Kaplansky-type Theorems, II

Gyu Whan Chang ${ }^{\sharp}$
Department of Mathematics, University of Incheon, Incheon 406-772, Korea
e-mail: whan@incheon.ac.kr
Hwankoo $\mathrm{KIm}^{* \dagger}$
Department of Information Security, Hoseo University, Asan 336-795, Korea
e-mail : hkkim@hoseo.edu

Abstract. Let D be an integral domain with quotient field K, X be an indeterminate over D, and $D[X]$ be the polynomial ring over D. A prime ideal Q of $D[X]$ is called an upper to zero in $D[X]$ if $Q=f K[X] \cap D[X]$ for some $f \in D[X]$. In this paper, we study integral domains D such that every upper to zero in $D[X]$ contains a prime element (resp., a primary element, a t-invertible primary ideal, an invertible primary ideal).

1. Introduction

Let D be an integral domain and X be an indeterminate over D. It is well known that D is a UFD if and only if every nonzero prime ideal of D contains a nonzero prime element [12, Theorem 5]. This is the so-called Kaplansky's theorem. This type of theorems was studied by Anderson and Zafrullah [3] and Kim [13] to characterize GCD-domains, valuations domains, Prüfer domains, generalized GCD-domains, and $\mathrm{P} v$ MDs. (Definitions will be reviewed in the sequel.) In [5, Proposition 2.7], it is shown that $D[X]$ is a GWFD if and only if D is a GWFD and each upper to zero in $D[X]$ contains a primary element. This work is motivated by the results ([12, Theorem 5], [3], [13], [5, Proposition 2.7]). The purpose of this paper is to study an integral domain D such that each upper to zero in $D[X]$ contains a prime element (resp., a primary element, a t-invertible primary ideal, an invertible primary ideal). More precisely, we show that every upper to zero in $D[X]$ contains a prime element f with $c(f)=D$ if and only if D is a Bézout domain; every upper to zero in $D[X]$

[^0]contains a primary element f with $c(f)=D$ if and only if D is a UMT-domain, each maximal ideal of D is a t-ideal, and $C l(D[X])$ is torsion; and if D is integrally closed, then every upper to zero in $D[X]$ contains an invertible (resp., t-invertible) primary ideal if and only if D is an almost generalized GCD-domain (resp., PvMD).

We first introduce some definitions and notation. Let D be an integral domain with quotient field K, X an indeterminate over D, and $D[X]$ the polynomial ring over D. For any polynomial $f \in K[X]$, the content $c_{D}(f)$ (simply, $\left.c(f)\right)$ of f is the fractional ideal of D generated by the coefficients of f. An upper to zero in $D[X]$ is a prime ideal $Q_{f}=f K[X] \cap D[X]$ of $D[X]$, where $f \in D[X]$ is irreducible in $K[X]$. Let I be a nonzero fractional ideal I of D. Then $I^{-1}=\{x \in K \mid x I \subseteq D\}$, $I_{v}=\left(I^{-1}\right)^{-1}$, and $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I\right.$ is a nonzero finitely generated ideal $\}$. We say that I is a v-ideal (resp., t-ideal) if $I=I_{v}$ (resp., $I=I_{t}$). A fractional ideal I of D is said to be t-invertible if $\left(I I^{-1}\right)_{t}=D$. A maximal t-ideal is an ideal of D maximal among proper integral t-ideals of D. Let $t-\operatorname{Max}(D)$ be the set of maximal t-ideals. It is easy to see that if D is not a field, then $t-\operatorname{Max}(D) \neq \emptyset$ and $D=\bigcap_{t-\operatorname{Max}(D)} D_{P}$.

An integral domain D is a UMT-domain if every upper to zero in $D[X]$ is a maximal t-ideal; D is a Prüfer v-multiplication domain $(\mathrm{P} v \mathrm{MD})$ if every nonzero finitely generated ideal of D is t-invertible; D is a $G C D$-domain if for any $0 \neq$ $a, b \in D, a D \cap b D$ (equivalently, $\left.(a, b)_{v}\right)$ is principal; D is an almost GCD-domain (AGCD-doman) if for any $0 \neq a, b \in D$, there is a positive integer $n=n(a, b)$ such that $a^{n} D \cap b^{n} D$ is principal; D is a generalized GCD-domain (GGCD-domain) if $a D \cap b D$ (equivalently, $(a, b)_{t}$) is invertible for any $0 \neq a, b \in D ; D$ is an almost $G G C D$-domain (AGGCD-domain) if for $0 \neq a, b \in D$, there is a positive integer $n=n(a, b)$ such that $a^{n} D \cap b^{n} D$ is invertible; and D is a generalized weakly factorial domain (GWFD) if each nonzero prime ideal of D contains a primary element (a nonzero nonunit $x \in D$ is primary if $x D$ is a primary ideal).

Let $T(D)$ be the group of t-invertible fractional t-ideals of D, and let $\operatorname{Prin}(D)$ be its subgroup of principal fractional ideals. Then the quotient group $C l(D)=$ $T(D) / \operatorname{Prin}(D)$ is an abelian group called the $(t-)$ class group of D. It is known that D is a GCD-domain if and only if D is a $\mathrm{P} v \mathrm{MD}$ and $C l(D)=0[6$, Proposition 2]; if D is integrally closed, then D is an AGCD-domain if and only if D is a $\mathrm{P} v \mathrm{MD}$ with $C l(D)$ torsion [15, Corollary 3.8]; and D is an AGGCD-domain if and only if D is an AGCD-domain with $C l(D)$ torsion [14, Theorem 5.1]. Any undefined terminology is standard, as in [8] or [12].

2. Kaplansky-type theorems for uppers to zero

Let D be an integral domain with quotient field $K, D^{*}=D \backslash\{0\}, X$ be an indeterminate over D, and $D[X]$ be the polynomial ring over D.

Lemma 2.1(4, Lemma 2.1). If $f \in D[X] \backslash D$, then
(1) $f K[X] \cap D[X]=f D[X]$ if and only if $c(f)_{v}=D$;
(2) if f is a product of primary elements in $D[X]$, then $f K[X] \cap D[X]=f D[X]$.

It is well known that D is a UFD if and only if every nonzero prime ideal of D contains a nonzero prime element of D [12, Theorem 5].

Theorem 2.2. Every upper to zero in $D[X]$ contains a prime element if and only if D is a GCD-domain.
Proof. (\Rightarrow) For any $0 \neq a, b \in D$, let $f=a X+b$. Then $Q_{f}=f K[X] \cap D[X]$ is an upper to zero in $D[X]$, and so Q_{f} contains a prime element g. Note that $\operatorname{ht}\left(Q_{f}\right)=1$; so $Q_{f}=g D[X]$, and hence $c(g)_{v}=D$ by Lemma 2.1 and $f=u g$ for some $u \in K$ (actually $u \in D$). Thus, $(a, b)_{v}=c(f)_{v}=u c(g)_{v}=u D$.
(\Leftarrow) Suppose that D is a GCD-domain, and let $h \in D[X]$ be such that $Q_{h}=$ $h K[X] \cap D[X]$ is an upper to zero in $D[X]$. Recall that a GCD-domain is integrally closed and $c(h)^{-1}$ is principal, say, $c(h)^{-1}=a D$. Thus, $a h$ is a prime element, because $Q_{h}=h c(h)^{-1}[X]$ [8, Corollary 34.9].

Corollary 2.3. Every upper to zero in $D[X]$ contains a prime element f with $c(f)=D$ if and only if D is a Bézout domain.
Proof. Let $a, b \in D$ be nonzero, and assume that $Q_{g}=g K[X] \cap D[X]$, where $g=a X+b$, contains a prime element f with $c(f)=D$. Then $g=u f$ for some $u \in K$, and thus $(a, b)=c(g)=u D$, which means that D is a Bézout domain. Conversely, assume that D is a Bézout domain, and let Q be an upper to zero in $D[X]$. Then Q contains a prime element f by Theorem 2.2 , and since D is a Bézout domain, $c(f)=a D$ for some $a \in D$. But, since f is a prime element, $a D=D$, and thus $c(f)=D$.

Let S be a multiplicative subset of D. We say that S is an almost splitting (resp., almost g^{d}-splitting) set if, for each $0 \neq r \in D$, there is an integer $n=n(r) \geq 1$ such that $r^{n}=s t$ for some $s \in S$ and $t \in D$ with $\left(s^{\prime}, t\right)_{v}=D$ (resp., $\left.\left(s^{\prime}, t\right)=D\right)$ for all $s^{\prime} \in S$. Recall that D is a quasi-AGCD-domain if D^{*} is an almost splitting set in $D[X]$. The next theorem appears in [4, Theorem 2.4], which is a motivation for this paper.

Theorem 2.4. The following statements are equivalent.
(1) Every upper to zero in $D[X]$ contains a primary element.
(2) D is a quasi-AGCD-domain.
(3) D is a UMT-domain and $C l(D[X])$ is torsion.

Following [2], an integral domain D is called an almost Bézout domain (ABdomain) if, for each $a, b \in D$, there is an integer $n \geq 1$ such that (a^{n}, b^{n}) is principal. Obviously, if D is integrally closed, then D is an AB-domain if and only if D is a Prüfer domain with $C l(D)$ torsion. It is known that D is an AB-domain if and only if D is an AGCD domain and each maximal ideal of D is a t-ideal [2, Corollary 5.4]. So it is natural to call D a quasi- $A B$-domain if D is a quasi-AGCD-domain whose maximal ideals are t-ideals. Clearly, a quasi-AB-domain is a quasi-AGCD-domain,
but not vice versa (for example, if D is a GCD-domain, then $D[X]$ is a GCDdomain (hence a quasi-AGCD-domain) but not a quasi-AB-domain). However, if D has (Krull) dimension one, then a quasi-AGCD-domain is a quasi-AB-domain.

Corollary 2.5. The following statements are equivalent.
(1) Every upper to zero in $D[X]$ contains a primary element f with $c(f)=D$.
(2) D is a UMT-domain, each maximal ideal of D is a t-ideal, and $C l(D[X])$ is torsion.
(3) D is a quasi-AB-domain.

Proof. (1) \Rightarrow (2). By Theorem 2.4, D is a UMT-domain and $C l(D[X])$ is torsion. Assume that there is a maximal ideal which is not a t-ideal. Then there is an $f \in D[X]$ such that $c(f)_{v}=D$ but $c(f) \subsetneq D$. Let $f=f_{1}^{e_{1}} \cdots f_{n}^{e_{n}}$ be the prime factorization of f in $K[X]$ (note that $K[X]$ is a UFD). Then $f D[X]=f K[X] \cap$ $D[X]=\left(f_{1}^{e_{1}} K[X] \cap D[X]\right) \cap \cdots \cap\left(f_{n}^{e_{n}} K[X] \cap D[X]\right)$ by Lemma 2.1 and each $f_{i}^{e_{i}} K[X] \cap D[X]$ is a Q_{i}-primary ideal, where $Q_{i}=f_{i} K[X] \cap D[X](1 \leq i \leq n)$. Since each Q_{i} is an upper to zero in $D[X], Q_{i}$ contains a primary element g_{i} with $c\left(g_{i}\right)=D$. Clearly, each $g_{i}^{e_{i}} \in f_{i}^{e_{i}} K[X] \cap D[X]$, and so if we set $g:=g_{1}^{e_{1}} \cdots g_{n}^{e_{n}}$, then $g \in f D[X]$ and $c(g)=D$. Thus, $c(f)=D$, a contradiction.
$(2) \Rightarrow(1)$. Let Q be an upper to zero in $D[X]$. Since D is a UMT-domain, Q is t-invertible. Also, since $C l(D[X])$ is torsion, there is an integer $n \geq 1$ such that $\left(Q^{n}\right)_{t}=f D[X]$ for some $f \in D[X]$. Note that f is primary, and since Q is a maximal t-ideal, $c(f)_{t}=D$. Thus, f is a primary element with $c(f)=D$, because each maximal ideal is a t-ideal.
$(2) \Leftrightarrow(3)$. This follows from Theorem 2.4.
It is naturally asked that it follows from the definition that if D is a quasi-ABdomain, then D^{*} is an almost g^{d}-splitting set in $D[X]$. However, $(a, X) \neq D[X]$ for any nonunit $a \in D$. Hence D^{*} cannot be an almost g^{d}-splitting set in $D[X]$.

Corollary 2.6. The following statements are equivalent for an integrally closed domain D.
(1) Every upper to zero in $D[X]$ contains a primary element f with $c(f)=D$.
(2) D is a Prüfer domain and $C l(D)$ is torsion.
(3) D is a quasi-AB-domain.
(4) D is an $A B$-domain.

Proof. (1) $\Leftrightarrow(2)$. Note that an integrally closed domain is a Prüfer domain if and only if it is a UMT-domain whose maximal ideals are t-ideals. Also, if D is integrally closed, then $C l(D[X])=C l(D)([7$, Theorem 3.6]). Thus, the result follows from Corollary 2.5.
$(1) \Leftrightarrow(3)$. This follows from Corollary 2.5.
$(2) \Leftrightarrow(4)$. This is clear.

Corollary 2.7. If D is a quasi-AB-domain, then each overring R of D is a quasi$A B$-domain. In particular, if R is integrally closed, then R is a Prüfer domain with torsion class group.
Proof. Let Q be an upper to zero in $R[X]$. Then there is an $f \in K[X]$ such that $Q=f K[X] \cap R[X]$, and hence $Q \cap D[X]=f K[X] \cap D[X]$ is an upper to zero in $D[X]$. By Corollary 2.5, there is a primary element $g \in Q \cap D[X]$ such that $c_{D}(g)=D$. Clearly, $g \in Q$ and $c_{R}(g)=R$; in particular, Q is a maximal t-ideal of $R[X][9$, Theorem 1.4]. Note that, since g is a primary element of $D[X]$, there exist some $u \in K$ and an integer $n \geq 1$ such that $g=u f^{n}$. Hence $\sqrt{g R[X]}=f K[X] \cap R[X]$, and thus g is a primary element of $R[X]$ [5, Lemma 2.1]. Thus, R is a quasi-ABdomain by Corollary 2.5. In particular, if R is integrally closed, then R is a Prüfer domain with torsion class group by Corollary 2.6.

It is well known that if D is integrally closed, then D is a UMT-domain if and only if D is a $\mathrm{P} v \mathrm{MD}[9$, Proposition 3.2]. Also, it is known that D is a Krull domain if and only if every nonzero prime $(t$-)ideal contains a t-invertible prime ideal [11, Theorem3.6] and D is a GGCD-domain if and only if each upper to zero in $D[X]$ is invertible [1, Theorem 15].

Theorem 2.8. If D is integrally closed, then
(1) every upper to zero in $D[X]$ contains a t-invertible primary ideal if and only if D is a PvMD;
(2) every upper to zero in $D[X]$ contains an invertible primary ideal if and only if D is an almost generalized GCD-domain.

Proof. (1) (\Rightarrow) Let Q be an upper to zero in $D[X]$, and let I be a t-invertible primary t-ideal contained in Q. Since $\operatorname{ht}(Q)=1$, we have $\sqrt{I}=Q$. Let $N_{v}=\{f \in$ $\left.D[X] \mid c(f)_{v}=D\right\}$, and suppose $Q \cap N_{v}=\emptyset$. Then $I_{N_{v}} \subseteq Q_{N_{v}} \subsetneq D[X]_{N_{v}}$. Since I is t-invertible, $I_{N_{v}}$ is invertible (cf. [10, Proposition 2.1(3)]), and hence $I_{N_{v}}$ is principal [10, Theorem 2.14]. So $Q_{N_{v}}=\sqrt{I_{N_{v}}}$ is a maximal t-ideal [5, Lemma 2.1]. This is contrary to the fact that $\operatorname{Max}\left(D[X]_{N_{v}}\right)=t-\operatorname{Max}\left(D[X]_{N_{v}}\right)=\left\{P[X]_{N_{v}} \mid P \in t\right.$ $\operatorname{Max}(D)\}\left[10\right.$, Propositions 2.1 and 2.2]. So $Q \cap N_{v} \neq \emptyset$, and thus Q is a maximal t-ideal [9, Theorem 1.4]. Thus, D is a $\mathrm{P} v \mathrm{MD}$.
(\Leftarrow) Let Q be an upper to zero in $D[X]$. Then Q is a maximal t-ideal, because a $\mathrm{P} v \mathrm{MD}$ is a UMT-domain. Thus, Q is a t-invertible prime (hence primary) t-ideal [9, Proposition 1.4].
$(2)(\Rightarrow)$ We first note that D is a $\mathrm{P} v \mathrm{MD}$ by (1). Let $0 \neq a, b \in D$, and put $f=a X+b$. Then $Q_{f}=f K[X] \cap D[X]$ is an upper to zero in $D[X]$, and so Q_{f} contains an invertible primary ideal A. It is easy to see that $Q_{f}=f c(f)^{-1}[X][8$, Corollary 34.9] and $A=\left(\left(Q_{f}\right)^{n}\right)_{t}$ for some positive integer n. Note that $\left(\left(Q_{f}\right)^{n}\right)_{t}=$ $f^{n} c\left(f^{n}\right)^{-1}[X]$ and $c\left(f^{n}\right)^{-1}=\left(c(f)^{n}\right)^{-1}=\left((a, b)^{n}\right)^{-1}$. Thus, $\left(a^{n}, b^{n}\right)_{t}$ is invertible, because $(a, b)_{t}$ is t-invertible by (1), and so $\left(\left((a, b)^{n}\right)^{-1}\right)^{-1}=\left((a, b)^{n}\right)_{t}=\left(a^{n}, b^{n}\right)_{t}$ [2, Lemma 3.3].
(\Leftarrow) Let $Q_{g}=g K[X] \cap D[X]$, where $g \in D[X]$, be an upper to zero in $D[X]$. Note that $Q_{g}=g c(g)^{-1}[X][8$, Corollary 34.9], because D is integrally closed. Note also that, since D is an almost GGCD-domain, there is a positive integer m such that $\left(c(g)^{m}\right)_{t}=c\left(g^{m}\right)_{t}$ is invertible by (1), [8, Proposition 34.8], and [14, Theorem 3.2]. Thus $\left(Q_{g}^{m}\right)_{t}=g^{m} K[X] \cap D[X]=g^{m} c\left(g^{m}\right)^{-1}[X]$ is an invertible primary ideal. \square

Acknowledgement. The authors would like to thank the referee for his/her useful comments.

References

[1] D. D. Anderson, T. Dumitrescu, and M. Zafrullah, Quasi-Schreier domains, II, Comm. Algebra, 35(2007), 2096-2104.
[2] D. D. Anderson and M. Zafrullah, Almost Bézout domains, J. Algebra, 142(1991), 285-309.
[3] D. D. Anderson and M. Zafrullah, On a theorem of Kaplansky, Boll. Un. Mat. Ital. A (7), 8(1994), 397-402.
[4] D. F. Anderson and G. W. Chang, Almost splitting sets in integral domains II, J. Pure Appl. Algebra, 208(2007), 351-359.
[5] D. F. Anderson, G. W. Chang, and J. Park, Generalized weakly factorial domains, Houston J. Math., 29(2003), 1-13.
[6] A. Bouvier, Le groupe des classes d'un anneau intègre, 107ème Congres des Sociétés Savantes, Brest, 1982, fasc. IV, 85-92.
[7] S. Gabelli, On divisorial ideals in polynomial rings over Mori domains, Comm. Algebra, 15(1987), 2349-2370.
[8] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[9] E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra, 17(1989), 19551969.
[10] B. G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_{v}}$, J. Algebra, 123(1989), 151-170.
[11] B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra, 124(1989), 284-299.
[12] I. Kaplansky, Commutative Rings, rev. ed., Univ. of Chicago, Chicago, 1974.
[13] H. Kim, Kaplansky-type theorems, Kyungpook Math. J., 40(2000), 9-16.
[14] R. Lewin, Almost generalized GCD-domains, Lecture Notes in Pure and Appl. Math., Marcel Dekker, 189(1997), 371-382.
[15] M. Zafrullah, A general theory of almost factoriality, Manuscripta Math., 51(1985), 29-62.

[^0]: * Corresponding Author.

 Received January 18, 2011; accepted June 24, 2011.
 2010 Mathematics Subject Classification: 13A15, 13F20, 13F05.
 Key words and phrases: Kaplansky theorem, upper to zero in $D[X]$, prime (primary) element.
 \sharp The first author's work was supported by the University of Incheon Research Fund in 2010.
 \dagger The second author's work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0011996).

