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Universality in Random Systems
Universality in complex random systems is a striking
concept which has played a central role in the direction
of research within probability, mathematical physics and
statistical mechanics. In this article we will describe how
a variety of physical systems and mathematical models,
including randomly growing interfaces, certain stochas-
tic PDEs, traffic models, paths in random environments,
and random matrices all demonstrate the same universal
statistical behaviors in their long-time/large-scale limit.
These systems are said to lie in the Kardar-Parisi-Zhang
(KPZ) universality class. Proof of universality within these
classes of systems (except for random matrices) has re-
mained mostly elusive. Extensive computer simulations,
nonrigorous physical arguments/heuristics, some labora-
tory experiments, and limited mathematically rigorous
results provide important evidence for this belief.
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The last fifteen years have seen a number of break-
throughs in the discovery and analysis of a handful
of special integrable probability systems which, due to
enhanced algebraic structure, admit many exact com-
putations and ultimately asymptotic analysis revealing
the purportedly universal properties of the KPZ class.
The structures present in these systems generally origi-
nate in representation theory (e.g. symmetric functions),
quantum integrable systems (e.g. Bethe ansatz), alge-
braic combinatorics (e.g. RSK correspondence), and the
techniques in their asymptotic analysis generally involve
Laplace’s method, Fredholm determinants, or Riemann-
Hilbert problem asymptotics.

This article will focus on the phenomena associated
with the KPZ universality class [4] and highlight how
certain integrable examples expand the scopeof and refine
the notion of universality. We start by providing a brief
introduction to the Gaussian universality class and the
integrable probabilistic example of random coin flipping
and the random deposition model. A small perturbation
to the random deposition model leads us to the ballistic
deposition model and the KPZ universality class. The
ballistic deposition model fails to be integrable; thus to
gain an understanding of its long-time behavior and that
of the entire KPZ class, we turn to the corner growth
model. The rest of the article focuses on various sides
of this rich model: its role as a random growth process,
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its relation to the KPZ stochastic PDE, its interpretation
in terms of interacting particle systems, and its relation
to optimization problems involving paths in random
environments. Along the way, we include some other
generalizationsof this processwhose integrability springs
from the same sources. We close the article by reflecting
upon some open problems.

A survey of the KPZ universality class and all of
the associated phenomena and methods developed or
utilized in its study is far too vast to be provided
here. This article presents only one of many stories and
perspectives regarding this rich area of study. To even
provide a representative cross-section of references is
beyond this scope. Additionally, though we will discuss
integrable examples, we will not describe the algebraic
structures and methods of asymptotic analysis behind
them (despite their obvious importance and interest).
Some recent references which review some of these
structures include [2], [4], [8] and references therein. On
the more physics oriented side, the collection of reviews
and books [1], [3], [5], [6], [7], [8], [9], [10] provides some
idea of the scope of the study of the KPZ universality
class and the diverse areas upon which it touches.

We start now by providing an overview of the general
notion of universality in the context of the simplest
and historically first example—fair coin flipping and the
Gaussian universality class.

Gaussian Universality Class
Flip a fair coin 𝑁 times. Each string of outcomes (e.g.
head, tail, tail, tail, head) has equal probability 2−𝑁. Call𝐻 the (random) number of heads and let ℙ denote the
probability distribution for this sequence of coin flips.
Counting shows that

ℙ(𝐻 = 𝑛) = 2−𝑁(𝑁𝑛).
Since each flip is independent, the expected number of
heads is𝑁/2. Bernoulli (1713) proved that𝐻/𝑁 converges
to 1/2 as 𝑁 goes to infinity. This was the first example
of a law of large numbers. Of course, this does not mean
that if you flip the coin 1,000 times, you will see exactly
500 heads. Indeed, in𝑁 coin flips one expects the number
of heads to vary randomly around the value 𝑁/2 in the
scale √𝑁. Moreover, for all 𝑥 ∈ ℝ,

lim𝑁→∞ℙ(𝐻 < 12𝑁+ 12√𝑁𝑥) = 𝑥∫
−∞

𝑒−𝑦2/2
√2𝜋 𝑑𝑦.

DeMoivre (1738), Gauss (1809), Adrain (1809), andLaplace
(1812) all participated in the proof of this result. The lim-
iting distribution is known as the Gaussian (or sometimes
normal or bell curve) distribution.

A proof of this follows from asymptotics of 𝑛!, as
derived by de Moivre (1721) and named after Stirling
(1729). Write

𝑛!= 𝛤(𝑛+ 1) = ∞∫
0
𝑒−𝑡𝑡𝑛𝑑𝑡 = 𝑛𝑛+1 ∞∫

0
𝑒𝑛𝑓(𝑧)𝑑𝑧

where 𝑓(𝑧) = log𝑧 − 𝑧 and the last equality is from the
change of variables 𝑡 = 𝑛𝑧. The integral is dominated, as 𝑛
grows, by the maximal value of 𝑓(𝑧) on the interval [0,∞).
This occurs at𝑧 = 1, thus expanding 𝑓(𝑧)≈−1− (𝑧−1)22 , and
plugging this into the integral yields the final expansion𝑛!≈ 𝑛𝑛+1𝑒−𝑛√2𝜋/𝑛.

This general route of writing exact formulas for prob-
abilities in terms of integrals and then performing
asymptotics is quite common to the analysis of inte-
grable models in the KPZ universality class, though those
formulas and analyses are considerably more involved.

The universality of the Gaussian distribution was not
broadly demonstrated until work of Chebyshev, Markov,
and Lyapunov around 1900. The central limit theorem
(CLT) showed that the exact nature of coin flipping
is immaterial—any sum of independent identically dis-
tributed (iid) random variables with finite mean and
variance will demonstrate the same limiting behavior.

Theorem 1. Let 𝑋1,𝑋2,… be iid random variables of finite
mean 𝑚 and variance 𝑣. Then for all 𝑥 ∈ ℝ,

lim𝑁→∞ℙ( 𝑁∑𝑖=1𝑋𝑖 < 𝑚𝑁+𝑣√𝑁𝑥) = 𝑥∫
−∞

𝑒−𝑦2/2
√2𝜋 𝑑𝑦.

Proofs of this result use different tools than the exact
analysis of coin flipping, and much of probability theory
deals with the study of Gaussian processes which arise
through various generalizations of the CLT. The Gaussian
distribution is ubiquitous, and, as it is the basis for much
of classical statistics and thermodynamics, it has had
immense societal impact.

Random versus Ballistic Deposition
The random deposition model is one of the simplest
(and least realistic) models for a randomly growing one-
dimensional interface. Unit blocks fall independently and
in parallel from the sky above each site of ℤ according
to exponentially distributed waiting times (see Figure 1).
Recall that a random variable 𝑋 has exponential distribu-
tion of rate 𝜆 > 0 (or mean 1/𝜆) if ℙ(𝑋 > 𝑥) = 𝑒−𝜆𝑥. Such
random variables are characterized by the memoryless
property—conditioned on the event that 𝑋 > 𝑥,𝑋−𝑥 still
has the exponential distribution of the same rate. Con-
sequently, the random deposition model is Markov—its
future evolution depends only on the present state (and
not on its history).

The random deposition model is quite simple to ana-
lyze, since each column grows independently. Let ℎ(𝑡, 𝑥)
record the height above site 𝑥 at time 𝑡 and assumeℎ(0, 𝑥) ≡ 0. Define random waiting times 𝑤𝑥,𝑖 to be the
time for the 𝑖-th block in column 𝑥 to fall. For any 𝑛, the
event ℎ(𝑡, 𝑥) < 𝑛 is equivalent to ∑𝑛𝑖=1 𝑤𝑥,𝑖 > 𝑡. Since the𝑤𝑥,𝑖 are iid, the law of large numbers and central limit
theory apply here. Assuming 𝜆 = 1,

lim𝑡→∞
ℎ(𝑡, 𝑥)𝑡 = 1 and lim𝑡→∞

ℎ(𝑡, 𝑥) − 𝑡𝑡1/2 ⇒ 𝑁(𝑥)
jointly over 𝑥 ∈ ℤ, where {𝑁(𝑥)}𝑥∈ℤ is a collection of iid
standard Gaussian random variables. The top of Figure 2
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(a) (b)

(c) (d)

Figure 1. (A) and (B) illustrate the random deposition
model, and (C) and (D) illustrate the ballistic
deposition model. In both cases, blocks fall from
above each site with independent exponentially
distributed waiting times. In the first model, they
land at the top of each column, whereas in the
second model they stick to the first edge to which
they become incident.

shows a simulation of the random deposition model. The
linear growth speed and lack of spatial correlation are
quite evident. The fluctuations of this model are said to be
in the Gaussian universality class since they grow like 𝑡1/2,
with Gaussian limit law and trivial transversal correlation
length scale 𝑡0. In general, fluctuation and transversal
correlation exponents, as well as limiting distributions,
constitute the description of a universality class, and all
models which match these limiting behaviors are said to
lie in the same universality class.

While the Gaussian behavior of this model is resilient
against changes in the distribution of the𝑤𝑥,𝑖 (owing to the
CLT), generic changes in the nature of the growth rules
shatter the Gaussian behavior. The ballistic deposition
(or sticky block) model was introduced by Vold (1959)
and, as one expects in real growing interfaces, displays
spatial correlation. As before, blocks fall according to
iid exponential waiting times; however, now a block will
stick to the first edge against which it becomes incident.
This mechanism is illustrated in Figure 1. This creates
overhangs, and we define the height function ℎ(𝑡, 𝑥) as
the maximal height above 𝑥 which is occupied by a box.
How does this microscopic change manifest itself over
time?

It turns out that sticky blocks radically change the
limiting behavior of this growth process. The bottom of
Figure 2 records one simulation of the process. Seppäläi-
nen (1999) gave a proof that there is still an overall linear

Figure 2. Simulation of random (top) versus ballistic
(bottom) deposition models driven by the same
process of falling blocks. The ballistic model grows
much faster and has a smoother, more spatially
correlated top interface.

growth rate. Moreover, by considering a lower bound by a
width two system, one can see that this velocity exceeds
that of the random deposition model. The exact value of
this rate, however, remains unknown.

The simulation in Figure 2 (as well as the longer time
results displayed in Figure 3) also shows that the scale of
fluctuationsofℎ(𝑡, 𝑥) is smaller than in randomdeposition
and that the height function remains correlated transver-
sally over a long distance. There are exact conjectures for
these fluctuations. They are supposed to grow like 𝑡1/3
and demonstrate a nontrivial correlation structure in a
transversal scale of 𝑡2/3. Additionally, precise predictions
exist for the limiting distributions. Up to certain (presently
undetermined) constants 𝑐1, 𝑐2, the sequence of scaled
heights 𝑐2𝑡−1/3(ℎ(𝑡, 0) − 𝑐1𝑡) should converge to the so-
called Gaussian orthogonal ensemble (GOE) Tracy-Widom
distributed random variable. The Tracy-Widom distribu-
tions can be thought of as modern-day bell curves, and
their names GOE or GUE (for Gaussian unitary ensemble)
come from the random matrix ensembles in which these
distributions were first observed by Tracy-Widom (1993,
1994).

Ballistic deposition does not seem to be an integrable
probabilistic system, so where do these precise conjec-
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Figure 3. Simulation of random (left) versus ballistic
(right) deposition models driven by the same process
of falling blocks and run for a long time. The red and
white colors represent different epochs of time in the
simulation. The size of boxes in both figures are the
same.

tures come from? The exact predictions come from the
analysis of a few similar growth processes which just hap-
pen to be integrable! Ballistic deposition shares certain
features with these models, which are believed to be key
for membership in the KPZ class:• Locality: Height function change depends only on

neighboring heights.• Smoothing: Large valleys are quickly filled in.• Nonlinear slope dependence: Vertical effective growth
rate depends nonlinearly on local slope.• Space-time independent noise: Growth is driven by
noise which quickly decorrelates in space and time
and does not display heavy tails.
It should be made clear that a proof of the KPZ class

behavior for the ballistic deposition model is far beyond
what can be done mathematically (though simulations
strongly suggest that the above conjecture is true).

Corner Growth Model
We come to the first example of an integrable probabilistic
system in the KPZ universality class, the corner growth
model. The randomly growing interface is modeled by
a height function ℎ(𝑡, 𝑥) which is continuous, piecewise
linear, and composed of √2-length line increments of
slope +1 or −1, changing value at integer 𝑥. The height
function evolves according to the Markovian dynamics
that each local minimum of ℎ (looking like ∨) turns
into a local maximum (looking like ∧) according to
an exponentially distributed waiting time. This happens
independently for each minimum. This change in height
function can also be thought of as adding boxes (rotated

(a) (b)

(c) (d)

Figure 4. Various possible ways that a local minimum
can grow into a local maximum. The red dots
represent the local minimum at which growth may
occur.

by 45∘). See Figures 4 and 5 for further illustration of this
model.

Wedge initial data means that ℎ(0, 𝑥) = |𝑥|, while flat
initial data (as considered for ballistic deposition) means
that ℎ(0, 𝑥) is given by a periodic sawtooth function which
goes between heights 0 and 1. We will focus on wedge
initial data. Rost (1980) proved a law of large numbers for
the growing interface when time, space, and the height
function are scaled by the same large parameter 𝐿.
Theorem 2. For wedge initial data,

lim𝐿→∞
ℎ(𝐿𝑡, 𝐿𝑥)𝐿 = 𝔥(𝑡, 𝑥) ∶= {𝑡 1−(𝑥/𝑡)22 |𝑥| < 𝑡,|𝑥| |𝑥| ≥ 𝑡.

Figure 6 displays the result of a computer simulation
wherein the limiting parabolic shape is evident. The
function 𝔥 is the unique viscosity solution to the Hamilton-
Jacobi equation𝜕𝜕𝑡𝔥(𝑡, 𝑥) = 12(1 − ( 𝜕𝜕𝑥𝔥(𝑡, 𝑥))2).
This equation actually governs the evolution of the law of
large numbers from arbitrary initial data.

The fluctuations of this model around the law of large
numbers are believed to be universal. Figure 6 shows that
the interface (blue) fluctuates around its limiting shape
(red) on a fairly small scale, with transversal correlation
on a larger scale. For 𝜖 > 0, define the scaled and centered
height function

ℎ𝜖(𝑡, 𝑥) ∶= 𝜖𝑏ℎ(𝜖−𝑧𝑡, 𝜖−1𝑥) − 𝜖−1𝑡2
where the dynamic scaling exponent 𝑧 = 3/2 and the
fluctuation exponent 𝑏 = 1/2. These exponents are easily
remembered, since they correspond with scaling time
: space : fluctuations like 3 : 2 : 1. These are the
characteristic exponents for the KPZ universality class.
Johansson (1999) proved that for fixed 𝑡, as 𝜖 → 0, the
random variable ℎ𝜖(𝑡, 0) converges to a GUE Tracy-Widom
distributed random variable (see Figure 7). Results for the
related model of the longest increasing subsequence in
a random permutation were provided around the same
time by Baik-Deift-Johansson (1999). For that related
model, two years later Prähofer-Spohn (2001) computed
the analog to the joint distribution of ℎ𝜖(𝑡, 𝑥) for fixed 𝑡
and varying 𝑥.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. The corner growth model starts with an
empty corner, as in (A). There is only one local
minimum (the red dot), and after an exponentially
distributed waiting time, this turns into a local
maximum by filling in the site above it with a block,
as in (B). In (B) there are now two possible locations
for growth (the two red dots). Each one has an
exponentially distributed waiting time. (C)
corresponds to the case when the left local minimum
grows before the right one. By the memoryless
property of exponential random variables, once in
state (C) we can think of choosing new exponentially
distributed waiting times for the possible growth
destinations. Continuing in a similar manner, we
arrive at the evolution in (D) through (H).

The entire scaled growth process ℎ𝜖(⋅, ⋅) should have
a limit as 𝜖 → 0 which would necessarily be a fixed
point under the 3:2:1 scaling. The existence of this limit
(often called the KPZ fixed point) remains conjectural.
Still, much is known about the properties this limit
should enjoy. It should be a stochastic process whose
evolution depends on the limit of the initial data under
the same scaling. The one-point distribution for general
initial data, the multipoint and multitime distribution for

Figure 6. Simulation of the corner growth model. The
top shows the model after a medium amount of time,
and the bottom shows it after a longer amount of
time. The blue interface is the simulation, while the
red curve is the limiting parabolic shape. The blue
curve has vertical fluctuations of order 𝑡1/3 and
decorrelates spatially on distances of order 𝑡2/3.

Figure 7. The density (top) and log of the density
(bottom) of the GUE Tracy-Widom distribution.
Though the density appears to look like a bell curve
(or Gaussian), this comparison is misleading. The
mean and variance of the distribution are
approximately −1.77 and 0.81. The tails of the
density (as shown in terms of the log of the density
in the bottom plot) decay like 𝑒−𝑐−|𝑥|3 for 𝑥 ≪ 0 and
like 𝑒−𝑐+𝑥3/2 for 𝑥 ≫ 0 for certain positive constants 𝑐−
and 𝑐+. The Gaussian density decays like 𝑒−𝑐𝑥2 in both
tails, with the constant 𝑐 related to the variance.
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wedge initial data, and various aspects of its continuity are
all understood. Besides the existence of this limit, what is
missing is a useful characterization of the KPZ fixed point.
Since the KPZ fixed point is believed to be the universal
scaling limit of all models in the KPZ universality class
and since corner growth enjoys the same key properties
as ballistic deposition, one also is led to conjecture that
ballistic deposition scales to the same fixed point and
hence enjoys the same scalings and limiting distributions.
The reason why the GOE Tracy-Widom distribution came
up in our earlier discussion is that we were dealing with
flat rather than wedge initial data.

One test of the universality belief is to introduce partial
asymmetry into the corner growth model. Now we change
local minimum into local maximum at rate 𝑝 and turn
local maximum into local minimum at rate 𝑞 (all waiting
times are independent and exponentially distributed, and𝑝+𝑞 = 1). See Figure 8 for an illustration of this partially
asymmetric corner growth model. Tracy-Widom (2007–
09) showed that so long as 𝑝 > 𝑞, the same law of
large numbers and fluctuation limit theorem hold for the
partially asymmetric model, provided that 𝑡 is replaced
by 𝑡/(𝑝−𝑞). Since 𝑝−𝑞 represents the growth drift, one
simply has to speed up to compensate for this drift being
smaller.

Clearly for 𝑝 ≤ 𝑞 something different must occur
than for 𝑝 > 𝑞. For 𝑝 = 𝑞 the law of large numbers
and fluctuations change nature. The scaling of time :
space : fluctuations becomes 4 : 2 : 1, and the limiting
process under these scalings becomes the stochastic heat
equation with additive white noise. This is the Edwards-
Wilkinson (EW) universality class, which is described by
the stochastic heat equation with additive noise. For 𝑝 < 𝑞
the process approaches a stationary distribution where
the probability of having 𝑘 boxes added to the empty
wedge is proportional to (𝑝/𝑞)𝑘.

So, we have observed that for any positive asymmetry
the growth model lies in the KPZ universality class, while
for zero asymmetry it lies in the EW universality class. It is
natural to wonder whether in critically scaling parameters
(i.e. 𝑝 − 𝑞 → 0) one might encounter a crossover regime
between these two universality classes. Indeed, this is the
case, and the crossover is achieved by the KPZ equation,
which we now discuss.

KPZ Equation
The KPZ equation is written as𝜕ℎ𝜕𝑡 (𝑡, 𝑥) = 𝜈𝜕2ℎ𝜕𝑥2 (𝑡, 𝑥) + 12𝜆(𝜕ℎ𝜕𝑥 (𝑡, 𝑥))2+√𝐷𝜉(𝑡, 𝑥),
where 𝜉(𝑡, 𝑥) is Gaussian space-time white noise; 𝜆,𝜈 ∈ ℝ;𝐷 > 0; and ℎ(𝑡, 𝑥) is a continuous function of time 𝑡 ∈ ℝ+
and space 𝑥 ∈ ℝ, taking values in ℝ. Due to the white
noise, one expects 𝑥 ↦ ℎ(𝑡, 𝑥) to be only as regular as
in Brownian motion. Hence, the nonlinearity does not
a priori make any sense (the derivative of Brownian
motion has negative Hölder regularity). Bertini-Cancrini
(1995) provided the physically relevant notion of solution
(called the Hopf-Cole solution) and showed how it arises
from regularizing the noise, solving the (now well-posed)

equation, and then removing the noise and subtracting a
divergence.

The equation contains the four key features mentioned
earlier: the growth is local, depending on the Laplacian
(smoothing), the square of the gradient (nonlinear slope
dependent growth), and white noise (space-time uncorre-
lated noise). Kardar, Parisi, and Zhang introduced their
eponymous equation and 3 : 2 : 1 scaling prediction in
1986 in an attempt to understand the scaling behaviors
of random interface growth.

How might one see the 3 : 2 : 1 scaling from the
KPZ equation? Define ℎ𝜖(𝑡, 𝑥) = 𝜖𝑏ℎ(𝜖−𝑧𝑡, 𝜖−1𝑥); then ℎ𝜖
satisfies the KPZ equation with scaled coefficients 𝜖2−𝑧𝜈,𝜖2−𝑧−𝑏 12𝜆 and 𝜖𝑏− 𝑧2+ 12√𝐷. It turns out that two-sided
Brownian motion is stationary for the KPZ equation;
hence any nontrivial scaling must respect the Brownian
scaling of the initial data and thus have 𝑏 = 1/2. Plugging
this in, the only way to have no coefficient blow up to
infinity and not every term shrink to zero (as 𝜖 → 0) is to

It took just
under

twenty-five
years until Amir-
Corwin-Quastel

(2010)
rigorously

proved that the
KPZ equation is

in the KPZ
universality

class.

choose 𝑧 = 3/2. This sug-
gests theplausibility of the
3 : 2 : 1 scaling. While this
heuristic gives the right
scaling, it does not provide
for the scaling limit. The
limit as 𝜖 → 0 of the equa-
tion (the inviscid Burgers
equation, where only the
nonlinearity survives) cer-
tainly does not govern the
limit of the solutions. It
remains something of a
mystery as to exactly how
to describe this limiting
KPZ fixed point. The above
heuristic says nothing of
the limiting distribution
of the solution to the KPZ
equation, and there does
not presently exist a sim-
ple way to see what this
should be.

It took just under twenty-five years until Amir-Corwin-
Quastel (2010) rigorously proved that the KPZ equation
is in the KPZ universality class. That work also computed
an exact formula for the probability distribution of the
solution to the KPZ equation, marking the first instance
of a non-linear stochastic PDE for which this was accom-
plished. Tracy-Widom’s work on the partially asymmetric
corner growthmodel and work of Bertini-Giacomin (1997)
which relates that model to the KPZ equation were the
two main inputs in this development. See [4] for fur-
ther details regarding this as well as the simultaneous
exact but nonrigorous steepest descent work of Sasamoto-
Spohn (2010) and nonrigorous replica approach work of
Calabrese-Le Doussal-Rosso (2010) and Dotsenko (2010).

The proof that the KPZ equation is in the KPZ uni-
versality class was part of an ongoing flurry of activity
surrounding the KPZ universality class from a number
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(a)

(b)

Figure 8. Mapping the partially asymmetric corner
growth model to the partially asymmetric simple
exclusion process. In (A), the red dot is a local
minimum, and it grows into a maximum. In terms of
the particle process beneath it, the minimum
corresponds to a particle followed by a hole, and the
growth corresponds to said particle jumping into the
hole to its right. In (B), the opposite is shown. The
red dot is a local maximum and shrinks into a
minimum. Correspondingly, there is a hole followed
by a particle, and the shrinking results in the particle
moving into the hole to its left.

of directions, such as integrable probability [4], experi-
mental physics [10], and stochastic PDEs. For instance,
Bertini-Cancrini’s Hopf-Cole solution relies upon a trick
(the Hopf-Cole transform) which linearizes the KPZ equa-
tion. Hairer (2011), who had been developing methods
to make sense of classically ill-posed stochastic PDEs, fo-
cused on the KPZ equation and developed a direct notion
of solution which agreed with the Hopf-Cole one but did
not require use of the Hopf-Cole transform trick. Still, this
does not say anything about the distribution of solutions
or their long-time scaling behaviors. Hairer’s KPZ work set
the stage for his development of regularity structures in
2013—an approach to construction solutions of certain
types of ill-posed stochastic PDEs—work for which he
was awarded a Fields Medal.

Interacting Particle Systems
There is a direct mapping (see Figure 8) between the par-
tially asymmetric corner growth model and the partially
asymmetric simple exclusion process (generally abbrevi-
ated ASEP). Associate to every −1 slope line increment a
particle on the site of ℤ above which the increment sits,
and to every +1 slope line increment associate an empty
site. The height function then maps onto a configuration
of particles and holes on ℤ, with at most one particle per
site. When a minimum of the height function becomes a

gap = 4

rate = 1− q
gap

Figure 9. The 𝑞-TASEP, whereby each particle jumps
one to the right after an exponentially distributed
waiting time with rate given by 1 − 𝑞gap.

maximum, it corresponds to a particle jumping right by
one into an empty site, and likewise when a maximum
becomes a minimum, a particle jumps left by one into
an empty site. Wedge initial data for corner growth cor-
responds with having all sites to the left of the origin
initially occupied and all to the right empty; this is often
called step initial data due to the step function in terms of
particle density. ASEP was introduced in biology literature
in 1968 by MacDonald-Gibbs-Pipkin as a model for RNA’s
movement during transcription. Soon after it was inde-
pendently introduced within the probability literature in
1970 by Spitzer.

The earlier quoted results regarding corner growth
immediately imply that the number of particles to cross
the origin after a long time 𝑡 demonstrates KPZ class
fluctuation behavior. KPZ universality would have that
generic changes to this model should not change the KPZ
class fluctuations. Unfortunately, such generic changes
destroy the model’s integrable structure. There are a
few integrable generalizations discovered in the past five
years which demonstrate some of the resilience of the
KPZ universality class against perturbations.

TASEP (the totally asymmetric version of ASEP) is a
very basic model for traffic on a one-lane road in which
cars (particles) move forward after exponential rate one
waiting times, provided the site is unoccupied. A more
realistic model would account for the fact that cars slow
down as they approach the one in front. The model of𝑞-TASEP does just that (Figure 9). Particles jump right
according to independent exponential waiting times of
rate 1−𝑞gap, where gap is the number of empty spaces to
the next particle to the right. Here 𝑞 ∈ [0, 1) is a different
parameter than in the ASEP, though when 𝑞 goes to zero,
these dynamics become those of TASEP.

Another feature one might include in a more realistic
traffic model is the cascade effect of braking. The 𝑞-
pushASEP includes this (Figure 10). Particles still jump
right according to 𝑞-TASEP rules; however, now particles
may also jump left after exponential rate 𝐿 waiting times.
When such a jump occurs, it prompts the next particle to
the left to likewise jump left, with a probability given by𝑞gap, where gap is the number of empty spaces between
the original particle and its left neighbor. If that jump
occurs, it may likewise prompt the next left particle to
jump, and so on. Of course, braking is not the same as
jumping backwards; however, if one goes into a moving
frame, this left jump is like a deceleration. It turns out
that both of these models are solvable via the methods
of Macdonald processes as well as stochastic quantum
integrable systems, and thusly it has been proved that,
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Figure 10. The 𝑞-pushASEP. As shown in (A), particles
jump right according to the 𝑞-TASEP rates and left
according to independent exponentially distributed
waiting times of rate 𝐿. When a left jump occurs, it
may trigger a cascade of left jumps. As shown in (B),
the rightmost particle has just jumped left by one.
The next particle (to its left) instantaneously also
jumps left by one with probability given by 𝑞gap,
where gap is the number of empty sites between the
two particles before the left jumps occurred (in this
case gap = 4). If that next left jump is realized, the
cascade continues to the next-left particle according
to the same rule; otherwise it stops and no other
particles jump left in that instant of time.

just as for ASEP, they demonstrate KPZ class fluctuation
behavior (see the review [4]).

Paths in a Random Environment
There is yet another class of probabilistic systems related
to the corner growth model. Consider the totally asym-
metric version of this model, started from wedge initial
data. An alternative way to track the evolving height
function is to record the time when a given box is grown.
Using the labeling shown in Figure 11, let us call 𝐿(𝑥, 𝑦)
this time, for 𝑥,𝑦 positive integers. A box (𝑥, 𝑦) may grow
once its parent blocks (𝑥 − 1,𝑦) and (𝑥, 𝑦 − 1) have both
grown, though even then it must wait for an independent
exponential waiting time which we denote by 𝑤𝑥,𝑦. Thus𝐿(𝑥,𝑦) satisfies the recursion𝐿(𝑥,𝑦) = max (𝐿(𝑥 − 1,𝑦), 𝐿(𝑥, 𝑦 − 1)) +𝑤𝑥,𝑦
subject to boundary conditions 𝐿(𝑥, 0) ≡ 0 and 𝐿(0,𝑦) ≡0. Iterating yields𝐿(𝑥,𝑦) = max𝜋 ∑(𝑖,𝑗)∈𝜋𝑤𝑖,𝑗
where the maximum is over all up-right and up-left lattice
paths between boxes (1, 1) and (𝑥, 𝑦). This model is
called last passage percolation with exponential weights.
Following from the earlier corner growth model results,
one readily sees that for any positive real (𝑥, 𝑦), for large 𝑡,𝐿(⌊𝑥𝑡⌋, ⌊𝑦𝑡⌋) demonstrates KPZ class fluctuations. A very
compelling and entirely open problem is to show that this
type of behavior persists when the distribution of the 𝑤𝑖,𝑗
is no longer exponential. The only other solvable case is
that of geometric weights. A certain limit of the geometric
weights leads tomaximizing the number of Poisson points
along directed paths. Fixing the total number of points,

w1,1

w2,1w1,2

w2,2 w3,1w1,3

w3,2 w4,1w1,4 w2,3

w4,2 w5,1

Figure 11. The relation between the corner growth
model and last passage percolation with exponential
weights. The 𝑤𝑖,𝑗 are the waiting times between when
a box can grow and when it does grow. 𝐿(𝑥,𝑦) is the
time when box (𝑥, 𝑦) grows.

this becomes equivalent to finding the longest increasing
subsequence of a random permutation. The KPZ class
behavior for this version of last passage percolation was
shown by Baik-Deift-Johansson (1999).

There is another related integrable model which can
be thought of as describing the optimal way to cross a
large grid with stoplights at intersections. Consider the
first quadrant of ℤ2 and to every vertex (𝑥, 𝑦) assign
waiting times to the edges, leaving the vertex rightwards
and upwards. With probability 1/2 the rightward edge
has waiting time zero, while the upward edge has waiting
time given by an exponential rate 1 random variables;
otherwise reverse the situation. The edge waiting time
represents the time needed to cross an intersection in
the given direction (the walking time between lights has
been subtracted). The minimal passage time from (1, 1)
to (𝑥, 𝑦) is given by𝑃(𝑥,𝑦) = min𝜋 ∑𝑒∈𝜋𝑤𝑒,
where 𝜋 goes right or up in each step and ends on the
vertical line above (𝑥, 𝑦) and 𝑤𝑒 is the waiting time for
edge 𝑒 ∈ 𝜋. From the origin there will always be a path
of zero waiting time whose spatial distribution is that
of the graph of a simple symmetric random walk. Just
following this path one can get very close to the diagonal𝑥 = 𝑦 without waiting. On the other hand, for 𝑥 ≠ 𝑦,
getting to (⌊𝑥𝑡⌋, ⌊𝑦𝑡⌋) for large 𝑡 requires some amount
of waiting. Barraquand-Corwin (2015) demonstrated that
as long as 𝑥 ≠ 𝑦, 𝑃(⌊𝑥𝑡⌋, ⌊𝑦𝑡⌋) demonstrates KPZ class
fluctuations. This should be true when 𝜋 is restricted
to hit exactly (𝑥, 𝑦), though that result has not yet been
proved. Achieving this optimal passage time requires
some level of omnipotence, as you must be able to look
forward before choosing your route. As such, it could be
considered as a benchmark against which to test various
routing algorithms.

In addition to maximizing or minimizing path prob-
lems, the KPZ universality class describing fluctuations
of “positive temperature” version of these models in
energetic or probabilistic favoritism is assigned to paths
based on the sum of space-time random weights along
its graph. One such system is called directed polymers in
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Figure 12. The random walk in a space time random
environment. For each pair of up-left and up-right
pointing edges leaving a vertex (𝑦, 𝑠), the width of
the red edges is given by 𝑢𝑦,𝑠 and 1− 𝑢𝑦,𝑠, where 𝑢𝑦,𝑠
are independent uniform random variables on the
interval [0, 1]. A walker (the yellow highlighted path)
then performs a random walk in this environment,
jumping up-left or up-right from a vertex with
probability equal to the width of the red edges.

random environment and is the detropicalization of LPP
where in the definition of 𝐿(𝑥,𝑦) one replaces the opera-
tions of (max,+) by (+,×). Then the resulting (random)
quantity is called the partition function for the model, and
its logarithm (the free energy) is conjectured for very gen-
eral distributions on 𝑤𝑖,𝑗 to show KPZ class fluctuations.
There is one known integrable example of weights for
which this has been proved: the inverse-gamma distribu-
tion, introduced by Seppäläinen (2009) and proved in the
work by Corwin-O’Connell-Seppäläinen-Zygouras (2011)
and Borodin-Corwin-Remenik (2012).

The stoplight system discussed above also has a
positive temperature lifting, of which we will describe a
special case (see Figure 12 for an illustration). For each
space-time vertex (𝑦, 𝑠) choose a random variable 𝑢𝑦,𝑠
distributed uniformly on the interval [0, 1]. Consider a
randomwalk𝑋(𝑡)whichstarts at (0, 0). If the randomwalk
is in position 𝑦 at time 𝑠, then it jumps to position 𝑦−1 at
time 𝑠+1 with probability 𝑢𝑦,𝑠 and to position 𝑦+1 with
probability 1−𝑢𝑦,𝑠. With respect to the same environment
of 𝑢’s, consider 𝑁 such random walks. The fact that the
environment is fixed causes them to follow certain high-
probability channels. This type of system is called a
random walk in a space-time random environment, and
the behavior of a single random walker is quite well
understood. Let us, instead, consider the maximum of 𝑁
walkers in the same environment𝑀(𝑡,𝑁) = max𝑁𝑖=1 𝑋(𝑖)(𝑡).
For a given environment, it is expected that 𝑀(𝑡,𝑁) will

localize near a given random environment dependent
value. However, as the random environment varies, this
localization value does as well in such a way that for 𝑟 ∈(0, 1) and large 𝑡,𝑀(𝑡, 𝑒𝑟𝑡) displays KPZ class fluctuations.

Big Problems
It took almost two hundred years from the discovery

KPZ universality
has withstood

proof for almost
three decades
and shows no

signs of yielding.

of the Gaussian distribu-
tions to the first proof
of their universality (the
central limit theorem). So
far, KPZ universality has
withstoodproof for almost
three decades and shows
no signs of yielding.

Besides universality,
there remain a number
of other big problems for
which little to no progress
has been made. All of the

systems and results discussed herein have been (1 + 1)-
dimensional, meaning that there is one time dimension
and one space dimension. In the context of random
growth, it makes perfect sense (and is quite important) to
study surface growth (1+2)-dimensional. In the isotropic
case (where the underly growth mechanism is roughly
symmetric with respect to the two spatial dimensions)
there are effectively no mathematical results, though nu-
merical simulations suggest that the 1/3 exponent in the𝑡1/3 scaling for corner growth should be replaced by an
exponent of roughly .24. In the anisotropic case there have
been a few integrable examples discovered which suggest
very different (logarithmic scale) fluctuations such as
observed by Borodin-Ferrari (2008).

Finally, despite the tremendous success in employing
methods of integrable probability to expand and refine
the KPZ universality class, there seems to still be quite
a lot of room to grow and new integrable structures
to employ. Within the physics literature, there are a
number of exciting new directions in which the KPZ class
has been pushed, including: out-of-equilibrium transform
and energy transport with multiple conservation laws,
front propagation equations, quantum localization with
directed paths, and biostatistics. Equally important is
understanding what type of perturbations break out of
the KPZ class.

Given all of the rich mathematical predictions, one
might hope that experiments have revealed the KPZ
class behavior in nature. This is quite a challenge, since
determining scaling exponents and limiting fluctuations
requires immense numbers of repetition of experiments.
However, there have been a few startling experimental
confirmations of these behaviors in the context of liquid
crystal growth, bacterial colony growth, coffee stains, and
fire propagation (see [10] and references therein). Truly,
the study of the KPZ universality class demonstrates the
unity of mathematics and physics at its best.
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