
32 1541-1672/04/$20.00 © 2004 IEEE IEEE INTELLIGENT SYSTEMS

Published by the IEEE Computer Society

S e m a n t i c W e b S e r v i c e s

KAoS Policy
Management for
Semantic Web Services

Andrzej Uszok, Jeffrey M. Bradshaw, Matthew Johnson, and Renia Jeffers,

Institute for Human and Machine Cognition

Austin Tate, Jeff Dalton, and Stuart Aitken, University of Edinburgh

D espite rapid advances in Web Services, the user community’s demanding require-

ments continue to outstrip available technology solutions. To help close this gap,

Semantic Web Services advocates are defining and implementing many new and sig-

nificant capabilities (www.swsi.org). These new capabilities should more fully harness

Web Services’ power through explicit representa-

tions of Web resources’ underlying semantics and

the development of an intelligent Web infrastructure

that can fully exploit them. Semantic Web languages,

such as OWL, extend RDF to let users specify

ontologies comprising taxonomies of classes and

inference rules.

Both people and software agents can effectively use

Semantic Web Services.1 Agents will increasingly use

the combination of semantic markup languages and

Semantic Web Services to understand and auton-

omously manipulate Web content in significant ways.

Agents will discover, communicate, and cooperate

with other agents and services and—as we’ll describe

—will rely on policy-based management and control

mechanisms to ensure respect for human-imposed

constraints on agent interaction. Policy-based controls

of Semantic Web Services can also help govern inter-

action with traditional (nonagent) clients.

In the mid 1990s, we began to define the initial

version of KAoS, a set of platform-independent ser-

vices that let people define policies ensuring ade-

quate predictability and controllability of both agents

and traditional distributed systems. With various

research partners, we’re also developing and evalu-

ating a generic model of human-agent teamwork that

includes policies to assure natural and effective inter-

action in mixed teams of people and agents—both

software and robotic.2–4 We’re exploiting the power

of Semantic Web representations to address some of

the challenges currently limiting Semantic Web Ser-

vices’ widespread deployment.

KAoS policy and domain management
services

KAoS is one of the first efforts for representing

policy using a Semantic Web language—in this case,

OWL (see the sidebar on page 36 for more about

policies and the Semantic Web). Gianluca Tonti and

his colleagues have compared two semantically rich

policy representations, KAoS and Rei,5 and a more

traditional policy language, Ponder.6 KAoS services

and tools allow for the specification, management,

conflict resolution, and enforcement of policies in

the specific contexts established by complex orga-

nizational structures represented as domains.2,7–9

Ontological representation
of KAoS policies

KAoS uses ontology concepts (encoded in OWL)

to build policies. During its bootstrap, KAoS first

loads the core KAoS Policy Ontology defining con-

cepts used to describe a generic actor’s environment

and policies in this context (http://ontology.ihmc.us).

Then, KAoS loads additional ontologies on top of

this, extending concepts from the core ontology, with

notions specific to the particular controlled environ-

ment and application domain.

The KAoS Policy Service distinguishes between

positive and negative authorizations (constraints that

permit or forbid some action) and positive and nega-

tive obligations (constraints that require some action

when a state- or event-based trigger occurs or that

serve to waive such a requirement).2,6 Other policy

constructs (for example, delegation or role-based

KAoS policy and

domain services help

with policy

specification, analysis,

disclosure, and

enforcement for

Semantic Web Services.

The authors describe

these capabilities in the

context of three

applications: Grid

Policy Management,

Coalition Search and

Rescue, and the

Semantic Firewall.

authorization) are built from the basic domain

primitives plus the four policy types.

KAoS policy’s OWL definition (see Figure

1) is an instance of one of these four basic pol-

icy classes: PositiveAuthorization, NegativeAuthoriza-
tion, PositiveObligation, or NegativeObligation. The

property values determine management infor-

mation for a particular policy (for example,

its priority). The type of policy instance deter-

mines the kind of constraint KAoS should

apply to the action, while a policy’s action

class is used to determine a policy’s applica-

bility in a given situation. The action class uses

OWL restrictions to narrow scopes-of-action

properties to a particular policy’s needs. Every

action contains a definition of the range of

actors performing it. This range can be defined

using any available OWL construct. For

example, the range can be an enumeration of

actor instances, a class of actors defining its

type, or any description of the actor context

(for instance, the class of actors executed on

some host and possessing a given resource).

The same is true for the action class’s other

properties. Consequently, policy can contain

arbitrarily complex definitions of a situation.

So, KAoS policies represent policies without

conditional rules, relying instead on the con-

text restrictions associated with the action

class to determine policy applicability in a

given situation.

An action class helps classify action

instances that actors intend to take or are

undertaking. Components (such as KAoS

guards) that are interested in checking policy

impact on these actions construct RDF

descriptions of action instances. KAoS clas-

sifies these instances, relying on the inference

capabilities of Stanford University’s Java

Theorem Prover (JTP, www.ksl.stanford.edu/

software/JTP). It then obtains a list of any

policies whose action classes are relevant to

the current situation. In the next step, KAoS

determines the relative precedence of the

obtained policies and sorts them accordingly

to find the dominating authorization policy.

If the dominating authorization is positive,

KAoS then collects, in order of precedence,

obligations from any triggered obligation

policies. KAoS returns the result to the inter-

ested parties—in most cases, these parties are

the enforcement mechanisms that are jointly

responsible for blocking forbidden actions

and assuring the performance of obligations.

Representing policies in OWL facilitates

reasoning about the controlled environment,

policy relations and disclosure, policy con-

flict detection, and harmonization. It also

facilitates reasoning about domain structure

and concepts exploiting the description logic

subsumption and instance classification algo-

rithms. KAoS can identify and, if desired,

harmonize conflicting policies through algo-

rithms that we’ve implemented in JTP.

KAoS features
KAoS has several important features.

Homogeneous policy representation. Be-

cause all aspects of KAoS policy represen-

tation are encoded purely in OWL, any

third-party tool or environment supporting

OWL can perform specialized analyses of

the full knowledge base independently of

KAoS. As the Semantic Web becomes more

widely deployed, this will ease integration

with an increasingly sophisticated range of

new OWL tools and language enhancements.

Maturity. Over the past few years, we’ve used

KAoS services in conjunction with a wide

range of applications and operating platforms.

Comprehensiveness. Unlike many ap-

proaches that deal with only simple forms of

access control or authorization, KAoS sup-

ports both authorization and obligation

policies. Additionally, we’ve implemented

a complete infrastructure for policy man-

agement, including a full range of capabili-

ties from sophisticated user interfaces for

policy specification and analysis to a generic

policy disclosure mechanism. We’re further

developing facilities for policy enforcement

automation (that is, automatic code genera-

tion for enforcers).

Pluggability. A platform-specific and appli-

cation-specific ontology is easily loaded on

top of the core concepts. Moreover, we’ve

straightforwardly adapted the policy enforce-

ment elements to a wide range of computing

environments, both traditional distributed-

computing platforms (for example, Web Ser-

vices, grid computing, and CORBA) and vari-

ous software and robotic agent platforms (for

example, Nomads, Brahms, SFX, CoABS

Grid, and Cougaar).

Scalability and performance. We optimized

the policy disclosure methods such that

response to a query from an enforcer is pro-

vided on average in less than 1 ms. This per-

formance is due in part to our reliance on effi-

cient and logically decideable description

logic subsumption and classification meth-

ods. Furthermore, queries can be executed

concurrently by multiple enforcers, letting

KAoS export multiprocessor machines. In

rigorous evaluations in the DARPA UltraLog

JULY/AUGUST 2004 www.computer.org/intelligent 33

Figure 1. The graphical interface of the OWL policy editor and administration tool, the

KAoS Policy Administration Tool.

program, we’ve found that performance is

acceptable even in large societies of more

than a thousand agents, running on a dozen

or more platforms, with hundreds of policies.

Here, dynamic policy updates can be com-

mitted, deconflicted, and distributed in a mat-

ter of a few seconds. Further enhancements

to underlying reasoners (for example, cur-

rent work on general “untell” mechanisms)

and advances in computer hardware will con-

tinue to improve this performance.

Beyond description logic for
policy representation

Until recently, KAoS used only OWL-DL

(initially DAML) to describe policy-governed

entities and their actions. The semantic rich-

ness OWL enables in comparison to traditional

policy languages allowed us much greater

expressivity in specifying policies. However,

we found ourselves limited in situations where

we needed to define policies in which one ele-

ment of an action’s context depended on the

value of another part of the context. A simple

example is an action of loop communication,

where you must constrain the source and the

destination of communication so that they’re

one and the same. A more complex example

would be when we want to constrain the action

to return the results of a calculation to only the

parties that provided the data used to perform

it (or to the specific entities the data’s providers

authorized). Such an action description might

be needed to specify a policy controlling the

distribution of calculation results. All such

action descriptions go beyond what OWL-DL

can express.

The required missing aspect of representa-

tional semantics has, however, been well stud-

ied under the name of role-value maps.10 These

maps should express equality or containment

of values that has been reached through two

chains of instance properties. The emerging

standard for OWL rules, the Semantic Web

Rule Language (SWRL, www.daml.org/2003/

11/swrl), allows the use of role-value-map

semantics. However, the required syntax is

complex, and we’ve begun to think that an

OWL-based representation expressing this

same semantics might be valuable for a broad

range of uses. For instance, the OWL-S devel-

opers found the need to express similar

dataflow semantics and developed their own

formulation (process:sameValues) that allowed the

representation of such chains, albeit with the

limitation that they could contain only single-

chain elements.11

We’re equipping KAoS with mechanisms

that will allow adding role-value-map seman-

tics to defined policy action using the KAoS

Policy Administration Tool. For the interim,

we’re basing our syntax for this semantics on

the current version of the SWRL OWL ontol-

ogy (www.daml.org/2003/11/swrl/swrl.owl).

However, the code that generates this syntax

is encapsulated in a specialized Java class

allowing later modification if the SWRL

ontology changes or if an OWL-based syntax

eventually emerges. Our classification algo-

rithm can also use this information to clas-

sify action instances. This algorithm verifies

if an instance satisfies the OWL-DL part of

the action class and, if so, checks the appro-

priate role-value-map constraints. For exam-

ple, if KAoS needs to determine whether an

intercepted communication is a loop com-

munication, it would determine whether the

current communication source is also one of

the values of the property describing the

communication’s destination.

To perform more complex policy analyses

S e m a n t i c W e b S e r v i c e s

34 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Policies are a means to dynamically constrain and regulate a
system’s behavior without changing code or requiring the coop-
eration of the components being governed. They are becoming
an increasingly popular approach to dynamic adjustability of
applications in academia and industry (www.policy-workshop.
org). Policy-based approaches have many benefits, including
reusability; efficiency; extensibility; context sensitivity; verifiabil-
ity; support for both simple and sophisticated components; pro-
tection from poorly designed, buggy, or malicious components;
and reasoning about their behavior.1 Policies have important
analogs in animal societies and human cultures.2

Policy-based network and distributed-system management
has been researched extensively over the last decade (www-
dse.doc.ic.ac.uk/research/policies).3 Policies are often applied to
automate network administration tasks, such as configuration,
security, recovery, or quality of service. In network manage-
ment, policies govern choices in a network’s behavior. Addition-
ally, standardization efforts are heading toward common policy
information models and frameworks. The Internet Engineering
Task Force, for instance, has been investigating policies as a way
to manage IP-multiservice networks by focusing on the specifi-
cation of protocols and object-oriented models for represent-
ing policies (www.ietf.org/html.charters/policy-charter.html).

Increasingly, the scope of policy management is going beyond
these traditional applications in significant ways. New challenges
for policy management include

• Sources and methods protection, digital-rights manage-
ment, information filtering and transformation, and

capability-based access
• Active networks, agile computing, disruption-tolerant net-

works, and pervasive and mobile systems
• Organizational modeling, coalition formation, and formaliz-

ing cross-organizational agreements
• Trust models, trust management, provenance, and informa-

tion pedigrees
• Effective human–machine interaction: interruption and noti-

fication management, presence management, adjustable
autonomy, mixed-initiative interaction, teamwork facilita-
tion, and safety

• Support for humans trying to retrieve, understand, and
analyze all policies relevant to some situation

Researchers have proposed multiple approaches for policy
specification. They range from formal policy languages that a
computer can easily and directly process and interpret, to rule-
based policy notation using an if-then-else format, to the repre-
sentation of policies as entries in a table with multiple attributes.

In Web Services, standards for SOAP-based message security
(for example, www-106.ibm.com/developerworks/webservices/
library/ws-secure) and XML-based languages for access control
(for example, the eXtensible Access Control Markup Language,
www.oasis-open.org/committees/tc_home.php?wg_abbrev
=security) have begun to appear. However, the current tools’
immaturity along with the new languages’ limited scope and
semantics make them less-than-ideal candidates for the sophis-
ticated applications that Semantic Web visionaries have imag-
ined for the next decade.4,5

Policies and Semantic Web Services

relying on role-value-map semantics, we’ve

begun joint exploration with Stanford on

extending JTP to allow subsumption reason-

ing on role-value-map semantics.

Example application contexts
We’re extending KAoS to address require-

ments of Semantic Web Services. We

describe three examples of the kinds of roles

that a policy management framework can

play in providing

• Policy management for grid-computing

environments

• Verification of policy compliance for

Semantic Web Services workflow com-

position

• Policy enforcement during workflow

enactment

Policy management for
grid computing

Our first foray into Web Services was devel-

oping an initial OGSA-compliant (Open Grid

Services Architecture) version of KAoS ser-

vices, allowing fine-grained policy-based man-

agement of registered grid-computing services

on the Globus platform.12 OGSA is a Web Ser-

vices-compatible standard for defining grid-

computing services (www.globus.org/ogsa).

We’ve aimed to extend and generalize this

capability to work with Web Services outside

of grid-computing environments.

Globus provides effective resource man-

agement, authentication, and local resource

control for the grid-computing environment

but needs domain and policy services.

KAoS seemed to be a perfect complement

to the Globus system, providing a wide

range of policy management capabilities

that rely on platform-specific enforcement

mechanisms. By providing an interface

between the Globus grid and KAoS, we

enable the use of KAoS mechanisms to

manage Grid Security Infrastructure-

enabled grid services. GSI was the only

component of the Globus Toolkit (GT3) we

used in the integration. The interface itself

is a grid service, which we called a KAoS

grid service. It gives grid clients and ser-

vices the ability to register with KAoS ser-

vices and to check whether a given action

is authorized on the basis of current poli-

cies. Figure 2 shows the basic architecture.

Creating a KAoS grid service. To create a

KAoS grid service, we used tools provided

with GT3 to create a normal grid service,

then added to it the required KAoS frame-

work components to make it KAoS aware.

This framework links grid services to the

KAoS-implemented JAS (Java Agent Ser-

vices, http://sourceforge.net/projects/jas):

naming, message transport, and directory. It

JULY/AUGUST 2004 www.computer.org/intelligent 35

Client

Java
Agent

Services

KAoS

Grid
service

stub

Container

KAoS
grid

service

JAS
service

root

KAoS
guard

Grid
service

stub

Grid
service

stub

Figure 2. The KAoS grid service architecture.

Using XML as a standard for policy expression has advantages
and disadvantages. The major advantage is its straightforward
extensibility (a feature shared with languages such as RDF and
OWL, which use XML as a foundation). The problem with
mere XML is that its semantics are mostly implicit—meaning is
conveyed on the basis of a shared understanding derived
from human consensus. Implicit semantics are ambiguous,
they promote fragmentation into incompatible representation
variations, and they require extra manual work that a richer
representation could eliminate. However, if an implementa-
tion requires the use of an XML approach, you could map
Semantic Web-based policy representations, such as those we
describe, to these lower-level representations by applying
contextual information.

In addition to KAoS, some initial efforts in using Semantic
Web representations for basic security applications (authenti-
cation, access control, data integrity, and encryption) of pol-
icy are bearing fruit. For example, Grit Denker and her col-
leagues have integrated a set of ontologies (credentials and
security mechanisms) and security extensions for OWL-S Ser-
vice profiles with Carnegie Mellon University’s Semantic
Matchmaker5 to enable security brokering between agents
and services. Future work will let security services be com-
posed with other services. Lalana Kagal and her colleagues
are developing Rei, a Semantic Web language-based policy
language they’re using as part of the OWL-S service profiles
extension and other applications.6 In another promising direc-
tion, Ninguhi Li, Benjamin Grosof, and Joan Feigenbaum have

developed a logic-based approach to distributed autho-
rization in large-scale, open, distributed systems.7

References

1. J.M. Bradshaw et al., “Making Agents Acceptable to People,” Intel-

ligent Technologies for Information Analysis: Advances in Agents,

Data Mining, and Statistical Learning, N. Zhong and J. Liu, eds.,

Springer-Verlag, 2004, pp. 355–400.

2. P. Feltovich et al., “Social Order and Adaptability in Animal, Human,

and Agent Communities,” Proc. 4th Int’l Workshop Eng. Societies in

the Agents World, LNAI 3071, Springer-Verlag, 2003, pp. 73–85.

3. S. Wright, R. Chadha, and G. Lapiotis, eds., IEEE Network, special

issue on policy-based networking, vol. 16, no. 2, 2002, pp. 8–56.

4. D. Fensel et al., Spinning the Semantic Web, MIT Press, 2003.

5. K. Sycara et al., “Automated Discovery, Interaction and Composi-

tion of Semantic Web Services,” J. Web Semantics, vol. 1, no. 1,

2003, pp. 27–46.

6. L. Kagal, T. Finin, and A. Joshi, “A Policy-Based Approach to Secu-

rity for the Semantic Web,” Proc. 2nd Int’l Semantic Web Conf.

(ISWC 2003), LNCS 2870, Springer-Verlag, 2003, pp. 402–418.

7. N. Li, B.N. Grosof, and J. Feigenbaum, “Delegation Logic: A Logic-

Based Approach to Distributed Authorization,” ACM Trans. Infor-

mation Systems Security (TISSEC), vol. 6 , no. 1, 2003, pp. 128–171.

K

S e m a n t i c W e b S e r v i c e s

36 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

also associates the KAoS Guard (policy deci-

sion point) with the KAoS grid service that

Figure 2 shows.

Registration. To use domain services, we

needed to establish a method for clients and

resources to register in a KAoS domain. The

clients or resources use their credential to

request registration in one or more domains.

The credential is a standard X.509 certificate

that Globus uses for authentication and is

verified using the GT Grid Security Infra-

structure. If the certificate is valid, the regis-

tration request goes to KAoS for registration

into the desired domains. If the resource uses

an application-specific ontology to describe

its capabilities, it must be loaded into the

KAoS ontology using a utility KAoS pro-

vides. Inside the KAoS grid service, the reg-

istration is handled through the associated

guard. This lets KAoS distribute all applica-

ble policies to the appropriate guard.

Expressing policies. The basic components of

any authorization policy are the actors, action,

and context. A sample policy would read

It is permitted for actor(s) X to perform

action(s) Y in context Z.

Actors requesting to execute an action are

mapped to various actor classes and instances

in the KAoS Policy Ontology (KPO). In this

case, actors consist of various software

clients and the groups they belong to. Reg-

istration adds each client to the existing

KAoS knowledge base stored in JTP, offline

or at runtime, letting policies be written about

the client or its domain.

The system can represent actions at differ-

ent levels of generality. A policy defined on a

more general action might permit or forbid

overall access to a service, which is useful for

simple services or services that don’t provide

varying access levels. For example, a policy

defining overall permissions for a chat service

might use generic communication concepts in

the existing KPO, as in the following:

It is forbidden for Client X to perform a com-
munication action if the action has a destina-
tion of Chat Service Y.

The system would use this policy to pre-

vent Client X from using Chat Service Y.

KAoS already understands the concepts of

“forbidden,” “communication action,” and

“has destination.” It will also understand

“Client X” and “Chat Service Y” once each

entity registers.

More complex services might require new

concepts in the ontologies that map to spe-

cific actions on a grid service. For example,

Reliable File Transfer Service has various

methods that might not map to an existing

ontology. To provide fine-grained control of

this service, we can extend the KAoS ontol-

ogy for the specific domain space and load

it into KAoS using KPAT (KAoS Policy

Administration Tool), a graphical user inter-

face for interacting with KAoS (see Figure 1

for an example of a KPAT window). We’re

working on a tool to automatically generate

an OWL ontology for a given WSDL (Web

Services Description Language, www.w3.

org/TR/wsdl) specification of the OGSI-

compliant grid service.

The context can refer to objects that are the

targets of action, such as clients or services,

or domain-specific entities, such as different

computing resources. The context might also

include other information about the situation

in which the action is performed. Clients and

services are added to the KAoS ontology

when they register in the KAoS Directory

Service, while using domain-specific entities

requires extensions to the ontology, either

before loading into KAoS or using the graph-

ical interface in KPAT.

Policies might be written to restrict a

client’s use of a resource or to restrict the set

of access rights delegated to the KAoS grid

service. Recently, we’ve added the capabil-

ity of defining simple obligation policies.

Checking authorization. Because the KAoS

grid service has full control of access to a

given resource based on the rights permitted

by participating resources, it serves as the pol-

icy enforcer using Globus local-enforcement

mechanisms. The KAoS grid service coor-

dinates with the KAoS guard to determine

authorization for a requested action. Once

registered, clients will have access to the

grid service on the basis of KAoS policies.

As policies are added to KAoS through

KPAT, they’re automatically converted to

OWL for use in reasoning and to a simple

and efficient representation in the guard

associated with the KAoS grid service for

enforcement purposes. When a client requests

a service, the KAoS grid service will check

if the requested action is authorized on the

basis of current policies by querying the

guard. If the guard allows the requested

action, the KAoS grid service initializes a

GIS-restricted proxy certificate by putting

the permissions needed to execute the action

ReferTo

RefersTo
RefersTo

CMU
Matchmaker

Forward

CMU
notification

agent

Notify

Arabello
Coast Guard

cutter
service

Gao
Marine

helicopter
service

US
Army

helicopter
service

US
Marine

helicopter
service

P
ic

ku
p
 r

es
o
u
rc

es
o
n
to

lo
g
y

Coalition pick-up
rescue resources

Gao
hospital
service

Arabello
hospital
service

Notification
ontology

Policy management

Country
hospitals
ontology

Medical
treatment
ontology

KAoS
Policy

Ontology

CoSAR coalition
search & rescue

coordinator

US downed
pilot KAoS Policy

Administration
Tool

Distribute

Distribute

Distribute

Lookup

Notify

Ad
ve

rti
se

Use
Notify

Coalition
commander

KAoS
Policy

Service

KAoS
Enforcer 1

Ask

Use

Use

Advertise
Jabber IM

KAoS Enforcer 3

Coalition
medical resources

KAoS
Enforcer 2

CoSAR I-X
agent

Figure 3. A CoSAR-TS demo diagram.

in its own end GIS entity certificate. This

certificate is the one the resource provided

at registration and maps to the local control

mechanism. The KAoS grid service also

sets the proxy lifetime and signs it. It then

returns the restricted proxy certificate to the

client. The client then uses this proxy cer-

tificate to access the given grid service.

When a service receives a request, it checks

the submitted certificate against the local

GIS control mechanism. Services can also

check permissions by querying the KAoS

grid service directly. The service checks to

ensure that action requested is covered by the

intersection of the rights given to the KAoS

service and the rights the KAoS service

embedded in the certificate. This lets the

local resource owner write policies restrict-

ing the rights it lets KAoS delegate.

A current limitation of our implementation

is that no mechanism exists for proxy certifi-

cate revocation. Globus relies on short life-

times to limit proxy credentials. An updated

policy in KAoS wouldn’t take effect until the

current proxy credential expired, forcing the

user to return to KAoS for an update.

Coalition search and rescue
In the Coalition Search and Rescue Task

Support project (CoSAR-TS, www.aiai.ed.

ac.uk/project/cosar-ts), we’re testing the inte-

gration of KAoS and the Artificial Intelli-

gence Applications Institute (AIAI)’s I-X

technology with Semantic Web Services.

Other participants in the CoSAR-TS project

include BBN Technologies, the Space and

Naval Warfare Systems Command, the Air

Force Research Laboratory, and Carnegie

Mellon University.

Search and rescue operations, especially

coalition-based ones, require rapid dynamic

composition of available policy-con-

strained heterogeneous resources. A good

use case is to describe them using Seman-

tic Web technologies. Additionally, mili-

tary operations are usually conducted

according to some well-defined procedure

that must be made concrete and grounded

to the given situation. Such a scenario is

good for illustrating planning under policy-

imposed constraints.

The fictitious scenario (see Figure 3),

which extends the well-known Coalition

Agent Experiment (CoAX, www.aiai.ed.ac.

uk/project/coax), begins with an event that

reports a downed airman between the coast-

lines of four fictional nations bordering the

Red Sea: Agadez, Binni, and Gao (to the

west), and Arabello (to the east). In this ini-

tial scenario, we assume that excellent loca-

tion knowledge is available and that no local

threats exist to counter or avoid in the res-

cue. The airman reports his own injuries via

his suit sensors. Next is an investigation of

the facilities available for rescuing the air-

man. Different possibilities exist: a US ship-

borne helicopter, a Gaoan helicopter from a

land base in Binni, a patrol boat off the Ara-

bello coastline, and so on. Finally, there’s a

process to establish available medical facil-

ities for the specialized injury reported,

using the information provided about the

region’s countries.

Different policies originate from different

coalition partners, which constrains selection

of these resources. If, for instance, a hospital

in Arabello has the best treatment facilities

for dealing with the airman’s injuries, choices

of rescue resources are then restricted. Addi-

tionally, the coalition has a policy prohibiting

members from using Gaoan helicopters to

transport injured airmen.

In addition to relying on KAoS, CoSAR-

TS relies on various I-X technologies from

the AIAI. I-X process panels (http://i-x.

info13,14) provide task support by reasoning

about and exchanging with other agents and

services any combination of Issues, Activi-

ties, Constraints, and Annotations (elements

of the <I-N-C-A> ontology). I-X can there-

fore provide collaborative task support and

exchange of structured messages related to

plans, activity, and such activity’s results. This

information can be exchanged with other

tools using OWL, RDF, or other languages.

The system includes a planner that can com-

pose a suitable plan for the given tasks when

it receives a library of standard operating pro-

cedures or processes and knowledge of other

agents or services that it can use.

Figure 4 shows an I-X process panel (I-P2)

and associated I-X tools. The I-Space tool

maintains agent relationships. I-X can obtain

the relationships from agent services such as

KAoS. I-X process panels can also link to

Semantic Web information and Web Ser-

vices, and can be integrated via “I-Q” adap-

tors11 to appear naturally during planning and

in plan execution support.

I-X work has concentrated on dynamically

determined workflows at execution time,

using knowledge of services, other agent

availability, and so on. However, it also offers

a process editor for creating process models

(I-DE) to populate the domain model and an

AI planner (I-Plan), which allows for hierar-

chical plan creation, precondition achieve-

ment, consistent binding of multiple variables,

temporal-constraint checking, and so forth.

The Semantic Firewall
We developed the Semantic Firewall

(SFW) project in collaboration with the Uni-

versity of Southampton, IT Innovation, and

JULY/AUGUST 2004 www.computer.org/intelligent 37

Figure 4. I-X process panel and task support tools.

Activity editor
Process panel

I-Space

Map tool

Messenger

I-Plan

SRI International.10 (See http://ontology.ihmc.

us/Semant icServices /S-F/Example/

index.html for an example scenario with poli-

cies encoded using the KAoS Policy syntax.)

In addition to performing standard policy man-

agement functions, KAoS will take as an input

a desired client workflow of grid services invo-

cations. It will then verify whether the client

is authorized to execute such a workflow in the

domain controlled by a given instance of the

SFW environment. Additionally, the policy

system might generate obligations in the form

of grid service invocations. These obligations

must execute during the original workflow—

for example, to preserve provenance (www.

pasoa.org/index.html) of the calculation re-

sults. In effect, we can modify and amend the

initial workflow with the policies. The system

will then enforce resulting policies embedded

in the contract governing the transaction as the

workflow is enacted.

Policy compliance verification
in Semantic Web Services
workflow composition

As a research topic, automatic composi-

tion of feasible workflows from a dynamic

set of available Semantic Web Services is

drawing increasing attention. We argue for

applying existing technology and mapping

already developed planners’ input and out-

put formats to the emerging Semantic Web

Services Process Model standard (www.

daml.org/services/owl-s/1.0).15 To this end,

we are extending our implementations of

I-X and KAoS.

The I-K-C tool
In the context of CoSAR-TS, we’ve inte-

grated KAoS and I-X to let I-X obtain

information about the role relationships

among human and software actors (peers,

subordinates, and superiors, for example)

represented in domains and stored in KAoS

as ontological concepts. I-X can also use

the KAoS policy disclosure interface to

learn about policy impact on its planned

actions. This is the first step toward mutual

integration of the planning and policy ver-

ification components.

The new I-K-C tool goes beyond the ini-

tial integration of I-X and KAoS to enable

Semantic Web Services workflow composi-

tion consistent with policies that govern com-

position and enactment (see Figure 5). This

approach lets I-X import services described

in OWL-S into the planner, augmenting any

predefined processes already in the process

library. KAoS verifies constructed partial

plans for policy compliance. We can export

the final plan, represented in OWL-S ontol-

ogy form, and use it in various enactment

systems or to guide the dynamic reactive exe-

cution of those plans in I-P2.

Mapping process to action
The OWL-S concept of process maps

semantically to the KAoS concept of action

(http://ontology.ihmc.us/Action.owl).

Unfortunately, OWL-S dramatically changed

how it represents workflow processes com-

pared with DAML-S. DAML-S represented

processes as classes whose instances were

process executions and whose input and

output parameters were defined as proper-

ties of those classes. It represented para-

meter restrictions as range constraints on

those parameter properties. In contrast,

OWL-S represents processes as instances

and defines parameters as instances of the

class Parameter or its subclasses Input and Out-
put. Processes’ parameter restrictions are

defined by the value of the process:parameter-
Type property for each parameter. This sig-

nificant change doesn’t allow for a straight-

forward mapping between OWL-S and

KAoS concepts using owl:equivalentClass and

owl:equivalentProperty, which had been previ-

ously possible in the case of DAML-S. In

the near future, the OWL-S definition of

process executions should change again and

will be defined as an instance of a ProcessIn-
stance class that refers to the process type.

This approach is similar to that taken in the

Process Specification Language.16

To use KAoS reasoning capabilities, we

must create an OWL class based on the

OWL-S process definition instance. We do

this by changing the process:parameterType to rep-

resent the appropriate restrictions. We’re

using the OWL-S API (www.mindswap.

org/2004/owl-s/api) to load OWL-S process

workflows, find all processes in a workflow,

and then get detailed definitions to build the

corresponding OWL class—a subclass of the

KAoS Action class—using Jena (http://

jena.sourceforge.net).

The change from DAML-S to OWL-S has

other consequences:

• You can’t build process hierarchies at

different abstraction levels using rdfs:sub-
ClassOf, while you can in the KAoS ontol-

ogy of actions.

• You can’t represent an actual instance of a

process—a very concrete realization of the

process. Again, in KAoS we use the instance

of an action to describe the currently enacted

event and then to find whether policies exist

that apply to this situation. The envisioned

process control ontology, announced as part

of OWL-S’s future release, will clearly need

methods to represent actual events and their

relation to processes.

• The process instance doesn’t represent the

actual event anymore, so the fact that the

process in OWL-S is a subclass of time-
entry:IntervalEvent carried over from DAML-S

is a self-contradiction. (OWL-S’s develop-

ers have promised to resolve this issue in

the near future.)

S e m a n t i c W e b S e r v i c e s

38 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

OWL-S KAoS - OWL-S
mapping

KAoS
ontology

ReferTo

I-Plan
(planning service)

KAoS
policy services

Policies
constraining

services usage

Collection of
available
Semantic

Web Services

Select service

<I-N-C-A->

Partial plan
amended with
policy-related
commentary

Goal

Final plan

Consult
policies

Use
Use

Use Use
Use

Use

Use

Use

Partial
plan

Figure 5. Cooperation between I-X and KAoS in the process of semantic workflow

composition.

In short, difficulties related to using

process classes in collections and other issues

motivated changing the representation of

processes between DAML-S and OWL-S.

However, addressing this problem has cre-

ated the challenges in the representation of

policies in KAoS we just mentioned. We

hope that the promised improvements in

future versions of OWL-S will help resolve

these issues.

KAoS capabilities for analyzing
action classes

After KAoS extracts a particular action

from the workflow and converts it to a cor-

responding action class, we examine the

action to determine its compliance with the

relevant policies in force. The process of

workflow policy compliance checking dif-

fers from that of checking authorization and

obligations of an action instance in policy

enforcement, which we described earlier. In

workflow policy compliance checking,

we’re not dealing with an action instance but

an action class. So, we must use subsump-

tion reasoning instead of classification rea-

soning—KAoS must find relations between

the current action class and action classes

associated with policies. Fortunately, we use

this kind of reasoning to perform policy

analyses such as policy deconfliction.6 These

analyses also involve discovering relations

(subsumption or disjointness, for example)

between action classes associated with

policies.

Such analyses will often lead to deter-

ministic conclusions—for example, that a

given process will be authorized or forbid-

den or that it will definitely generate an

obligation. Results will always be deter-

ministic if the given action class represent-

ing the investigated process is a subclass of

either a single policy action class or a union

of some policy action classes, respectively

representing either authorization or obliga-

tion policies.

Sometimes, however, the analyses can be

nondeterministic—that is, we might be able

to conclude only that a given process instance

could possibly be authorized or that it might

generate obligations. This kind of result will

occur if the given action class, representing

the process in question, is neither fully sub-

sumed nor fully disjoint, with a single pol-

icy action class or their unions respectively

representing either authorization or obliga-

tion policies. In this case, KAoS can build a

representation of the action class (either the

class that corresponds to the portion of the

action class in the authorization request or

the one that generates a given obligation) by

computing the difference between the cur-

rent action class and the relevant policy

action class. The algorithm is identical to the

one we previously described7 for policy har-

monization. However, we’re still working out

how to generically translate that new class to

an OWL-S process instance representation.

We’ve developed a first cut of additional

KAoS ontology components, enabling work-

flow annotation with the results of the pol-

icy analyses we described. The appropriate

markup was added to the original OWL-S

workflow using the OWL-S API and sent

back from KAoS to the I-X planner.

Example: Planning a rescue
operation under coalition policy
constraints

Project participants are using the CoSAR-

TS scenario to test the capabilities we just

described. With each new search-and-rescue

situation, the SAR coordinator gathers avail-

able information about the accident and con-

structs an appropriate goal for the planner.

The goal could, for instance, contain infor-

mation about the kind of injuries the victim

sustained and his or her approximate loca-

tion. The planner begins by selecting the best

initial plan template for the given situation.

It then builds OWL-S profiles for each nec-

essary service and queries the Coalition

Matchmaker to learn about OWL-S descrip-

tions of registered SAR resources. This

results in the first approximation of the plan

expressed as the OWL-S Process Model. For

instance, if the downed pilot has serious burn

injuries, the planner will ask the Matchmaker

which services are offered by the burn

injuries treatment unit in each medical care

center. Subsequently, it will ask for available

rescue resources that can pick up a pilot from

the sea and deliver him or her to the chosen

hospital (that is, Arabello). The system

selects the best result and submits the OWL-S

process model for verification. During work-

flow analysis, KAoS determines that an

obligation policy exists requiring that the

coalition commander receive notification

when the downed pilot is successfully recov-

ered. It inserts the appropriate process, invok-

ing the notification service—available in the

environment as the Web Service—into the

model, and returns it to the planner.

Policy enforcement during
workflow enactment

KAoS can’t check every aspect of policy

compliance at planning time. So, we’ve

designed it so that the policy service can

independently enforce policies during work-

flow execution. The policies governing both

authorization and obligation of clients and

servers are stored in KAoS and checked by

authorized parties. Other approaches to

securing Semantic Web Services are limited.

They can mark service advertisements with

requirements for authentication and com-

munication and enforce compliance with

these requirements,17 or they attach condi-

tions to inputs, outputs, and effects of ser-

vices. KAoS, on the other hand, can auto-

matically enforce any sort of policy by

integrating Semantic Web Services with

KAoS enforcers, components that intercept

requests to a service and consult KAoS about

their authorization and obligation. KAoS can

reason about the entire action the services

perform, not just about security credentials

attached to the request. Additionally, KAoS

helps generate obligations created when the

services are used. We describe three applica-

tions of KAoS during workflow enactment:

Matchmaker policy enforcement, a generic

Semantic Web Service enforcer, and agree-

ments and contracts in the Semantic Firewall

application.

Matchmaker policy enforcement—
CoSAR-TS scenario

Although annotating the Semantic Match-

maker service profiles lets registered service

providers describe required security profiles,15

it doesn’t let owners of infrastructure re-

sources (for example, computers or networks),

client organizations (coalition organizations

or national interest groups), or individuals

JULY/AUGUST 2004 www.computer.org/intelligent 39

KAoS can’t check every aspect of

policy compliance at planning

time. So, we’ve designed it

so that the policy service can

independently enforce policies

during workflow execution.

S e m a n t i c W e b S e r v i c e s

40 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

specify or enforce policy from their unique

perspectives. For example, the policy that

coalition members can’t use Gaoan transports

can’t always be anticipated and specified in

the Matchmaker service profile. Neither

would Matchmaker service profile annotations

be an adequate implementation for a US pol-

icy obligating encryption, prioritizing network

bandwidth allocation, or requiring the logging

of certain sorts of messages.

Moreover, these policies’ semantics can’t

currently be expressed in terms of the current

OWL-S specification of conditional con-

straints. Even if they could be, organizations

and individuals might prefer to keep policy

stores, reasoners, and enforcement capabilities

in their private enclaves. This might be moti-

vated by the desire to both maintain secure

control over sensitive components and keep

other coalition members from becoming aware

of private policies. For example, coalition

members might not want Gao to know that pol-

icy will automatically filter out the offer of their

helicopters to rescue the downed airman.

A generic Semantic Web Service
enforcer

We have defined enforcers that intercept

SOAP messages from the Matchmaker and

filter results consistent with coalition poli-

cies. In our CoSAR-TS demonstration, these

policies prevent the use of Gaoan resources.

We’re enhancing the SOAP-enabled

enforcers to understand arbitrary Semantic

Web Service invocations so that they can

apply appropriate authorization policies to

them. The enforcer is equipped with a

mechanism to perform obligation policies,

which are in the form of other Web Service

invocations. For instance, you can imagine

that some policy might require consultation

or registration of performed transactions in

some logging service available as a Web

Service audit entity.

Agreements and contracts—
a Semantic Firewall application

A necessary requirement for supporting

complex, dynamic groups of service providers

in a business context is the notion of a con-

tract. Although KAoS policies represent con-

straints on behavior involuntarily imposed

on software entities, contracts represent vol-

untary agreements that mutually bind the par-

ticipants to various authorizations, obliga-

tions, and modes of interaction. As an

example of the application of contracts to

Semantic Web Services, Benjamin Grosof

and Terrence Poon have developed Sweet-

Deal, a rule-based approach to automating

“law in the small.”18 SweetDeal represents

business contracts to let software agents cre-

ate, evaluate, negotiate, and execute contracts

among themselves for the performance of

Semantic Web Services.

Within KAoS, we plan to extend the

existing representation of policy sets to

include the representation and reasoning

constructs necessary to allow for creating

and executing agreements and contracts. As

part of contract creation, KAoS can already

detect policy conflicts and suggest harmo-

nization. We’re extending these and com-

bining them with new facilities for negoti-

ation and extensions of existing capabilities

for enforcement.

Contracts can be stored in instances of

KAoS (or perhaps some other interopera-

ble policy service) associated with each

Web Service or, when stakeholders prefer,

as independent KAoS instances represent-

ing neutral third parties.

KAoS provides capabilities for verify-

ing and enforcing user-defined policy

when automatically planning and executing

semantically described process workflows.

To advance this, we plan to investigate how

to take a context surrounding the process

(that is, processes and control constructs) in

a given workflow into account during policy

analyses.

Currently, KAoS can analyze OWL-S

encoded workflows; however, we can imag-

ine how to extend it to understand other

forms of descriptions (for example, the Web

Service Modeling Ontology, www.wsmo.org)

that share similar concepts of basic process

and workflow composition abstractions.

Acknowledgments

Our research was sponsored by the DARPA

CoABS, DAML, and UltraLog programs at the US
Air Force Research Laboratory under agreements
F30602-00-2-0577 and F30602-03-2-0014. The
US government, the Institute for Human and
Machine Cognition, and the University of Edin-
burgh are authorized to reproduce and distribute
reprints and online copies for their purposes
notwithstanding any copyright annotation hereon.
Thanks to the other members of the KAoS project
team: Maggie Breedy, Larry Bunch, Hyuckchul
Jung, Shri Kulkarni, James Lott, William Taysom,

and Gianluca Tonti. We are also grateful for the
contributions of Mark Burstein, Pat Hayes, Luc
Moreau, Niranjan Suri, Paul Feltovich, Richard
Fikes, Jessica Jenkins, Bill Millaar, Deborah
McGuinness, Rich Feiertag, Timothy Redmond,
Rebecca Montanari, Sue Rho, Ken Ford, Mark
Greaves, Jack Hansen, James Allen, Ron Ashri,
Terry Payne, Mike Surridge, Darren Marvin, Grit
Denker, Kate Keahey, Katia Sycara, Massimo
Paolucci, Naveen Srinivasan, and Robert Hoffman.

References

1. S.A. McIlraith, T.C. Son, and H. Zeng,
“Semantic Web Services,” IEEE Intelligent

Systems, vol. 16, no. 2, 2001, pp. 46–53.

2. J.M. Bradshaw et al., “Making Agents Accept-
able to People,” Intelligent Technologies for

Information Analysis: Advances in Agents,

Data Mining, and Statistical Learning, N.
Zhong and J. Liu, eds., Springer-Verlag, 2004,
pp. 355–400.

3. J.M. Bradshaw et al., “Dimensions of Adjust-
able Autonomy and Mixed-Initiative Interac-
tion,” to be published in Computational

Anatomy, Springer-Verlag, 2004.

4. G. Klein et al., “Common Ground and Coor-
dination in Joint Activity,” Organizational

Simulation, John Wiley & Sons, 2004.

5. G. Tonti et al., “Semantic Web Languages for
Policy Representation and Reasoning: A
Comparison of KAoS, Rei, and Ponder,” The

Semantic Web–ISWC 2003: 2nd Int’l Seman-

tic Web Conf., LNCS 2870, Springer-Verlag,
2003, pp. 419–437.

6. N. Damianou et al., Ponder: A Language for

Specifying Security and Management Policies

for Distributed Systems, tech. report Doc2000/
1, Dept. of Computing, Imperial College of
Science, Technology and Medicine, 20 Oct.
2000.

7. J.M. Bradshaw et al., “Representation and Rea-
soning for DAML-Based Policy and Domain
Services in KAoS and Nomads,” Proc. 2nd

Int’l Joint Conf. Autonomous Agents and Multi-

Agent Systems (AAMAS 2003), ACM Press,
2003, pp. 835–842.

8. A. Uszok, J.M. Bradshaw, and R. Jeffers,
“KAoS: A Policy and Domain Services
Framework for Grid Computing and Grid
Computing and Semantic Web Services,”
Trust Management: 2nd Int’l Conf. Proc.
(iTrust 2004), LNCS 2995, Springer-Verlag,
2004, pp. 16–26.

9. A. Uszok et al., “KAoS Policy and Domain Ser-
vices: Toward a Description-Logic Approach
to Policy Representation, Deconfliction, and
Enforcement,” Proc. IEEE 4th Int’l Workshop

Policies for Distributed Systems and Net-

works, IEEE CS Press, 2003, pp. 93–96.

10. R. Ashri, T.R. Payne, and M. Surridge,
“Towards a Semantic Web Security Infra-
structure,” Proc. AAAI Spring Symp. Seman-

tic Web Services, AAAI Press, 2004, pp.
84–91.

11. S. Potter, A. Tate, and J. Dalton, “I-X Task
Support on the Semantic Web,” Poster Proc.

2nd Int’l Semantic Web Conf., 2003; http://
i-x.info/documents/2003/2003-iswc-poster-
potter-ix.pdf.

12. M. Johnson et al., “KAoS Semantic Policy
and Domain Services: An Application of
DAML to Web Services-Based Grid Ar-
chitectures,” Proc. AAMAS 03 Workshop

Web Services and Agent-Based Eng., 2003;
www.ihmc.us/research/projects/KAoS/
OGSAIntegration.pdf.

13. A. Tate, “Coalition Task Support Using I-X
and <I-N-C-A>,” Proc. 3rd Int’l Central and

Eastern European Conf. Multi-Agent Systems

(CEEMAS 2003), LNAI 2691, Springer-
Verlag, 2003, pp. 7–16.

14. A. Tate, J. Dalton, and S. Potter, “Intelligible
Messaging: Activity-Oriented Instant Mes-
saging,” submitted to Proc. 14th Int’l Conf.

Automated Planning and Scheduling (ICAPS
2004), AAAI Press, 2004; http://i-x.info/
documents/2004/2004-x-tate-ime.pdf.

15. D. Wu et al., “Automating DAML-S Web Ser-
vices Composition Using SHOP2,” The

Semantic Web—ISWC 2003: 2nd Int’l Seman-

tic Web Conf., LNCS 2870, Springer-Verlag,
pp. 195–210.

16. C. Schlenoff et al., The Process Specification

Language (PSL): Overview and Version 1.0

Specification, NISTIR 6459, Nat’l Inst. Stan-
dards and Technology, 2000.

17. G. Denker et al., “Security for DAML Web
Services:Annotation and Matchmaking,” The

Semantic Web—ISWC 2003: 2nd Int’l

Semantic Web Conf., LNCS 2870, Springer-
Verlag, 2003, pp. 335–350.

18. B.N. Grosof and T.C. Poon, “SweetDeal:
Representing Agent Contracts with Excep-
tions using XML Rules, Ontologies, and
Process Descriptions,” Proc. 12th Int’l Conf.

World Wide Web, ACM Press, 2003, pp.
340–349.

JULY/AUGUST 2004 www.computer.org/intelligent 41

T h e A u t h o r s

Andrzej Uszok is a research scientist at the Institute for Human and Machine
Cognition. His research interests include ontology, policy specification, agent
systems, and transparent interoperability. He received his PhD in computer
science from the AGH University, Krakow. He is a member of the AAAI.
Contact him at the Inst. for Human and Machine Cognition, 40 S. Alcaniz,
Pensacola, FL 32502; auszok@ihmc.us.

Jeffrey M. Bradshaw is a senior research scientist at the Institute for Human
and Machine Cognition. His research interests include knowledge acquisi-
tion, software and robotic agent technology, human–agent teamwork,
adjustable autonomy, and mixed-initiative interaction. He received his PhD
in cognitive science from the University of Washington. He is a member of
the AAAI, the ACM, and the IEEE Computer Society. Contact him at the
Inst. for Human and Machine Cognition, 40 S. Alcaniz, Pensacola, FL 32502;
jbradshaw@ihmc.us.

Renia Jeffers is a research associate at the Institute for Human and Machine
Cognition and a lead designer and developer for the KAoS policy and domain
services. Her research interests include software agent technologies; policy
specification, management, and enforcement; and human–robotic teamwork.
She received her MS in software engineering from Seattle University. Con-
tact her at the Inst. for Human and Machine Cognition, 40 S. Alcaniz, Pen-
sacola, FL 32502; rjeffers@ihmc.us.

Matthew Johnson is a research associate at the Institute for Human and
Machine Cognition. His research interests include human–machine inter-
face, teamwork, policy, and mixed-initiative interactions. He received his MS
in computer science from Texas A&M University at Corpus Christi. Contact
him at the Inst. for Human and Machine Cognition, 40 S. Alcaniz, Pensacola,
FL 32502; mjohnson@ihmc.us.

Austin Tate is the technical director of the Artificial Intelligence Applica-
tions Institute and holds the Personal Chair of Knowledge-Based Systems at
the University of Edinburgh. His research interests include AI planning (O-
Plan and I-X/I-Plan), collaboration and process, and Web Services standards
activities. He received his PhD in machine intelligence at the University of
Edinburgh. He is a fellow of the Royal Society of Edinburgh (Scotland’s
National Academy) and the AAAI. Contact him at the Artificial Intelligence
Applications Inst., Univ. of Edinburgh, Appleton Tower, Crichton St., Edin-
burgh EH8 9LE, UK; a.tate@ed.ac.uk.

Jeff Dalton is a research scientist at the University of Edinburgh’s Artificial Intelligence Applications
Institute. His research interests include planning, simulation, Web-based software, and programming
language design and implementation. He received his BA in mathematics from Dartmouth College.
Contact him at the Artificial Intelligence Applications Inst., Univ. of Edinburgh, Appleton Tower,
Crichton St., Edinburgh EH8 9LE, UK; jeff@inf.ed.ac.uk.

Stuart Aitken is a member of the University of Edinburgh’s Artificial Intel-
ligence Applications Institute. His research interests include ontology, bioin-
formatics, intelligent tools for knowledge acquisition, and machine learning.
He received his PhD in computer science from the University of Glasgow.
Contact him at the Artificial Intelligence Applications Inst., Univ. of Edin-
burgh, Appleton Tower, Crichton St., Edinburgh EH8 9LE, UK; stuart@
aiai.ed.ac.uk.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

