + wDE ) = 0. (2.18)

Differentiating (2.8) gives ρ̇DE = 2M2
p

(
−3c2R−4

h +
K 2M4

p

)
Rh Ṙh . In this expression we have that Ṙh = HRh−

1, as it is found from (2.7), where Rh can be further elimi-
nated in terms of ρDE according to (2.8) as

Rh =
⎛

⎝
ρDE −

√
ρ2
DE − 12c2K 2M8

p

2K 2M6
p

⎞

⎠
1/2

≡ C. (2.19)

Substituting all the above into (2.18) we acquire

2M2
p(HC − 1)

(−3c2+K 2M4
pC4

C3

)
+ 3HρDE (1 + wDE ) = 0.

(2.20)

Therefore, inserting H from (2.15), and using definition
(2.13) after some algebra we find

wDE = −1 − 2

(
�DE

3A3

) 1
2
(−3c2 + K 2M4

pB2

B 3
2

)

×
[
−1 +

√
3

3

( AB
�DE

) 1
2
]

. (2.21)

Hence, wDE as a function of ln a is known, as long as �DE is
known from (2.17). Note that for K → 0 the above expres-
sion provides the standard holographic dark energy result, i.e.

wDE |K→0 = − 1
3 − 2

3

√
�DE
c [16], as expected. Additionally,

we mention that in general wDE can be either quintessence-
like or phantom-like, which is an advantage revealing the rich
capabilities of the scenario at hand.

Lastly, for convenience we can introduce the deceleration
parameter

q ≡ −1 − Ḣ

H2 = 1

2
+ 3

2
(wm�m + wDE�DE ) , (2.22)

which in the case of dust matter is straightforwardly known
as long as �DE (and thus wDE from (2.21)) is known.

We close this section by discussing the relation of Kani-
adakis entropy with other extended entropies, and in particu-
lar with Tsallis one. As it is known, the non-extensive Tsallis
entropy STq , with q the parameter which quantifies the devi-
ation from Bekenstein–Hawking entropy [85,86], is related
to Kaniadakis one through [74,79,87]

SK = ST1+K + ST1−K

2
. (2.23)

Concerning the other recently proposed generalized entropy
by Barrow, namely SB

	, which arises from the intricate struc-
ture of the black-hole surface due to quantum-gravitational
effects, with 	 the parameter that quantifies the deviation
from usual entropy [88], we mention that although math-

ematically one can extract the relation SK = SB	+SB−	

2 , it
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cannot have a physical application since in Barrow entropy
0 ≤ 	 ≤ 1.

3 Cosmological evolution

In the previous section we formulated Kaniadakis holo-
graphic dark energy, and we provided the equations that
determine the evolution of the corresponding dark energy
density, equation-of-state and deceleration parameters.
Hence, we can now proceed to a detailed investigation of
the resulting cosmological behavior. Since Eq. (2.17) can be
solved analytically only for K = 0, in the general case we
should resort to numerical elaboration. As long as we have the
solution for �DE (x) we can obtain its behavior in terms of the
redshift z through the simple relation x ≡ ln a = − ln(1+z).
Finally, we mention that Kaniadakis entropy is an even func-
tion, namely SK = S−K , and that is why all the above expres-
sions of Kaniadakis holographic dark energy depend only on
K 2. Thus, in the following we focus on the K ≥ 0 region.

We solve Eq. (2.17) numerically, imposing �DE (x =
− ln(1 + z) = 0) ≡ �DE0 ≈ 0.7 and therefore �m(x =
− ln(1 + z) = 0) ≡ �m0 ≈ 0.3 in agreement with observa-
tions [89]. In the upper graph of Fig. 1 we depict the evolution
of the dark energy and matter density parameters in terms of
the redshift. Additionally, in the middle graph we present the
corresponding behavior of the dark-energy equation-of-state
parameter as it arises from (2.21). Finally, in the lower graph
we show the deceleration parameter as it is given from (2.22).
We mention that for reader’s convenience we have extended
the evolution up to the far future, namely for z → −1.

As we observe, the scenario at hand can provide the
required thermal history of the universe, i.e. the sequence
of matter and dark energy epochs, and the universe results
asymptotically to a complete dark-energy dominated phase.
Moreover, from the middle graph of Fig. 1 we can see that
the value of wDE at present is around −1 in agreement with
observational data. Note that in this specific example wDE in
the future enters slightly inside the phantom regime, which as
mentioned above is allowed by (2.21) and shows the capabil-
ities of the model. Finally, from the lower graph of Fig. 1 we
deduce that the transition from deceleration to acceleration
is realized at z ≈ 0.6, in agreement with observations.

Let us now study the effect of the model parameters c and
K on the dark-energy equation-of-state parameter wDE . In
Fig. 2 we depict wDE (z) for fixed K = 0.1 and various val-
ues of c. As we can see, with c decreasing wDE (z), as well
as its present value wDE (z = 0), acquire algebraically lower
values, experiencing the phantom-divide crossing during the
evolution. Note that for c < 0.9 the value of wDE (z = 0)

lies in the phantom regime. Furthermore, in Fig. 3 we present
wDE (z) for fixed c = 1 and various values of K . Here we
observe the interesting behavior that for increasing K , at ear-

Fig. 1 Upper graph: the Kaniadakis holographic dark energy density
parameter �DE (blue-solid) and the matter density parameter �m (red-
dashed), as a function of the redshift z, for K = 0.1 and c = 0.9.
Middle graph: the corresponding dark-energy equation-of-state param-
eter wDE . Lower graph: the corresponding deceleration parameter q.
In all graphs we have set �DE (x = − ln(1 + z) = 0) ≡ �DE0 ≈ 0.7
in agreement with observations, and for convenience we have added a
vertical dotted line marking the present time z = 0

lier timeswDE slightly decreases, in future times in increases,
however at times around the present ones it remains almost
unaltered. Concerning the asymptotic value of wDE in the
far future, namely for z → −1, as can be deduced from the
figures, as well as form (2.21), it depends on the combina-
tion of K and c. In summary, we can see that the scenario of
Kaniadakis holographic dark energy can lead to very inter-
esting cosmological phenomenology, in which wDE can be
quintessence-like, phantom-like, or cross the phantom divide
before or after the present time. Note that these results are in
agreement with other researches on Kaniadakis holographic
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Fig. 2 The redshift-evolution of the equation-of-state parameter wDE
of Kaniadakis holographic dark energy, for fixed K = 0.1 and various
values of c. We have imposed �DE0 ≈ 0.7 and we have added a vertical
dotted line marking the present time z = 0

Fig. 3 The redshift-evolution of the equation-of-state parameter wDE
of Kaniadakis holographic dark energy, for fixed c = 1 and various
values of K . We have imposed �DE0 ≈ 0.7 we have added a vertical
dotted line marking the present time z = 0

dark energy, that appeared after the present work, especially
with observational confrontation [90–95].

4 Conclusions

In this work we formulated a holographic dark energy sce-
nario based on Kaniadakis entropy. The latter is a general-
ization of Boltzmann-Gibbs entropy, arising form a coherent
relativistic statistical theory and characterized by a single
parameter K that quantifies the deviations from standard
expressions. Hence, by applying the usual steps of holo-
graphic dark energy, imposing the future event horizon as the
Infrared cutoff, and using Kaniadakis extended entropy, we
obtained Kaniadakis holographic dark energy in a consistent
way, namely a one-parameter extension of usual holographic
dark energy, possessing it as a particular limit, namely for
K → 0.

In order to investigate the cosmological application of
Kaniadakis holographic dark energy we extracted the differ-
ential equation that determines the evolution of the effective

dark energy density parameter �DE . Moreover, we provided
analytical expressions for the corresponding equation-of-
state parameter wDE , as well as for the deceleration param-
eter.

The scenario of Kaniadakis holographic dark energy
proves to lead to interesting cosmological behavior. In par-
ticular, the universe exhibits the standard thermal history, i.e.
the sequence of matter and dark-energy eras, while the tran-
sition to acceleration takes place at z ≈ 0.6. Concerning the
dark-energy equation-of-state parameter we saw that it can
have a rich behavior, being quintessence-like, phantom-like,
or experience the phantom-divide crossing in the past or in
the future, depending on the values of the two model param-
eters c and K . In particular, for fixed K decreasing c leads
to algebraically smaller wDE values, while for fixed c by
increasing K we acquire smaller wDE values at higher red-
shifts, larger wDE values in the future, and almost unaltered
values at present. Finally, in the far future dark energy domi-
nates completely, and the asymptotic wDE value depends on
c and K .

We comment here that, as we mentioned in the Introduc-
tion, it has been recently shown that holographic dark energy
constructions may alleviate the H0 tension (see the corre-
sponding sections in the recent review [34]), and the reason
is that they may lead to wDE < −1 which seems to be a
requirement if one desires to provide a solution based on late-
time modifications [66,96]. As we saw, the scenario at hand
can fulfill this requirement and that is why it is a candidate to
be able to alleviate the H0 tension too. Definitely the phan-
tom regime may have potential disadvantages, however this
is not in general the case in models which present phantom
behavior in an effective way, among which is holographic
dark energy [16].

In conclusion, Kaniadakis holographic dark energy
exhibits richer and more interesting behavior in comparison
to usual holographic dark energy. Additionally, due to the
consistent formulation, it possesses the latter as a limiting
sub-case. Definitely, before one considers it as a successful
candidate for the description of dark energy, there are nec-
essary investigations that should be performed. In particu-
lar, one should confront the scenario with observational data
from Supernova type Ia (SNIa), baryon acoustic oscillation
(BAO), cosmic microwave background (CMB), and Hubble
parameter observations, and extract constraints on the model
parameters. Additionally, one should analyze in detail the
phase-space behavior, in order to examine the global dynam-
ics and the asymptotic, late-time evolution of the scenario.
These investigations will be performed in separate projects.
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