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Abstract

In this paper, we investigate anisotropic Kantowski-Sachs model in f(R,T ) theory of

gravity proposed by Harko et al. (Physics review D 84, 024020, 2011) with scalar field

(quintessence or phantom). Here R is Ricci scalar and T is the trace of energy momen-

tum tensor. The field equations have been solved using the fact that scalar expansion is

proportional to the shear scalar of the space-time. We explore the behavior of decelera-

tion parameter, which represents a transition of the universe from early decelerating phase

to present accelerated phase. Some physical properties and various cosmological distance

measures are also obtained and discussed.

Key words: Kantowski-Sachs model, f(R, T ) gravity, Scalar field cosmology, , Modified

gravity.

1 Introduction:

Modern observational data on the cosmic expansion history (Perlmutter et al. [1]; Spergel et

al. [2]; Tegmark et al. [3]; Riess et al. [4]; Fedeli et al. [5]) has lead to the discovery of accelerated

expansion of the universe. It is believed that the reason for this is an exotic type of unknown force

with huge negative pressure dubbed as dark energy (DE). However, the nature and behavior of DE

is still a mystery. Currently, there are two main approaches for the explanation of this accelerated

expansion. One way is to introduce scalar field models like phantom (Caldwell [6]; Nojiri and

Odintsov [7]), quintessence (Sahni and Starobinsky [8]; Sahni [9]; Padmanabhan [10]), anisotropic

fluids (Akarsu and Kilinc [11]; Sharif and Zubair [12]) and etc. An alternative approach is to

modify Einstein-Hilbert action to obtain alternate theories of gravity like f(R) theory of gravity

which provides a natural unification of early-time inflation and late-time acceleration (Capozziello

and Francaviglia [13]; Nojiri and Odintsov [14]). Among the other modified theories, theory of

scale-Gauss-Bonnet gravity, so called f(G) gravity (Nojiri and Odintsov [15]) and f(T ) gravity

(Linder [16]), where T is the torsion have been proposed to explain the accelerated expansion of

universe.

Recently, Harko et al. [17] proposed another modified theory known as f(R, T ) gravity, wherein

the gravitational Lagrangian contains the Ricci scalar R and trace of the energy-momentum tensor

T . It is well known that in the study of early stages of evolution of the universe anisotropic models
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play a vital role. Adhav [18] has obtained LRS Bianchi type-I cosmological model in f(R, T )

gravity. Reddy and Santhi Kumar [19] have discussed some anisotropic cosmological models in

f(R, T ) theory of gravity. Mishra and Sahoo [20] have studied Bianchi type-V Ih perfect fluid

cosmological model in f(R, T ) gravity. Rao and Neelima [21] have obtained perfect fluid Bianchi

type-V I0 universes in f(R, T ) gravity. Rao et al. [22] have investigated Bianchi type-II, V III and

IX cosmological models in f(R, T ) theory of gravity. Houndjo [23] has developed the cosmological

reconstruction of f(R, T ) gravity and discussed the transition of matter dominated phase to an

accelerated phase. Shri Ram and Chandel [24] have discussed dynamics of magnetized string

cosmological model in f(R, T ) theory of gravity. Rao et al. [25] have obtained anisotropic Bianchi

type-V Ih perfect fluid cosmological models in f(R, T ) theory of gravity. Aditya et al. [26] have

studied Bianchi type-II, V III and IX cosmological models in f(R, T ) theory of gravity with

variable Λ.

Scalar fields play a crucial role in particle physics and cosmology. Olive [27] has shown that,

during inflation, the potential of a scalar field acts as a dynamical vacuum energy. This prominent

role of scalar fields is also evident in models proposed to explain the late time accelerated expansion

of the universe in vacuum energy and in evolving quintessence models ([28]-[30]). Further, it was

recently proposed that a scalar field can also be the source of the anomalous acceleration [31].

Sharif and Zubair [32] have investigated the anisotropic universe models in f(R, T ) gravity in the

presence of perfect fluid and scalar field. Singh and Singh [33] have obtained the Friedmann-

Robertson-Walker (FRW) models with perfect fluid and scalar field in higher derivative theory.

Sharif and Jawad [34] have studied reconstruction of scalar field dark energy models in Kaluza-

Klein universe. Singh and Singh [35] have discussed the behavior of scalar field in modified f(R, T )

gravity within the framework of a flat FRW cosmological model. Later, Singh et al. [36] have

investigated Bianchi type-I universe with scalar field and time varying cosmological constant in

f(R, T ) gravity. Recently, Samanta [38] and Reddy et al. [39] have investigated Kantowski-Sachs

cosmological models in f(R, T ) theory of gravity.

Motivated by the above investigations, we study in this paper Kantowski-Sachs space time in

presence of scalar field within the framework of f(R, T ) theory of gravitation proposed by Harko

et al. [17]. Very recently, Singh et al. [36] have obtained Bianchi type-I scalar field cosmological

models in f(R, T ) theory, using the power law and exponential law for scalar potentials, we

discuss Kantowski-Sachs scalar field cosmological model in this theory without using power law or

exponential law for scalar potentials. The plan of the work as follows: Sect. 2 describes f(R, T )

gravity formalism in the presence of scaler field. Sect. 3 is devoted to the derivation of field

equations and solutions of field equations leading to scalar field model. Sect. 4 contains a detailed

physical discussion of the model. Summery and conclusions are presented in the last section.
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2 f(R, T ) gravity formalism with scalar field:

The field equations of f(R, T ) gravity are derived from the Hilbert-Einstein type variation

principle. The action for the f(R, T ) gravity with scalar field is [35]

S =
1

16π

∫

f(R, T )
√
−gd4x+

∫

Lφ
√
−gd4x, (1)

where f(R, T ) is an arbitrary function of Ricci scalar R, T is the trace of stress-energy tensor (Tij)

of the matter and Lφ is the matter Lagrangian of scalr field.

The energy momentum tensor Tij is defined as

Tij = −
(

2√−g

)

δ(
√−g)Lφ
δgij

. (2)

Here we consider that the dependence of matter Lagrangian is merely on the metric tensor gij

rather than on its derivatives and we obtain

Tij = gijLφ −
∂Lφ

∂gij
. (3)

Now varying the action S with respect to metric tensor gij, f(R, T ) gravity field equations are

obtained as

fR(R, T )Rij −
1

2
f(R, T )gij + (gij�−∇i∇j)fR(R, T ) = 8πTij − fT (R, T )Tij − fT (R, T )Θij, (4)

where

Θij = −2Tij + gijLφ − 2gαβ
∂2Lφ

∂gij∂gαβ
. (5)

Here fR(R, T ) = ∂f(R,T )
∂R

, fT (R, T ) = ∂f(R,T )
∂T

and � = ∇µ∇µ, where ∇µ denotes the covariant

derivative.

Here we assume that the universe is filled with scalar field minimally coupled to gravity. There-

fore, the energy-momentum tensor of a scalar field φ with self-interacting scalar field potential

V(φ) has the form

Tij = ǫφ,iφ,j − gij

( ǫ

2
gµνφ,µφ,ν − V(φ)

)

(6)

where ǫ = ±1 correspond to quintessence and phantom scalar fields respectively. The trace of the

energy-momentum tensor T = gijTij is given by

T = −ǫφ̇2 + 4V(φ) (7)

hereafter dot denotes differentiation with respect to time t. The matter Lagrangian of the scalar

field is given by

Lφ = −1

2
ǫφ̇2 + V(φ). (8)

3
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Now from equations (5) and (8), we have

Θij = −2Tij − gij

(

1

2
ǫφ̇2 − V(φ)

)

. (9)

Generally, the field equations also depend, through the tensor Θij, on the physical nature of

the matter field. Hence in the case of f(R, T ) gravity depending on the nature of the matter

source, we obtain several theoretical models corresponding to different matter contributions for

f(R, T ) gravity. However, Harko et al. [17] gave three classes of these models:

f(R, T ) =











R + 2f(T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T ).

Here we consider the first case, i.e f(R, T ) = R+ f(T ), where f(T ) is an arbitrary function of the

trace of stress-energy tensor Tij . Using this relation f(R, T ) gravity field equations (4) reduced to

Rij −
1

2
Rgij = Tij − 2(Tij +Θij)f

′

(T ) + f(T )gij, (10)

where a prime denotes differentiation with respect to the argument.

3 Field equations and the scalar field models:

Here we consider the Kantowski-Sachs space-time in the form

ds2 = dt2 −A2dr2 −B2(dψ2 + sin2ψdϕ2), (11)

where A and B are functions of cosmic time t only. Kantowski-Sachs class of metrics represent

anisotropic and homogeneous but expanding (or contracting) cosmologies. They also provide

models where the effects of anisotropies can be estimated and compared with the FRW class of

cosmologies (Thorne, [37]).

For the particular choice of the function f(T ) = λT (Harko et al. [17]), where λ is a constant,

the field equations (10) for the metric (11) using (6) and (9) can be written as

2
B̈

B
+
Ḃ2

B2
+

1

B2
=

(

1 + 2λ

2

)

ǫφ̇2 − (4λ+ 1)V(φ) (12)

Ä

A
+
B̈

B
+
ȦḂ

AB
=

(

1 + 2λ

2

)

ǫφ̇2 − (4λ+ 1)V(φ) (13)

Ḃ2

B2
+ 2

ȦḂ

AB
+

1

B2
= −

(

1 + 2λ

2

)

ǫφ̇2 − (4λ+ 1)V(φ) (14)

Equations (12)-(14) are a set of three independent equations with four unknowns (A,B, φ and

V(φ)). Therefore, we need an additional constraint to solve the above system. Here we use the

4
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physical condition that the expansion scalar θ is proportional to the shear scalar σ, which leads

to

A = Bk (15)

where k 6= 1 is a positive constant. The physical reason for this assumption is warranted from

the observations of the velocity redshift relation for extragalactic sources which suggest that the

Hubble expansion of the universe may achieve isotropy when σ
θ
is constant (Kantowski and Sachs

[40]). Collins [41] have studied the physical significance of this condition for a perfect fluid.

Now from equations (12), (13) and (15), we get

B̈

B
+ (k + 1)

Ḃ2

B2
+

1

(1− k)B2
= 0, (16)

By substituting Ḃ = f(B), the above equation becomes

df 2

dB
+

2(k + 1)

B
f 2 =

2

(k − 1)B
(17)

which admits a solution

f 2 =

(

dB

dt

)2

=
B2(k+1) + c1(k

2 − 1)

B2(k+1)(k2 − 1)
(18)

where c1 is an integrating constant. Now using the transformation B = T the metric (11) can be

written as

ds2 =

(

dt

dB

)2

dB2 − B2kdr2 −B2(dψ2 + sin2ψdϕ2)

=
T 2(k+1)(k2 − 1)

T 2(k+1) + c1(k2 − 1)
dT 2 − T 2kdr2 − T 2(dψ2 + sin2ψdϕ2) (19)

From equations (12)-(14) and (19), we get scalar field potential as

V(φ) = c1k(k
2 − 1)T −2(k+2)

4(4λ+ 1)
− (3k − 2k2 + 3)T −2

2(4λ+ 1)(k2 − 1)
(20)

and the scalar field φ as

φ =

∫
{

2kT −2

ǫ(2λ+ 1)(1− k2)
− c1(3k + 1)T −2(k+2)

2ǫ(2λ+ 1)(k + 1)

}

1
2

dT (21)

Substituting the equations (18), (20) and (21) in the function f(R, T ) = R + 2λT , we get

f(R, T ) = T −2(k+2)

[

2c1(k
3 − 3k − 1) +

c1λ(3k + 1)

(2λ+ 1)(k + 1)
+

2c1λk(k
2 − 1)

4λ+ 1

]

+
T −2

k2 − 1

[

2k(2k2 + 2k − 1)− 2kλ

2λ+ 1
− 2λ(3k − 2k2 + 3)

4λ+ 1

]

(22)

Thus the metric (19) together with (20)-(22) constitutes Kanowski-Sachs scalar field cosmo-

logical model in f(R, T ) theory of gravity.
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4 Physical discussion:
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Figure 1: Plot of scalar field (φ) versus T for

k = 1.1, c1 = 2.8, λ = 1 and ǫ = 1.
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Figure 2: Plot of scalar field (φ) versus T for

k = 1.1, c1 = 2.8, λ = 1 and ǫ = −1.

From Figs. 1 and 2, it can be seen that scalar field φ is varying in negative region throughout

the evolution for quintessence model (i.e., for ǫ = 1). The scalar field corresponds to phantom

(ǫ = −1) model which exhibits negative nature in the initial epoch, but positive at late times. It

is quite interesting to mention here that the behavior of the scalar field is similar to the scalar field

model obtained by Singh et al. [36]. Fig. 3 shows that scalar field potential is positive throughout

the evolution of the universe.
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Figure 3: Plot of scalar field potential versus T for k = 1.1, c1 = 2.8 and λ = 1.

We compute the following dynamical parameters which are significant in the physical discussion

of the cosmological model (19):

6

Page 6 of 14

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review
 O

nly

Volume and average scale factor are

V =
√
−g = T k+2sinψ (23)

a(t) = V
1
3 = (T k+2sinψ)

1
3 . (24)

The directional Hubble parameters and average Hubble parameter takes the form

Hr = kHψ =
k
√

T 2(k+1) + c1(k2 − 1)

T (k+2)
√

(k2 − 1)
(25)

H =
(k + 2)

√

T 2(k+1) + c1(k2 − 1)

3T (k+2)
√

(k2 − 1)
. (26)

Expansion scalar (θ) and shear scalar (σ2) can be obtained as

θ = 3H =
(k + 3)

√

T 2(k+1) + c1(k2 − 1)

T (k+2)
√

(k2 − 1)
(27)

σ2 =
1

3
(Hr −Hψ)

2

=
(k − 1)(T 2(k+1) + c1(k

2 − 1))

(k + 2)(T 2(k+1))
(28)

Average anisotropic parameter is

Ah =
1

3

(

(Hr −H)2 + 2(Hψ −H)2

H2

)

= 6

(

k − 1

k + 2

)2

. (29)

Deceleration parameter is given by

q =
−aä
ȧ2

= 2− 3(k + 1)T 2(k+1)

(k + 2)(T 2(k+1) + c1(k2 − 1))
. (30)

Statefinder diagnostic: To differentiate various DE models Sahni et al. [42] introduced two
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new cosmological parameters (r, s) named as statefinder parameters which are defined as

r =

...
a

aH3

= 10− 27(k + 1)T 2(k+1)

(k + 2)(T 2(k+1) + c1(k2 − 1))
+

18(k + 1)2(k4 − 2k2 + 2)T 4(k+1)

(k + 2)2(T 2(k+1) + c1(k2 − 1))2
(31)

s =
r − 1

3(q − 1
2
)

=

{

2(k + 2)
[

c1(k
2 − 1)− 2T 2(k+1)

]

+
4(k + 1)2(k4 − 2k2 + 2)T 4(k+1)

(k + 2)(T 2(k+1) + c1(k2 − 1))

}

X
(

c1(k + 1)(k2 − 1)− kT 2(k+1)
)−1

(32)
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Figure 4: Plot of deceleration parameter versus

T for k = 1.1 and c1 = 2.8.
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Figure 5: Plot of r versus s for k = 1.1 and

c1 = 2.8.

The behavior of deceleration parameter (q) against T has been depicted in Fig. 4. It can be

observed that the deceleration parameter varying from early decelerating phase (i.e., q > 0) to

present accelerating phase (i.e., q < 0). The r−s statefinder plane for our model has been plotted

in Fig. 5. The statefinder trajectories give us the quintessence and phantom regions, since r < 1

and s > 0.

Om-diagnostic: To discriminate different phases of the universe Sahni et al. [43] have introduced

another tool named as Om-diagnostic. It is also used to distinguish the ΛCDM for non-minimally

coupled scalar field, quintessence model and phantom field through trajectories of the curves. The

phantom DE era corresponds to the positive trajectory, whereas the negative trajectory means

that DE constitutes quintessence. The Om-diagnostic in terms of x = ln(1 + z)−1 function is
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defined as

Om(x) =
H2(x)−H0

H0(x3 − 1)

= (x3 − 1)−1





(k + 2)2
(

T 2(k+1)
0 exp(6x(k+1)

k+2
) + c1(k

2 − 1)
)

H0T 2(k+2)
0 (k2 − 1)exp(6x)

− 1



 (33)
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Figure 6: Plots of Om-diagnostics versus red-

shift (z) for k = 1.1, H0 = 72 and c1 = 2.8.
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Figure 7: Plots of Om-diagnostics versus red-

shift (z) for k = 1.1, H0 = 72 and c1 = 2.8.

In Figs. 6 and 7 we plotted the Om-diagnostic in terms of z by taking x = ln(1 + z)−1. From

Fig. 6 it can be observed that the trajectory of the Om-diagnostic plane is positive, which implies

phantom behavior. However, the trajectory present negative slope in Fig. 7, which represents the

quintessence behavior of the universe. This type of behavior is consistent with recent observational

data.

Look-back time: The look-back time ∆T = T0 − T to an object is the difference between

the age T0 of the universe now (at observation) and the age T of the universe at the time the

photons were emitted (according to the object). It is used to predict properties of high-redshift

objects with evolutionary models, such as passive stellar evolution for galaxies. The look-back

time is defined by Arbab [44], Hogg [45] and Rudra [46] as

∆T = 1 + z =

∫ a

a0

da

ȧ
(34)

where a0 is the present value of the scale factor of the universe and can be obtained from equation

(24) at T = T0. The redshift z can be defined by

a0

a
= 1 + z =

(

T0

T

)
k+2
3

(35)
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which gives the look-back time in the following form

T − T0 = T0

(

(1 + z)
−3
k+2 − 1

)

. (36)

Clearly from equation (36), early universe is represented by z → ∞ implies T → 0 (since k > 0)

and late universe z → −1, which implies T → ∞. Also z → 0 gives the present age T = T0 of the

universe.

Luminosity distance: The luminosity distance (dL) of a light source is derived as the ratio

of detected energy flux, L and the apparent luminosity l∗ i.e., d2L = L
4πl∗

. This is a way of ex-

panding the light coming from a distant object. It is not the actual distance because inverse

square law does not hold in real universe. To calculate the luminosity distance the inverse square

law of brightness is generalized from static Euclidean space to an expanding curved space by the

following expression (Waga [47])

dL = a0(1 + z)r1(z) (37)

where r1(z) is the radial coordinate distance of the object at light emission and is given by

r1(z) =

∫ T0

T

dT
a

(38)

From equations (24), (37) and (38), we get

dL =
3a0T

k+5
3

k + 2

[

(1 + z)− (1 + z)
−3
k+2

]

(39)

Angular diameter distance: It is used to convert angular separations in telescope images into

proper separations at the source. It is famous for not increasing indefinitely as z → ∞; it turns

over at z ≈ 1 and thereafter more distant objects actually appear larger in angular size. The

angular diameter of a light source with proper distance (r1(z)) D at T0 is define by Hogg [45] and

Rudra [46]

δ =
D(1 + z)2

dL
. (40)

Now the angular diameter distance dA is defined as the ratio of the source diameter to its angular

diameter (in radians)

dA =
D

δ
= dL(1 + z)−2. (41)

For our model angular diameter distance (dA) is given by

dA =
3a0T

k+5
3

k + 2

[

(1 + z)−1 − (1 + z)
−(2k+7)

k+2

]

. (42)
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Distance modulus: The distance modulus (DM) is given by

DM = 5log(dL) + 25

= 5log

(

3a0T
k+5
3

k + 2

[

(1 + z)− (1 + z)
−3
k+2

]

)

+ 25. (43)
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Figure 8: Plot of distance modulus versus redshift to the obtained model compared with SDSS-II

and SNLS supernova data from Betoule et al. [48].

In Fig. 8, we compare the obtained model and joint analysis of the SDSS-II and SNLS su-

pernova samples data. The dots represent the observed distance modulus by SDSS-II and SNLS

supernova data where as solid line represents the distance modulus DM of the obtained model. It

can be observed that the obtained model coincides with observational data at high redshift values.

In case of c1 = 0, from equation (18) the metric (19) can be written as

ds2 = dt2 − t2k

(k2 − 1)k
dr2 − t2

(k2 − 1)
(dψ2 + sin2ψdϕ2) (44)

the scalar field and scalar potential are given by

φ =

√

−2k

ǫ(2λ + 1)
log(t) (45)

V(φ) =
k(k + 1)

(4λ+ 1)t2
. (46)
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Other physical properties are obtained as

H =
k + 2

3t
(47)

θ =
k + 2

t
(48)

σ2 =
(k − 1)2

3t2
(49)

q =
1− k

k + 2
(50)

It is clear from equation (45) that the phantom scalar field (i.e., ǫ = −1) only exists. The scalar

field (φ) and scalar potential (V(φ)) becomes infinity initially and gradually decrease then finally

tends to zero at late times. The model (44) has a constant deceleration parameter and it represents

accelerated expansion for k > 1. From equations (48) and (49), we can observe that σ
θ
is constant

and hence the model (45) is anisotropic.

5 Summary and conclusions:

f(R, T ) theory of gravity can be treated as a possible candidate in explaining the role of DE in

the accelerating universe. A suitable form of Lagrangian which can explain the cosmic evolution in

a definite way is still under consideration. In this study we have obtained solution of the f(R, T )

field equations with scalar field for Kantowski-Sachs space time.

The volume of the model increases as T increases subject to the condition k > 0. It can be

seen that Hubble parameter, expansion scalar and shear scalar are dynamical and approach to

zero as T → ∞. Moreover, for earlier times (i.e., as T → 0) these parameters take infinitely

large values. So the model starts its evolution with zero volume at T = 0 with infinite rate of

expansion. But this expansion rate is slowing down in its evolution. Since the average anisotropic

parameter Ah 6= 0 for k 6= 1 the model does not approach isotropy. The scalar field φ is negative

for quintessence model, whereas it varies in positive region for phantom model. The scalar field

potential is positive throughout the evolution of the universe. From the plot of deceleration

parameter we can observe that there is a smooth transition of the universe from early decelerating

phase to present accelerating epoch, which is in accordance with the modern observational data.

The statefinder parameters and Om-diagnostic both describe quintessence and phantom eras of

the evolving universe. The distance modulus curve of the model is in nice agreement with the

SDSS-II and SNLS supernova data for high redshift value. This imply that the obtained scalar

field model is physically realistic. Finally different types of cosmological distance measurements

have been studied for the obtained model. For c1 = 0 the model (19) reduces to the model with

constant deceleration parameter. It is worth mentioning here that in this case phantom scalar

field model only exists.
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