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Abstract 

We present a new form of K-Symmehy transformations for D-branes in which the dependence on 

the Born-Infeld field strength is expressed as a relative rotation on the left- and right-moving fields 

with opposite parameters. Then, we apply this result to investigate the supersymmetry preserved 

by certain intersecting brane configurations at arbitrary angles and with non-vanishing constant 

Born-Infeld fields. We also comment on the covariant quantization of the D-brane actions. 

@ 1997 Elsevier Science B.V. 

PACS: 11.25.-w; 11.27.+d; 11.3O.Pb 
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1. Introduction 

It is well known that the covariant formulation of superstrings [ 1 ] and supermem- 

branes [2] is based upon a special fermionic gauge symmetry on the world-volume 

which is called K-symmetry. Upon gauge-fixing this K-symmetry, the global target space 

supersymmetry combines with a special field-dependent K-transformation into a global 

world-volume supersymmetry. This world-volume supersymmetry guarantees the equal- 

ity of bosonic and fermionic degrees of freedom on the world-volume. This close 

relationship between K-symmetry and supersymmetry can be applied to determine the 

fraction of space-time supersymmetry preserved by certain single bosonic string and 
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membrane configurations (see, e.g., Ref. [ 31). A recent development has been the 

construction of K-symmetric non-linear effective actions and/or equations of motion 

for D-branes [4-71 and the MS-brane [ 8-101 complementing the K-symmetric super- 

string and M2-brane [ 1,2]. In these new cases, there is again a close relation between 

K-symmetry and supersymmetry which leads to an equality of bosonic and fermionic de- 

grees of freedom. We will apply this relation to investigate the supersymmetry preserved 

by certain single bosonic D-brane and M-brane configurations. 

Apart from the single-brane configurations, in many applications of superstring du- 

alities a central role is played by intersecting-brane configurations that preserve an, 

in general smaller, fraction of the vacuum space-time supersymmetry. The allowed in- 

tersections depend on the world-volume field content of the branes involved in the 

intersection [ 111. The effective action of an intersecting configuration is expected to 

be a non-Abelian generalization of the single brane actions. In the linearized limit, this 

action becomes that of a coupled system with (non-Abelian) vector, tensor and matter 

multiplets. For example, if the branes involved in the intersection are D-branes, the 

effective theory is a Yang-Mills theory coupled to matter. In the “Abelian” limit the 

effective action of an intersecting brane configuration reduces to a non-linear action 

similar to that of a single brane. 

All known K-symmetry transformations of brane actions take the form 

@=(l+r)K, (1) 

where ~9 is a space-time spinor depending on the world-volume coordinates CT, K(U) is 

the parameter of the K-transformation and r is a hermitian traceless product structure, 

i.e. 

trT=O, r= = 1. (2) 

The expression for r depends on the embedding map X from the world-volume of the 

brane into space-time, and for D-branes is non-linear in 

F=F-B, (3) 

where F is the Born-Infeld (BI) 2-form field strength and B is the background NS-NS 

2-form gauge potential. 

In this paper we shall show that the non-linear dependence of r on F can be expressed 

as 

r = e-@rf p/2 
(0) ’ 

where a = a(F) contains all the dependence on the BI field and rio) (which de- 

pends only on X) is also a hermitian traceless product structure (i.e. tr Tlo, = 0 and 

(r;,,)’ = 1). In this new form of r, the proof that r is a hermitian traceless product 

structure is straightforward. As another application we shall use (4) to investigate the 

supersymmetry preserved by intersecting brane configurations. 
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The classical D-brane actions have in addition to world-volume K-symmetry also a 

32-component space-time supersymmetry. As we shall see for single bosonic brane- 

probe configurations,* the fraction of the supersymmetry preserved is determined by 

the number of solutions of the following equation: 3 

(1 -r)E=o, (5) 

where E is the space-time supersymmetry parameter. For brane probes this is the only su- 

persymmetry condition that arises. However, for supergravity configurations with branes 

as sources (that is, for BI Dp-brane actions coupled to the supergravity action), the 

above condition must be complemented with the usual Killing spinor equation of the 

supergravity theory. In all cases that we know of the supergravity Killing spinor equation 

implies the above condition. 4 

Several methods can be used to find the fraction of supersymmetry preserved by 

intersecting brane configurations. In this paper we shall apply (5) to investigate the 

supersymmetry preserved by such configurations. For this we shall introduce the pro- 

jection (5) for each brane involved in the intersection and then we shall examine the 

compatibility of all the projections. One of the advantages of this method is that all 

intersections can be treated in a unified way. To simplify the computation, we shall first 

assume that all the branes involved in the intersection are probes propagating in the 

D = 10 Minkowski space-time. In this case, we shall find that one can take the BI fields 

associated with the D-branes and M-branes to be constant rather than zero. For vanish- 

ing BI fields, we shall reproduce all the known results for the allowed supersymmetric 

intersecting brane configurations. 

Next we shall briefly comment on D-branes in their appropriate supergravity back- 

ground. The matching of the supergravity solution to the source necessitates that the 

BI field of the brane must vanish if the supergravity solution does not contain a non- 

vanishing NS-/NS 2-form gauge potential. 

There are some limitations to the above method for determining the fraction of super- 

symmetry preserved by intersecting brane configurations. One is that we are considering 

Abelian BI-type effective actions despite the fact that the full effective theory is expected 

to be non-Abelian. The non-Abelian case corresponds to configurations of coincident 

branes. Such configurations will not be considered in this paper. We have also ignored 

parts of the effective action; for example in intersections involving D-branes, we have 

not taken into account the matter multiplets that are associated with open strings ending 

at two different D-branes involved in the intersection. Nevertheless, the results of our 

paper apply in the “Abelian” limit of the full theory. 

The organization of this paper is as follows. In Section 2 we shall review the action 

and K-symmetry transformations of Dp-branes. In Section 3 we derive the new form of 

2 In this paper we define brane probes as solutions of the world-volume action for fixed target space 

background. 

3 The same condition has been derived in the boundary state formalism [ 12,131. 

4 Apparently supersymmetric solutions always have supersymmetric sources. It would be interesting to have 

a general and rigorous proof of this. 
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the K-transformations given in Eqs. ( I) and (4). In Section 4 we discuss the condition 

(5) for supersymmetric configurations. In Section 5 we shall investigate the conditions 

for intersecting D-brane probes to preserve a fraction of space-time supersymmetry. In 

Section 6 we extend our results to include M-branes. In Section 7 we comment on the 

supersymmetry preserved by supergravity/brane configurations and in Appendix A we 

shall comment on the covariant quantization of D-brane actions. 

2. D-branes and K-symmetry 

To make our discussion self-contained we briefly review here the basics of K- 

symmetry. For a more detailed discussion and our notation we refer to Ref. [ 61. Let 

G, B and 4 be the space-time metric, the NS-NS 2-form gauge potential and the dilaton, 

respectively. The bosonic Dp-brane is described by a map X from the world-volume 

-.$ (,)+r) into the d = 10 space-time M and by a 2-form BI field strength F on _&,+r); 

dF = 0 so F = dV, where V is the l-form BI gauge potential. The bosonic part of the 

effective action of a Dp-brane is 

Z, = - /dp+b [.-m~~+Ce’+~Ics] , 

where 

gij = JiXp6'jXyG 
P ’ (7) 

is the metric on &,+r) induced by the map X, (CL, v = 0, . . . ,9) are the space-time 

indicesandFij (i=l,..., (p + 1)) is the modified 2-form field strength defined in (3) 

(B in 3 is the pull-back of the NS-NS 2-form gauge potential B with X). The second 

term in (6) is a WZ term where 

10 

c = -jp” 

r=o 

is a formal sum of the RR gauge potentials Cc’). It is understood that after expanding 

the potential only the (p + 1)-form is retained. ’ The last term is only present for even 

(8) 

p (the IIA case) [ 171. Its coefficient m is the cosmological constant of massive IIA 

supergravity and Zcs is given in [ 181. 

To construct supersymmetric Dp-brane actions, we replace the maps X ({Xp}) with 

supermaps 2 = (X, 0) ({Z”}) and the various bosonic supergravity fields with the 

corresponding superfields of which they are the leading component in a e-expansion. 

The frame index A of the supervielbein decomposes under the action of the D = 10 

Lorentz group as follows: 

5 Again here we have used the same symbols to denote the space-time gauge potential and its pull-back with 

the map X. 
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A= 
(a9 a> a=0,...,9, cY=l,..., 32, for IIA, 

(9) 
(&Z,(Y) a=0 ,..., 9, 1=1,2, cu=l,..., 32, forIIB, 

where a is a d = 10 vector index and (Y is a d = 10 spinor index in the Majorana 

representation. This notation allows to treat the IIA and IIB theories in a unified way 

but it is understood that in the IIB case chiral projection operators should be inserted in 

appropriate places to reduce the Majorana spinor indices to Majorana-Weyl ones. The 

induced metric for both IIA and IIB D-branes is 

gij = EiaEjbvab 9 (10) 

where 

EiA = aiZ”EMA, (11) 

and Tab is the Minkowski (frame) metric. In what follows, we shall assume that 

det{gij} # 0, unless otherwise stated. 

The action (6) (including the fermions ) is invariant under the K-transformations [ 61 

1 

S Z”E K “=O M 9 

cY,.Z~EM~= [i?(l +r)]“, (12) 

S,K = EiASEBBBA 3 

with parameter K. 

The expression for r for any Dp-brane is [6] 

where g = det {gij}, g + F is shorthand for det( gij + ~ij) and 

The matrix T(a) is given by 

1 
T(O) = 

(P+ l)!&i 

Ei”“i’P+” yi~.,.i,,+,, . 

(13) 

(14) 

(15) 

Finally, the 32 x 32 matrices yi are defined as 

yi = Eiara , (16) 

where {Ta; a = 0,. . .9} are the space-time gamma matrices. For later use, we note that 

(rCo))2 = (_1)(P-l)(P--2)/2. (17) 

A crucial property of the K-rules, which also plays an important role in the actual 

proof of K-invariance of the Dp-brane actions, is that they must eliminate half of the 
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fermionic degrees of freedom. To see this, we remark that the total number of bosonic 

physical degrees of freedom are 8; 10 - (p + 1) are due to the scalars X and p - 1 are 

due to the BI l-form gauge potential V. In order to make the number of physical bosonic 

degrees of freedom equal to the number of fermionic ones, the K-transformations must 

eliminate exactly half of the fermionic degrees of freedom. The properties of the matrix 

r defined in ( 1) ensure that this is indeed the case: from r* = &2xs2 it follows that all 

the eigenvalues of r are + 1 or - 1. From the tracelessness it follows that it has as many 

+l as -1 eigenvalues, that is, it has 16 of each, so the projector i ( 1 + r) has 16 zero 

eigenvalues and 16 eigenvalues equal to +l. This guarantees that K-symmetry reduces 

the 32 components of 8 to 16. Due to the fact that the kinetic term of B in the BI action 

is linear in time derivatives there is a second class constraint which reduces further the 

components of B from 16 to 8. Therefore the number of bosonic and fermionic physical 

degrees of freedom are equal on the world-volume. The details of the invariance of the 

action (6) under K-transformations and the proof that r has the required properties are 

given in, e.g., Ref. [6]. 

3. K-symmetry revisited 

The main task in this section is to show that the product structure r associated with 

the Dp-brane K-transformation law can be written as given in (4). The proof is inspired 

by the work of [ 12,131 and is similar for the IIA and IIB Dp-branes. Because of this 

we shall present the IIA case in detail and only the main points of the proof for the IIB 

case. We begin by first rewriting the IIA product structure r as 

r = &qse2 
m 13jkyjkf,, po, 

’ 

where 

. . . 
3j k 

,, n ’ 

(18) 

(19) 

so “se” stands for the skew-exponential function (i.e. the usual exponential function 

with skew-symmetrized indices of the gamma matrices at every order in the expansion 

so the expansion has effectively only a finite number of terms), and 

r(O) = (rll)qrco,. (20) 

It is worth noting that 

(r;,,)’ = i . (21) 

To continue, we introduce a world-volume (p + 1)-bein, e, i.e. gik = e$?‘k7&, where 

i,k=O,. . . ,p are world-volume frame indices. Then we rewrite r as 

(22) 



E. Bergshoeff/Nuclear Physics B 502 (1997) 149-169 155 

where F in the determinant is in the frame basis. Then without loss of generality, we 

use a world-volume Lorentz rotation to write 3 as 

e 

F E i.Tgei A ek = tanh +a e” A ee + c tan qt+ e’ A eefr , 

r=l 
(23) 

where (~$0, qbr ; r = 1, . . . , l}, l = [p/2], are “angles” and {e’} = {e’, es; s = 1, . . . , p} 

is a Lorentz basis. Using this, we have 

Jr?~=(-l+tanhZ~a)1’2~(l+tan2~~)1/2 
Cl 

1 
= 

Substituting this in I’, we get 

From the definition of se, we can rewrite r as 

r = (cash 40 + sinh ~$0 #Lri 1) 

e 

x n (cos & + sin &yL ‘+erll) r;oj , 
r=l 1 

which in turn can be expressed as 

is 

(24) 

(25) 

(26) 

(27) 

= exp r;o, . (28) 

In the last step we have used the fact that (r@ri i)2 = 1 while (7’ rferr 1 I2 = - 1. It 

clear from this that the product structure r can be written as 

r = ef&r!‘rll r;,, , 
(29) 

where 

e 

YE tYgeiAeek=4 0 e” A ee + C &er A eefr . 

r=l 
(30) 
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Although we have shown this equation in a particular Lorentz frame, it holds in any 

Lorentz frame. The relation between F and Y is now 

3 = “tan”Y , (31) 

where “tan” is defined by Eq. (23) in the special Lorentz frame. The explicit expression 

of the function “tan” is in general frames more complicated but it can be always be 

found by going to the special frame as an intermediate step. 

Now let us turn to examine the product structure r associated with IIB Dp-branes. 

In this case the product structure r can be written as 

where 

is an F-independent traceless product structure. 

Following a similar computation as for the IIA Dp-branes, we find that 

(32) 

(33) 

(34) 

where F and Y are again related as in Eq. (3 1). 

Now, observing that Tlo) anticommutes with the gamma matrices that appear in the 

exponential in the expression for r we can write 

r = ,-al2rf 42 
(0) ’ 

as in Eq. (4)of the introduction, where, as we have just shown, 

- ;qkyjkr,, ) IIA ) 

a= 

;&jk(+3 @ 9’ , IIB . 

(35) 

(36) 

As an application of the new expression for r we remark that it is straightforward to 

show that r2 = 1 and trr = 0 using the above-mentioned property of the exponential, 

the cyclic properties of the trace and the analogous properties of rio,_ 

4. Supersymmetry 

We would like to derive here the condition (5) of the introduction for the fraction of 

supersymmetry preserved by a single brane from the K-symmetry transformation ( 1) . 

We remark that the known K-symmetry transformations of all M, IIA, IIB, and heterotic 

branes have the same form, so the result of this derivation applies to all these cases. 

Here we consider the type II case. Since we are interested in bosonic configurations 

that preserve a fraction of the space-time supersymmetry (i.e. we set 0 = 0 for these 
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configurations), it is enough to examine the supersymmetry transformation of the 0 field 

up to terms linear in 8. The supersymmetry and K-symmetry transformations of 0 are 

fW=(l+T)K+E, (37) 

where E is the space-time supersymmetry parameter. Assuming a gauge-fixing condition 

for K-symmetry of the form 

pe=o, (38) 

where P is a (field-independent) projection, P2 = P. The remaining non-vanishing 

components of 8 are given by ( 1 - P) 8 and the transformation (37) becomes a global 

supersymmetry transformation. The condition for preserving the gauge-fixing condition 

P&Y = ( 1 - P)?% = 0 is now equivalent to having unbroken supersymmetry. Therefore, 

the condition for unbroken supersymmetry is 

(39) 

which in turn implies the condition (1 - r) ??,“br = 0 of the introduction. 

For the IIA case, a convenient gauge-fixing condition is 

(40) 

To obtain more explicit expressions we go to a (chiral) basis in which rtt is diagonal 

split the index (Y into the pair ((~1, (~2) with opposite chiralities, LYE, (~2 = 1,. , . ,16 so 

(41) 

and similarly for K~ and ea. In this basis the above gauge-fixing condition is simply 

8”’ = 0. Since rtt anticommutes with r, in a basis that rtr is diagonal, r is off- 

diagonal, i.e. 

I- 
I-= 

P2 ( 1. r”2 PI 

(42) 

Preserving the gauge-fixing condition 8”’ = 0 in this basis &V = 0 implies 

(43) 

This leads to the (world-volume) supersymmetry transformation 

8~a2 = -razpl & + En2 , (44) 

where h = ( 1 - P)6’. For supersymmetric bosonic configurations SAa2 = 0 as well, 

which is precisely the condition ( 1 - r)E = 0. 



158 E. Bergshoeff/Nuclear Physics B 502 (1997) 149-169 

For the III3 case it is convenient to choose as a gauge-fixing condition 

(1+a3CSns*x32)e=o, (45) 

where 8 is a doublet of chiral space-time spinors. Again it is convenient to go to a basis 

in which ~3 18 432x32 is diagonal, so 

(46) 

and similarly for ~~ , eA. However, now we have to take into account the (positive) 

chirality of the spinors. Thus, which the choice of rtt matrix (41) we split the spinors 

@@, e2ts as in Eq. (41) and set to zero the negative chirality components O’*az, c92*a2 so 

el,a= (“:I) , @,a= (ey’) . 
(47) 

(The same applies to the spinors K, E.) 

In this basis, the gauge-fixing condition is simply 01,al = 0. Again, ~381 anticommutes 

with r. Therefore, in the above basis that (+3 ~34 is diagonal, r is off-diagonal as in the 

IIA case, 6 

(48) 

The supersymmetry transformation is given by 

SA~,~I = &a1 _ r*l 1 $1 
PIE 1 

where A = ( 1 - P)e. 

(49) 

It is instructive to compare this supersymmetry transformation with the one of the 

supersymmetric d = 10 Maxwell theory in Minkowski space. For this, we have to 

linearize the 9-brane supersymmetry transformation in terms of the BI field. This leads 

to 

&2.“ 1 = &a1 _ &al _ pij[yV]nlp,E*.Pl, (50) 

which reproduces the supersymmetry transformation of the usual Maxwell theory with 

parameter ??2@ when ??‘@ = e2,a as well as Volkov-Akulov-type supersymmetries. 

Finally, we note that the conditions (40) and (45) are covariant gauge-fixing con- 

ditions for the K-symmetry. This is rather different from the type IIA/IIB fundamental 

string which is plagued with a well-known covariant quantization problem. The reason 

why this distinction between the type IIA/IIB fundamental string and the Dp-branes 

occurs is explained in more detail in Appendix A. 

h Here we have restricted already r to the positive-chirality subspace. 
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5. Supersymmetric D-brane probes 

Let us consider a single D-brane probe propagating in d = 10 Minkowski space-time. 

The field equations of the probe are 

A solution of these equations is 

xi = d, i=O,l,..., p, 

X”’ = y”‘, m=p+l,..., 9, (52) 

fij = Cij 1 

where y”’ are the positions of the probe and cij are constant. 

As we have seen in the previous section, the condition for the above configuration to 

be supersymmetric is 

( 1 - e-a/=r 
(0) 

ea/= 
> 

E = 0 

where 

-gkyjkr,, IIA, 
a= 

;I;.,@3 8 yjk IIB. 
(54) 

Viewing the Dp-brane as a (p + 1) -dimensional Minkowski subspace of d = 10 

Minkowski space-time, it is clear due to the properties of r this configuration pre- 

serves l/2 of the supersymmetry of the d = 10 Minkowski vacuum. 

Next suppose that two D-brane probes with non-vanishing but constant BI field are 

placed in the d = 10 Minkowski space-time with product structures r and i;. It is 

rather involved to find the fraction of the supersymmetry preserved by a generic such 

configuration. Below we shall examine some special cases. 

5.1. Orthogonal intersections 

Suppose that two D-branes, with product structure r and f’, respectively, are inter- 

secting orthogonally, and that both BI field strengths are zero. Because of the latter 

hypothesis, a = 0, and so 

r = rio, , 

I- r = Fio, . 
(55) 

Viewing the two D-branes as (p + 1 )- and (q+ 1 )-dimensional Minkowski subspaces 

of the d = 10 Minkowski space-time, one can introduce an orthonormal basis {e,; a = 
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0 . . 3 9) in the d = 10 target space adopted to these two D-branes, i.e. the orthonormal 

basis is chosen by extending an orthonormal basis along the common directions of the 

intersection first along the relative transverse directions of the intersection and then 

along the overall transverse directions of the intersection, in the terminology of [ 111. 

Using the d = 10 gamma matrices adopted to this orthonormal basis, Tia) and F’;s, can 

be expressed as a product of gamma matrices and therefore 

rf=*fr, (56) 

If r and F commute, they can be diagonalized simultaneously and their product rp 

is also a product structure. If r # f‘, then ri; is traceless, trrf = 0, in which case 

the amount of supersymmetry preserved is l/4. Examples of orthogonally intersecting 

D-brane configurations preserving l/4 of the supersymmetry are those with four or 

eight relative transverse directions in agreement with [ 14,151. If r = f’, then the two 

Dp-branes are parallel and the fraction of supersymmetry preserved is l/2. 

However, if r and f anticommute, imposing (53) separately for each D-brane leads 

to the breaking of all space-time supersymmetry (however, see also Ref. [ 161) . 

5.2. Branes intersecting at angles 

Another special case is that of two intersecting Dp-branes at an arbitrary angle in 

d = 10 Minkowski space-time with the 2-form BI field vanishing [ 12,13,19]. 7 For each 

D-brane involved in the configuration, we can associate a d = 10 Lorentz frame; we 

may assume without loss of generality that the two orthonormal frames coincide along 

the directions of the intersection. For this, we use the assumption that each brane is 

identified with a Minkowski subspace of the d = 10 Minkowski space-time to choose 

an orthonormal basis for the world-volume directions and then extend this basis to an 

orthonormal basis for the whole d = 10 Minkowski space-time. If {e,; a = 1,. . . , 10) 

is the Lorentz frame associated with the first D-brane and {a,; a = 1,. . . , IO} is the 

Lorentz frame associated with the second D-brane, there is a Lorentz transformation A 

such that 

if, = ebAba. (57) 

This in turn implies that the gamma matrices {rO; a = 1, . . . , 10) in the frame 

{ea;a= l,..., 10) are related to the gamma matrices {To,; a = 1, . . . , 10) in the frame 

{Z,; a = 1,. . . , 10) as follows: 

(58) 

where S is an element in Spin( 1,9) that depends on A. As in the previous case of 

parallel or orthogonal D-branes, 

7 For recent results on supergravity solutions that are related to branes at angles, see Refs. [ 20-241 
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r=&, , (59) 

r = F’;@ . (60) 

However, in this case r is a product of the gamma matrices associated with the {e} 

basis while i; is a product of the gamma matrices associated with the {Z} basis. Using 

(58)) the latter product structure written in the {e} basis is 

F(Z) = S-‘T(,,S, (61) 

where the subscript denotes the basis with respect to which p is expressed and F(e) 

is again a product of gamma matrices in the {e} basis. Dropping the subscript and 

expressing both supersymmetry projection operators in the {e} basis, we get 

rE=E, (62) 

S’iX=e. (63) 

The case r = f and S # 1 was studied in [ 12,13,19] where it was shown that the 

fraction of the supersymmetry preserved is k/32, where k is the number of singlets 

of the matrix S acting on the spinors E that have the property, re = E. We remark 

that such intersecting at an angle configuration of two Dp-branes is not associated with 

Lorentz rotations A of the world-volume coordinates of a single Dp-brane. This is 

because from the definition of the product structures r = i; and S = 1, so condition 

(63) is not independent from condition (62) and the supersymmetry preserved is l/2. 

Therefore the interesting cases involve Lorentz rotations of the d = 10 space-time that 

are not Lorentz rotations of the world-volume coordinates of a single Dp-brane. In fact 

the relevant Lorentz rotations are those of the relative transverse coordinates of the 

intersecting configuration, in the terminology of [ 111. Examples of Lorentz rotations 

that have singlets acting on SO( 1,9) spinors are those that lie in the subgroups SU(n), 

1 < II < 3, Sp(2), G:! and @n(7) of SO(1,9). 

Next suppose that r # f and S # 1, then since both r and r are products of d = 10 

gamma matrices r and F either commute or anti-commute. If they commute, there is a 

basis that can be simultaneously diagonalized, i.e. 

r=(~‘P,,Sa2P~,-~‘b,,-~2b2), 

~=(S”‘p,,--6a2&,6L”b,,-~a2b2). (64) 

In this basis, only the spinors E = (P , E”*, 0,O) satisfy (62). Substituting this E into 

(63), we get 

SPZ ffl ??+ SQ(IZ = 0 ) (6.5) 

Pa, P’ + sa2,p = 0. (66) 

If det( {Sfi2,,}) # 0, the first equation can be solved for F* and after substitution 

into the second equation we get 

A‘12,, ea’ = 0 , (67) 
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where 

A”2 a, = s*,, - s”*,,(s-‘)~$*S%, . (68) 

Thus the fraction of the supersymmetry preserved is k/32 where k is the number of zero 

eigenvalues of the matrix A. Note that, since tr rp = 0, A is an 8 x 8 square matrix. 

The case det( {S p2aZ}) = 0 can be treated in a similar way. 

Now if r and f anticommute, there is a basis such that 

a 0 
r= 0 -1 ’ ( > 

0 II 
T(e) = u o 1 ( > (69) 

where ll is a 16 x 16 unit square matrix and U is a diagonal 16 x 16 matrix with U2 = 8. 

Note that there is a matrix V such that 

F=V-‘DV, (70) 

where D is a diagonal matrix with D2 = i and tr D = 0. Since now D and r commute, 

we can examine this case by repeating the steps of the previous case after setting 

S ---) KS. In particular, the fraction of the supersymmetry preserved is k/32 where k are 

the number of zero eigenvalues of the matrix A defined in (68), after replacing S with 

vs. 

5.3. Branes intersecting at angles with BZ$elds 

It remains to investigate the case of intersecting D-branes with non-vanishing constant 

BI field F. As we have seen in the previous section the effect that a non-vanishing BI 

field has on the supersymmetry projection of a D-brane is to rotate it. In this respect 

the situation is similar to the one examined above but there is an important difference. 

The rotation induced by the BZ field on the D-brane product structure is a relative 

rotation of the left- and right-moving$elds. More explicitly, we deduce from the form 

of the exponential in (29) (IIA) and (34) (IIB) that the dependence of the BI field 

is induced by a Lorentz rotation that acts differently on the two 16-component (left- 

and right-moving) K-symmetry parameters. In the IIA case this is due to the fact that 

the exponential has a rtt that multiplies the standard generator of Lorentz rotations 

in the spinor representation. In the IIB case the different behaviour of the left- and 

right-moving fields is due to the presence of the (~3 matrix in the exponential. 

Intuitively, it is clear that the dependence on the BI field cannot be written as a 

Lorentz rotation that acts the same on the left- and right-moving fields. We recall that 

the BI field is a non-linear generalization of the Maxwell field on the world-volume 

of the D-branes. Now if the only effect that it has is to induce a Lorentz rotation, it 

would mean that by changing Lorentz frame one could set the BI field equal to zero. 

This would have been a contradiction since the Maxwell equations are Lorentz invariant 
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and if the Maxwell field is non-zero in one Lorentz frame it is non-zero in any Lorentz 

frame. 

Nevertheless, the supersymmetry conditions for two intersecting D-branes in d = 10 

Minkowski space-time can be written as 

r @PE = eGc 7 

e --ii/2 f ev2E = E . 
(71) 

Now if the two D-branes intersect at a angle, then as before we introduce two d = 10 

Lorentz frames one for each D-brane. Then there is a d = 10 Lorentz transformation, A, 

as in (61), that relates the d = 10 gamma matrices adopted to one frame to the gamma 

matrices adopted to the other frame. Rewriting (71) in the same basis, we get 

r’ 
(0) 

ea/zE = e@6 , 

s-1 e-a/2p;o,e~12& = e , (72) 

where S is induced by A and Tlo, and i;[,, are expressed in the same basis. Next, let 

us set 

7 = en12E, 

Then (72) can be rewritten as 

(73) 

qo,rl = 77 (74) 

T-‘T;,,T?7 =q, (75) 

where 

T = c”12S e-a/z (76) 

To investigate the fraction of supersymmetry preserved by two D-branes intersecting at 

angles with non-vanishing BI fields, we remark that (74), (75) is the same as (62), 

(63) after setting 

T-S. (77) 

Therefore the methods developed in the previous subsection to examine the fraction 

of supersymmetry preserved by two intersecting D-branes at an angle without BI fields 

also apply to this case. 

6. Supersymmetric M-brane probes 

The K-symmetry transformation for the MS-brane, in the form given in [ 81, is 

68= (1 +r)K, (78) 

where 
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The metric g is the induced metric and h is a self-dual 3-form world-volume field. 

Observe that r and r(e) are traceless hermitian product structures, 

As we have already mentioned in Section 2, the supersymmetry preserved by a M5- 

brane probe is 

(1 -r)E=o, (81) 

where E is the supersymmetry parameter. As in the case of D-branes, I’ can be written 

as 

r = e-~T(oj = e-iar(u)efa, (82) 

where 

a = -  & hijkyijk . (83) 

Note that a2 = 0 due to the self-duality of h. 

Although the product structure r is easily written in the form given above, the depen- 

dence on h has no straightforward geometric interpretation as a kind of rotation since 

the exponential in (82) is cubic in the world-volume gamma matrices. Nevertheless, 

one can repeat the analysis of Section 3 to find the fraction of supersymmetry preserved 

by a configuration of intersecting MS-brane probes. A single MS-brane probe preserves 

l/2 of the supersymmetry of D = 11 vacuum with or without a non-vanishing h. 

To investigate the supersymmetry preserved by two intersecting MS-brane probes at 

an angle with constant field h, we can again proceed as in the case of D-branes. For this, 

we introduce two Lorentz frames, {e} and {Z} adopted to each MS-brane involved in 

the intersection, and a D = 11 Lorentz transformation, A, such that E, = eb Aba. Then, 

there is a S E @in( 1, lo), S = s(n), such that 

Qu, = s-l T(O)S . (84) 

Using this, we can write both supersymmetry conditions in the same D = 11 gamma 

matrix basis as follows: 

rco, ear2e = e 42 
E , 

S-l e-a12r(o) e”12Se = E. 

(85) 

(86) 

Next setting 

7 = eaf26, (87) 

the supersymmetry conditions can be rewritten as 
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rco,rl = 7) (88) 

T-‘T(o)Tq = q , (89) 

where 

T = @/2S e-d2 (90) 

which is of the form (74), (75). Because of this, the general analysis for D-branes 

applies in this case as well and so we shall not repeat it here. 

As an example let us consider the intersection of two MS-branes on a string [ 201. 

Let us suppose that a = Z = 0. The rotation A involved in this case is an element of 

Sp (2) c SO( 1,lO). The spinor representation of SO( 1,lO) decomposed as represen- 

tation of Sp(2) has 6 singlets and the fraction of the supersymmetry preserved by such 

configuration is 3/ 16. 

This method of finding the fraction of supersymmetry preserved by intersecting M5- 

branes configurations can be easily extended to intersecting configurations involving 

MZbranes as well. For example, the supersymmetry conditions for a M2-brane/MS- 

brane intersecting configuration at an angle are 

T(O)E = 6 9 

s-1 @/2QO) @‘/2SE = E , (91) 

where 

1 
- -Eili2i3Yi,Yi2Yi3 

r(o) - 3!JJ 
(92) 

is the product structure associated with the M2-brane, and f(c) is the product structure 

associated with the MS-brane as given in (79), (80) (both expressed in the same 

basis). Finally, the supersymmetry conditions for a M2-brane/M2-brane intersecting 

configuration at an angle are 

i 

r(O)E = E 9 

s-V(O)SE = E ) 

where T(u) is the product structure associated with one of the MZbranes. 

7. Supergravity backgrounds 

(93) 

We briefly consider the coupled D-brane/supergravity equations. The supergravity 

solution corresponding to Dp-branes in the string frame is 
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(94) 

\ Fp+2 = w(IE(‘~~)) A dH-’ , 

where w is the volume form of lE(‘,P) and 

H = H(Y - YO> (95) 

is a harmonic function of @9-J’). The embedding X of the world-volume into the 

space-time is specified by identifying the world-volume coordinates of the Dp-brane 

with lE(‘,P), i.e. 

i 

X’ = J, 

(96) 
X” = yo”. 

where yn is the position of the harmonic function H. It is straightforward to see that 

the BI field must vanish by examining the field equation of the NS-NS 2-form gauge 

potential. 

It remains to compare the supergravity Killing equation with the world-volume su- 

persymmetry condition (5). The solution of the Killing spinor equation is 

E = H-45 (97) 

for constant ,.$ and 

(1 -n)c=o, (98) 

where 

17= uxet’rb...r,, 

i 

IIA , 

(~rs)%~@r~...~~, IIB. 
(99) 

Using the solution (94) and (96), we find that r = Z7. 

It is natural to extend the above analysis to the case of intersecting brane configura- 

tions. For orthogonally intersecting ones, we find that the BI field must vanish for each 

brane separately. This is also the case for all intersecting brane configurations (even for 

those that intersect at angles) with vanishing NS-NS 2-form gauge potential. 

Finally, as for the single brane the conditions for supersymmetry derived from the 

supergravity Killing spinor equations are compatible with those found in Section 5. 
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Appendix A. K-symmetry and covariant quantization 

The K-symmetry is an example of an injirzite~y reducible gauge symmetry because the 

sequence of shifts KO -+ ( 1 - ~)KI , KI  -+ ( 1 + ~)KZ . . . hVeS the K-transformations 

(12) unchanged. This is a property of all branes. However, as far as the covariant 

quantization is concerned, there is a distinction between the type II fundamental string 

and the D-branes. This is because the only covariant gauges that we can pick are 

rile = 4x9, IIA , 

a3@‘n32x320=* 0, IIB. 

(A.11 

Under K-symmetry the variation of the action is given by the following expression 

[4-61 

S S= K 
s 

dP+‘a8 eA= K 
I 

dP+‘aZ(l +r)A=O. (A.2) 

Here A = ( 1 - T)W. This variation can be presented as consisting of two parts: one due 

to the variation of 8P and the other, due to variation of 8( 1 - P): 

= dP+‘~ii(l+Z7PA+ dPfl,ii(l+r)(l-P)A. (A.31 

Assume that we choose the gauge 8P = 0 and do not vary 8P anymore. The variation 

of the action under the transformations of the remaining part of 8, which is given by 

88( 1 - P) should not vanish anymore. This would mean that the gauge symmetry 

is gauge fixed, the action does not have a symmetry anymore. Thus we have to find 

whether 

S,Ss.f. =S;S= dPfl,Z(l+r)(l -P)A 
s 

vanishes or not. We observe that 

(A.4) 

&&r.= dp+‘gZ(l+r)(l-P)(l-T)W. 
s 

(A.5) 
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This explains why the issue of commutativity (non-commutativity) of the projector 

P with r becomes so important. Indeed, if they commute, 

[P,rl =o, 

the action still has a local symmetry since 

&&.f. = 
I 

dp+‘aK(l+r)(l-P)(l-r)p 

= dP+taii(l+r)(l-r)(l-P)~=o, J 
and therefore QP = 0 is not an admissible gauge condition, 

mute, 

{PJ} =o, 

then 

8&f.= dp+‘c+ii(l+r)(l-P)(l-T)w. 
s 

=- 
I 

d”+&(l +r)(l +r)Pp # 0, 

(A.6) 

(A.7) 

However, if they anticom- 

(A.8) 

(A.9) 

the action is not gauge-symmetric anymore, the gauge-fixing condition is admissible. 

For the fundamental GS string the K-symmetry is given by 

M=Z(l+r>, r = T(a) at p = 1 . (A.lO) 

This expression for r is proportional to rarb and therefore it commutes with P = 

i( 1 + ri 1) in the IIA case and with P = i( 1 + ~3 @ 1) in the IIB case. These would 

be Lorentz covariant gauges for the fundamental string, and as we see here, they are 

not acceptable. This is the well known covariant quantization problem of the IIA/IIB 

fundamental string. 

On the other hand, we have found that for all D-branes the relevant r anticommute 

with Lorentz covariant gauge-fixing projectors above. The gauges are acceptable since 

the remaining action is not gauge symmetric. This explains the existence of the covariant 

gauges for D-branes which were found in Ref. [ 51. 
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