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(Communicated by Louis J. Ratliff, Jr.)

Dedicated to Irving Kaplansky on his seventieth birthday

Abstract. The following theorem is proved in ZFC: there exist valuation rings

which are not surjective homomorphic images of valuation domains. The proof

relies on the existence of nonstandard divisible uniserial modules in ZFC.

Let R be a valuation ring (in another terminology: a chained ring), i.e. a

commutative ring with 1 in which the ideals form a chain under inclusion. A

valuation domain is a domain that is a valuation ring at the same time.

Kaplansky raised the question as to whether or not every valuation ring R

can be obtained as a (surjective) homomorphic image of a valuation domain

S. Under additional conditions on R , the answer is affirmative; see Ohm and

Vicknair [3] and the literature cited there. On the other hand, Fuchs and Salce

[2, p. 151] have given an explicit example for a valuation ring which can not be

obtained in the indicated way. Their proof was based on the existence of non-

standard divisible uniserial modules by using Jensen's Diamond Principle which

holds in the constructible universe but not in ZFC alone (Zermelo-Fraenkel set

theory with the Axiom of Choice). Franzen and Göbel [1] pointed out that the

slightly weaker hypothesis 2N° < 2N| suffices. (The existence of nonstandard

uniserials was first established by Shelah [5] by using forcing argument; later he

replaced it by an absoluteness result of stationary logic.)

Our aim here is to prove in ZFC the existence of nonstandard divisible unis-

erial modules and the existence of valuation rings which are not obtainable as
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homomorphic images of valuation domains. We also improve on the algebraic

part of the argument.

1. Preliminaries on valuation rings

In a valuation ring R , the nilradical N coincides with the set of nilpotent

elements of R . This N is the minimal prime of R .

A relevant information about the powers of primes is the content of the next

lemma. Here uniserial means that the submodules form a chain.

Lemma 1. Let P be a prime ideal of the valuation ring R such that P ^ P .

If Q* denotes the field of quotients of R* = R/P, then

(1) for each n > 2, Pn~ /Pn is a divisible uniserial R*-module;

(2) if P" ¿0, then pn~l/pn £R, Q*.

Proof. Evidently, Pn~ /P" is an /?*-module. To verify that it is uniserial,

pick x , y G Pn~ \P" . Then y = rx for some r e R (or vice versa), y $ Pn

guarantees that r <£ P , hence y + P" e R*(x + Pn).

Observe that for a prime ideal P of a valuation ring R, rP = P holds

for all r G R\P (see e.g. [2, p. 15]). Hence rP" = P" for every n > 1 and

r g R\P , and the R*-divisibility of Pn~x/P" follows.

Turning to the proof of (2), suppose rx = y e Pn for some r e R\P and

x e Pn~ \Pn. In view of rP" = P", we can write y = rz (z e P") where

z = tx for some t e R. This / cannot be a unit, so 1 - / is a unit, and

r(l - t)x = 0 implies rx = 0. We infer that r annihilates Rx, and hence its

submodule Pn = rP". Consequently, Pn = 0, and all pn~l/p" with P" # 0

are torsion free as R*-modules. The proof can be completed by observing that

a torsion-free divisible uniserial R*-module is necessarily isomorphic to Q*.

Applying the preceding lemma to P = N, we conclude that in the descending

chain N > N2 > ■ ■ ■ > Nn~x > Nn — 0, all factors are isomorphic to Q* with

the possible exception of the last one: Nn~ . Information on Nn~ is given

by

Lemma 2. If the valuation ring R is a homomorphic image of a valuation do-

main, and if its nilradical N satisfies N"~ ^ 0 = N", then N"~ is an epic

image of Q*.

Proof. Let <j>: S —> R be a surjective homomorphism, S a valuation domain.

4>~ N = P is a prime ideal of S such that <pP' = N' for every i. Clearly,

(j> induces an 7?*-epimorphism P"~ /P" —► N"~ /N". Since S is a domain,

Pn / 0, so by Lemma 1, the first module is isomorphic to Q*.

Let R* be a valuation domain and U* a divisible uniserial R*-module.

Following [2], we call U* standard if it is an epic image of Q* ; otherwise U*

is nonstandard. Form the R*-module

(1) R = R*®U*
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and define multiplication in R via

(r ,u) • (s ,v) = (rs ,su + rv)       (r ,s e R* ;u ,v e U*).

We then obtain a valuation ring R with nilradical N = U* where A^  = 0.

The "if part of the next lemma is based on an observation by J. Ohm.

Lemma 3. The valuation ring ( 1 ) isa homomorphic image of a valuation domain

if and only if U* is a standard uniserial divisible R*-module.

Proof. Necessity is obvious from Lemma 2. Conversely, let U* = Q*/K* for an

ideal K* of R*. Consider the formal power series ring S in <2*[[f]] consisting

of all formal power series of the form

a0 + axt + --+amtm +

with a0 G R*, am e Q*   (m > 1). It is readily seen that either R = S/St   or

R = S/K*St according as K* = 0 or # 0.

2. Divisible uniserial modules

To solve Kaplansky's problem, we proceed to verify the existence of valu-

ation domains R which admit nonstandard divisible uniserial modules. We

accomplish this goal by relying on results in Shelah [4]. We emphasize that we

are working in ZFC.

Consider the class K consisting of (multisorted) models N = (L   ,Q   ,U   ,
rN      rN        Ns       .
T   ,f   , g  ) where

(i)    L    is a linearly ordered set without largest element,

(ii)    QN is the field of quotients of a valuation domain R    with the field

operations and a predicate for RN

fN:LN ^RN\0

satisfying

(a)  s < t in L    implies that fN(s) divides /  (t) in R   ;

(ß) for every a G RN\0 there is an se LN such that a divides /  (s).

[Note that these conditions assure that {fN(s)R   \s e L  }  is a chain of

ideals with 0 intersection.]

(iii) U    is a divisible uniserial torsion R  -module with a function

N       fN TTN
g   : L   -► U

satisfying
/   \ ^   •        t N    ■        i- N,   sr>N  ^      N/.\dN    ■       T,N(y)  s < t in L    implies g  (s)R   < g  (t)R    in U   ;

(Ô) for each s e LN , we have

Ann*V) = {re RN\rgN(s) = 0} = fN(s)RN .

[Observe that the union of the submodules g  (s)R  (s G L  ) is divisible,

hence equals UN , and the elements of UN have principal ideal annihilators.]
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(iv) T is a tree (i.e. a partially ordered set such that {y\y < x} is linearly

ordered for every x) with levels Tt indexed by the elements t of LN , more

explicitly, this means that xx < x2(x¡ e TtN) implies r, < t2 in LN, and

tx < t2 in L   , x2 e Tt    imply there is a unique xx G Tt    with xx < x2, and

the relation {(t ,x)\t e LN , x e TtN} is one of the relations of TN . T* is

defined to be the set of all isomorphisms

4>t: f  (t)    R  /R   ^g  (t)R

between the indicated submodules of QN/RN and U   , where the partial order

is defined by setting <ps < <j>t exactly if s <t and <f>s is a restriction of <$> .

The following lemma is a straightforward consequence of the definition.

Lemma 4.  K is the class of models of a first order theory Y.   D

For TV G K, a subset BN of the tree TN is called a full branch of TN if it

is a linearly ordered subset of TN which contains exactly one element at each

level T* , i.e. \BN n if) '= Í for each t e LN .

V V
Lemma 5. For N G K, the uniserial R -module U is isomorphic to Q/R

(and hence standard) if and only if T    contains a full branch.

Proof. If y/ : Q/R —► U is an isomorphism, then the restrictions y/t of y/ to

fN(t)"xRN/RN form a full branch of TN . On the other hand, if BN is a full

branch of T   , then y/ — \J{y/t\t e BN} defines an isomorphism Q/R —► UN.

Our final preparatory lemma is concerned with certain models of ZFC.

Lemma 6. Every model V of ZFC has a generic extension in which, for some

N G K, U    is a nonstandard uniserial RN-module.

Proof. As is shown in Fuchs-Salce [2, p. 149], ZFC +0^   implies that a model

N eK with U nonstandard uniserial does exist. If k is a regular uncountable

cardinal, then forcing V with Levy (Nj ,2N°), 0H will be satisfied—as is well

known. Hence the claim is immediate.

Another proof for Lemma 6 can be given by using the method applied in

Shelah [5].

We have come to the main existence lemma.

Lemma 7. For every regular cardinal X, there is a model N e K such that both

R and U have cardinalities k+ and UN is a nonstandard divisible uniserial

R  -module.

Proof. For any first-order formula cf>(x , 7) in function symbols and predicates

from the vocabulary i of K only, there is a first-order formula y/Sy) such

that for N e K and a finite sequence ä from N of the length of y

(*)     N |= yt.\ÏÏ\ if and only if {b e N\N \= <p(b , a)} is a full branch of TN.
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Let T+ = ru{-<(3y)y/,(y)\<fi(x ,~y) is a first-order formula in the vocabulary t} .

Now T+ is a first-order theory. After the forcing, it has a model (see Lemma

6) and hence is consistent, i.e. by Göbel's completeness theorem, there is no

finite proof of contradiction from T+ . But any such proof is a finite sequence

of formulas, hence it is from the universe before the forcing. It follows that

T+ is consistent in V (this is a well-known absoluteness theorem). Now by

Theorem 12 in [4, p. 81], T+ has a model N of cardinality X+ in which

T has no full branches except for those definable in N by some first-order

formula with parameters from V . But by the definition of T+ , there are no

such formulas. Now the proof of Theorem 12 of [4] gives that every subset of

N definable by a first-order formula with parameters is of size k+ ; alternatively

use T* = r+ U {y/  , y/ } where y/' says that F. is a one-to-one function from

N to RN and UN , respectively. By Lemma 5, U    is nonstandard.    D

Another proof can be given by using the following argument. Denote by T

the first-order theory in which K is a class of models; such a T exists in view of

Lemma 4. Lemma 6 guarantees that in some generic extension of V, F has a

model N for which the tree TN fails to have a full branch. This means that if

S? is the first-order logic expanded by a quantifier on full branches of trees (see

Application D in [4, p. 74]; of course L(QBr) satisfies the completeness theorem

by Theorem 12 of [3, p. 81]), then there is a y/ G Sf saying that T has no

full branch. Consequently, Tu {y/} has a model in some generic extension.

Therefore, it is consistent in V. We refer to [4] to conclude that ru{^} has

in F a model N of cardinality A+ (in which all nonfinite definable sets have

cardinality X+). Again by Lemma 5, U    is nonstandard.

3. The existence theorem

We can now put the pieces together to prove our main result, answering

Kaplansky's problem.

Theorem (ZFC). There exist valuation rings (the squares of whose nilradicals

vanish) which are not homomorphic images of valuation domains.

Proof. By Lemma 7, there exist valuation domains  R*   which admit non-

standard divisible uniserial /?*-modules Í7*. An appeal to Lemma 3 completes

the proof.

References

1. B. Franzen and R. Göbel, Nonstandard uniserial modules over valuation domains, Results in

Math. 12(1987), 86-94.

2. L. Fuchs and L. Salce, Modules over valuation domains, Lecture Notes in Pure and Applied

Math., Vol. 97, Marcel Dekker, New York, 1985.

3. J. Ohm and P. Vicknair, Monoid rings which are valuation rings, Comm. Algebra 11 (1983),

1355-1368.

4. S. Shelah, Models with second-order properties. II. Trees with no undefined branches, Ann. of

Math. Logic 14 (1978), 73-87.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



30 LASZLO FUCHS AND SAHARON SHELAH

5._, Nonstandard uniserial module over a uniserial domain exists, Around Classification

Theory of Models, Lecture Notes in Math., Vol. 1182, Springer-Verlag, Berlin and New York,

1986, pp. 135-150.

Department of Mathematics, Tulane University, New Orleans, Louisiana 70118

Department of Mathematics, The Hebrew University, Jerusalem, Israel

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


