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Abstract: We determine the constraints imposed on the 10d target superspace geometry

by the requirement of classical kappa-symmetry of the Green-Schwarz superstring. In the

type I case we find that the background must satisfy a generalization of type I supergravity

equations. These equations depend on an arbitrary vector Xa and imply the one-loop

scale invariance of the GS sigma model. In the special case when Xa is the gradient

of a scalar φ (dilaton) one recovers the standard type I equations equivalent to the 2d

Weyl invariance conditions of the superstring sigma model. In the type II case we find

a generalized version of the 10d supergravity equations the bosonic part of which was

introduced in arXiv:1511.05795. These equations depend on two vectors Xa and Ka

subject to 1st order differential relations (with the equations in the NS-NS sector depending

only on the combination Xa = Xa + Ka). In the special case of Ka = 0 one finds that

Xa = ∂aφ and thus obtains the standard type II supergravity equations. New generalized

solutions are found if Ka is chosen to be a Killing vector (and thus they exist only if the

metric admits an isometry). Non-trivial solutions of the generalized equations describe K-

isometric backgrounds that can be mapped by T-duality to type II supergravity solutions

with dilaton containing a linear isometry-breaking term. Examples of such backgrounds

appeared recently in the context of integrable η-deformations of AdSn ×Sn sigma models.

The classical kappa-symmetry thus does not, in general, imply the 2d Weyl invariance

conditions for the GS sigma model (equivalent to type II supergravity equations) but only

weaker scale invariance type conditions.
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1 Introduction and summary

The purpose of this paper is to determine precisely which constraints the presence of the

kappa-symmetry of the Green-Schwarz (GS) superstring places on the target space (super)

geometry. In an influential 1985 paper [1] Witten showed that the equations of motion

of 10d super Yang-Mills theory can be expressed as integrability along light-like lines and

showed that this condition is closely connected to kappa-symmetry of the superparticle in

the super Yang-Mills background. He also suggested that there should be a similar connec-

tion between the kappa-symmetry of the GS superstring and the supergravity equations

of motion. Shortly thereafter, the type II GS superstring action in a general supergravity

background was written down in [2] and it was shown that the standard on-shell superspace

constraints of type IIB supergravity [3] are sufficient for the string to be kappa-symmetric.

It was conjectured that these constraints are also necessary for the kappa-symmetry.

In [4] it was found that for the type I superstring the kappa-symmetry implies the

basic (i.e. dimension 0 and –1
2) superspace constraints on the torsion and 3-form H = dB

superfields1

Tαβ
a = −iγaαβ , Hαβγ = 0 , Haαβ = −i(γa)αβ . (1.1)

Ref. [4] also argued that these constraints are enough to make the target space geometry

a solution of type I supergravity.2

1There is also a constraint for the Yang-Mills sector which we will ignore here. In our notation a, b, . . . =

0, 1, 2, . . . , 9 are bosonic tangent space indices, and α, β, . . . = 1, . . . , 16 are 10d Majorana-Weyl spinor

indices.
2More recently [5] it was shown that (classical) BRST invariance of the pure spinor superstring [6]

(which may be viewed as an analog of kappa-symmetry in this formulation) implies the basic type I and

type II constraints. It was argued that these constraints are enough to put the corresponding supergravity

background completely on-shell (see, however, note added in section 5).
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While in the 11d case the condition of kappa-symmetry of the supermembrane action [7]

leads to a constraint on the torsion which implies that the background should satisfy the

standard 11d supergravity equations of motion [8], here we will find (in disagreement with

the earlier conjectures/claims) that this is not so in the 10d superstring case: the 10d

supergravity equations are sufficient but not necessary for kappa-symmetry.

In the case of the type I GS superstring where the kappa-symmetry implies the basic

constraints (1.1), we shall show, by solving completely the Bianchi identities for the torsion

and the 3-form, that these constraints actually lead to a weaker set of equations than

those of type I supergravity. These equations are similar to the conditions for 1-loop scale

invariance of the GS sigma model [9], which are, in general, weaker than the Weyl invariance

conditions required to define a consistent superstring theory. This is not totally surprising

as the condition of classical kappa-symmetry does not take into account the dilaton term
∫

d2ξ
√
gR(2)φ(x) required to make the quantum 2d stress tensor traceless (see [10–13] and

discussion in [9]).

Indeed, the problem in 10d compared to the 11d case is the presence of the dilaton. The

dimension 1
2 component of the torsion is expressed in terms of a spinor (“dilatino”) super-

field χα. If one requires that χα is expressed in terms of a scalar superfield φ (the dilaton) as

χα = ∇αφ (1.2)

then the Bianchi identities for the torsion imply the standard type I supergravity equa-

tions [14]. However, if this extra assumption (1.2) (not required for kappa-symmetry) is

dropped, the basic constraints (1.1) imply only the equations for a “partially off-shell” gen-

eralization of the type I supergravity equations. The solution of the constraints and Bianchi

identities then depends on an arbitrary vector Xa (that replaces the dilaton gradient)3 and

the bosonic equations of motion take the form (here fermionic fields are set to zero)

Rab + 2∇(aXb) −
1

4
HacdHb

cd = 0 , (1.3)

∇cHabc − 2XcHabc − 4∇[aXb] = 0 , (1.4)

∇aXa − 2XaXa +
1

12
HabcHabc = 0 . (1.5)

If one restricts to the special case of Xa = ∂aφ, these equations reduce to the standard type

I supergravity equations of motion (or string effective equations in the NS-NS sector). The

generalized equations (1.3), (1.4) coincide with the 1-loop scale invariance conditions of a

bosonic sigma model L = (G−B)mn∂+x
m∂−x

n provided the reparametrization and B-field

gauge freedom vectors are chosen to be equal.4 The conclusion is that the condition of clas-

sical kappa-symmetry is essentially equivalent to the one-loop scale invariance condition for

3As Xa is subject to a constraint on its divergence we get 8 additional bosonic fields compared to the

standard type I theory. These are matched by an extra 8 fermionic components present due to the fact that

the dilatino χ is now off-shell whereas in the standard type I supergravity it satisfies a Dirac equation.
4In the notation of [9] this means Ya = Xa. This identification is a consequence of the underlying

supersymmetry of the equations leading to (1.3)–(1.5). It should come out automatically if the scale

invariance of the GS string is studied in the manifestly supersymmetric (superspace) form.
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the type I GS sigma model. Only the stronger condition of 2d Weyl invariance (eqs. (1.3)–

(1.5) with Xa = ∂aφ) is equivalent to the standard type I supergravity equations of motion.

Performing a similar analysis in the case of the type IIB GS superstring we will find

that the kappa-symmetry implies the direct generalization of the basic constraints (1.1) on

the torsion and 3-form5

Tαi βj
a = −iδijγ

a
αβ , Hαi βj γk = 0 , Haαi βj = −iσ3

ij(γa)αβ . (1.6)

When the Bianchi identities are solved we will conclude that these constraints lead again

not to the type IIB supergravity equations but to a weaker set of generalized type IIB

equations involving, instead of the dilaton scalar, two vectors Xa and Ka. The correspond-

ing bosonic equations may be written as (here as in (1.2)–(1.5) the fermionic component

fields are set to zero)

Rab + 2∇(aXb) −
1

4
HacdHb

cd +
1

128
Tr(SγaSγb) = 0 , (1.7)

∇cHabc − 2XcHabc − 4∇[aXb] −
1

64
Tr(SγaSγbσ3) = 0 , (1.8)

∇aXa − 2XaXa +
1

12
HabcHabc −

1

256
Tr(SγaSγa) = 0 , (1.9)

γa∇aS − γaS (Xa − σ3Ka) +

(

1

8
γaσ3Sγbc +

1

24
γabcσ3S

)

Habc = 0 . (1.10)

They generalize the type I equations (1.3)–(1.5) to the presence of the analog of the RR

field strength bispinor S = (Sαi βj) (which includes the factor of eφ in the standard type

IIB case [15])

S = −iσ2γaFa −
1

3!
σ1γabcFabc −

1

2 · 5! iσ
2γabcdeFabcde . (1.11)

Combining (1.7) and (1.9) we get the following generalized “central charge” equation

β̄X ≡ R− 1

12
HabcH

abc + 4∇aXa − 4XaXa = 0 . (1.12)

As was shown in [9], the relation ∂aβ̄
X = 0 follows, in fact, from eqs. (1.7), (1.8), (1.10) so

that the “dilaton equation” (1.9) is not indepedent.

In the above equations (1.7)–(1.12)

Xa ≡ Xa +Ka , (1.13)

and the vectors Xa and Ka are subject to

∇(aKb) = 0 , XaKa = 0 , (1.14)

2∇[aXb] +KcHabc = 0 . (1.15)

5Here i, j, k = 1, 2 label the two MW spinors of type IIB superspace and (σr)ij (r = 1, 2, 3) are Pauli

matrices. The gamma-matrices γa
αβ and γαβ

a are 16 × 16 symmetric ‘Weyl blocks’ of 10d Dirac matrices

satisfying

γa
αβ(γ

b)βγ + γb
αβ(γ

a)βγ = 2ηabδγα , see [15] for more details on our notation.
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Thus Ka satisfies the Killing vector equation, while eq. (1.15) expresses the fact that the

3-form H is isometric, i.e. the two-form potential B transforms by a gauge transformation

under the isometry generated by Ka, LKB = d(iKB − X), where LK = iK d+ d iK is the

Lie derivative. It follows from (1.14), (1.15) that not only the three-form H but also the

one-form X respect the isometry, i.e.

LKH = 0 , LKX = 0 . (1.16)

Furthermore, it follows from the “Bianchi” part of the S equation (4.14) that the “RR”

forms in (1.11) also respect the isometry

LKF2n+1 = 0 , n = 0, 1, 2 . (1.17)

Thus the whole bosonic background (G,H,F) is K-isometric. This statement can, in fact,

be generalized to superspace as we will show in section 4.

Assuming that the B-field may be chosen to be isometric, eq. (1.15) may be explicitly

solved as [9] (here m,n are 10d coordinate indices)

Xm = ∂mφ−BmnK
n , i.e. Xm = ∂mφ+ (Gmn −Bmn)K

n , (1.18)

where φ is an arbitary scalar that should also satisfy the isometry condition Km∂mφ = 0

according to (1.14). Eqs. (1.14) and (1.15) always admit the following special solution

Ka = 0 , Xa = Xa = ∂aφ . (1.19)

In that case the generalized system (1.7)–(1.10) reduces to the bosonic sector of the stan-

dard type IIB supergravity equations with φ being the dilaton.6 In particular, eq. (1.10)

contains both the dynamical equations and the Bianchi identities for the RR field strenghts

Fp = e−φFp = dCp−1 + . . . in (1.11).

The above generalized type IIB equations have of course a straightforward analog in

type IIA case — following from kappa-symmetry condition of type IIA GS string. Let us

note also that there is a natural generalization of the notion of a supersymmetric solution to

the generalized type IIB supergravity equations, namely, the one for which the component

fermionic fields as well as their supersymmetry variations vanish, i.e. χαi|θ=0 = ψαi
ab |θ=0 = 0

and ǫαi∇αiχβj |θ=0 = ǫαi∇αiψ
βj
ab |θ=0 = 0. The latter two equations give the generalization

of the dilatino and the (integrability7 of the) gravitino conditions respectively. Using (3.22)

and (A.86) they take the form

[

(Xa + σ3Ka)γ
a +

1

12
Habc σ

3γabc +
1

8
γaSγa

]

ǫ = 0 , (1.20)

[

Rab
cdγcd +

1

2
HaceHbd

e γcd −∇[aHb]cd σ
3γcd −∇[aSγb]

−1

8
(Sσ3γ[aγ

cd − γcdσ3Sγ[a)Hb]cd −
1

8
Sγ[aSγb]

]

ǫ = 0 . (1.21)

6See, e.g., appendix A in [16] where the same RR bispinor notation for RR fields is used.
7The Killing spinor equation itself takes the form (cf. (4.10)) (∇a + 1

8
Habc γ

bcσ3 + 1
8
Sγa)ǫ = 0 .
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These differ from the standard type IIB supersymmetry conditions only by the replacements

∇aφ → Xa+σ3Ka and eφF → F inside the RR bispinor S. It would be interesting to find

solutions to these equations with Ka 6= 0.

The generalized equations (1.7)–(1.15) are precisely the ones identified in [9] as being

satisfied by the target space background of the so-called η-deformation [17–19] of the AdS5×
S5 superstring model.8 The resulting picture is thus in perfect agreement with the fact that

the η-model is kappa-symmetric [18] but the corresponding background does not satisfy

the type IIB equations [19].9 Further examples of solutions of the generalized type IIB

equations (1.7)–(1.15) should be provided by some other η-models [21, 22], as was indeed

shown in [22] for the models based on Jordanian R-matrices.

The solution (1.19) is the only possible one if the metric does not admit Killing vec-

tors, i.e. kappa-symmetric GS sigma models with non-isometric metric must correspond

to standard type IIB solutions. An example is provided by the λ-deformed model which

has kappa-symmetric action [20] with the corresponding metric [23, 24] not admitting any

Killing vectors: as was explicitly demonstarted in [16] in the AdS2 × S2 × T 6 case the

corresponding λ-deformed background solves the standard type IIB equations.

It was argued in [9] that the above generalized type IIB equations imply the scale-

invariance conditions for the GS sigma model. In particular, the 2nd-derivative scale-

invariance conditions for the “RR” fields follow immediately upon “squaring” of the Dirac

equation for S in (1.10).10 Thus non-trivial solutions of the generalized equations with

Ka 6= 0 should represent UV finite but not Weyl-invariant GS sigma models so their string

theory interpretation is a priori unclear.

As follows from the analysis in [9], starting with a type IIA supergravity solution with

all the fields being isometric apart from a linear term in the dilaton [25, 26], and performing

the standard T-duality transformation on all the fields except the dilaton (i.e. on the GS

sigma model on a flat 2d background)11 then the resulting background should solve precisely

the generalized equations (1.7)–(1.15) with Ka and Xa determined by the original dilaton

and the metric.12 The converse should also be true [9]: given a Ka 6= 0 solution of the gen-

eralized type IIB equations (1.7)–(1.15), its (G,B,F) fields should be related by a T-duality

transformation to the fields of the corresponding type IIA supergravity solution with the

dilaton containing a linear isometry-breaking term. Thus each solution of the generalized

type II system (1.7)–(1.15) can be associated with a particular solution of the standard

8The relation to the notation in [9] is Xa = Za and Ka = Ia. As in [9], we find that while the NS-NS

subset of equations depends on Xa and Ka only through their sum Xa in (1.13), the two vectors enter sepa-

rately in the RR equations (1.10). While in the NS-NS sector one does not need the orthogonality condition

XaK
a = 0, this condition was, in fact, imposed in [9] once the RR fields were included (see eq. (5.37) there).

9This assumes that the action and kappa-symmetry transformations of the η-model are the same as

those of the Green-Schwarz string. This can be shown to be the case and is also true for the λ-model of [20]

upon integrating out the superalgebra-valued 2d gauge field.
10In general, the equations (1.7)–(1.10) are thus somewhat stronger than the scale invariance conditions,

but still not sufficient to imply the Weyl invariance unless Ka = 0.
11In general, T-duality of GS sigma model on a flat 2d background should preserve its kappa-symmetry [27]

and should be expected not take one out of the class of solutions of the generalized equations.
12In particular, the resulting Ka is then proportional to the derivative of the dilaton along the non-

isometric direction [9].
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type II supergravity equations. This observation may help understanding if it is possible

to relate a solution of the generalized type II equations with a consistent string theory.

We shall start in section 2 with a derivation of the type I and type IIB constraints (1.1)

and (1.6) on the superspace torsion and 3-form H that follow from the condition of kappa-

symmetry for the GS superstring in a non-trivial background. The solution of the Bianchi

identities supplemented by these basic constraints leads, as will be described in section 3,

to the generalized equations of motion (1.3)–(1.5) and (1.7)–(1.15). In section 4 we shall

present a superspace formulation of the equations on Ka and Xa and invariance conditions

and superspace Bianchi identities for the “RR” form fields. Some concluding remarks will

be made in section 5. Details of the solution of the superspace Bianchi identities will be

provided in an appendix.

2 Constraints from kappa-symmetry

The classical GS superstring action in an arbitrary super-background is (in the Nambu-

Goto form) [2]

S =

∫

d2ξ
√
−G−

∫

Σ
B , G = detGIJ , (2.1)

where ξI (I, J = 0, 1) are worldsheet coordinates, GIJ is the induced metric

GIJ = EI
aEJ

bηab , EI
A = ∂Iz

MEM
A(z) , zM = (xm, θµ) , (2.2)

while B is the pull-back of a superspace two-form. This action is required to be invariant

under the following kappa-symmetry transformations of the coordinates zM

δκz
MEM

a = 0 , δκz
MEM

αi =
1

2
(1 + Γ)αiβjκ

βj , Γ =
1

2
√
−G

εIJEI
aEJ

bγabσ
3 ,

(2.3)

where we have written the expressions appropriate to type IIB superspace. In the type IIA

case the Pauli matrix σ3 is replaced by Γ11 while in the type I case one is to keep only the

i = 1 component. The operator Γ is traceless and satisfies the projector condition Γ2 = 1

so this symmetry removes half of the fermionic components.13

The requirement that the string action be invariant under the above transformations

imposes constraints on the background. We will now determine what these basic constraints

are and in the next section we will work out all their consequences. Varying the action we

find

δκS = −
∫

d2ξ δκz
MEM

αi

[√
−GGIJEI

aEJ
CTCαi

bηab +
1

2
εIJEI

CEJ
BHBCαi

]

, (2.4)

where TA = dEA + EB ∧ ΩB
A is torsion and H = dB. Note that the term involving the

super-connection ΩB
A does not contribute to (2.4) due to it being valued in SO(1, 9) (i.e.

Ωαi
b = 0 and Ωab = Ω[ab]), it is nevertheless convenient to write the kappa-symmetry con-

ditions covariantly in terms of TA rather than dEA. Since the (pulled-back) supervielbeins

13The origin of kappa-symmetry is best understood via embedding a worldvolume superspace in a target

superspace. This so-called superembedding formalism is reviewed in [28].
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are assumed to be independent fields and since the projector Γ only involves the bosonic

supervielbeins, eq. (2.4) implies the following conditions

Hβjγkαi(1 + Γ)αiδl = 0 , (2.5)

EI
a
[√

−GGIJTαiβja − εIJHaαiβj

]

(1 + Γ)αiγk = 0 , (2.6)

EI
aEJ

b

[√
−GGIJTαiab +

1

2
εIJHαiab

]

(1 + Γ)αiβj = 0 . (2.7)

The third condition turns out to be implied by the first two, see eq. (3.14) in the next

section.

Since the two terms in (2.5) come with different powers of the induced metric, and since

the components of H cannot depend on the induced metric if H is to have a target space

interpretation, the this equation implies the vanishing of the dimension –1
2 component of

the 3-form H

Hαiβjγk = 0 . (2.8)

To solve the second condition (2.6) for the dimension 0 torsion and 3-form components we

parametrize these as

Tαiβj
a = s1ijγ

b
αβtb

a + s2ijγ
bcdef
αβ tbcdef

a + εijγ
bcd
αβ tbcd

a , (2.9)

Haαiβj = s3ijγ
b
αβhba + s4ijγ

bcdef
αβ hbcdefa + εijγ

bcd
αβ hbcda , (2.10)

where spij are constant symmetric matrices and t and h are tensor superfields. Tracing (2.6)

with γa and multiplying with GJK we find the condition

s1ij
√
−GEK

btab − (s3σ3)ij
(εG)LKεIJ√

−G
EL

cEI
bEJahbc − 3σ1

ij

(εG)LKεIJ√
−G

EL
dEI

bEJ
chabcd

− s3ijε
IJGJKEI

bhab + (s1σ3)ijε
IJEK

cEI
bEJatbc + 3σ1

ijε
IJEK

dEI
bEJ

ctabcd = 0 . (2.11)

The first three terms and last three terms here have to cancel independently since they

come with different powers of the bosonic supervielbeins. The requirement that the last

three terms cancel gives

εIJEI
bEJ

cEK
d
(

s3ijhabηcd + (s1σ3)ijηabtcd − 3σ1
ijtabcd

)

= 0 , (2.12)

implying that14

s3ijha[bηc]d + (s1σ3)ij(ηa[btc]d − ηa[btcd])− 3σ1
ij(tabcd − ta[bcd]) = 0 . (2.13)

After a little bit of algebra the solution is found to be

s3 = s1σ3 , tab = −hab = −iηab , tabcd = t[abcd] , (2.14)

14Note that the part anti-symmetric in [bcd] vanishes trivially due to the fact that the world-sheet indices

I, J,K only take two values.
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where we have used the freedom to rescale the fermionic supervielbeins to normalize tab.

The same freedom allows us to set s1ij = δij . The vanishing of the first three terms in (2.11)

then gives also

habcd = h[abcd] . (2.15)

Tracing (2.6) with γabc and γabcdef and using the above conditions we find also that the

components of t and h fields with more than two indices must vanish.

We conclude therefore that the kappa-symmetry of the type IIB GS string action

implies, in addition to (2.8), the standard dimension 0 superspace constraints

Tαiβj
a = −iδijγ

a
αβ , Haαiβj = −iσ3

ij(γa)αβ . (2.16)

The type IIA cases can be analysed similarly. The constraints in the type I case (1.1) are

obtained by keeping only the i = j = 1 components in the type IIB ones.

The next step is to determine the consequences of these constraints by solving the

superspace Bianchi identities for the torsion and the 3-form H. This will lead us to the

generalized supergravity equations described in the Introduction.

3 Generalized equations from Bianchi identities and constraints

Our aim will be to find the most general solution to the 10d superspace Bianchi identities

for the torsion and 3-form consistent with the dimension −1
2 (2.8) and dimension 0 (2.16)

constraints following from kappa-symmetry of the GS string. We will consider the type I

and type IIB cases in parallel and present the summary of the results while details will be

provided in the appendix.

Let us first recall the basic superspace conventions we will need. The torsion satisfies

the Bianchi identity15

∇TA = EB ∧RB
A , TA = ∇EA ≡ dEA + EB ∧ ΩB

A , (3.1)

where RB
A is the curvature superfield 2-form

RB
A = dΩB

A +ΩB
C ∧ ΩC

A , ∇RB
A = 0 . (3.2)

As follows from the fact that the structure group is SO(1, 9), the non-zero components of

the curvature are Ra
b and

Type I: Rα
β = −1

4
Rab(γab)

β
α , Type IIB: Rαi

βj = −1

4
Rabδij(γcd)

β
α . (3.3)

In components, the torsion and curvature Bianchi identities in (3.1) and (3.2) take the form

∇[ATBC]
D + T[AB

ET|E|C]
D = R[ABC]

D , (3.4)

15Our conventions are such that d acts from the right and the components of forms are defined as

ω
(n) =

1

n!
E

An ∧ · · · ∧ E
A1ωA1···An

.
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∇[ARBC]D
E + T[AB

FR|F |C]D
E = 0 . (3.5)

A useful fact is that the curvature Bianchi identities are a consequence of the torsion

Bianchi identities.16 This means that we only need to solve the torsion Bianchi identities.

We also have to solve the Bianchi identity for the 3-form dH = 0, or, in components,

∇[AHBCD] +
3

2
T[AB

EH|E|CD] = 0 . (3.6)

There is some freedom in how one presents the constraints. We will write them in essentially

the same form as the type II constraints of [15], which is particularly simple, rather than, for

example, in the form of the type I constraints used in [14]. The details of the solution to the

Bianchi identities are given in appendix.17 We shall discuss the consequences of the Bianchi

identities and constraints in order of increasing dimension of the component superfields.

Dimension -1
2
. As we have seen above, kappa-symmetry of the string implies the van-

ishing of the dimension –1
2 component (2.8) of the 3-form, i.e.

Type I: Hαβγ = 0 Type IIB: Hαiβjγk = 0 . (3.7)

Dimension 0. Kappa-symmetry of the string also requires the standard dimension 0

torsion and 3-form constraints (2.16)

Type I: Tαβ
a = −iγaαβ , Haαβ = −i(γa)αβ , (3.8)

Type IIB: Tαiβj
a = −iδijγ

a
αβ , Haαiβj = −iσ3

ij(γa)αβ . (3.9)

These are consistent with the dimension 0 Bianchi identity and the vanishing of the di-

mension –1
2 component of H.

Dimension 1

2
. Let us start with the type I case. For the torsion we shall require that

Tα[bc] = 0 , (3.10)

which just serves to fix the corresponding component of the spin connection, Ωα
bc. By

redefining the frame fields we can also arrange that18

(γb)αβTβbc = 0 . (3.11)

The torsion Bianchi identity we have to solve reads

T(αβ
δγdγ)δ − γe(αβTγ)e

d = 0 , (3.12)

16The proof goes as follows [29]. Taking the covariant derivative of (3.1) gives EB ∧ ∇RB
A = 0 and

using the fact that the indices belong to the structure group SO(1, 9) this implies Eb ∧ ∇Rb
a = 0 and

(γabE)αi ∧ ∇Rab = 0. Analyzing the components of these equations it is not hard to see that they imply

the curvature Bianchi identity ∇RB
A = 0.

17In appendix we analyze also a more general case when in the type I case one imposes only the torsion

constraint in (1.1).
18Taking E′ = E + iuEbγcTb

c + ivEbγbTc
c gives T ′

(bc) = T(bc) − uγ(cγdTb)
d − vηbcTa

a. This implies

γbT ′

(bc) = (1− 6u)γbT(bc) + ( 1
2
u− v)γcTb

b which vanishes for a suitable choice of the constants u, v.

– 9 –



J
H
E
P
0
6
(
2
0
1
6
)
1
7
4

where we used the form of the dimension 0 torsion component. With some work one can

show that this, together with the Bianchi identity for the three-form, finally implies

Type I: Hαbc = 0 , Tαb
c = 0 , Tαβ

γ = 2δγ(αχβ) − γaαβ(γaχ)
γ , (3.13)

where χα is some MW spinor superfield.

For the type IIB case a similar analysis gives the following conditions

Type IIB: Tαib
c = 0 , Hαibc = 0 , (3.14)

Tαiβj
γk = δ

γk

(αiχβj) + (σ3δ)γk(αi(σ
3χ)βj) −

1

2
δijγ

a
αβ(γaχ)

γk − 1

2
σ3
ijγ

a
αβ(γaσ

3χ)γk ,

where χαi are some two MW spinor superfields.

Dimension 1. We shall impose the standard requirement

Tab
c = 0 , (3.15)

which fixes the remaining components Ωc
ab of the spin connection. The type I torsion

Bianchi identities we need to solve are then

− 2iTc(α
γγdβ)γ = Rαβc

d , ∇(αTβγ)
δ + T(αβ

ǫTγ)ǫ
δ − iγa(αβT|a|γ)

δ = R(αβγ)
δ . (3.16)

The Bianchi identity for the 3-form imposes the condition

Tαβ
eHcde + 2Tc(α

γHβ)γd − 2Td(α
γHβ)γc = 0 . (3.17)

After some algebra one obtains the solution as

Taα
δ =

1

8
(γbc)α

δHabc , Rαβ
cd =

i

2
(γb)αβH

bcd . (3.18)

In addition, one finds that the derivative of the spinor superfield χ in (3.13) should be

given by

Type I: ∇αχβ = χαχβ +
i

2
γaαβXa −

i

24
γabcαβ Habc , (3.19)

where Xa is some vector superfield.19

In the type IIB case we find, by a similar analysis,

Type IIB: Taαi
δj =

1

8
(γbcσ3)αi

δjHabc +
1

8
(γaS)αiδj , (3.20)

Rαiβj
cd =

i

2
(γbσ

3)αiβjH
bcd − i

4
(γ[cSγd])αiβj , (3.21)

∇αiχβj =
1

2
χαiχβj +

1

2
(σ3χ)αi(σ

3χ)βj +
i

2
γaαβ(δijXa + σ3

ijKa)

− i

24
σ3
ijγ

abc
αβ Habc −

i

16
(γaSγa)αiβj , (3.22)

19While as superfields χα and Xa are of course related, their first components will be independent fields

entering the generalized equations. We will use same notation for superfields and their lowest components,

with the interpretation being hopefully clear from the context.
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where Xa and Ka are some vector superfields. S = (Sαi,βj) is an anti-symmetric 32 × 32

matrix which is off-diagonal in i, j and can therefore be represented as

S = −iσ2γaF ′
a −

1

3!
σ1γabcF ′

abc −
1

2 · 5! iσ
2γabcdeF ′

abcde , (3.23)

for some p-form superfields F ′
p.
20

Dimension 3

2
. The type I torsion Bianchi identities to solve at dimension 3

2 are

−iγdαβTbc
β = 2Rα[bc]

d , (3.24)

∇aTβγ
δ − 2∇(βT|a|γ)

δ + 2Ta(β
ǫTγ)ǫ

δ − Tβγ
ǫTaǫ

δ − iγeβγTea
δ = 2Ra(βγ)

δ . (3.25)

The first one is easily solved for the curvature as

Rαbcd =
i

2
(γbψcd)α − i(γ[cψd]b)α , (3.26)

where Tab
β = ψ

β
ab is the gravitino field strength. Using this in (3.25) one finds after a bit

of algebra that the solution is

Type I: ∇αHabc = 3i(γ[aψbc])α , i(γbψab)α = 2∇aχα+
1

4
(γbcχ)αHabc . (3.27)

This solves the Bianchi identities but we must also remember the consistency conditions

which follow from the equation for ∇αχβ in (3.19). Taking another spinor derivative of

this equation and symmetrizing we find an expression for the spinor derivative of Xa

∇αXa =
1

2
(γbγa∇bχ)α + (γaγ

bχ)αXb +
1

48
(γaγ

bcdχ)αHbcd +
1

8
(γbcχ)αHabc . (3.28)

A similar analysis in the type IIB case gives the following superfield relations

Type IIB: i(γbψab)αi = 2∇aχαi +
1

4
(γbcσ3χ)αiHabc ,

∇αiHabc = 3i(γ[aσ
3ψbc])αi , (3.29)

Rαibcd =
i

2
(γbψcd)αi − i(γ[cψd]b)αi , (3.30)

∇αiSβ1γ2 = Sβ1γ2χαi − 2δ
[β1
αi (Sχ)γ2] + 2(γaS)αi[β1(γaχ)γ2]

+ 4i(γab)[β1αiψ
γ2]
ab , (3.31)

∇αiXa = ∇aχαi −
1

4
(γaγ

b∇bχ)αi +
1

2
(γaγ

b(Xb + σ3Kb)χ
)

αi
(3.32)

+
1

8
(γbcσ3χ)αiHabc+

1

96
(γaγ

bcdσ3χ)αiHbcd+
1

16
(γaSχ)αi ,

∇αiKa = −1

4
(γaγ

bσ3∇bχ)αi +
1

2

(

γaγ
bσ3(Xb + σ3Kb)χ

)

αi

+
1

96
(γaγ

bcdχ)αiHbcd −
1

16
(γaσ

3Sχ)αi . (3.33)

20The reason for the primes on Fp will become clear in the next section (the lowest components of F ′

p

and Fp will differ only by bilinear fermionic terms).
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Dimension 2. In the type I case the torsion Bianchi identities read

R[abc]
d = 0 , ∇αTbc

β + 2∇[bTc]α
β + 2T[b|α|

γTc]γ
β + Tbc

γTγα
β = Rbcα

β . (3.34)

They determine the spinor derivative of the gravitino field strength superfield

∇αψ
β
ab =

1

8
(γcd)βα

(

2∇[aHb]cd +HecaH
e
bd − 2Rabcd

)

− δβαψabχ− ψ
β
abχα + (γcψab)α(γcχ)

β .

(3.35)

We are finally ready to derive the equations of motion for the bosonic superfields. Con-

tracting (3.35) with γa and using (3.27) gives the equations

Type I: ∇[aHbcd] = 0 , Ra[bcd] = 0 , (3.36)

∇cHabc − 4∇[aXb] − 2XcHabc − 4ψabχ = 0 , Rab + 2∇(aXb) −
1

4
HacdHb

cd = 0 , (3.37)

where Rab = Rac
c
b. Evaluating ∇(α∇β)Xa and using (3.28) we find also

∇aXa − 2XaXa +
1

12
HabcHabc + 2iχγa∇aχ− i

12
χγabcχHabc = 0 . (3.38)

The lowest components of these superfield equations give us the generalized type I equa-

tions (1.3)–(1.5) discussed in the Introduction (where fermionic components were set to

zero).

In the type IIB case one finds the fermionic equation (A.86) together with the following

equations for the bosonic superfields21

Type IIB: Ra[bcd] = 0 , ∇[aHbcd] = 0 , (3.39)

2∇[aXb] +KcHabc + ψabχ = 0 , ∇(aKb) = 0 , (3.40)

KaXa −
i

4
χγaσ3∇aχ+

i

96
χγabcχHabc = 0 , (3.41)

Rab + 2∇(aXb) −
1

4
HadeHb

de +
1

128
Tr(SγaSγb) = 0 , (3.42)

∇cHabc − 2XcHabc − 4∇[aKb] −
1

64
Tr(SγaSγbσ3)− 2ψabσ

3χ = 0 , (3.43)

∇aXa − 2XaXa − 2KaKa +
1

12
HabcHabc

− 1

256
Tr(SγaSγa) + iχγa∇aχ− i

24
χγabcσ3χHabc = 0 , (3.44)

(γa∇aS)αiβj−
(

γa(Xa+σ3Ka)S
)

αi

βj+

[

1

8
(γaσ3Sγbc)αi

βj+
1

24
(γabcσ3S)αiβj

]

Habc

+iχαi(Sχ)βj−i(σ3χ)αi(σ
3Sχ)βj+2(γcdχ)αiψ

βj
cd −2(γcdσ3χ)αi(σ

3ψcd)
βj = 0 . (3.45)

These are the generalized type IIB equations implied by the kappa-symmetry of the GS

string (generalizing (1.7)–(1.10) where fermions were set to zero). One can show that they

reduce to the standard type IIB supergravity equations in the special case of Ka = 0.

21Here the covariant derivatives (e.g. in (3.40)) contain fermionic terms so, e.g., Km = 0, Xm = ∂mφ is

always a solution even for non-zero fermionic fields.
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4 Lifting the Killing vector and IIB form fields to superspace

The generalized type IIB equations in the previous section can be formulated in a geo-

metrical way in superspace by lifting the Killing vector field Ka and the form fields Fp

to superspace vector field and superspace forms. We begin with the one-form with 10d

coordinate components Xm and lift it to a one-form X = dzMXM in superspace. We must

then constrain the extra spinor component not to introduce extra degrees of freedom. This

is done by imposing the constraint

Xαi = χαi . (4.1)

The equation for ∇[aXb] in (3.40) as well as the equation (3.32) for ∇αiXa and the equation

for ∇(αiχβj) in (3.22) are then all summarized by the “superspace Bianchi identity”

dX+ iKH = 0 ⇔ LKB = d(iKB −X) , (4.2)

or, in components,

2∇[AXB] + TAB
CXC = −KCHABC . (4.3)

This equation says that B transforms by a gauge transformation under the superisometries

generated by KA = (Ka,Ξαi), where the Killing spinor superfield Ξαi is set to be

Ξ =
i

4

(

γa∇a − 2γaXa − 2γaσ3Ka −
1

24
γabcσ3Habc −

1

4
S
)

σ3χ . (4.4)

This definition together with (3.41) implies that

iKX = 0 . (4.5)

Using (4.2) we then conclude that (super)isometries generated by K leave X invariant (the

rotation matrix LA
B is defined below)

LKX = 0 , i.e. KC∇CXA + LA
BXB + iKΩA

BXB = 0 . (4.6)

Indeed, the superspace vector field KA satisfies the superspace Killing equation (see, for

example, [30])

EBLB
A = LKEA = ∇KA + iKTA − EBiKΩB

A . (4.7)

This equation expresses the fact that under the superisometry generated by the vector su-

perfield KA the frame EA transforms by a local Lorentz transformation with the parameter

LB
A = (Lb

a, 14Lab(γ
ab)βj

αi) . The component form of (4.7) is

∇BK
A +KCTCB

A = LB
A + iKΩB

A . (4.8)

Taking the parameter of the local Lorentz transformation to be

Lab = ∇[aKb] − iKΩab , (4.9)

one gets, from the (ab) component of (4.8), the standard Killing vector equation ∇(aKb) =

0. The (aβj)-component gives the equation (3.33) for ∇αiKa. The (αiβj) component
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implies the equation (3.45) for S (except for the γabcd part), and also the equation of

motion (3.43) for B, the equation (3.44) for the divergence of Xa, as well as the con-

straint (3.41) on KaXa. To show this requires using the equation for the spinor derivative

of the bosonic fields and the gravitino equation of motion. Finally, the (αib) component

of (4.8) is the superspace Killing spinor equation

∇bΞ
αi +

1

8
(γcdσ3Ξ)αiHbcd +

1

8
(SγbΞ)αi −Kcψbc

αi = 0 , (4.10)

and its lowest component is the usual Killing spinor equation.22

Finally, we can also lift to superspace the form fields appearing in the bispinor S
in (3.23) setting there

F ′
a1···an = Fa1···an + iχ1γa1···anχ

2 . (4.11)

This works almost identically the same as for the standard type IIB supergravity the-

ory where Fp are the RR field strengths multiplied by eφ [15]. Imposing the following

constraints on their dimension 0 and dimension 1
2 components

Fαiβjc = iσ1
ij(γc)αβ , Fαiβjcde = −σ2

ij(γcde)αβ , (4.12)

Fαi = −i(σ2χ)αi , Fαibc = −(σ1γbcχ)αi , Fαibcde = −i(σ2γbcdeχ)αi , (4.13)

one can show that they satisfy the following “generalized Bianchi identities” (same as in [9]

for 10d components)23

dF2n+1 +X ∧ F2n+1 −H ∧ F2n−1 − iKF2n+3 = 0 , n = −1, 0, 1, 2 , (4.14)

or, in components,

∇[A1
FA2···A2n+2] +

2n+ 1

2
T[A1A2

BF|B|A3···A2n+2] −X[A1
FA2···A2n+2]

+
(2n+ 1)2n

3!
H[A1A2A3

FA4···A2n+2] −
1

2n+ 2
KBFBA1···A2n+2 = 0 . (4.15)

It is easy to check, using (4.2) and (4.5), that as a consequence of these generalized Bianchi

identities the forms Fp are also invariant under the (super)isometries generated by K, i.e.

LKF2n+1 = 0 , n = 0, 1, 2 . (4.16)

5 Concluding remarks

In this paper we have found the equations imposed on the target space (super) geometry by

the requirement that the classical Green-Schwarz superstring should be kappa-symmetric.

The bosonic part of these equations are exactly the same as suggested earlier in [9]. The

resulting generalization of the standard 10d supergravity equations is automatically super-

symmetric as it was obtained from a superspace construction. There is also a straightfor-

ward generalization of the notion of a supersymmetric solution of the generalized equations.

22This equation (4.10) is not independent and arises by taking a spinor derivative of the (αiβj) compo-

nent of (4.8), symmetrizing and using the other equations given above.
23The n = −1 case corresponds to the condition iK F1 = 0 [9].
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We have performed the detailed analysis for the type I and type IIB cases but the

corresponding generalized type IIA equations can be written down almost immediately

using the results of [15]. One open question (raised already in [9]) is whether these equa-

tions (1.7)–(1.10) can be derived from an action and should thus satisfy certain integrability

conditions. Another is about possible uplift of the generalized type IIA equations to 11

dimensions and a relation to a (partially off-shell?) generalization of 11d supergravity.

Non-trivial solutions of the type II generalized equations describe backgrounds sym-

metric with respect to the vector Ka. Applying T-duality one then gets a type II super-

gravity solution with a dilaton containing a linear non-isometric term [9, 25, 26]. It would

be interesting to extend the discussion in [9] to determine how more general T-dualities

act on these equations. Applying T-duality to the GS sigma model [27] should transform

the background fields in a way consistent with kappa-symmetry and should thus map one

solution of the generalized equations to another.

To investigate the properties of the corresponding sigma models one may consider the

component expansion of the type II GS superstring action in these more general back-

grounds. This expansion takes the same form as in the standard type II supergravity

backgrounds [15] provided one replaces the dilaton-modified RR field strengths eφFp by Fp

and the dilaton gradient term i
2δijγ

a∂aφ in the quartic fermion terms (appearing in the

matrix T in [15]) by i
2γ

a(δijXa + σ3
ijKa).

Note added. After this paper appeared in arXiv we were informed of an earlier work on

the pure spinor superstring that also observed that classical BRST invariance, the analog

of kappa symmetry in that formulation, is not enough to restrict the background to be

a supergravity solution [32]. The relation with the condition χαi = ∇αiφ and the fact

that the generalized backgrounds (referred to there as “non-physical”) are connected with

global symmetries were commented on in section 7.3 of [33].
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A Details of solution of superspace Bianchi identities and constraints

Here we will provide details of the solution of the Bianchi identities for the torsion and the

3-form H presented in section 3. The relevant Bianchi identities are (3.4) and (3.6).
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We shall start from the constraints imposed by the kappa-symmetry on the dimension

–1
2 and dimension 0 components as found in section 224

Type I: Hαβγ = 0 , Tαβ
a = −iγaαβ , Haαβ = −i(γa)αβ , (A.1)

Type IIB: Hαiβjγk = 0 , Tαiβj
a = −iδijγ

a
αβ , Haαiβj = −iσ3

ij(γa)αβ . (A.2)

We will proceed by dimension of T and H components and at each dimension will first work

out the solution of the type I Bianchi identities and then present the type IIB solution.

The type IIA solution should take an almost identical form to type IIB one as is clear from

the discussion in [15].

In the type I case we will be more general: we will first impose only the dimension 0 con-

straint on the torsion and then comment on additional conditions following from including

the 3-form constraint at the end of each subsection. In that case one obtains a more general

solution which contains two 3-form fields which we call gabc and habc, see e.g. [31]. This more

general version of type I supergravity is, of course, not directly relevant for string theory

as kappa-symmetry requires the presence of the 3-form H satisfying the above constraints.

Dimension 1

2
. Starting with the type I case, at dimension 1

2 we need to solve the torsion

Bianchi identity

T(αβ
δγdγ)δ − γe(αβTγ)e

d = 0 , (A.3)

where Tα[bc] = 0 and (γb)αβTαb
c = 0 (see section 3) and we used the dimension zero

constraint on the torsion in (A.1). Contracting with γ
βγ
b this gives the equation

2(γdγb)δ
βTαβ

δ + γ
βγ
b Tβγ

δγdαδ − 20Tαb
d = 0 . (A.4)

Expanding in a basis of gamma matrices

Tαβ
γ = γaαβψ

γ
a + γabcdeαβ ψ

γ
abcde , (A.5)

this equation implies (using the symmetry and gamma-tracelessness of Tαbc)

γabcdeψabcde = −9

5
γaψa , Tαab =

4

5
(γ(aψb))α − 2

25
ηab(γ

cψc)α (A.6)

γaγfgψa + γabcdeγfgψabcde − 8γ[fψg] = 0 . (A.7)

Multiplying the second equation with γa and using the gamma-tracelessness of Tαab we find

ψa = −7

8
γaχ , (A.8)

for some spinor superfield χ whose normalization we have chosen for later convenience.

Using this in the above equations we find

Tαa
b = 0 , γabcdeψabcde =

63

4
χ , γabcψabcfg =

7

32
γfgχ− 1

4
γ[fγ

abcdψg]abcd . (A.9)

24To recall, in this paper a, b = 0, 1, . . . , 9; α, β = 1, 2, . . . , 16; i, j = 1, 2.
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Contracting the dimension 1
2 Bianchi identity (A.3) with γ

βγ
ghabc we get

16 · 5!γfψghabc + γpqrdeγghabcγ
fψpqrde −

7

4
γfγghabcχ = 0 . (A.10)

Multiplying this equation with γf gives

ψghabc =
7

64 · 5!γghabcχ− 1

16 · 5!γ
pqrdγghabcγ

eψpqrde . (A.11)

This equation determines ψabcde recursively and after some algebra one finds

ψabcde =
1

16 · 5!γabcdeχ . (A.12)

This completes the solution of the dimension 1
2 torsion Bianchi identity. The non-vanishing

torsion at dimension 1
2 is thus

Tαβ
γ = −7

8
γaαβ(γaχ)

γ +
1

16 · 5!γ
abcde
αβ (γabcdeχ)

γ = 2δγ(αχβ) − γaαβ(γaχ)
γ . (A.13)

Imposing also the dimension 1
2 Bianchi identity for the 3-form25

3∇(αHβγ)d −∇dHαβγ + 3T(αβ
EH|E|γ)d − 3Td(α

EH|E|βγ) = 0 (A.14)

and using the dimension 0 and dimension –1
2 constraints in (A.1) we get

γa(αβHγ)ab = 0 , (A.15)

which implies the vanishing of the dimension 1
2 component of H

Hαbc = 0 . (A.16)

In the type IIB case the torsion Bianchi identity is

T(αiβj
δlTγk)δl

d − T(αiβj
eTγk)e

d = 0 . (A.17)

When i = j = k the analysis is the same as above and we get

Tαib
c = 0 , (A.18)

Tα1β1
γ1 = 2δγ(αχ

1
β) − γaαβ(γaχ

1)γ , Tα2β2
γ2 = 2δγ(αχ

2
β) − γaαβ(γaχ

2)γ . (A.19)

The remaining components of the Bianchi identity give

Tα1β1
δ2γdγδ + 2Tγ2(α1

δ1γdβ)δ = 0 , (A.20)

and the same equation with the indices 1 and 2 interchanged.

25As usual, |E| means that index E is not symmetrized.
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From the dimension 1
2 Bianchi identity for the 3-form we get26

T(αiβj
δlHγk)δld = 0 . (A.21)

When i = j = k this equation implies the vanishing of the dimension 1
2 component of the

3-form as before

Hαibc = 0 . (A.22)

The other components of (A.21) give

Tα1β1
δ2(γd)γδ − 2Tγ2(α1

δ1(γd)β)δ = 0 , (A.23)

and the same with indices 1 and 2 interchanged. Together with eq. (A.20) this leads to the

vanishing of the remaining components of the torsion.

Dimension 1. The type I torsion Bianchi identities at dimension 1 read

−2iTc(α
γγdβ)γ = Rαβc

d , (A.24)

∇(αTβγ)
δ + T(αβ

ǫTγ)ǫ
δ − iγa(αβT|a|γ)

δ = R(αβγ)
δ , (A.25)

where we used the lower dimension constraints and the fact that Tab
c = 0. The first

equation defines the curvature in terms of the torsion and using this in the second equation

we find

∇(αTβγ)
δ + T(αβ

ǫTγ)ǫ
δ − iγa(αβT|a|γ)

δ − i

2
Ta(α

ǫ(γb)β|ǫ|(γ
ab)δγ) = 0 . (A.26)

Multiplying by γcηδ and symmetrizing in (αβγη) we get, using the dimension 1
2 Bianchi

identity,

Ta(α
δγaβγγ

c
η)δ = 0 . (A.27)

Let us now expand Taα
δ in a basis of gamma matrices

Taα
δ = δδαfa + (γcd)α

δfa
cd + (γcdef )α

δfa
cdef . (A.28)

The first Bianchi identity (A.24) implies, using the anti-symmetry of its r.h.s. in cd that

f(ab)c =
1

2
ηc(afb) , (γcdef(a)αβfb)

cdef = 0 . (A.29)

These conditions further imply

fb
ab =

11

2
fa , fa

cdef =
1

48
δ[ca g

def ] , (A.30)

26If we do not impose also the 3-form Bianchi identity there exists a much more general solution

Tαiβj
γk = 2δγ(αΛ

ijk

β) − γ
a
αβ(γaΛ

ijk)γ + 2i(σ2
δ)(αi

γk
ψβj) ,

where Λijk is a spinor superfield completely symmetric in the SO(2) indices ijk and ψ is another spinor

superfield.
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for some 3-form gabc. Then

Ta(α
δγaβγγ

c
η)δ = 0 ⇒ γb(αβγ

a
γδ)fa = 0 ⇒ fa = 0 . (A.31)

We therefore get

Taα
δ =

1

8
(γbc)α

δhabc +
1

48
(γabcd)α

δgbcd , (A.32)

where habc and gabc are arbitrary 3-forms. The first Bianchi identity (A.24) then gives

Rαβ
cd =

i

2
(γb)αβh

bcd +
i

24
γ
cdefg
αβ gefg . (A.33)

The second Bianchi identity (A.25) now reads

∇(αTβγ)
δ + T(αβ

ǫTγ)ǫ
δ − i

4
γa(αβ(γ

bc)γ)
δ(habc − gabc) = 0 . (A.34)

Contracting the indices γ and δ and using the expression for the dimension 1
2 torsion we find

16∇(αχβ) − γaαβγ
γδ
a ∇γχδ = 0 ⇒ ∇(αχβ) =

i

2
γaαβXa , (A.35)

for some one-form superfield Xa. The remaining components of the Bianchi identity then

give

∇αχβ = χαχβ +
i

2
γaαβXa −

i

24
γabcαβ (habc − gabc) , (A.36)

where we used the fact that χαχβ = 1
96γ

abc
αβ χγabcχ.

If we finally impose the 3-form H = dB Bianchi identity and the kappa-symmetry

constraints on it in (A.1) we find, using the lower dimension constraints, that

Tαβ
eHcde + 2Tc(α

γHβ)γd − 2Td(α
γHβ)γc = 0 , (A.37)

which implies that

habc = Habc , gabc = 0 . (A.38)

In the type IIB case the dimension 1 Bianchi identities are

2Tc(αi
γkTβj)γk

d = Rαiβjc
d , (A.39)

∇(αiTβjγk)
δl + T(αiβj

ǫmTγk)ǫm
δl + T(αiβj

aT|a|γk)
δl = R(αiβjγk)

δl . (A.40)

The equations for Taβi
γi and Rαiβic

d with i = 1, 2 are the same as in the type I case

analyzed above. This implies (here primed and unprimed quantities are independent)

Taα1
δ1 =

1

8
(γbc)α

δ
habc+

1

48
(γabcd)α

δ
g
bcd

, Taα2
δ2 =

1

8
(γbc)α

δ
h
′

abc+
1

48
(γabcd)α

δ
g
′bcd

, (A.41)

Rα1β1
cd =

i

2
(γb)αβh

bcd+
i

24
γ
cdefg
αβ gefg , Rα2β2

cd =
i

2
(γb)αβh

′bcd+
i

24
γ
cdefg
αβ g

′

efg , (A.42)

∇α1χβ1 = χα1χβ1+
i

2
γ
a
αβXa−

i

24
γ
abc
αβ (habc−gabc) , Xa ≡ Xa +Ka , (A.43)

∇α2χβ2 = χα2χβ2+
i

2
γ
a
αβX

′

a−
i

24
γ
abc
αβ (h′

abc−g
′

abc) , X
′

a ≡ Xa −Ka . (A.44)
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Here instead ofXa andX ′
a which appear as in type I case we introduced the two independent

superfields Xa and Ka for later convenience.

The remaining equations to solve are

Rα1β2c
d = −iTcα1

γ2γdβγ − iTcβ2
γ1γdαγ , (A.45)

∇γ2Tα1β1
δ1 − iγaαβTaγ2

δ1 = 2Rγ2(α1β1)
δ1 , (A.46)

−iγaβγTaα1
δ1 = Rβ2γ2α1

δ1 , (A.47)

γ(αβ
aT|a|γ2)

δ1 = 0 , (A.48)

together with the same equations with indices 1 and 2 interchanged. Eq. (A.47) implies

gabc = g′abc = 0 , h′abc = −habc , (A.49)

while from (A.48) we get

Taβ2
γ1 =

1

8
(γaS21)β

γ , Taβ1
γ2 =

1

8
(γaS12)β

γ , (A.50)

for some matrices S12 and S21. Eq. (A.45) now implies

S12 = −(S21)T , Rα1β2
cd = − i

4
(γ[cS12γd])αβ . (A.51)

Finally, eq. (A.46) gives

∇α2χ
1
β = − i

16
(γaS21γa)αβ . (A.52)

This completes the solution of the dimension 1 torsion Bianchi identities. The 3-form

Bianchi identity just adds, as in the type I case, the relation

habc = Habc . (A.53)

Dimension 3

2
. The type I dimension 3

2 Bianchi identities are

−iγdαβTbc
β = 2Rα[bc]

d , (A.54)

∇aTβγ
δ − 2∇(βT|a|γ)

δ + 2Ta(β
ǫTγ)ǫ

δ − Tβγ
ǫTaǫ

δ − iγeβγTea
δ = 2Ra(βγ)

δ . (A.55)

Eq. (A.54) gives the dimension 3
2 component of the curvature as

Rαbcd =
i

2
(γbψcd)α − i(γ[cψd]b)α , (A.56)

where ψ
β
ab = Tab

β is the gravitino field strength. Using this in (A.55) we get

∇aTβγ
δ − 2∇(βT|a|γ)

δ + 2Ta(β
ǫTγ)ǫ

δ − Tβγ
ǫTaǫ

δ − i

4
(γcd)δ(β(γaψcd)γ)

− i

4
γcβγ(γcγ

bψba)
δ − i

2
γbβγψ

δ
ba +

i

2
δδ(β(γ

bψba)γ) = 0 . (A.57)
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Contracting the indices γ and δ and using the lower dimension constraints gives

i(γbψab)α = 4∇aχα + (γaγ
b∇bχ)α − 1

56
(γaγ

bcd)α
β∇β

(

hbcd +
11

6
gbcd

)

(A.58)

− 1

14
(γbc)α

β∇β

(

habc −
1

2
gabc

)

+
1

8
(γaγ

bcdχ)α

(

hbcd +
11

6
gbcd

)

+
1

2
(γbcχ)α

(

habc −
1

2
gabc

)

.

Contracting (A.57) with γ
βγ
e and using (A.59) we get, after some tedious algebra,

(γa)αβ∇βhabc = −4(γ[b∇c]χ)
α +

5

84
(γbcγ

def )αβ∇βgdef − 3

7
(γ[bγ

de)αβ∇βgc]de −
1

2
(γa)αβ∇βgabc

− 1

2
(γ[bγ

deχ)αhc]de −
13

28
(γbcγ

defχ)αgdef +
95

28
(γ[bγ

deχ)αgc]de + 4(γaχ)αgabc + 6iψα
bc . (A.59)

Contracting (A.57) with (γef )δ
γ gives

∇αhabc = 3i(γ[aψbc])α +
1

60
(γabcγ

def )α
β∇βgdef − 3

20
(γ[abγ

de)α
β∇βgc]de −

3

10
(γ[aγ

d)α
β∇βgbc]d

+
1

10
∇αgabc −

2

15
(γabcγ

defχ)αgdef +
6

5
(γ[abγ

deχ)αgc]de +
12

5
(γ[aγ

dχ)αgbc]d −
4

5
χαgabc . (A.60)

Using this in (A.57) it finally becomes

− 5

3
(γabcd)(γ

δ〈∇β)g
bcd + 2χβ)g

bcd〉 − (γcd)(γ
δ〈∇β)g

acd + 2χβ)g
acd〉 = 0 , (A.61)

where we use the angle-brackets to denote the gamma-traceless part, e.g.,

〈∇αgabc〉=∇αgabc+
1

21 · 16(γabcγ
def )α

β∇βgdef−
1

14
(γ[abγ

de)α
β∇βgc]de−

1

2
(γ[aγ

d)α
β∇βgbc]d .

(A.62)

This equation is easily shown to imply

〈∇αgabc + 2χαgabc〉 = 0 . (A.63)

Using this in the expressions (A.59) and (A.60) they become

i(γbψab)α = 2∇aχα +
1

4
(γbcχ)αhabc +

1

84
(γabcd)α

β∇βgbcd −
17

168
(γabcdχ)αgbcd , (A.64)

∇αhabc = 3i(γ[aψbc])α +
11

21 · 32(γabcγ
def )α

β∇βgdef − 1

7
(γ[abγ

de)α
β∇βgc]de −

1

4
(γ[aγ

d)α
β∇βgbc]d

− 15

7 · 16(γabcγ
defχ)αgdef +

17

14
(γ[abγ

deχ)αgc]de +
5

2
(γ[aγ

dχ)αgbc]d − χαgabc (A.65)

This completes the solution of the torsion Bianchi identity.

It remains to analyze the consequence of the constraint (A.36) on∇αχβ found at dimen-

sion one. To do this we take a symmetrized spinor derivative of this equation which gives

2Tαγ
D∇Dχβ + 2Rαγβ

δχδ + 4∇(αχγ)χβ

− 4χ(α∇γ)χβ + 2iγaβ(α∇γ)Xa +
i

6
γabcβ(α(∇γ)habc −∇γ)gabc) = 0 . (A.66)

Using the above expressions we find the equation

2γa
β(α∇γ)Xa + γa

αγ(γaγ
bχ)βXb − 2γa

β(α∇aχγ) −
1

2
γa
αγ(γaγ

b∇bχ)β
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+
1

96
γa
αγ(γaγ

def )β
δ∇δgdef +

1

48
γa
αγ(γaγ

bcdχ)βhbcd −
1

4
γa
β(α(γ

bcχ)γ)habc −
1

32
γa
αγ(γaγ

bcdχ)βgbcd

− 1

8
γa
αγ(γ

deχ)βgade +
5

8
γa
β(α(γ

deχ)γ)gade +
1

6
γabc
β(αχγ)g

abc +
1

48
γabcde
αγ (γdeχ)βgabc = 0 . (A.67)

Contracting this with γ
αγ
d gives, after a bit of algebra,

∇αXa =
1

2
(γbγa∇bχ)α + (γaγ

bχ)αXb +
1

96
(γaγ

bcd)α
β∇βgbcd +

1

48
(γaγ

bcdχ)αhbcd

+
1

8
(γbcχ)αhabc −

7

96
(γaγ

bcdχ)αgbcd −
1

16
(γbcχ)αgabc . (A.68)

It is not hard to show that this solves (A.67). This completes the solution of the torsion

Bianchi identity in the type I case.

Imposing the Bianchi identity for the 3-form gives no new constraints beyond what

follows from the constraints found at dimension one, i.e. habc = Habc and gabc = 0.

In the type IIB case the dimension 3
2 Bianchi identities are

Tαiβj
dTbc

βj = 2Rαi[bc]
d , (A.69)

∇aTβiγj
δk − 2∇(βiT|a|γj)

δk + 2Ta(βi
ǫlTγj)ǫl

δk

−Tβiγj
ǫlTaǫl

δk − iδijγ
e
βγTea

δk = 2Ra(βiγj)
δk . (A.70)

The first gives again the dimension 3
2 component of the curvature as

Rαibcd =
i

2
(γbψcd)αi − i(γ[cψd]b)αi . (A.71)

Eq. (A.70) with i = j = k is the same as in the type I case and the solution is therefore

(note that in the type IIB case gabc = 0 and habc = Habc)

∇αiHabc = 3i(γ[aσ
3ψbc])αi , (A.72)

i(γbψab)αi = 2∇aχαi +
1

4
(γbcσ3χ)αiHabc . (A.73)

The remaining components of the Bianchi identity are

−2∇(β1T|a|γ1)
δ2 − Tβ1γ1

ǫ1Taǫ1
δ2 − iγeβγTea

δ2 = 0 , (A.74)

−2∇(β2T|a|γ1)
δ2 + Taγ1

ǫ2Tβ2ǫ2
δ2 +Rγ1aβ2

δ2 = 0 , (A.75)

and the same with indices 1 and 2 interchanged. Eq. (A.75) gives

∇α2Sβ1γ2 = δγαSβ1δ2χ2
δ + Sβ1γ2χ2

α − Sβ1δ2γaαδ(γaχ
2)γ − 2i(γab)γαψ

β1
ab ,

∇α1Sβ1γ2 = δβαSδ1γ2χ1
δ + Sβ1γ2χ1

α − Sδ1γ2γaαδ(γaχ
1)β + 2i(γcd)βαψ

γ2
cd . (A.76)

Eq. (A.74) is then automatically satisfied.

It remains to analyze the consequences of the dimension one conditions on ∇αiχβj

in (A.43) and (A.44). Applying ∇γk and symmetrizing the derivatives we get, for i = j = k,

the same condition as in the type I case but now not for one Xa but two vectors Xa ±Ka

∇α1(Xa +Ka) =
1

2
(γbγa∇bχ)α1 + (γaγ

bχ)α1(Xb +Kb)
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+
1

48
(γaγ

bcdσ3χ)α1Hbcd +
1

8
(γbcσ3χ)α1Habc , (A.77)

∇α2(Xa −Ka) =
1

2
(γbγa∇bχ)α2 + (γaγ

bχ)α2(Xb −Kb)

+
1

48
(γaγ

bcdσ3χ)α2Hbcd +
1

8
(γbcσ3χ)α2Habc . (A.78)

The remaining equations involve ∇(γ1∇α1)χβ2 and ∇(γ1∇α2)χβ1 giving

−iγaαγ∇aχβ2 + T δ1
α1γ1∇δ1χβ2 +

1

4
Rα1γ1

cd(γcdχ)β2 −
i

8
(γa∇(γ1S12γa)α)β = 0 , (A.79)

1

4
Rγ1α2

cd(γcdχ)β1 −
i

16
(γa∇γ1S21γa)αβ +∇α2χγ1χβ1 − χγ1∇α2χβ1

+
i

2
γaγβ∇α2(Xa +Ka)−

i

24
γabcγβ ∇α2Habc = 0 , (A.80)

and the same with indices 1 and 2 interchanged. Using the results derived so far it is easy

to check that the first equation is automatically satisfied while the second determines the

remaining spinor derivatives of Xa ±Ka

∇α2(Xa +Ka) = ∇aχα2 +
1

8
(γbcσ3χ)α2Habc +

1

8
(γaSχ)α2 , (A.81)

∇α1(Xa −Ka) = ∇aχα1 +
1

8
(γbcσ3χ)α1Habc +

1

8
(γaSχ)α1 . (A.82)

This completes the solution of the dimension 3
2 torsion Bianchi identities. Imposing the

Bianchi identity for the 3-form gives no new constraints.

Dimension 2. The type I Bianchi identities at dimension two read

R[abc]
d = 0 , ∇αTbc

δ + 2∇[bTc]α
δ + 2T[b|α|

βTc]β
δ + Tbc

βTβα
δ = Rbcα

δ . (A.83)

Using the above results for the lower dimensional components the latter becomes

∇αψ
δ
ab =

1

4
(γcd)α

δ

[

Rab
cd −∇[ahb]cd +

1

2
hac

e
hbde −

1

8
gac

e
gbde +

1

8
ηc[agb]efgd

ef −
1

48
ηacηbdgefgg

efg

]

+
1

48
(γcdef )α

δ
[

habcgdef − 2ηc[a∇b]gdef + 3ηc[ahb]d
g
gefg

]

−
1

192
(γcdefgh)α

δ
ηc[agb]degfgh

+
1

128
(γabcdef )α

δ
g
cd

gg
efg − ψab

δ
χα − δ

δ
αψabχ+ (γc

ψab)α(γcχ)
δ
. (A.84)

Multiplying this with γbβδ and using the dimension 3
2 constraint on the gamma-trace of ψab

in (A.64) as well as the other lower dimension constraints gives some of the equations of mo-

tion. Let us also use the Bianchi identitiy for the 3-form H which, as we have seen, lead to

gabc = 0, habc = Habc. We then obtain the equations of motion (3.36) and (3.37). The final

equation of motion comes from evaluating ∇(α∇β)Xa using the consequences of the dimen-

sion 3
2 constraint. Setting gabc = 0 this gives the equation (3.38) for the divergence of Xa.

In the type IIB case the dimension 2 Bianchi identities are

R[abc]
d = 0 , ∇αiTbc

δj +2∇[bTc]αi
δj +2T[b|αi|

βkTc]βk
δj +Tbc

βkTβkαi
δj = Rbcαi

δj . (A.85)
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The latter gives

∇αiψ
δj
ab = −1

4
σ3
ij(γ

cd)α
δ∇[aHb]cd +

1

4
(γ[a∇b]S)αiδj +

1

8
δij(γ

cd)α
δHaceHbd

e − 1

4
Rab

cdδij(γcd)
δ
α

+
1

32
(γcdσ3γ[aS)αiδjHb]cd −

1

32
(γ[aSγcdσ3)αi

δjHb]cd −
1

32
(γ[aSγb]S)αiδj

− 1

2
δijδ

δ
αψabχ− 1

2
σ3
ijδ

δ
αψabσ

3χ− 1

2
ψ
δj
abχαi −

1

2
(σ3ψab)

δj(σ3χ)αi

+
1

2
(γcψab)αi(γcχ)

δj +
1

2
(γcσ3ψab)αi(γcσ

3χ)δj . (A.86)

Multiplying this with γaβδ and using the dimension 3
2 constraint (A.73) on γaψab as well as

the lower dimension constraints we get

δijγ
a
αβ∇bXa +

1

2
δijγ

c
αβK

aHabc −
1

4
σ3
ijγ

c
αβ(∇aHabc − 2XaHabc)

+σ3
ijγ

a
αβ∇bKa +

1

6
σ3
ijγ

cde
αβ ∇[bHcde] −

1

8
(γb∇aSγa)αiβj +

1

8
(γbSγa)αiβjXa

+
1

8
(γbSσ3γa)αiβjKa −

1

8
δijγ

a
αβHacdHb

cd − 1

4
Rab

cdδij(γ
aγcd)βα

+
1

192
(γbSγcdeσ3)αiβjHcde+

1

16
(γcSγdσ3)αiβjHbcd−

1

64
(γcdσ3γbSγa)αiβjHacd

− 1

64
(γaSγbSγa)αiβj −

i

8
(γbSχ)αiχβj −

i

8
(γbSσ3χ)αi(σ

3χ)βj −
1

2
δijγ

a
αβψabχ

−1

2
σ3
ijγ

a
αβψabσ

3χ− 1

4
(γbψcd)αi(γ

cdχ)βj +
1

4
(γbσ

3ψcd)αi(γ
cdσ3χ)βj = 0 , (A.87)

which implies the equations (3.39) and (3.42)–(3.45).

In addition, we have the consistency conditions that come from applying two sym-

metrized spinor derivatives to a dimension 1 superfield and using the dimension 3
2 con-

straints. Doing this on the equations for the spinor derivative of Habc and S gives nothing

new, but from the equations for the derivative of Xa and Ka we get

− i

4
(γa(1+σ3))αiβj

[

∇b(Xb +Kb)−2(Xb+Kb)(Xb+Kb)+
1

12
HbcdHbcd−

1

256
Tr(SγbSγb)

+ iχγb(1 + σ3)∇bχ− i

24
χγbcd(1 + σ3)χHbcd

]

+ . . . = 0 , (A.88)

− i

4
(γa(1−σ3))αiβj

[

∇b(Xb−Kb)−2(Xb−Kb)(Xb−Kb)+
1

12
HbcdHbcd−

1

256
Tr(SγbSγb)

+ iχγb(1− σ3)∇bχ+
i

24
χγbcd(1− σ3)χHbcd

]

+ . . . = 0 , (A.89)

where the ellipsis denotes terms that vanish upon use of the other equations of motion.

These give the remaining equations of motion for the bosonic superfields (3.40) and (3.41).

The Bianchi identity for the 3-form gives no new constraints.

Dimension 5

2
. The highest component of the type I torsion Bianchi identity reads

∇[aTbc]
α − T[ab

βTc]β
α = 0 . (A.90)
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It gives the Bianchi identity for the gravitino field strength

∇[aψ
α
bc] +

1

8
(γdeψ[ab)

α hc]de −
1

48
(γdef [aψbc])

α gdef = 0 . (A.91)

The condition coming from the symmetrized spinor derivative of ψab using the dimension
3
2 constraint on ∇αψab gives an equation for ∇αRab

cd. The latter is more easily obtained

from the curvature Bianchi identity (3.5) and reads

∇αRab
cd = −i(γ[a∇b]ψ

cd)α − i(γ[c∇d]ψab)α − i

8
(γefγ[aψ

cd)αhb]ef − i

8
(γefγ

[cψab)αh
d]ef

+ i(γeψ
[c
[a)αhb]

d]e − i

48
(γefg[aγb]ψ

cd)αg
efg − i

16
(γcdefgψab)αgefg

− i

16
(γef [cψab)αg

d]
ef − i

4
(γef [aψb]

[c)αg
d]ef +

i

12
(γefgψ[a

[c)αδ
d]
b] gefg . (A.92)

Similarly, in the type IIB case we find

∇[aψ
αi
bc] +

1

8
(γdeσ3ψ[ab)

αi Hc]de +
1

8
(Sγ[aψbc])

αi = 0 , (A.93)

∇αiRab
cd = −i(γ[a∇b]ψ

cd)αi − i(γ[c∇d]ψab)αi −
i

8
(γefγ[aσ

3ψcd)αiHb]ef − i

8
(γefγ

[cσ3ψab)αiH
d]ef

+ i(γeσ
3ψ[c

[a)αiHb]
d]e +

i

8
(γ[aSγb]ψcd)αi +

i

8
(γ[cSγd]ψab)αi +

i

4
(γ[aSγ[cψb]

d])αi

− i

4
(γ[cSγ[aψb]

d])αi . (A.94)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245

[INSPIRE].

[2] M.T. Grisaru, P.S. Howe, L. Mezincescu, B. Nilsson and P.K. Townsend, N = 2 superstrings

in a supergravity background, Phys. Lett. B 162 (1985) 116 [INSPIRE].

[3] P.S. Howe and P.C. West, The complete N = 2, D = 10 supergravity,

Nucl. Phys. B 238 (1984) 181 [INSPIRE].

[4] J.A. Shapiro and C.C. Taylor, Superspace supergravity from the superstring,

Phys. Lett. B 186 (1987) 69 [INSPIRE].

[5] N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor

formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160] [INSPIRE].
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