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Karl Pearson’s Theoretical Errors and the
Advances They Inspired
Stephen M. Stigler

Abstract. Karl Pearson played an enormous role in determining the content
and organization of statistical research in his day, through his research, his
teaching, his establishment of laboratories, and his initiation of a vast pub-
lishing program. His technical contributions had initially and continue today
to have a profound impact upon the work of both applied and theoretical
statisticians, partly through their inadequately acknowledged influence upon
Ronald A. Fisher. Particular attention is drawn to two of Pearson’s major
errors that nonetheless have left a positive and lasting impression upon the
statistical world.
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1. INTRODUCTION

Karl Pearson surely ranks among the more produc-
tive and intellectually energetic scholars in history.
He cannot match the most prolific humanists, such
as one of whom it has been said, “he had no unpub-
lished thought,” but in the domain of quantitative sci-
ence Pearson has no serious rival. Even the immensely
prolific Leonhard Euler, whose collected works are
still being published more than two centuries after his
death, falls short of Pearson in sheer volume. A list
of Pearson’s works fills a hardbound book; that book
lists 648 works and is still incomplete (Morant, 1939).
My own moderate collection of his works—itself very
far from complete (it omits his contributions to Bio-
metrika)—occupies 5 feet of shelf space. And his were
not casually constructed works: when a student or a
new co-worker would do the laborious calculations for
some statistical analysis, Pearson would redo the work
to greater accuracy, as a check. An American visit-
ing Pearson in the early 1930s once asked him how
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he found the time to write so much and compute so
much. Pearson replied, “You Americans would not un-
derstand, but I never answer a telephone or attend a
committee meeting” (Stouffer, 1958).

Pearson’s accomplishments were not merely volumi-
nous; they could be luminously enlightening as well.
Today the most famous of these are Pearson’s Prod-
uct Moment Correlation Coefficient and the Chi-square
test, dating respectively from 1896 and 1900 (Pear-
son, 1896, 1900a, 1900b). He was a driving force
behind the founding of Biometrika, which he edited
for 36 years and made into the first important jour-
nal in mathematical statistics. He also established an-
other journal (the Annals of Eugenics) and several ad-
ditional serial publications, two research laboratories,
and a school of statistical thought. Pearson pioneered
in the use of machine calculation, and he supervised the
calculation of a series of mathematical tables that influ-
enced statistical practice for decades. He made other
discoveries, less commonly associated with his name.
He was in 1897 the first to name the phenomenon of
“spurious correlation,” thus publicly identifying a pow-
erful idea that made him and countless descendents
more aware of the pitfalls expected in any serious sta-
tistical investigation of society (Pearson, 1897). And in
a series of investigations of craniometry he introduced
the idea of landmarks to the statistical study of shapes.

Pearson was at one time well known for the Pearson
Family of Frequency Curves. That family is seldom re-
ferred to today, but there is a small fact (really a strik-
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ing discovery) he found in its early development that
I would call attention to. When we think of the nor-
mal approximation to the binomial, we usually think in
terms of large samples. Pearson discovered that there is
a sense in which the two distributions agree exactly for
even the smallest number of trials. It is well known that
the normal density is characterized by the differential
equation

d

dx
log(f (x)) = f ′(x)

f (x)
= −(x − μ)

σ 2 .

Pearson discovered that p(k), the probability function
for the symmetric binomial distribution (n independent
trials, p = 0.5 each trial), satisfies the analogous differ-
ence equation exactly:

p(k + 1) − p(k)

(p(k + 1) + p(k))/2
= − (k + 1/2) − n/2

(n + 1) · 1/2 · 1/2
or

rate of change p(k) to p(k + 1)

average of p(k) and p(k + 1)

= −midpoint of (k, k + 1) − μn

σ 2
n+1

for all n, k. The appearance of n + 1 instead of n in
the denominator might be considered a minor fudge,
but the equation still demonstrates a really fundamental
agreement in the shapes of the two distributions that
does not rely upon asymptotics (Pearson, 1895, page
356).

All of these Pearsonian achievements are indeed sub-
stantial, and constitute ample reason to celebrate him
150 years after his birth. But if these are all we saluted,
I would hold that Pearson is being underappreciated.
To properly gauge his impact upon modern statistics,
we must take a look at parts of two works of his that
are typically not held in high regard. Indeed, they are
usually mentioned in derision, as exhibiting two ma-
jor errors that show Pearson’s limitations and highlight
the great gulf that lay between Pearson and the Fish-
erian era that was to follow. I wish to return now to
these two works and reassess them. I intend to argue
that these errors should count among the more influen-
tial of his works, and that they helped pave the way for
the creation of modern mathematical statistics.

2. PEARSON’S FIRST MAJOR ERROR

Louis Napoleon George Filon was born in France,
but his family moved to England when he was three
years old (Jeffrey, 1938). He first encountered Karl
Pearson as a student at University College London.
After receiving a B.A. in 1896, Filon served as Pear-

son’s Demonstrator until 1898, and together they wrote
a monumental memoir on the “probable errors of fre-
quency constants,” a paper read to the Royal Society
in 1897 and published in their Transactions in 1898.
In 1912 Filon succeeded Pearson as Goldsmid Profes-
sor of Applied Mathematics and Mechanics. At Pear-
son’s retirement banquet in 1934, Filon (who was by
that time Vice-Chancellor of the University of London)
explained the genesis of this, their only work together
in statistics.

“K. P. lectured to us on the Mathemati-
cal Theory of Statistics, and on one occa-
sion wrote down a certain integral as zero,
which it should have been on accepted prin-
ciple. Unfortunately I have always been one
of those wrong-headed persons who refuse
to accept the statements of Professors, un-
less I can justify them for myself. After
much labour, I actually arrived at the value
of the integral directly—and it was noth-
ing like zero. I took this result to K. P.,
and then, if I may say so, the fun began.
The battle lasted, I think, about a week,
but in the end I succeeded in convincing
Professor Pearson. It was typical of K. P.
that, the moment he was really convinced,
he saw the full consequences of the result,
proceeded at once to build up a new the-
ory (which involved scrapping some previ-
ously published results) and generously as-
sociated me with himself in the resulting pa-
per” (Filon, 1934).

The term “probable error” was introduced early in
the 19th century to mean what we would now call the
median error of an estimate. Thus it is a value which,
when divided by 0.6745, gives the standard deviation
for an unbiased estimate with an approximately normal
distribution. My guess is that the lecture that Filon re-
ferred to involved the formula for the probable error of
Pearson’s product-moment estimate of the correlation
coefficient for bivariate normal distributions. Pearson
had given this incorrectly in 1896, and one of the signal
achievements of the Pearson–Filon paper was to cor-
rect that error (Stigler, 1986, page 343). But the 1898
paper did much more: it purported to give the approxi-
mate distributions for the probable errors of all the es-
timated frequency constants, indeed their entire joint
distribution, for virtually any statistical problem. The
theory presented was relatively short; most of the pa-
per was taken up with a large number of applications.
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Unfortunately, quite a number of these applications
proved to be in error. There are some indications Pear-
son may have realized this by 1903, but if he did
sense trouble with the paper, he did not call it to pub-
lic attention. In 1922 Ronald Fisher repaired Pearson’s
omission when he noted in particular that outside of
the case of the normal distribution, nearly all of the
applications in Pearson–Filon were erroneous. This in-
cluded many method-of-moments estimates (the gold-
standard method for the Pearsonian school). A signifi-
cant Pearson achievement came to be labeled an error,
one eventually overcome by a Fisher success, and in
consequence, the 1898 paper has suffered a low repu-
tation. But despite these problems, the paper had, ar-
guably, a significant and largely underappreciated pos-
itive impact upon statistics.

At first glance the Pearson–Filon argument may ap-
pear strikingly modern, apparently expanding a log-
likelihood ratio to derive an asymptotic approximately
multivariate normal distribution for the errors of es-
timation. The authors considered a multivariate set
of m-dimensional measurements x1, x2, x3, . . . , xm of
“a complex of organs,” and they stated the “frequency
surface” should be given by

“z = f (x1, x2, x3, . . . xm; c1, c2, c3, . . . cp),

where c1, c2, c3, . . . , cp, are p frequency
constants, which define the form as distin-
guished from the position of the frequency
surface, and which will be functions of stan-
dard deviations, moments, skewnesses, co-
efficients of correlation, &c., &c., of indi-
vidual organs, and of pairs of organs in the
complex.”

The “position” of the surface would be given in
terms of the means h1, h2, . . . , hm of the x’s, which are
implicit in this notation as they are stated to give the
origin of the surface, and so there are m + p frequency
constants to be determined from a set of n measure-
ments, each m-dimensional.

To determine the “probable errors” of the frequency
constants, Pearson and Filon looked at the ratio formed
by dividing the product of n such surfaces (for the n

vector measurements) into what a similar product
would be if the frequency constants had been differ-
ent values:

P�

P0
= �f (x1 + �h1, x2 + �h2, . . . , xm + �hm;

c1 + �c1, c2 + �c2, . . . , cp + �cp)

/�f (x1, x2, . . . , xm; c1, c2, . . . , cp).

The logarithm of this ratio is then the difference of
two sums. After being expanded “by Taylor’s theo-
rem,” this yields a series with typical terms, writing S

for summation, they found to be

log(P�/P0)

= �hrS
d

dxr

(logf ) + 1

2
(�hr)

2S
d2

dx2
r

(logf )

+ �hr�hr ′S
d2

dxr dxr ′
(logf )

+ �csS
d

dcs

(logf ) + 1

2
(�cs)

2S
d2

dc2
s

(logf )

+ �cs�cs′S
d2

dcs dcs′
(logf )

+ �hr�csS
d2

dhr dcs

(logf ) + · · ·
+ cubic terms in �h and �c + &c,

“where f stands for f (x1, x2, x3, . . . , xm; c1, c2, c3,

. . . , cp).”
Pearson and Filon then “replace sums by inte-

grals,” for example, by replacing the second summa-

tion above, namely S d2

dx2
r
(logf ), by −Br = ∫∫∫ · · ·

f
d2 logf

dx2
r

dx1 dx2 · · ·dxm. With their notation the fre-

quency surface encompassed a volume = n (i.e., it was
not a relative frequency surface), so if the f were taken
as a density or relative frequency surface this would be

tantamount to replacing 1
n
S d2

dx2
r
(logf ) by its expecta-

tion E[ d2

dx2
r
(logf )], which would equal −Br . The inte-

grals were then evaluated, and higher-order terms dis-
carded, to get

P� = P0 exp t. − 1
2{Br(�hr)

2 − 2Crr ′�hr�hr ′

− 2Grs�hr�cs + Es(�cs)
2(1)

− 2Fss′�cs�cs′ + &c. · · ·}
where Br , etc. are integrals given in terms of deriva-
tives of logf . We are then told:

“This represents the probability of the ob-
served unit, i.e. the individuals (x1, x2,
x3, . . . xm, for all sets), occurring, on the
assumption that the errors �h1, �h2, . . . ,

�hm, �c1, . . . ,�cp, have been made in the
determination of the frequency constants. In
other words, we have here the frequency
distribution for errors in the values of the
frequency constants.”
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Several of their steps, such as the cavalier substitu-
tion of integrals for sums or the discarding of remain-
der terms, may seem insufficiently defended, but the
general drift is so similar to what we tend to see to-
day that it would be easy for an uncritical reader to
accept it, believing that it is probably essentially ac-
curate, and that with some effort and additional regu-
larity conditions all should be well. After all, such a
reader might say, the replacement can be justified un-
der reasonable regularity conditions, and even the last
step would be sanctioned by a loose inverse probabil-
ity argument such as was common at that time. That
reader would be wrong.

3. THE SOURCE OF THE ERROR

The key to understanding what went wrong with the
Pearson–Filon argument is at the very beginning, as
a closer reading shows. Modern readers have under-
standably tended to take the frequency surface z =
f (x1, x2, x3, . . . , xm; c1, c2, c3, . . . , cp) as a paramet-
ric model. But in fact, in their notation, z is the fitted
surface in terms of estimated h’s and c’s. Pearson and
Filon explained this implicitly in the first paragraph on
page 231, when they write exclusively in terms of the
group of n individuals and the “means” hi (referring to
the arithmetic means) as determining the origin of the
surface, and explicitly in the short fourth paragraph,
where they refer to the h + �h’s and c + �c’s of the
numerator as being considered “instead of the observed
values.” This runs counter to modern statistical prac-
tice, which would focus on a specification in terms of
parameters, not the estimates, with one value consid-
ered the true or population value, and the focus would
be the deviations of the estimates from that value. The
idea of this type of parametric modeling was, how-
ever, only to be introduced in 1922 by Fisher (Stigler,
2005), and Pearson’s “frequency constants” were not
parameters, even if they were sometimes employed in
an equivalent fashion. This difference was, as we shall
see, highly consequential; it was the source of the prin-
cipal difficulties in the argument.

Because Pearson and Filon took the estimates as
a starting point, the Taylor expansion they gave was
about the estimated values. The expansion itself is fine,
but when they came to substituting integrals for sums,
they inadvertently encountered a problem. Consider
the first sum that involves a general frequency constant
c, namely S d

dcs
(logf ). (The earlier terms involve the

h’s but have been written in terms of derivatives with
respect to the x’s; the issue is more clearly addressed

with the c’s.) If we took f as a density, it might not
be unreasonable to replace this sum (divided by n) by
its limit in probability, the expectation E[ d

dcs
(logf )].

But under what distribution should the expectation be
computed? With Fisher it would be computed under the
distribution with the true values of the parameters. But
Pearson lacked that notion; for him there was no “true
value,” only a summary estimate in terms of observed
values.

Someone—perhaps Fourier—has been quoted as
saying that “Mathematics has no symbols for con-
fused ideas.” Anyone seeking a counterexample to this
need look no further than Pearson–Filon. With their
symbol f = f (x1, x2, x3, . . . , xm; c1, c2, c3, . . . , cp)

submerging the role of estimated values and elevat-
ing them in the process to surrogates for true val-
ues, the argument goes astray. All expectations are
computed as if the estimated values were true val-
ues, and the result is a distribution for errors that
does not in any way depend upon the method used
to estimate. Pearson and Filon replaced S d

dcs
(logf )

by the integral Ds = ∫∫∫ · · ·f d logf
dcs

dx1 dx2 · · ·dxm,
which reduces identically to zero (if the two f ’s
are identical) under fairly general regularity condi-
tions. But the same would not be generally true for∫∫∫ · · ·f (x|θ)

d logf (x|θ̂ )
dcs

dx1 dx2 · · ·dxm, writing θ̂ for
(h1, h2, h3, . . . , hm; c1, c2, c3, . . . , cp), and θ for the
potential true value θ̂ is intended to estimate.

The summation S d
dcs

(logf ) is identically zero if
maximum likelihood estimates are used, but it re-
mained for Fisher to notice that this term is not in gen-
eral negligible; in fact, it will contribute asymptotically
to the variance term if the estimate θ̂ is inefficient,
as would be the case for many of Pearson’s moment-
based estimates. Pearson and Filon wrote that the ex-
pansion represented the distribution “on the assump-
tion that the errors �h1,�h2, . . . ,�hm,�c1, . . . ,�cp

have been made in the determination of the frequency
constants.” But that is not what they had done. With
their notation of a simple f without arguments, and
their fixation on the estimated values, they were led to
mathematical misadventure.

If the substitution of limiting integrals for sums had
been valid, the likelihood ratio P�/P0 would then have
been the ratio of the probability densities of the sample
with estimated h’s and c’s (the denominator) to that for
a hypothetical set of alternative values (the h + �h’s
and c + �c’s, the numerator). In modern terminology,
Pearson’s final expression (1) was claimed to be an ap-
proximation for P�, the (conditional) density of the
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sample x given that the estimated values are in error
by �h or �c, and their final claim (“In other words,
we have here the frequency distribution for errors in
the values of the frequency constants”) was an asser-
tion that formula (1) also gives the (conditional) den-
sity of the errors �h and �c given the data x. This last
statement was not explained, but later in 1916 corre-
spondence with Fisher (quoted in Stigler, 2005) Pear-
son described it as the use of inverse probability, mak-
ing it a naive Bayesian approach with a uniform prior,
such as was practiced routinely over the 19th century
and was sometimes referred to as the Gaussian method.

Pearson’s contemporaries did not raise questions
about the memoir. When Edgeworth discussed and
extended it in 1908, he gave no indication he saw
anything amiss (Edgeworth, 1908). Only in 1922 did
Ronald Fisher criticize the approach of the paper in a
lengthy footnote (Fisher, 1922a, page 329), writing that
“It is unfortunate that in this memoir no sufficient dis-
tinction is drawn between the population and the sam-
ple . . . .” Fisher went on to say that the results implic-
itly assume the estimates actually maximized the like-
lihood function, whereas they were applied in many
cases where this was not the case. He wrote,

“It would appear that shortly before 1898
the process which leads to the correct value,
of the probable errors of optimum statis-
tics, was hit upon and found to agree with
the probable errors of statistics found by
the method of moments for normal curves
and surfaces; without further enquiry it
would appear to have been assumed that
this process was valid in all cases, its direct-
ness and simplicity being peculiarly attrac-
tive. The mistake was at the time, perhaps,
a natural one; but that it should have been
discovered and corrected without revealing
the inefficiency of the method of moments
is a very remarkable circumstance” (Fisher,
1922a, page 329).

It is worth pointing out that the size of the correction
Fisher noted was needed was not small. Fisher gave
several examples of nonnormal members of Pearson’s
own family of curves where the lower bound of the effi-
ciency of the moment-based estimates was zero. Since
Fisher measured efficiency as a ratio of variances, this
meant that the correction needed for Pearson’s 1898
expressions for “probable errors” could be enormous—
in fact arbitrarily large. The 1898 expressions were not

larger than the actual probable errors, but there was lit-
tle else that could be said. There was no finite limit to
the amount they underestimated the actual probable er-
rors.

The major error in the paper was due (as Fisher
noted) to a conceptual confusion, a taking of the es-
timated frequency constants in part of the analysis in
the place of the actual frequency constants. Pearson
had run aground after encountering a need for a clear
notion of a set of values for his frequency constants;
he did not have a framework to encompass both esti-
mates and targets of estimation. To some degree then,
the Pearson–Filon error can be seen to be due to the
lack of the notion of parametric families. Pearson and
Filon used notation in this memoir suggestive of para-
metric families, but the lack of conceptual clarity led to
a confused and ultimately erroneous analysis. Pearson
thought of “frequency constants” as quantities such as
moments, derivable from arbitrary density curves with
the same meaning in all cases and with the sample mo-
ments as clearly leading to the best estimates.

Fisher’s comments were apt; perhaps even too gener-
ous, although it is doubtful Pearson would have agreed
with such an assessment. That the Pearson–Filon pro-
cedure can be shown to work for efficient estimates is
a species of mathematical accident, albeit one that may
have helped to deceive Pearson and probably produced
overconfidence when it gave the results he knew should
hold for the normal distribution case. The fact that the
identities they claimed in general would work for many
efficient estimates is mathematics that would have been
foreign to Pearson and Filon, and unachievable without
the full notion of parametric families.

From 1903 on, Pearson subtly distanced himself
from the paper without ever calling attention to the er-
rors, but he never repudiated it. In 1899 William F.
Sheppard published a long study of “normal corre-
lation” (Sheppard, 1899). Sheppard appears to have
not seen the Pearson–Filon paper (at any rate he
did not cite it), and a part of what he presented in-
cluded probable errors for the frequency constants
in the normal case, derived by methods different
from Pearson–Filon. The methods he used were quite
straightforward—writing estimates as linear functions
of frequency counts (using a Taylor expansion if nec-
essary), and then finding moments from the variances
and covariances of the counts in ways that remain stan-
dard today.

The directness of Sheppard’s methods must have ap-
pealed to Pearson. In a sequence of articles, all with the
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same title “On the probable errors of frequency con-
stants” (Pearson, 1903, 1913, 1920), he presented what
he called “simple proofs of the main propositions,” all
the while with the Pearson–Filon paper receding into
the background. In 1903 he gave only a general refer-
ence to the 1898 treatment (as well as to Sheppard); in
1913 he only referred to the formulae in 1898 for the
case of the normal correlation coefficient (where they
were correct); in 1920 he did not cite the 1898 work
at all. In the 1903 paper he included formulae based
upon Sheppard’s approach that were capable of being
worked out for getting probable errors for estimates in
five types of curves within the Pearson family, but only
for methods of moments estimates.

The 1898 paper had a considerable impact upon sta-
tistical practice in making the use of probable errors
available for the entire span of the new methodology
including moment estimates. It could even be argued
that the wrong, generally overoptimistic probable er-
rors were better than none at all. And again, the paper
had a significant impact upon Fisher. While preparing
his 1922 memoir, Fisher clearly had Pearson and Filon
before him, and his discussion of the asymptotic vari-
ance of maximum likelihood estimates (Fisher, 1922a,
pages 328–329), involving the expansion of the density
of a sample, reflects that. However, Fisher used the ex-
pansion in a different way, and operated under different
assumptions. He began by assuming that the estimate
tended to normality with large samples, and under that
restriction and the assumption that the estimates max-
imized likelihood, Fisher used the expansion to show
how the asymptotic variance could be found from the
second derivative of the log density. Pearson and Filon
had sketched a solution to a problem that was not the
one they had embarked upon. But it was Fisher who
recognized, with the conceptual apparatus of paramet-
ric families, that this sketch could lead to the solution
of his own problem. Pearson the pioneer had laid a path
that was insufficiently well-lit for his own travel, but it
provided a brightly lit highway for Fisher.

4. PEARSON’S SECOND MAJOR ERROR

Pearson introduced the Chi-square test in 1900, and
it has been widely celebrated as a great achievement in
statistical methodology. In 1984 the editors of a popu-
lar science magazine selected it as one of twenty dis-
coveries made during the twentieth century that have
changed our lives (Hacking, 1984). Yet for all this cel-
ebration, virtually no historical mention of the paper is
made by statisticians without adding damning words to

the effect that Pearson erred in claiming, as we would
now put it, that no correction in degrees of freedom
need be made when parameters are estimated under
the null hypothesis. Worse for Pearson’s reputation,
such accounts further note that the error stood uncor-
rected until it was sensed in 1915 by Greenwood and
Yule and definitively corrected in 1922 and 1924 by
Ronald Fisher, thus seemingly turning Pearson’s land-
mark publication into Fisher’s triumph over ignorance.

Pearson has had some defenders in this matter;
some have even suggested that Pearson was right
all along. For example, Karl’s son Egon and George
Barnard have separately advanced tentative (and I think
half-hearted) statistical cases that might be made for
proceeding as Pearson did (Pearson, 1938, page 30;
Barnard, 1992). But a cold, clear-eyed look at the orig-
inal 1900 paper shows that such excuses cannot be rec-
onciled with Pearson’s text. He did make an error, and
a big, consequential one too.

The crucial passage from Pearson’s 1900 article is on
pages 165–166. Pearson considered a test of fit based
upon a total of N frequency counts from a sample in-
dependently distributed among n + 1 groups or cate-
gories, with

m = theoretical frequency [i.e., the expected
frequency for the group in question],

ms = theoretical frequency deduced from data for
the sample [i.e., expected frequency using the
data to find the “best” value for the group],

m′ = observed frequency [for the group],
and with the total count N = ∑

m = ∑
ms = ∑

m′.
Pearson recognized that the estimated theoretical fre-
quency ms would typically differ from the theoretical
frequency m, and he denoted that difference by μ; that
is, μ = m − ms . His analysis gave particular attention
to the relative error, namely μ/ms , “which,” he told us,
“will, as a rule, be small.”

The gist of Pearson’s argument was to show that the
Chi-square statistic based upon the theoretical frequen-

cies, χ2 = ∑ (m′−m)2

m
, is close to the Chi-square sta-

tistic based upon the estimated theoretical frequencies,

χ2
s = ∑ (m′−ms)

2

ms
; so close, in fact, that the discrepancy

could for all practical purposes be ignored.1

1Pearson again employed S for
∑

, and his argument is made
harder than necessary to understand by two clear typographical er-
rors. The typographical errors are an evident missing left parenthe-
sis in the numerator of the second term on his first line of equations
on page 165, and a missing ms in the denominator of the second
term of the second line of equations [it reappeared, correctly, when
this term was repeated two lines later; that equation is our equation
(3) below].
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Pearson had evidently expanded h(m) = (m′−m)2

m
=

(m′−ms−μ)2

ms+μ
in a Taylor series about ms , discarded the

terms of higher order than (μ/ms)
2, and then summed

the results over the n + 1 groups. Proceeding in this
way, he would have found

h′(m) = −(m′2 − m2)

m2 ,

h′′(m) = 2m′2

m3 ,

h′′′(m) = −6m′2

m4 , . . . .

And so, since μ = m − ms ,

h(m) = h(ms) + μh′(ms)

+ μ2

2
h′′(ms) + μ3

6
h′′′(ms) + · · ·

= (m′ − ms)
2

ms

− μ

ms

m′2 − m2
s

ms

+
(

μ

ms

)2 m′2

ms

−
(

μ

ms

)3 m′2

ms

+ · · ·

= (m′ − ms)
2

ms

− μ

ms

m′2 − m2
s

ms

+
(

μ

ms

)2 m′2

ms

,

dropping terms of higher order than (μ/ms)
2. Sum

both sides over the n + 1 groups and this is the ex-
pression Pearson arrives at:

χ2 = χ2
s − ∑{

μ

ms

m′2 − m2
s

ms

}

(2)

+ ∑{(
μ

ms

)2 m′2

ms

}
, and hence,

χ2 − χ2
s = −∑{

μ

ms

m′2 − m2
s

ms

}

(3)

+ ∑{(
μ

ms

)2 m′2

ms

}
.

The term −m2
s in the numerator of the first term on

the right-hand side of (3) is superfluous when summed
over groups since

∑
μ = ∑

m−∑
ms = 0, but it plays

a role in Pearson’s argument, which is no doubt why he
left it in.

For future reference, I note that exactly the same re-
sult can be arrived at more simply by noting

χ2 = ∑{
m′2 − 2mm′ + m2

m

}

= ∑{
m′2

m

}
− 2N + N = ∑{

m′2

m

}
− N,

and similarly χ2
s = ∑{m′2

ms
} − N; then

χ2 − χ2
s = ∑{

m′2

m

}
− ∑{

m′2

ms

}

= ∑
m′2

(
1

m
− 1

ms

)
.

If we then expand m−1 as a function of m about ms

(again neglecting third- or higher order terms), we get

χ2 − χ2
s = −∑{

μ

ms

m′2

ms

}
+ ∑{(

μ

ms

)2 m′2

ms

}
.(4)

This agrees exactly with Pearson’s expansion (3) when
the superfluous term “−m2

s ” is dropped, as would have
to be the case since the function being expanded (χ2 −
χ2

s ) is the same in both cases.
It is not hard to show reasonably generally under the

hypothesis of fit that the terms dropped, even when
summed, are indeed with high probability negligible
when N is large [OP (N−1/2)]. In order to see where
Pearson was led astray, we must then look to the para-
graph following his equations. Pearson’s argument pro-
ceeded as follows: He recognized that the difference
(3) between these two Chi-squares should be positive:
the deviation of the observed counts from the theo-
retical counts should be greater than the same devi-
ation if the theoretical counts are adjusted to fit the
observed. He wished to argue that the difference (3)
was not large. His argument was in two parts: (i) the
first term on the right-hand side of (3) should be ex-
pected to be either negative (thus canceling out part of
the second term) or at least very small; (ii) the second
term was nonnegative of course, but it would be ex-
pected to be small in any case, because it involved for
each summand the square of the relative error μ/ms ,
which Pearson had stated (page 164) “will, as a rule, be
small,” and much smaller still when squared. He gave
no citation for this “rule,” but two years earlier he had
explicitly cited Gauss, Laplace and Poisson, among
others, as sanctioning the dropping of terms involving
the squares of errors thought to be small (Pearson and
Filon, 1898, page 246). Presumably in stating this he
assumed good estimates and ample data. He granted
that in some cases where the fit was bad the deviations
would be quite large, but then both Chi-squares would
be large and the discrepancy between them unimpor-
tant.

There are two points to make about Pearson’s argu-
ment. The first is that his analysis (i) of the first term
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may seem dubious to modern eyes, but it is not the
source of the error. He noted that the first term will be
positive only if the two terms multiplied (μ = m − ms

and m′2 − m2
s ) are negatively correlated2; that is, if

there was a tendency for the m’s to be ordered m′ >

ms > m or m′ < ms < m. He thought such a tendency
“seems impossible,” but this is unconvincing, at least
under the null hypothesis of fit. Might we not then ex-
pect often to find m′ > ms > m or m′ < ms < m, with
ms a compromise between theory and observation?
He might have had an alternative hypothesis in mind,
where m′ would then tend to track the true theoretical
expectation m, leaving the estimate ms (made under
false assumptions) off to one side. Although Pearson’s
argument on point (i) can be questioned, his conclusion
is correct. As Fisher would observe later, the first term
is in fact zero (or nearly so) if the estimated m’s are
chosen well (minimum Chi-square or maximum like-
lihood) due to the (near) orthogonality of m − ms and
m′ −ms in those cases (much like that of X̄ and Xi −X̄

for normal distributions).
In any event, it is part (ii) of his argument that is

crucial, and that argument fails, and fails dramatically.
The second term on the right-hand side of (3) should
not be expected to be small under either null or al-
ternative hypothesis. At this distance in time it may
seem surprising that Pearson did not realize this. Al-
ready in 1938 his son Egon registered this surprise in
a biographical memoir of his father (Pearson, 1938,
page 30), when he noted that for any multinomial dis-
tribution, if Chi-square is computed with no parameter
restrictions (so each theoretical value is estimated by
the corresponding observed count and ms = m′), then
the fit with the estimated values is perfect. We would
thus have χ2 − χ2

s = χ2 − 0, while the right-hand side
of (3) gives

−∑{
μ

ms

m′2 − m2
s

ms

}
+ ∑{(

μ

ms

)2 m′2

ms

}

= −0 + ∑{
(m − m′)2

m′
}
.

In this extreme case the second term is asymptotically
equivalent to the original Chi-square itself under the
null hypothesis, and so it is certainly not negligible.
The test of fit is not interesting here (we would say the
degrees of freedom is zero), but it shows starkly the
devastating effect estimated parameters can have upon

2This would presumably be why he left the superfluous term

“−m2
s ” in the expression.

the statistic, even when (as in Egon’s example) the rel-
ative error itself (μ/ms ) would be small [OP (N−1/2)].
Why, Egon seemed to ask, would Karl have not seen
this? Egon offered his father’s possible “hurry in exe-
cution” as one explanation.

5. FISHER’S CORRECTION

Ironically, Pearson did consider a similar example in
1922 and rejected its relevance. In 1922 Fisher (1922b)
published his first comment on the degrees of free-
dom issue, and at that time he dealt only with the case
Greenwood and Yule had noticed, the case of r ×c con-
tingency tables. There, Fisher’s argument was keyed
to the way the linear relations with the marginal to-
tals inhibited the estimated expectations under the null
hypothesis, thus reducing the “degrees of freedom,”
a term Fisher introduced there. At that time, Fisher
made no attempt to address the question for tests of fit
more generally. Pearson immediately rebutted in Bio-
metrika. The reply focused upon what Pearson thought
(mistakenly) was a confusion between different sam-
pling models (fixed totals or full multinomial sam-
pling), and Pearson invoked the traditional custom of
astronomers and others of substituting estimates with
small standard errors without penalty in large samples.
He thought Fisher had blundered and was offering an
exclusively conditional analysis, given the estimated
quantities. Pearson noted (1922, page 187) that if you
estimated “the first p − 1 moment-coefficients” a per-
fect fit would be obtained; he rejected such a condi-
tional analysis as restricting the random sampling and
antithetical to the question at issue. He did not see (and
Fisher’s exposition would have made it difficult for him
to see) that in the contingency table setting the condi-
tional and unconditional tests were the same.

In 1924 Fisher returned to address the more general
question, and if we look at Fisher’s treatment there, we
see exactly where Pearson’s argument about the sec-
ond term of (3) failed, and exactly what he lacked for a
successful treatment (Fisher, 1924). Writing in 1924,
Fisher clearly had Pearson’s paper in front of him.
Fisher used slightly different notation,3 but for ease
of comparison I shall translate to Pearson’s notation.
Fisher’s development was slightly streamlined in that
Fisher did give the simpler expression for the differ-
ence of Chi-squares:

χ2 − χ2
s = ∑

m′2
(

1

m
− 1

ms

)
.

3Fisher used χ ′, x,m′ and n where Pearson used χs,m
′,ms

and N .
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It is exactly this expression that Fisher expanded in a
Taylor series, just as Pearson had done, but with one
absolutely crucial difference. Fisher was now armed
with his own recently introduced notion of a parametric
family, and where Pearson had simply dealt with this as
a function of m, Fisher had m = m(θ) and expanded as
a function of θ , not m. He found the same two terms
Pearson had found, but expressed them differently:

1

m
− 1

ms

= − 1

m2
s

∂ms

∂θ
δθ

+
{

2

m3
s

(
∂ms

∂θ

)2

− 1

m2
s

∂2ms

∂θ2

}
(δθ)2

2

+ higher-order terms.

If this is multiplied by m′2 and summed it gives

χ2 − χ2
s = −δθ

∑(
m′2

m2
s

∂ms

∂θ

)

+ (δθ)2

2

∑{
2m′2

m3
s

(
∂ms

∂θ

)2

− m′2

m2
s

∂2ms

∂θ2

}
.

Fisher was now able to see that if the minimum Chi-
square estimate θ̂ is used, then his first term and Pear-
son’s first term actually vanished (since then the first
summation is exactly d

dθ
χ2|

θ=θ̂
= 0), and he knew al-

ready that the same would be true asymptotically for
the maximum likelihood estimate or any other efficient
estimate of θ . He then replaced m′/ms by unity (its as-
ymptotic value) to get

χ2 − χ2
s = (δθ)2

∑{
m′2

m3
s

(
∂ms

∂θ

)2

− m′2

2m2
s

∂2ms

∂θ2

}

≈ (δθ)2
∑{

1

ms

(
∂ms

∂θ

)2

− 1

2

∂2ms

∂θ2

}

= (δθ)2
∑{

1

ms

(
∂ms

∂θ

)2}
.

The last step used the fact that
∑{ ∂2ms

∂θ2 } = ∂2

∂θ2 ·∑
ms = ∂2

∂θ2 N = 0. Based upon his own 1922 paper,

he now noted that
∑{ 1

ms
(∂ms

∂θ
)2} would, in the case of

a single estimated parameter θ , estimate (and approx-
imate asymptotically) the reciprocal of the variance of
any efficient estimate. This would give in modern no-

tation χ2 − χ2
s = (θ̂−θ)2

σ 2(θ̂)
. This difference then was as-

ymptotically equivalent to the square of a standard nor-
mal random variable. The degree of freedom that is lost
by estimation became clearly visible.

There are two views that may be taken of this. One
I have already mentioned: that the alchemist Fisher’s
concept of a parametric family had turned Pearson’s
base expressions into statistical gold. Posterity has
used this to diminish Pearson’s reputation—how could
he have missed such a simple and (now) obvious step?
But there is another, to me more persuasive view. For
over 20 years that step was anything but obvious. Pear-
son’s perceptive student G. Udny Yule initially ac-
cepted the 1900 rule, for example using 8 rather than
4 degrees of freedom for a Chi-square test of a 3 × 3
contingency table in Yule (1906, page 349). Only in
1915, after years of experience, did Greenwood and
Yule (1915) bring the puzzle to wider notice, and even
then neither they nor anyone else had a clear view of
the source of the problem. And so it stood until Fisher.

Even with Fisher’s work before us, we must mar-
vel at how far Pearson had gone. He had lacked only
one ingredient—parametric families—but what he had
managed to do was to identify the issue and present it in
such a clear way that when Fisher combined Pearson’s
1900 development with the deceptively simple idea of
parametric families, the solution must have sprung to
mind nearly immediately. It took Fisher’s genius to an-
swer the question, but he would scarcely have been in a
position to do so without the path-breaking formulation
of Pearson the pioneer.

It is not anachronistic to see Pearson as erring in
1900. Even without the notion of parametric families
he could have seen a discrepancy without seeing a res-
olution, just as Greenwood and Yule did, when they
found the Chi-square test for 2 × 2 tables gave results
inconsistent with a comparison of the two columns as
binomial counts. Pearson erred, but the error led to
Fisher’s discovery of degrees of freedom. Pearson had
not only solved the great problem of testing multino-
mial goodness of fit against all alternatives, he had also
isolated and formulated another great problem in terms
that two decades later permitted another genius, armed
with his own major discovery, an easy solution.

6. CONCLUSION

The errors Pearson made did not go undetected be-
cause they were small; to the contrary, they were large
and of potentially large practical consequence. For ex-
ample, in Pearson and Filon’s own numerical example
for a Type III or Gamma density (Pearson and Filon,
1898, pages 279–280), the probable error given for the
shape parameter p is only about a fifth of what it should
have been (Fisher, 1922a, page 336). If the curves be-
ing fit by the method of moments had been closer to
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the normal shape, the errors would have been smaller,
but if not, there was no finite bound on how far off
they could be. For Chi-squares for 2 × 2 tables Pear-
son would give 3 rather than 1 degree of freedom; for
3 × 3 tables he would give 8 rather than 4 degrees of
freedom. In these and other examples the effect upon
inferences could be devastating.

Not only were the errors Pearson made not easily
discovered; even after they were pointed out in 1922
they were not widely understood. In 1924, a Handbook
of Mathematical Statistics was published, prepared un-
der the auspices of the U.S. National Research Council
(Rietz, 1924). The Editor-in-Chief was H. L. Rietz, and
major contributions were made by Harvard University
Professor E. V. Huntington and University of Michi-
gan Professor H. C. Carver (later the founding editor of
the Annals of Mathematical Statistics). Carver cited the
Pearson–Filon paper without any indication he saw the
problem with it (page 95). Fisher’s (1922b) first correc-
tion to the degrees of freedom for contingency tables
was briefly cited without comment by Rietz, but Rietz
(with evident approval) also gave in more detail Pear-
son’s argument that no correction for estimating ex-
pected values was needed (pages 80–81). Elsewhere in
the volume, Huntington wrote warmly of the method of
moments, and nowhere was Fisher’s magnum opus of
1922 referred to. Even in England understanding was
slow. By 1938 Egon Pearson had conceded the degrees
of freedom issue, but he seemed to have not accepted
Fisher’s point about Pearson and Filon (Pearson, 1938,
pages 28–29).

Both Pearson and Fisher were giants in our history;
despite their lack of mutual appreciation we cannot
imagine modern statistics without both. Pearson’s er-
rors were substantial and not to be glossed over, but
they should not obscure the even greater achievements
they accompanied. Pearson had a giant ambition and
the energy to realize it. He sought to create a whole new
statistical system, and for a time succeeded. He did not
have a mathematical mind equal to Fisher’s, and he be-
came mired in and never escaped from an incompletely
developed conceptual apparatus that was not equal to
the full task at hand. But he took statistics to a higher
level nonetheless. If Pearson could never come to admit
some failures, it was surely due to a stubbornness that
even he recognized in himself. In the Preface for the
Second Edition of The Grammar of Science (1900b),
Pearson wrote,

“If I have not paid greater attention to
my numerous critics, it is not that I have

failed to study them; it is simply that I
have remained—obstinately it may be—
convinced that the views expressed are, rel-
atively to our present state of knowledge,
substantially correct” (Pearson, 1900b, pa-
ge ix).

So it was with his statistical work as well.
Pearson’s impact upon Fisher may in the end stand

as one of his greater achievements. Pearson had no
student more diligent than Fisher, despite their dif-
ferences. When in 1945 Fisher wrote an ill-fated bio-
graphical account of Pearson for the Dictionary of Na-
tional Biography (rejected by the Dictionary and not
published until by A. W. F. Edwards, in 1994), he wrote
to the editor that he had made a “lifelong study of Pear-
son’s writings.” Fisher further stated, “I have during the
last 35 years at various times had occasion to look at
probably all of [Pearson’s fundamental statistical mem-
oirs] and at the immense output which was published
in Biometrika.” It was from reading Pearson’s work and
Pearson’s journal that Fisher’s interest in statistics de-
veloped in the way it did, and in the case of the two
examples discussed here, the effect of the Pearsonian
blueprint could scarcely be more evident. Fisher saw
Pearson clearly, warts and all, and while he did not ac-
knowledge the extent of his debt to Pearson, its extent
is clear to other, less involved readers. As in Newton’s
famous statement, Fisher stood on the shoulders of a
giant (Merton, 1965).

Porter’s recent biography (2004) is illuminating on
Pearson’s pre-statistical life. Eisenhart (1974) remains
the most complete discussion of K. P.’s statistical work.
For other discussion relating to this early work see
Aldrich (1997), Hald (1998), Magnello (1996, 1998).
On Chi-square see in particular Fienberg (1980), Hack-
ing (1984), Plackett (1983) and Stigler (1999, Chapter
19). For other aspects of the Pearson–Fisher relation-
ship see Stigler (2005, 2007a, 2007b). Pearson himself
returned to that topic of Chi-square frequently, includ-
ing Pearson (1915, 1922, 1923, 1932), most of these
under the instigation of Fisher.
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