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Karyotype differentiation in 19 species of
river loach fishes (Nemacheilidae,
Teleostei): extensive variability associated
with rDNA and heterochromatin
distribution and its phylogenetic and
ecological interpretation
Alexandr Sember1,2*, Jörg Bohlen1, Vendula Šlechtová1, Marie Altmanová1,3, Radka Symonová1,4 and Petr Ráb1

Abstract

Background: Loaches of the family Nemacheilidae are one of the most speciose elements of Palearctic freshwater

ichthyofauna and have undergone rapid ecological adaptations and colonizations. Their cytotaxonomy is largely

unexplored; with the impact of cytogenetical changes on this evolutionary diversification still unknown. An

extensive cytogenetical survey was performed in 19 nemacheilid species using both conventional (Giemsa staining,

C- banding, Ag- and Chromomycin A3/DAPI stainings) and molecular (fluorescence in situ hybridization with 5S

rDNA, 45S rDNA, and telomeric (TTAGGG)n probes) methods. A phylogenetic tree of the analysed specimens was

constructed based on one mitochondrial (cytochrome b) and two nuclear (RAG1, IRBP) genes.

Results: Seventeen species showed karyotypes composed of 2n = 50 chromosomes but differentiated by

fundamental chromosome number (NF = 68–90). Nemachilichthys ruppelli (2n = 38) and Schistura notostigma

(2n = 44–48) displayed reduced 2n with an elevated number of large metacentric chromosomes. Only

Schistura fasciolata showed morphologically differentiated sex chromosomes with a multiple system of the

XY1Y2 type. Chromomycin A3 (CMA3)- fluorescence revealed interspecific heterogeneity in the distribution of

GC-rich heterochromatin including its otherwise very rare association with 5S rDNA sites. The 45S rDNA sites

were mostly located on a single chromosome pair contrasting markedly with a pattern of two (Barbatula

barbatula, Nemacheilus binotatus, N. ruppelli) to 20 sites (Physoschistura sp.) of 5S rDNA. The cytogenetic

changes did not follow the phylogenetic relationships between the samples. A high number of 5S rDNA sites

was present in species with small effective population sizes.
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Conclusion: Despite a prevailing conservatism of 2n, Nemacheilidae exhibited a remarkable cytogenetic

variability on microstructural level. We suggest an important role for pericentric inversions, tandem and

centric fusions in nemacheilid karyotype differentiation. Short repetitive sequences, genetic drift, founder

effect, as well as the involvement of transposable elements in the dispersion of ribosomal DNA sites, might

also have played a role in evolutionary processes such as reproductive isolation. These remarkable dynamics

of their genomes qualify river loaches as a model for the study of the cytogenetic background of major

evolutionary processes such as radiation, endemism and colonization of a wide range of habitats.

Keywords: Fish cytotaxonomy, Karyotype variability vs. 2n uniformity, FISH, 45S - 5S ribosomal genes,

Chromosome banding, Pericentric inversion, Robertsonian translocation, Effective population size

Background
Cypriniformes, the largest order of freshwater fishes

globally, is composed of two highly diverse Palearctic

superfamilies – Cyprinoidea and Cobitoidea [1, 2]. Cobi-

toidea, or “loaches”, are a group of small benthic fishes

which are one of the most common elements of

Eurasian freshwater ichthyofauna. To date, Cobitoidea

includes about 1100 species, currently recognized in ten

families [3], and yet only representatives of Cobitidae,

Botiidae, Catostomidae and Vaillantellidae have so far

been studied cytogenetically. Several cases of highly di-

verse karyotypes and polyploidy have been discovered in

the first three families, although not in Vaillantellidae

[4]. The Botiidae family consists of two subfamilies dif-

fering in ploidy levels (one diploid and one tetraploid)

[5]. In Cobitidae, several independent polyploidization

events occurred [6, 7], in some cases after hybridization,

leading to an asexual mode of reproduction [8–10].

From these limited data we can see that cytogenetic

changes might have played an important role in the evo-

lution of loaches and it remains an open question as to

whether this is also true for the remaining cobitoid

lineages.

With nearly 600 recognized species in 46 genera [3],

Nemacheilidae, or “river loach”, represents the most di-

verse family of loach fishes, as well as being the most

widespread with a distribution area ranging continuously

from Portugal to Japan, and from most Siberian rivers to

Java [11]. Importantly, river loaches are also very abun-

dant within this enormous distribution area, occurring

in virtually all rivers in Europe and Asia. On the other

hand, their distribution pattern varies considerably;

while some species are geographically very restricted,

others are widely distributed, a feature often found even

within the same genus, e.g., Schistura [3]. Additionally,

Nemacheilidae have colonized an unusual variety of hab-

itats including standing swamps, torrential rapids, major

rivers, small forest streams, caves and lakes. Their eco-

logical diversity is further illustrated by them being both

the highest (above sea level) and the lowest (below

ground level) freshwater fish in the world [3]. All these

characteristics make Nemacheilidae a vital model for

evolutionary study and our candidate group with which

to evaluate the impact of cytogenetic changes on their

diversity.

Despite the vast biodiversity within Nemacheilidae, the

cytogenetics and cytotaxonomy of this group remain

poorly explored. Giemsa-stained chromosomes have

been studied in only 24 species [7, 12–14] and banding

techniques were performed solely in the single species

Barbatula barbatula [15] while no molecular cytogenet-

ics had previously been applied. From this limited data,

karyotypes of most analysed species display the stable

diploid chromosome number 2n = 50, while interspecific

karyotype variability in the number of chromosomal

arms (Nombre Fundamental, NF) is apparent (see, e.g.,

[15–17]). In some species, intraspecific variability in 2n

and karyotype composition has also been documented

[17–20]. Polyploidy has been recorded only in one

species B. ‘barbatula’ (2n = 3x = 75) [21]. The scarce

available data does indicate the extensive but unexplored

cytogenetic diversity of nemacheilid loaches.

The aim of this study is to assess cytogenetic variabil-

ity within the Nemacheilidae family using conventional

and molecular chromosome markers and to evaluate

these data with regards to the evolutionary processes

behind morphological and ecological diversification. A

representative sampling of 19 species from eleven genera

were used to investigate karyotypes, heterochromatin

distribution and chromosomal characteristics of both

rDNA classes and (in some cases) the telomeric sequence

motif (TTAGGG)n. All cytogenetic characteristics were

mapped onto a phylogenetic tree based on molecular ana-

lyses of one mitochondrial and two nuclear genes.

Methods
Animals

Fifty-two individuals belonging to 19 different nemachei-

lid species were analysed (Table 1). Their distribution

areas are specified in Fig. 1 and references for taxonomic

identification are given in Additional file 1: Supplementary

Methods 1. All analysed specimens were obtained from
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ornamental fish trade, from a commercial fish farm

or from private aquarium fish breeders. All experi-

mental procedures involving fishes were approved by

the Institutional Animal Care and Use Committee of

the IAPG AS CR, according with directives from the

State Veterinary Administration of the Czech Republic,

permit number 217/2010, and by permit number CZ

02386 from the Ministry of Agriculture of the Czech

Republic. Voucher specimens are deposited to the fish

collection of the Laboratory of Fish Genetics, IAPG,

CAS, Liběchov.

Chromosome preparation and analysis of constitutive

heterochromatin

Mitotic chromosomes were obtained from regenerating

fin tissue by the technique described by Völker et al.

[22] and Völker and Ráb [23], with slight modifications

(see Additional file 1: Supplementary Methods 2). For

conventional cytogenetic analysis, chromosomes were

stained with 5 % Giemsa solution (pH 6.8) (Merck,

Darmstadt, Germany). Selected slides were destained in

methanol:acetic acid fixation (see above) and re-used

for the other techniques. For fluorescence in situ

hybridization (FISH), slides were dehydrated in an

ethanol series (70, 80 and 96 %, 3 min each) and

stored in a freezer (−20 °C). Visualization of the con-

stitutive heterochromatin was done by C-banding

according to Haaf and Schmid [24] using 4′,6-diamidino-

2-phenolindole (DAPI) (Sigma, St. Louis, MO, USA)

counterstaining. Fluorescence staining was performed se-

quentially or in separate experiments by GC-specific

fluorochrome Chromomycin A3 (CMA3) (Sigma-Aldrich)

[25] and AT-specific fluorochrome DAPI (Sigma-Aldrich)

[26], following Mayr et al. [27] and Sola et al. [28]. In

P. elongata, a silver staining technique was employed

according to Howell and Black [29]. At least ten meta-

phases per specimen were analysed, in some cases se-

quentially. In a few cases, metaphases with incomplete

2n were selected (see Figs. 6i and 7a; Additional file 2:

Figure S1K), but were sufficient enough to present the

required features. Chromosome morphology was classified

according to Levan et al. [30], but modified as m –

metacentric, sm – submetacentric, st – subtelocentric,

a – acrocentric, where st and a chromosomes were scored

as uniarmed, together in one category.

DNA isolation and probe preparation

Whole genomic DNA was extracted from fin tissue

using the conventional phenol-chloroform-izoamylalcohol

method [31] using PhaseLock Eppendorf tubes (5PRIME,

Table 1 Species under study, their sex, origin and geographical distribution

Species Individuals Source (country, province, river basin) Distribution

Barbatula barbatula (Linnaeus, 1758) 3 Czech Republic, Středočeský kraj, Elbe widespread (Europe, Asia)

Lefua costata (Kessler, 1876) 2♀ Republic of Korea, Gangwon, Geojin widespread (Korea, China)

Mesonoemacheilus guentheri (Day, 1867) 1♂, 1♀ Ornamental fish trade moderately widespread (southern India)

Nemacheilus binotatus (Smith, 1933) 1♂, 1♀ Ornamental fish trade moderately widespread (Thailand)

Nemachilichthys ruppelli (Sykes, 1839) 1♂, 1♀ Ornamental fish trade moderately widespread (southern India)

Paracanthocobitis pictilis (Kottelat, 2012) 2♀ Ornamental fish trade endemic to Ataran river (Myanmar)

Paracanthocobitis zonalternans (Blyth, 1860) 1 ♂1♀ Myanmar, no details known widespread (Bangladesh to Malaysia)

Petruichthys brevis (Boulenger, 1893) 1♂, 1♀ + 1 Ornamental fish trade endemic to Inle Lake (Myanmar)

Physoschistura elongata (Sen & Nalbant,
in Singh, Sen, Bănărescu & Nalbant, 1982)

2 Ornamental fish trade endemic to Shilling county (northeast India)

Physoschistura sp. 2 Myanmar, Shan, Salween endemic to surrounding of Inle Lake (Myanmar)

Pteronemacheilus lucidorsum
(Bohlen & Šlechtová, 2011)

1♂, 1♀ Myanmar, Shan, Irrawaddy endemic to upper Myitnge river basin (Myanmar)

Schistura bolavenensis (Kottelat, 2000) 3 Laos: Champasak, Mekong moderately spread (Bolaven plateau, Laos)

Schistura corica (Hamilton, 1822) 1♂, 3♀ Ornamental fish trade widespread (northern India, Bangladesh)

Schistura fasciolata (Nichols and Pope, 1927) 2♂, 1♀ Ornamental fish trade widespread (southern China and northern Vietnam)

Schistura hypsiura (Bohlen, Šlechtová &
Udomritthiruj, 2014)

1♂, 1♀ +3 Ornamental fish trade endemic to southern Rakhine state (Myanmar)

Schistura notostigma (Bleeker, 1863) 6 Ornamental fish trade endemic (Sri Lanka)

Schistura pridii (Vidthayanon, 2003) 2 Ornamental fish trade local endemic (northern Thailand)

Schistura savona (Hamilton, 1822) 3 Ornamental fish trade widespread (northern India, Bangladesh)

Seminemacheilus lendlii (Hankó, 1924) 1♂, 1♀ Turkey, Anatolia, no details known endemic to southeast Anatolia (Turkey)
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Gaithersburg, USA) to prevent protein contamination,

or the Qiagen DNAeasy Blood & Tissue Kit (Qiagen,

Hilden, Germany). rDNA fragments were obtained by

polymerase chain reaction (PCR) using previously de-

scribed primers (see Additional file 3: Table S1; for

PCR conditions see Additional file 1: Supplementary

Methods 3). The resulting PCR products were puri-

fied using QIAquick PCR purification Kit (Qiagen),

with multiple bands being electrophoresed in 0.8 %

agarose gels and purified using QIAquick Gel Extraction

Kit (Qiagen). DNA fragments were cloned to pDrive

Cloning Vector (Qiagen) and transformed into QIAGEN

EZ Competent Cells (Qiagen). Selected recombinant

plasmids were isolated by QIAprep Spin Miniprep Kit

(Qiagen) and sequenced in both strands by Macrogen

(South Korea, Netherlands). Chromatograms of ob-

tained sequences were verified and assembled using

SeqMan Pro 10.1.2 (LaserGene, DNASTAR, Madison,

Wl.). The resulting consensus sequences were con-

firmed using NCBI BLAST/N analysis [32] and se-

lected clones used to construct FISH probes.

Probes were labelled by PCR with biotin-16-dUTP

(Roche, Mannheim, Germany) or digoxigenin-11-dUTP

(Roche). For each slide 200 ng of 5S rDNA, 200 ng of

45S rDNA and 25 μg of sonicated salmon sperm DNA

(Sigma-Aldrich) were added and the resulting probe

precipitated in 96 % ethanol, washed in 70 % ethanol,

air-dried and re-dissolved in hybridization buffer (50 %

formamide, 10 % dextran sulphate, 2× SSC, 0.04 M

NaPO4 buffer, 0.1 % SDS, Denhardt reagens, see [33]) to

give a final concentration of 25 ng/μl for each rDNA

probe.

For telomeric FISH, non-templated PCR with primers

(TTAGGG)5 and (CCCTAA)5 was carried out according

to Ijdo et al. [34]. The amplified product was labelled

using Nick Translation Mix (Abbot Molecular, Illinois,

USA) with biotin-16-dUTP, taking 3–4 h to reach opti-

mal probe size (100–500 bp).

FISH analysis

FISH was carried out according to Cremer et al. [35]

with several modifications. Briefly, dehydration in an
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Fig. 1 Distribution areas of the investigated species of Nemacheilidae. a Asia, b Europe, c China. 1 – N. ruppelli, 2 – M. guentheri, 3 – S. notostigma,
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ethanol series (70, 80 and 96 %, 3 min each) was

followed by thermal aging for 1–2 h at 37 °C and 30 min

at 60 °C. Prior to hybridization, the chromosomes were

treated with RNase A (200 μg/ml in 2× SSC) (Sigma-

Aldrich) for 90 min at 37 °C in a humid chamber

and digested with pepsin (50 μg/ml in 10 mM HCl,

3 min, 37 °C). Slides were subsequently denatured in

75 % formamide (pH 7.0) (Sigma-Aldrich) in 2× SSC

at 74 °C for 3 min, and then immediately cooled and

dehydrated in 70 % (cold), 80 % and 96 % (RT) ethanol.

The hybridization mixture was denatured at 86 °C for

6 min and immediately chilled on ice for 10 min. 10–20 μl

of probe mixture was applied to a denatured slide and

hybridization was performed overnight at 37 °C in a dark

humid chamber. Post-hybridization washes were done

twice in 50 % formamide in 2× SSC (pH 7.0) at 42 °C for

5 min and three times in 1× SSC at 42 °C (7 min each) be-

fore equilibration washing in 2× SSC at RT for 20 s. Prior

to probe detection 500 μl of 3 % BSA (Vector Labs,

Burlington, Canada) in 4× SSC in 0,01 % Tween 20 was

dropped onto the slide (at 37 °C for 20 min) as a blocking

treatment. Probes were detected by Anti-Digoxigenin-

Rhodamine (Roche) and Streptavidin-FITC (Invitrogen

Life Technologies, San Diego, CA, USA) along with Anti-

Digoxigenin-Fluorescein (Roche) and Streptavidin-Cy3

(Invitrogen Life Technologies) to exclude any artificial re-

sults (influenced e.g., by the type of applied antibody).

Experiments with altered labelling (biotin for 45S and

digoxigenin for 5S rDNA) were included to verify the ob-

served patterns. All rDNA FISH pictures presented here

are pseudocoloured in red for the 45S rDNA probe and in

green for the 5S rDNA.

The slides were incubated with antibodies at 37 °C for

60 min in a dark humid chamber, washed four times

(7 min each) in 4× SSC in 0.01 % Tween (pH 7.0) at

42 °C and the chromosomes then counterstained with

DAPI in mounting medium (Cambio, Cambridge,

United Kingdom), covered and sealed with a coverslip.

To enhance telomeric FISH signals, tyramid signal

amplification (TSA) was performed using a kit with tyra-

mide conjugated with Alexa 488 fluorochrome (Invitrogen

Life Technologies).

After image processing FISH slides selected for

fluorescence banding and/or C-banding were washed

in 4× SSC in 0.01 % Tween (pH 7.0) and dehydrated

in an ethanol series.

Microscopy and image analysis

Giemsa-stained chromosomes and FISH images were

inspected using a Provis AX70 Olympus microscope

with a standard fluorescence filter set. FISH images were

captured under immersion objective 100× with a black

and white CCD camera (DP30W Olympus) for each

fluorescent dye using Olympus Acquisition Software.

The digital images were then pseudocoloured (blue for

DAPI, red for Rhodamine or Cy3, green for FITC or

Alexa488) and superimposed with MicroImage soft-

ware (Olympus, version 4.0). FISH karyotype images

were optimized and arranged using Adobe Photoshop,

version CS6. Karyotypes from Giemsa-stained and C-

banded images were arranged in IKAROS (Metasystems)

software.

Phylogenetic analyses

Phylogenetic hypothesis was based on the analyses of

three molecular markers: mitochondrial cytochrome b

(cyt b), recombination-activating gene 1 (RAG1) and

interphotoreceptor retinoid-binding protein (IRBP). The

primers and PCR reaction protocols for cyt b and RAG1

followed Šlechtová et al. [5, 36], and Chen et al. [37] for

the IRBP amplification (for details, see Additional file 1:

Supplementary Methods 4). The same sets of PCR

primers were used for sequencing (summarized for all

genes in Additional file 3: Table S1). All three genes

were sequenced for each of the 39 analysed specimens

of Nemacheilidae.

Chromatograms were edited and assembled using

SeqMan Pro 10.1.2 (LaserGene, DNASTAR). The se-

quences were aligned in BioEdit 7.0.5.3 [38] and eval-

uated based on their amino acid translation.

Prior to the phylogenetic analyses, the congruence

among the three gene partitions was assessed using the

incongruence length difference (ILD) test [39] with 1000

replication as implemented in PAUP 4.0b10 [40]. Since

the test did not reveal any significant conflict (see the

Results), all three datasets could be concatenated into a

single matrix.

Alignments of all three genes were concatenated into

a single 2998 bp dataset (1124 bp of cyt b, 974 bp of

RAG1 and 900 bp of IRBP) and 40 individuals (39

Nemacheilidae plus 1 outgroup). All sequences but one

(cyt b sequence of Botia lohachata) are original data and

were deposited in GenBank [41] under the accession

numbers [KP738491 - KP738609] (see Additional file 4:

Table S2).

Phylogenetic analysis of the concatenated dataset

was performed using the partitioned Bayesian infer-

ence in MrBayes 3.2.2 [42]. The dataset was parti-

tioned by genes and codon positions, involving in total

nine partitions. The analysis was set to six Metropolis

Coupled Markov Chains Monte Carlo (MCMCMC)

with default heating conditions, searching the tree

space for 5 milion generations under the GTR + G + I

settings for each partition, in two runs, starting with

random trees and a sampling frequency of each 100

generations. The log-likelihood score distribution was

examined to determine the burn-in values. The first

1000 trees were discarded as burn-in and the remaining
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ones were used to build a 50 % majority rule consensus

tree and statistical support of clades was assessed by pos-

terior probabilities.

Results
Sequence analysis of RAG1, IRBP and cyt b

The RAG1, cytochrome b and IRBP datasets consisted of

974 (30 % of variable positions), 1124 (44 % v.p.) and

900 bp (35 % v.p.), respectively. The ILD test did not

reject the null hypothesis about the homogeneity of

any of the analysed datasets: P = 0.94 for RAG1 vs. cyt b,

P = 0.71 for cyt b vs. IRBP and P = 0.14 for RAG1 vs. IRBP.

Therefore the data were concatenated into a single dataset

for the further analysis, altogether providing a dataset of

2998 bp.

In the final phylogeny all analysed species were identi-

fied as monophyletic and well-separated lineages. The

topology shows a prominent basal split into one major

clade that contains Nemacheilus binotatus from northern

Thailand plus all samples from Myanmar, India, Sri Lanka

and Turkey and a second major clade that is composed

from all samples from China, Laos, Europe and Korea.

Within the first major clade, four subclades are visible: the

first containing N. binotatus, the second Schistura savona

and both species of Paracanthocobitis, the third solely

Nemachilichthys ruppelli and the fourth containing all

remaining samples from the genera Mesonoemacheilus,

Schistura, Physoschistura, Seminemacheilus, Pteronema-

cheilus and Petruichthys. Within the second major clade,

three subclades are visible: the first containing Lefua

costata from Korea, the second B. barbatula from

Europe and the third with two species of Schistura

from Laos and China.

Sequence analysis of 5S and 28S rDNA

PCR amplification of 28S rDNA resulted consistently in

a fragment 300 bp in size, containing partial sequence of

28S rRNA coding region. Sequences for P. elongata, S.

bolavenensis, S. corica, S. fasciolata as well as for Botia

almorhae (from related family Botiidae) were deposited

in GenBank [41] (see Additional file 5: Table S3). For 5S

rDNA, a high degree of variability, both in length as well

as in number of putative 5S rDNA fragments was ob-

served among the analysed species, so sequenced frag-

ments from Esox lucius (300 bp) and B. almorhae

(500 bp) were used for constructing the FISH probe.

The sequence of 5S rDNA fragment from E. lucius was

verified in GenBank [EF514228]. The sequence of 5S

rDNA from B. almorhae (deposited in GenBank; see

Additional file 5: Table S3) contained a partial sequence

of the 5S rDNA coding region (83 bp) and a putative

NTS (non-transcribed spacer). For detailed analysis of

nemacheilid 5S rDNA, we selected 200 and 600 bp PCR

fragments from two specimens of S. pridii. Thirteen

clones were sequenced and verified in BLAST/N and

also searched against the Repbase database at the Gen-

etic Information Research Institute (GIRI) [43] for the

presence of transposable elements (TEs) or other repeti-

tive sequences. Indeed, each cloned sequence contained -

next to the 71 bp of the 5S rRNA gene coding region - a

putative NTS (85 bp or 475 bp) containing a fragment

(54 bp) of L1-2_DR non-long terminal repeat (non-

LTR) retrotransposon (RTE) at the 3′end (Additional

file 6: Figure S2). The differences between both PCR

fragments were thus in the length of the putative

NTS and in the distance of the RTE fragment from

the 5S rRNA coding region. No such association be-

tween TEs and rDNA loci was observed in the 5S

rDNA of B. almorhae or in the 28S rDNA fragments

characterized in this study.

Cytogenetic characteristics

Figure 2 summarizes 2n, karyotype structure, NF and

rDNA phenotypes (i.e., number and position of both

major and minor rDNA sites) within the phylogenetic

tree context analysis. Seventeen out of 19 species dis-

played karyotypes with uniform 2n = 50, but with a

marked variability in NF values (68–90) (Figs. 2, 3 and 5;

Additional file 7: Figure S3). In the remaining two spe-

cies, karyotypes with reduced 2n were observed: N. rup-

pelli (2n = 38) (Fig. 4a), S. notostigma (2n = 44 or 48)

(Additional file 8: Figure S4A, C, E). Two different kar-

yomorphs occured in examined individuals of the latter

species – with 2n = 44 (five individuals, Additional file 8:

Figure S4A, C) and with 2n = 48 (a single individual,

Additional file 8: Figure S4E). Karyotypes of both species

exhibited a significantly higher number of large m chro-

mosomes compared to karyotypes with 2n = 50. Except

for the large m chromosomes in N. ruppelli (six pairs)

and S. notostigma (one or two pairs), karyotypes in all

other species were composed of comparatively small

chromosomes, gradually decreasing in size. Very tiny

chromosomes were observed in L. costata, P. pictilis,

P. zonalternans, S. hypsiura and S. savona. Centro-

mere positions often gradually differed making it diffi-

cult to establish strict borderlines between formal

chromosomal categories.

In almost all species no intraspecific numerical or

structural polymorphisms between males and females

that might indicate the presence of sex chromosomes

were detected, although only females were examined in

L. costata and P. pictilis and unsexed specimens in 7

other species – see Table 1. However, in S. fasciolata,

males exhibited 2n = 51 chromosomes with a karyotype

composed of (9 m + 20sm + 22st-a) while a female pre-

sented a 2n = 50 (8 m + 20sm + 22st-a), suggesting the

presence of a multiple XY1Y2 sex chromosome system

(Fig. 5a, c).
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Heterochromatin distribution and composition

The distribution of constitutive heterochromatin was

studied by CDD (CMA3/DAPI) banding in all species

and C-banding in a subset of 10 species (Additional

file 9: Table S4). The C-banding and DAPI patterns

were usually congruent with the exceptions observed

in N. ruppelli and S. bolavenensis, where also some

CMA3-positive (CMA3
+) regions (NOR-associated) were

slightly positively heteropycnotic after C-banding at the

same time (Fig. 4c; Additional file 2: Figure S1L). In the

remaining species, the CMA3
+ regions did not match the

C-bands. With the exception of N. ruppelli and S. lendlii

(Fig. 4c; Additional file 2: Figure S1Q) all other species

displayed generally low or moderate levels of AT-rich

C-heterochromatin. In almost all species, its predom-

inant location was in the pericentromeric regions of

some or all chromosomes, except for S. corica, where

only a few interstitial bands and two whole-arm

heterochromatic regions (p-arms, sm) were apparent

(Additional file 2: Figure S1M). In one or more

chromosomal pairs of m-sm type in M. guentheri, P. sp., S.

bolavenensis, S. hypsiura and S. lendlii (Additional file 2:

Figure S1D, I, L, N, Q) the heterochromatin encompasses

a substantial part or even the entire arm of the chromo-

some. These regions were adjacent to 5S or 45S rDNA

only in S. bolavenensis, S. corica and S. lendlii. Few hetero-

chromatic p-arms of st-a chromosomes were observed in

L. costata, M. guentheri, N. ruppelli, P. zonalternans and

S. pridii (Fig. 4c, Additional file 2: Figure S1B, C, D, G, O).

Huge heterochromatic regions were found flanking the

primary constrictions of m chromosomes in N. ruppelli

(six pairs, Fig. 4c), S. notostigma (one or two pairs,

Additional file 8: Figure S4C), S. savona (one pair,

Additional file 2: Figure S1P) as well as in one (male) or

two (female) st chromosomes in S. fasciolata (Fig. 5d). In

the latter species, compared to Giemsa-stained karyotypes,
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8m - 12sm - 30st-a

12m - 18sm - 20st-a

16m - 24sm - 10st-a

4m - 24sm - 22st-a

6m - 18sm - 26st-a

10m - 16sm - 24st-a

14m - 10sm - 14st-a
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16m - 18sm - 16st-a
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Karyotype description

45S rDNA sites 5S rDNA sites variable polymorphic rDNA loci

Fig. 2 Phylogenetic relationships and karyotype characteristics of inspected nemacheilids. 2n, karyotype characteristics, FN, 45S and 5S rDNA

patterns are plotted onto phylogenetic tree obtained by Bayesian analysis based on the mitochondrial (cytochrome b) and nuclear (RAG1, IRBP)

genes. Idiograms represent partial karyotypes with chromosomes bearing 45S rDNA (red signals) and 5S rDNA (green signals). Polymorphic rDNA

sites are in brackets. Note higher numbers of 5S rDNA sites in the majority of endemic species (whose taxonomic names are in bold italics). Note:

in P. elongata, only the karyotype version from one individual is presented, to avoid confusion due to the high number and variability of rDNA

sites in this species
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this heterochromatic region was confined to the st

chromosome present on one homologue in males and on

both homologues in females. Also noticeable was the

C-heterochromatic block on the male-specific single

large m chromosome. Furthermore, intercalar DAPI-

positive bands were clearly visible after C- or CDD

banding in a subset of sm/st chromosomes (from one

to four pairs) in B. barbatula, N. ruppelli, N. binotatus,

S. bolavenensis, S. corica and S. notostigma, often

appearing as dot-like sites located proximally on the q

arms. Finally, a polymorphic AT-rich p-arm was ob-

served in one homologue of pair 18 in M. guentheri, but

only in the male karyotype (Additional file 7: Figure S3D).

CMA3 labelled only GC-rich regions associated exclu-

sively with NORs in seven species (L. costata, P. brevis,

P. sp., S. fasciolata, S. pridii, S. savona and S. lendlii),

but also with 5S rDNA regions in seven other nemachei-

lids (Additional file 9: Table S4). More specifically,

species with only some 5S rDNA sites being CMA3
+

(e.g., M. guentheri, P. zonalternans, P. elongata) (Fig. 6b,

g; Additional file 10: Figure S5B) and others with all of

them (e.g., B. barbatula, N. ruppelli, S. notostigma)

(Figs. 4b and 6a, i). In six out of seven species, we

observed the 5S rDNA/CMA3
+ pattern directly by se-

quential application of CDD banding and rDNA FISH

(Fig. 6b, g-i) In S. corica (Fig. 6f ), however, a similar

conclusion was based on observation of remarkably high

number of CMA3
+ sites and their distribution in centro-

meres and chromosomal p-arms, similarly to 5S rDNA

sites. In P. pictilis, P. lucidorsum and S. hypsiura, associ-

ation of CMA3
+ and 5S rDNA sites was inconclusive

(Fig. 6d; Additional file 10: Figure S5D, F). In N. binota-

tus and S. bolavenensis, CMA3 labelled NORs and some

other regions non-related to 5S rDNA (Fig. 6c, h). A

more complicated pattern was observed in P. elongata

(with a subset of CMA3
+ 5S rDNAs and additional

CMA3
+ regions) and S. notostigma (where all 5S rDNAs

were CMA3
+ and other CMA3

+ regions also appeared)

(Fig. 6g, i; Additional file 10: Figure S5G). Finally, S. cor-

ica displayed an extensive dispersal of CMA3
+ regions

with locations in all centromeres, some p-arms and

along the single pair of NOR (Fig. 6f ).

rDNA phenotypes

All karyotypes resulting from the rDNA FISH experi-

ments are shown in Figs. 3, 4 and 5; Additional file 7:

Figure S3, Additional file 8: Figure S4B, D, F and

Additional file 11: Figure S6B, D and partial idio-

grams showing rDNA phenotypes in the phylogenetic

context are summarized in Fig. 2. In most species,

the 28S rDNA probe (i.e., corresponding to the NOR-

associated major ribosomal cluster 45S rDNA, which

Fig. 3 Karyotypes of selected nemacheilid species after Giemsa staining and dual-colour (5S/45S) rDNA FISH. Giemsa-stained karyotypes

(left column) and dual-colour FISH (right column) with 45S rDNA (red, arrows) and 5S rDNA (green, arrowheads) probes on (a, b) B. barbatula, (c, d) P. sp.

The FISH chromosomes were counterstained with DAPI and the images were converted to grayscale. Bar = 10 μm
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codes for 28S, 5,8S and 18S rRNA genes) showed

only one pair of NOR-bearing chromosomes located

in CMA3
+ sites. NOR phenotypes with two or more

loci were observed in P. zonalternans (Additional file 11:

Figure S6B), S. savona (not shown; see later in the

text), S. lendlii (Additional file 7: Figure S3V) and es-

pecially in P. elongata with the number of sites ran-

ging from 12 (Additional file 11: Figure S6D) to 14

(Fig. 6g). In the latter, not more than six NORs were

stained also by AgNO3 impregnation (data not shown).

The 45S rDNA sites were located exclusively terminally

(m) or covered entire p-arms of a particular st-a chromo-

some pair. By contrast, we found a considerable variability

in the number of 5S rDNA sites, ranging from two

(B. barbatula, N. binotatus, N. ruppelli, S. notostigma;

Figs. 3b and 4b; Additional file 7: Figure S3F and

Additional file 8: Figure S4B, D) to 20 (Physoschistura sp.;

Fig. 3d). The 5S rDNA clusters were mainly located

in pericentromeric regions or distributed in the entire

p-arms of some st-a chromosomes, but location in/nearby

centromeres of m-sm chromosomes was also observed

(B. barbatula, N. ruppelli, P. lucidorsum, S. notos-

tigma; Figs. 3b and 4b; Additional file 7: Figure S3L

and Additional file 8: Figure S4B, D). In two species

we observed one pair of chromosomes with a syntenic

association of both rDNA classes (P. brevis – pair 13,

Additional file 7: Figure S3J; N. ruppelli – pair 8, Fig. 4b)

and another two species displayed direct co-localization

of them (P. zonalternans – pair 12; P. elongata – pairs 4

and 12 – Additional file 11: Figure S6B, D). In the latter

species there is an intraspecific variability in the number

of both rDNA clusters as well as the number of their

co-localization sites, based on observation of 5S rDNA

ranging between 14 and 16 sites (Fig. 6g and Additional

file 11: Figure S6D) and even six co-localized rDNA

sites in some metaphases (Fig. 6g). Here, we further

observed intraspecific variability in 1) size polymorph-

ism, especially in 45S rDNA (best seen on FISH kar-

yotypes of S. bolavenensis and S. corica – Additional

file 7: Figure S3N, P) 2) polymorphism in the presence/

absence of homologous rDNA sites (P. pictilis – pair 10;

S. lendlii – pair 3 and S. notostigma – pairs 12 and

22, Additional file 7: Figure S3H, V, Additional file 8:

Figure S4D, F), 3) number of rDNA sites (S. corica - pair

17; S. hypsiura – pair 18, Additional file 7: Figure S3P, R;

S. notostigma - compare Additional file 8: Figure S4B

and F), 4) heterozygosity for inversion involving rDNA

loci (P. zonalternans – pair 10; P. elongata – pair 5,

Additional file 11: Figure S6B, D), and 5) linkage of the 5S

rDNA locus to a putative sex chromosome (S. fasciolata –

Fig. 5b). Interestingly, a conspicuous difference in the

5S rDNA phenotype was discovered between two

Fig. 4 Karyotypes of N. ruppelli after different cytogenetic protocols. a conventional Giemsa staining, b dual-colour FISH with 45S rDNA (red, arrows)

and 5S rDNA (green, arrowheads) probes, c C-banding and d FISH with telomeric (TTAGGG)n probe. For better contrast, pictures were pseudocoloured

in green (telomeric probe) and red (DAPI). Inset (b) – chromosome pair 8 bearing CMA3
+ sites coinciding with both 45S (arrow) and 5S

rDNA (arrowhead) sites. For better contrast, pictures were pseudocoloured in red (CMA3
+) and green (DAPI). Note the prominent pericentromeric

heterochromatin in metacentric chromosome pairs 1–6 (b) and an almost equivalent intensity of percentromeric ITSs (open arrowheads) in the same

subset of chromosomes (d). Remaining ITSs (open arrowheads) are confined to a 45S rDNA region on chromosome pair 8 (compare pics. b and d)

and to p-arms of st-a chromosomes. Finally, compare chromosome pair 8 on pics. b, c and d; entire q-arms bearing 45S rDNA/ITS are weakly

C-positive after C-banding procedure. Bar = 10 μm
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karyomorphs of S. notostigma. While the karyomorph

with 2n = 48 (1 specimen) exhibited five sites of 5S

rDNA (all in pericentromeric regions of the st-a chro-

mosomes, Additional file 8: Figure S4F), the karyo-

morph with 2n = 44 displayed only two of them,

adjacent to centromeres of large-sized m chromo-

somes (5 specimens) (Additional file 8: Figure S4B, D).

In S. savona, we observed considerable intraspecific

variability being shown from two to four signals of 45S

and from two to eight signals of 5S rDNA cluster (data

not shown). In this species, however, it was not possible

to conclusively distinguish whether this was the result

of high intraspecific and intra-individual variability or

whether it was artificial due to the limited visibility of

the hybridization signals on such extraordinarily small

chromosomes and so, these results are not discussed

further.

Telomeric FISH

In order to document interstitial telomeric sites (ITSs)

as remnants of chromosomal rearrangements, we

employed FISH with conserved vertebrate telomeric

(TTAGGG)n repeat [44] in a subset of seven species

(L. costata, N. binotatus, N. ruppelli, P. brevis, P.

elongata, S. corica and both karyomorphs of S. notos-

tigma). As expected, the telomeric probe labelled the

ends of all chromosomes, and no ITSs were revealed

in five out of seven species (Fig. 7b, c and Additional

file 12: Figure S7A-D). Clear ITSs, however, were ob-

served consistently on ten metaphases of N. binotatus

(Fig. 7a) and 15 metaphases of N. ruppelli (Fig. 4d).

In N. binotatus, a single pair of ITSs occurred prox-

imally on the q-arms of the largest chromosome in

the karyotype (pair 11). These ITSs co-localized with

sequentially heterogeneous AT/GC-rich heterochro-

matic regions. In N. ruppelli, three pairs of extensive

and three pairs of faint pericentromeric ITSs were ob-

served in large-sized m chromosomes (Fig. 4d). These six

ITSs were coincident with AT-rich C-heterochromatin

(Fig. 4c). Moreover, in this species additional large

ITSs were also scattered all along the region of the

single pair of 45S rDNA (compare Fig. 4b and d).

The high intensity of some ITSs signals resulted in

very limited visibility of natural telomeric signals on

Fig. 5 Karyotypes of male and female of S. fasciolata after different cytogenetic protocols. a female (2n = 50), b-d male (2n = 51). a, c conventional

Giemsa staining, b dual-colour FISH with 45S rDNA (red, arrows) and 5S rDNA (green, arrowheads) probes, d C-banding. Putative sex chromosomes

of female are boxed b, d next to those of the male karyotype. Note the presence of 5S rDNA site (b) and prominent pericentromeric heterochromatic

region (d) on a putative X chromosome. Notice also a centromeric C-band on Y1 (d). Bar = 10 μm
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Fig. 6 (See legend on next page.)
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the chromosomal ends. Finally, in N. ruppelli and S.

notostigma, some p-arms of small or medium-sized

st-a were entirely covered by telomeric repeats.

Discussion
Topology of the phylogenetic tree

In our phylogenetic reconstruction the seven analysed

species of Schistura do not form a monophyletic

lineage, but appear as polyphyletic. This result reflects

the massive flaws in the present taxonomy of this

genus as already formerly stated by several taxono-

mists who referred to Schistura as ‘a provisional, poly-

phyletic assemblage’ [45], ‘polyphyletic’ and ‘waste-basket

name’ [46] or ‘possibly not monophyletic’ [47]. The

observed polyphyly of Schistura is therefore not sur-

prising, but most likely reveals the true natural rela-

tionships between the analysed taxa. The two analysed

species of Physoschistura turn out not to be closely re-

lated, supporting the former opinion that P. elongata

is not closely related to the Burmese species of Phy-

soschistura [47].

Karyotype differentiation and evolution

Karyotypes of B. barbatula, L. costata, P. pictilis, S. fas-

ciolata and S. savona were revisited, whereas the

remaining 14 species were examined for the first time.

Our study thus increased the number of karyologically

described river loaches to 38. Comparison of nemachei-

lid karyotypes reported in former studies with results

presented here (Fig. 2) showed a different degree of con-

gruence. While in B. barbatula our karyotype descrip-

tion matched the previous report of Vasil’ev [48] only,

the karyotype of P. pictilis (formerly as Acanthocobitis

botia) differed slightly in morphological classification

from that recorded by Rishi et al. [49]. Also, we evalu-

ated the karyotype of L. costata as having a higher num-

ber of biarmed elements than in Kim et al. [50].

Moreover, the karyotype of S. fasciolata described here

is not consistent with that reported by Yu et al. [19],

where no sex chromosomes were found, but one speci-

men of S. fasciolata with 44 chromosomes was included.

Finally, karyotypes of S. savona reported in Khuda-

Bukhsh et al. [18] consisted of 36 chromosomes while

Fig. 7 Mitotic metaphases of selected nemacheilid species after TSA FISH with telomeric (TTAGGG)n probe. a N. binotatus, b S. corica, c S. notostigma

(karyomorph with 44 chromosomes). Chromosomes with the telomeric repeat probe (green colour) are counterstained with DAPI, pseudocoloured in

red colour for better contrast. Arrows point to the chromosomes with ITSs (a). Arrowheads show telomeric probe covering entire p-arm

of st chromosomes (c). Bar = 10 μm

(See figure on previous page.)

Fig. 6 Mitotic metaphases of selected nemacheilid species after CDD banding. a, c, d, e, f single metaphases; b metaphase arranged with boxes

showing particular chromosomes sequentially after CDD banding and dual-colour rDNA FISH. g-i whole metaphases arranged sequentially – after

CDD banding (upper row) and corresponding dual-colour FISH showing locations of 45S rDNA and 5S rDNA (lower row). a B. barbatula, b M. guentheri,

c N. binotatus, d P. pictilis, e P. brevis, f S. corica, g P. elongata, h S. bolavenensis, i S. notostigma. For better contrast, CDD-banded pictures

were pseudocoloured in red (for CMA3) and green (for DAPI). FISH metaphases follow the same colour scheme as in Figs. 2, 3, 4 and 5. Arrows

show CMA3
+/45S rDNA sites, arrowheads show CMA3

+/5S sites, open arrowheads show a putative CMA3
+/5S sites and open arrows show

CMA3
+ regions non-related to rDNAs and minor/putative CMA3

+ sites. In the particular case of M. guentheri (b), note the CMA3-negative

5S rDNA sites (denoted by asterisk), while the remaining boxes clearly show CMA3
+/5S rDNA sites. In non-sequential metaphases (a-f), considering the

number and location of CMA3
+ signals in comparison to respective FISH karyotypes (Fig. 2 and Additional file 7: Figure S3), the association between

45S rDNA and CMA3
+ sites is clearly apparent from pics. and the same is true also for some or all 5S rDNA sites in (a, d and f). Due to

the close proximity of 5S rDNA sites to centromeres (which are usually AT-rich and display bright fluorescence), some CMA3
+/5S rDNA

sites are not clearly apparent from the pictures, therefore they are boxed with a separate channel for CMA3 (red) (b, g, i). Note the significant

spreading of CMA3
+ regions in centromeres of S. corica (f) and CMA3-positive ITSs in N. binotatus (c). Bar = 10 μm
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our results showed uniformly 2n = 50 in all three exam-

ined specimens. All these discrepancies may have

resulted - besides the differences in chromosomal

morphology classification due to difficulties described in

the previous section – from the description of chromo-

somally different populations or by the misidentification

of some species in the earlier studies.

Seventeen out of 19 analysed species showed con-

served karyotypes with 2n = 50 (Figs. 2, 3 and 5;

Additional file 7: Figure S3 and Additional file 11:

Figure S6). This 2n has been already documented for the

majority of previously surveyed river loaches [7, 12–14] as

well as in some other loach families [4] and cyprinid fishes

[7, 51]. Similar karyotypes (with either 48 or 50 chromo-

somes) were found in more than 50 % teleost species, thus

indicating high conservativeness of this 2n [52]. Add-

itionally, the 2n = 48 with exclusively monoarmed

chromosomes is hypothesized to be ancestral for all

Teleostei [53, 54].

Despite the generally stable karyotype macrostructure,

the river loaches analysed here varied greatly in the pro-

portion of chromosome types reflected by the increase or

decrease of the NF value. The occurrence of species with

similar karyotypes did not correspond with their phylo-

genetic relationships. Changes of NF without changes of

the 2n are strong indicatives that nemacheilid chromo-

somes have evolved by diverse intrachromosomal rear-

rangements, such as various types of centromeric shifts.

We further recorded two species with karyotypes

exhibiting reduced 2n, namely N. ruppelli (2n = 38)

and S. notostigma (2n = 44 or 48). In the latter, our

sample included two different karyomorphs. A single

individual with 48 chromosomes did not show any

significant differences in morphology and in sequences of

IRBP, RAG1 and cyt b in comparison to individuals with

2n = 44. Since we do not know the exact localities of ana-

lysed specimens, we cannot conclude, whether this result

indicate the interpopulational variability.

In both species, reduction in 2n was accompanied

by an increased number of large m chromosomes, im-

plying their origin via one or several centric fusions

of Robertsonian (Rb) type. Based on comparison of

2n and NF [55] and with respect to prevailing 2n = 50

in examined nemacheilids, N. ruppelli most likely

underwent six Rb translocations, while karyotype dif-

ferentiation in S. notostigma probably involved one Rb

translocation (in karyomorph 2n = 48) and two Rb translo-

cations, one tandem fusion and one para/pericentric

inversion (in karyomorph 2n = 44), respectively. Accord-

ing to our phylogenetic analysis (Fig. 2), N. ruppelli and

S. notostigma are not closely related, therefore the re-

duction of 2n in these species apparently represents in-

dependent events. Furthermore, the combined results

from C-banding and telomeric FISH suggest a slightly

different scenario of karyotype changes in both species

(see below).

Besides our study, the evidence of reduced 2n among

Nemacheilidae has already been documented for Nema-

cheilus selangoricus (2n = 40) [17], Paracobitis potanini

(2n = 48) [19], S. fasciolata (2n = 44) [19], S. savona

(2n = 36) [18] and Triplophysa siluroides (2n = 48)

[20]. A different bias towards an increased number of

either mono- or biarmed elements was apparent in

these species. Some nemacheilid species (or at least

representatives from some subpopulations) thus tend

to reduce their 2n via centric or tandem fusions. Except

for the studied males of S. fasciolata here and the report

on triploidy [21], karyotypes of river loaches analysed to

date did not exceed 2n = 50 ([7, 12–14], this study).

Our data show that karyotypes in nemacheilid loaches

have diversified mainly via centric or tandem fusions

and pericentric inversions. In general, such chromo-

somal rearrangements can act as an efficient barrier for

gene flow (by suppressing recombination in the affected

region) and thus can contribute to speciation and/or

local adaptation processes [56–58].

Distribution and sequence composition of constitutive

heterochromatin

Heterochromatin is an important source of karyotype

diversification in several fish groups (e.g., [27]) and its un-

usual distribution may sometimes correspond to remnants

of particular chromosome rearrangements [59]. As we

present here, the karyotypes of river loaches differ greatly

in their distribution of AT-rich C-heterochromatin

(Additional file 9: Table S4), and contain some notice-

able common patterns. We especially emphasise a) the

dot-like intercalary heterochromatic bands on the q-arms

of sm or st chromosomes, very close to the centromere

(e.g., in B. barbatula, N. binotatus, S. bolavenensis and

S. notostigma) and b) the presence of entirely hetero-

chromatic arms in some elements (e.g., in M. guentheri,

S. bolavenensis, S. corica, S. hypsiura and S. lendlii).

Both observed patterns might be related to pericentric

inversions (heterochromatinization of short arms are

usually the result of this kind of rearrangement) and/or

heterochromatin block addition [60]. The dot-like inter-

calary sites could be also explained by tandem fusions

[60, 61], but considering the constant 2n in the majority

of species under study, it would only be a plausible

explanation for S. notostigma. Interestingly, although

the presence of large biarmed chromosomes with en-

tirely (or almost entirely) heterochromatic arms was

shared by five nemacheilid species (M. guentheri, P. sp.,

S. hypsiura, S. corica and S. lendlii), these regions were

adjacent to rDNA clusters only in two of them (S. corica

and S. lendlii). Whether these chromosomes are homeo-

logous among some of the mentioned species and
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whether the heterochromatic blocks contribute to the

dynamics of rDNA clusters remains inconclusive. Also,

polymorphism regarding the addition of AT-rich hetero-

chromatic p-arms was observed in one pair of chromo-

somes in M. guentheri. While the male was heterozygous

for the presence of a prolonged heterochromatic arm, the

female possessed only the short variants. Comparable re-

sults have been previously documented in some other

fishes ([62] and references therein) and may be ex-

plained by an unequal crossing-over or by transposition/

amplificaton processes involving a DAPI-rich centromeric

region [22]. The last intriguing feature was the presence of

large blocks of AT-rich heterochromatin in the pericentro-

meric region of the largest m chromosomes of N. ruppelli

and S. notostigma. These regions are possibly rem-

nants of pericentromeric heterochromatin of previ-

ously monoarmed elements. Similar feature displayed

also S. savona on one m chromosome pair, however,

with unreduced 2n = 50.

In fishes, GC-rich DNA segments labelled by CMA3

are almost exclusively associated with NORs [63, 64],

with some exceptions in sturgeons [65]. NOR regions

were usually not visualized after C-banding, thus most

likely suggesting that GC-rich sequences were inserted

into the intergenic spacers (IGSs) of the 45S rDNA ar-

rays [63, 66]. Additionally, nearly half of the species ana-

lysed showed further CMA3
+ sites restricted to 5S rDNA

regions – a feature that up to now has only been found

among fishes in some Polypteriformes [67] and Perci-

formes, namely in Centrarchidae [68], Pomacanthidae

[69] and Gobiidae [70]. Deiana et al. [68] attributed this

feature to the presence of GC-rich repeats in NTS. Par-

ticularly interesting was the observation of all centro-

meres being CMA3
+ in S. corica – a similar feature as,

for instance, in Gobiidae [71, 72] and Polypteriformes

[73]. Also in the genus Cobitis, high number of CMA3
+

regions were recorded which were non-related to NORs

(together with CMA3-negative NOR sites) [74]. In a re-

cent study, some CMA3
+ regions non-related to NORs

were observed also in P. elongata, S. bolavenensis and

S. notostigma. Therefore, our results represent another

example that CMA3-staining and 45S rDNA FISH do

not always correspond and that CDD banding itself is

not sufficient for the proper identification of NORs in

fishes (discussed in [75, 76]).

The scattered occurrence of non-45S rDNA GC-

rich sites does not appear to imply any correlation

with phylogenetic relationships. However, the phylo-

genetically most derived species (P. brevis and Phy-

soschistura sp.) apparently lack GC-rich 5S signals

(Fig. 6e and Additional file 10: Figure S5C). The evo-

lutionary significance of this type of variability is still

under debate. For instance, the sequence composition of

heterochromatin can be associated with the different

success of recombination processes and with a propensity

to some kind of chromosome rearrangements. Here, the

GC-rich regions were involved in two Rb translocations in

S. notostigma and one of the resulting fusion points also

involved a 5S rDNA site, because karyomorph with

2n = 48 display higher number of exclusively termin-

ally located 5S rDNA and GC-rich sites, while karyo-

morph with 2n = 44 exhibit reduced number of such

regions, with some of them being apparently re-

located to the pericentromeric region of large m

chromosomes (Fig. 6i; Additional file 8: Figure S4B, F

and Additional file 10: Figure S5G). Hence, centric fu-

sion is very likely partly responsible for the reduction

of 5S rDNA sites from five (karyomorph with 2n = 48,

st chromosomes, Additional file 8: Figure S4F) to two

(karyomorph with 2n = 44, m chromosomes, Additional

file 8: Figure S4B, D). A similar scenario could also explain

the largest sm pair in N. ruppelli (no. 8, Fig. 4b), with

GC-rich 5S rDNA in the centromeric region. However,

considering the other six pairs of large m chromo-

somes with marked large pericentromeric heterochro-

matin and ITSs (as evidence of Rb translocation;

Fig. 4c, d), there is no space for additional fusions

since 2n = 38 had already been reached. Therefore, two

alternative explanations for this discrepancy can be hy-

pothesized: 1) the occurrence of conspicuous pair 8 in

N. ruppelli, with syntenic association of both rDNAs,

may be the result of Rb translocation only in the case

of parallel fission of some other previously metacentric

pair (resulting possibly in st-a pairs 18 and 19, with a

markedly strong telomeric signal on the p-arms,

Fig. 4d) or 2) synteny of both clusters on chromosome

pair 8 has been caused by another type of transloca-

tion event, non-affecting the 2n.

GC-rich regions are more prone to high recombin-

ation rates [77]. In a similar way, GC-rich centromeres

have been hypothesized to be favoured or even essential

in the process of Rb translocations in some gobiid fishes

[71, 72]. On the other hand, the majority of Rb translo-

cations in N. ruppelli originated from elements containing

AT-rich centromeres, and therefore it appears that more

mechanisms exist for Rb translocations besides involve-

ment of GC-rich regions. These findings contrast with

those studies, but are consistent with results observed in

killifishes [22] and Mus musculus domesticus [78].

Due to the number of reports evidencing 5S rDNA in

the centromeres of fused chromosomes are gradually in-

creasing in fishes [79, 80], it raises the question whether

the 5S rDNA region could contribute in some way to

the fusion process or it is only a consequence of it. It

has been suggested that 5S rDNA can serve as break-

points for the fusion due to its intensive activity and

chromatin decondensation [80] but further data support-

ing this hypothesis would be required.
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In our study, GC-rich sequences may be involved in

the dispersion and homogenization of GC-rich/5S rDNA

sequences as well as 45S rDNA sites and 5S/45S co-

localized sites in the genome of P. elongata by ectopic

recombination, similarly as observed in Gobiidae [70].

However, other nemacheilid species bearing GC-rich/5S

rDNA regions do not display such extensive disper-

sion of 5S rDNA. Thus, other factors such as trans-

position together with stochastic processes in isolated

populations may have been involved in the dynamics

of GC-rich/5S rDNA sites. Similarly, a combination of

transposition and unequal crossing-overs could have

contributed to the dispersion of GC-rich centromeres

in S. corica.

Our results from C- and CDD- banding further rein-

forced our initial hypotheses about the roles of pericen-

tric inversions and centric/tandem fusions as the main

processes underlaying the karyotype differentiation of

examined river loaches. Collectively, our data point to a

substantial heterogeneity both in heterochromatin distri-

bution and composition among the analysed river

loaches, resulting probably from intense dynamics at

chromosomal and genomic levels.

Sex chromosomes

While the majority of analysed species lacked morpho-

logically differentiated gonosomes, we identified a putative

multiple sex chromosome system XY1Y2 in S. fasciolata.

The two Y chromosomes in males (m and st) possibly

arose from a double-strand break (or fission) in one

proto-Y chromosome, followed perhaps by intrachromo-

somal rearrangements, such as pericentric inversions, in

the larger element. Interestingly, the FISH results showed

a pericentromeric 5S rDNA site on a putative X chromo-

some – a situation previously observed e.g., in rainbow

trout [81]. In general, about 10 % of fish species cytoge-

netically examined to date exhibit morphologically dif-

ferentiated gonosomes [82] and within them, only a few

cases of the multiple system XY1Y2 have been reported

(e.g., [83–85]), with apparently phylogenetically inde-

pendent origins among genera and families. Our finding

is the first observed in river loaches. However, because

our sample was rather small, we can not exclude the

possibility that we are still dealing with a polymorphism

instead of a sex chromosome system. Therefore our

conclusions should be further confirmed using com-

parative genomic hybridization (CGH) [86] and analyses

of meiotic chromosomes on a larger sample base.

Telomeric FISH pattern

Tandemly-arrayed telomeric (TTAGGG)n repeats are

usually present at the ends of vertebrate chromosomes,

ensuring their stability and integrity. However, they also

occasionally appear in non-telomeric locations (ITSs),

possibly as putative markers of previous chromosomal

rearrangements, transpositions or as the result of DNA

repair mechanisms ([87–89] and references therein). In

L. costata, P. brevis, P. lucidorsum and S. corica and

both karyomorphs of S. notostigma, the telomeric signals

were restricted to the chromosome ends. Although some

metaphases displayed putative intercalar telomeric sites,

the lack of a second terminal signal on the particular

chromosome suggests that these signals label natural

telomeres. ITSs were therefore only found in N. ruppelli

and N. binotatus. In the latter species, the single prom-

inent ITS located interstitially on the long arm of the

largest st pair may indicate a pericentric inversion or a

tandem fusion event. Since the ancestral diploid

chromosome number (2n = 50) remained unchanged,

the observed pair of ITSs is rather a relic of a previous

pericentric inversion, although such types of rearrange-

ment are not frequently associated with retained telo-

meric repeats in vertebrates ([90, 91]). The intense

telomeric signal may be the result of an additional amp-

lification of telomeric repeats either before or after the

rearrangement, or, in the case of N. binotatus, could

have originated from a relatively recent pericentric inver-

sion. The failure to detect ITSs in the majority of the

remaining species does not necessarily mean, that inver-

sions did not occur as it is possible that the residual

traces of ITSs have been lost or reduced to such a

low copy number as to be undetectable by FISH ana-

lyses. The telomeric FISH also provided the interest-

ing evidence that the mechanism of Rb translocations

differs significantly between species with reduced 2n

(N. ruppelli and S. notostigma). While N. ruppelli

possessed several huge pericentromeric ITSs, none

were found in S. notostigma. As described by Slijepcevic

[92], the mechanism of Rb translocations can be either

1) associated with a loss of telomeric sequences prior to

fusion or 2) with their preservation in otherwise inacti-

vated telomeres. Moreover, there is also the possibility

that 3) some degenerate telomere-like sequences may

become part of the centromeric heterochromatin and

subsequently expand along this region as a result of

the action of a variety of amplification mechanisms

[92, 93]. We suggest that a combination of scenarios

2) and 3) apply in N. ruppelli, while S. notostigma

followed the first scenario, hence residual telomeric

sequences were absent at the fusion points. The as-

sumption of amplified centromeric ITSs in N. ruppelli

is based on their remarkably stronger signal compared

to native telomeres and on their C-positive character.

ITSs often co-localize with heterochromatin blocks

[87, 88, 94] and large, mostly centromeric ITSs simi-

lar to those in N. ruppelli (sometimes referred to as

heterochromatic ITSs, or “het-ITSs”), have previously

been described in other fishes as well as in a variety
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of other organisms [88, 89]. Interestingly, additional

ITSs were found to be associated with the 45S rDNA

cluster in N. ruppelli as confirmed by FISH and CDD

banding. This association has been previously described

in Anguilliformes, Mugiliformes, Salmonifromes and

Syngnathiformes [89] and was believed to play a role in

the silencing of additional 45S rDNA copies [95]. This

seems unlikely in N. ruppelli, however, as the telomeric

repeats perfectly match with the entire region of the only

pair of 45S rDNA. Alternatively, the mechanism of rDNA

silencing could be more complex or prone to leakage of

rDNA expression in some way. Finally, large ITS-like

blocks covering entire p-arms of some monoarmed chro-

mosomes as observed in N. ruppelli and S. notostigma

bring another example of enormous nemacheilid cytogen-

etic variability.

Genomic organization and distribution of rDNA clusters

Mapping of tandemly-arrayed repetitive sequences has

proven to be an important tool for karyotype analysis

[59] and this is especially true for ribosomal RNA genes.

The rDNA phenotypes are often species-specific and

have been used as cytotaxonomic markers [96]. How-

ever, a number of reports demonstrating extensive inter/

intra-specific variability of these markers is still growing

in fishes [97–100], other animal groups [101] and plants

[102]. Here, we point to the conservative NOR pheno-

type, presented by one pair bearing 45S rDNA signals in

15 out of 19 nemacheilid species. Although the possibil-

ity of interspecific homeology of NOR-bearing chromo-

somes is rather unlikely, definitive proof based, for

instance, on the approach described by Milhomem et al.

[103] is missing. From all our samples we documented

multiple 45S rDNA sites only in P. elongata (Fig. 2).

Subsequent analysis made by silver staining detecting

only NORs actively transcribed in the preceding meta-

phase [104] revealed not more than six loci (data not

shown), thus, some extra loci are either nonfunctional or

silenced.

We observed a conservative NOR phenotype of one

major rDNA bearing pair – a pattern found in more

than 70 % of examined fish species to date [76]. In con-

trast, we detected a considerable variability in the pat-

tern of 5S rDNA ranging from two to 20 sites (Fig. 2).

The presence of a single pair of both rDNA clusters is

thought to be the plesiomorphic condition in teleost

fishes, whereas two or more chromosome pairs bearing

either 45S or 5S rDNA sites represent a derived condi-

tion [76, 105]. In our study, only B. barbatula and N.

binotatus exhibited karyotypes with the ancestral 2n = 50

together with one pair of both rDNA clusters and in

B. barbatula, our results confirmed the previously re-

ported NOR phenotype based on silver staining [15].

In the remaining two species exhibiting the characteristic

teleost rDNA phenotype the karyotypes were derived

(N. ruppelli and S. notostigma). A variable 5S rDNA

pattern in combination with a conservative NOR

phenotype has been observed in some fish groups [70]

while other fish groups have shown the opposite situation

(variable 45S and conservative 5S rDNA; [106]).

The 45S rDNA site has a predominantly terminal pos-

ition on the different chromosomes of the analysed spe-

cies, while the 5S rDNA is located almost exclusively in

the pericentromeric regions or it covers entire p-arms of

monoarmed chromosomes. Pericentromeric or, more

generally, interstitial position of 5S rDNA appears to be

universal among fishes [107].

In fishes, the chromosome locations of both rDNA

multigene families are usually on different chromo-

somes, perhaps due to 1) the elimination of possible re-

arrangements between both multigene families and 2) to

allow rDNA clusters to evolve independently [105, 108].

On the other hand, exceptions with syntenic location or

direct co-localization of both rDNA clusters (or their

linkage to other multigene families) has already been

documented in a variety of vertebrates [109, 110], in-

cluding reports from several fish groups [111] as well as

in loaches of the family Cobitidae [98], a sister lineage to

nemacheilids. This pattern is rather patchily distributed

across the phylogenetic trees and was also evidenced in

our study. In N. ruppelli, the 5S rDNA loci occupied the

pericentromeric region of a big m chromosome while

the 45S rDNA was situated terminally on the q-arm of

the same chromosome. In P. brevis, a similar association

was observed in one pair of big st elements. Moreover,

direct co-localization of rDNA clusters was observed in

two species: one pair in P. zonalternans and from four

to six co-localized sites in P. elongata. Such a rare

situation has probably no evolutionary advantage as

both classes of rRNA genes are transcribed by differ-

ent RNA polymerases [109]. Therefore, this constitu-

tion is a possible consequence of recent genome

instability and reshuffling as typically observed in

hybridization events [100].

In all species analysed here, a size polymorphism in

the homologous 45S rDNA sites was apparent. Such

an observation is relatively common among fishes and

is attributed to the processes of unequal crossing-over

or the amplification of adjacent heterochromatin [112].

We also observed an intraspecific polymorphism in

terms of the number of rDNA sites present (S. corica,

S. hypsiura, S. notostigma) and a polymorphism in the

presence/absence of rDNA site on one homologous

chromosome in S. notostigma (5S rDNA and 45S

rDNA), S. lendlii (female, 45S rDNA) as well as for

both females of P. pictilis (5S rDNA). Unfortunatelly,

the limited number of specimens available in our

sample is insufficient to conclusively determine either
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fixation or heterogeneity of this feature in the popula-

tion. Similar heterozygous constitutions of rDNA FISH

signals have been commonly observed in several spe-

cies of fishes (e.g., [112, 113]) including some from

Cobitidae [74, 97, 98]. The lack of signal on one of the

homoloques may be a direct consequence of sequence

elimination due to unequal crossing-overs, often re-

lated to a process of concerted evolution in tandemly-

repeated genes [114] or by the activities of repetitive

DNA such as TEs [59, 115]. Finally, we also observed

the polymorphism caused by rDNA loci inversion in

P. zonalternans and P. elongata. This feature, present

in Cobitidae [98], suggests a strikingly similar dynam-

ics of rDNA loci in these closely related loach fam-

ilies as well as another clue about the contribution of

inversions to the karyotype differentiation of river

loaches.

Our study has revealed an extensive dispersion of

multiplied sites of 5S rDNA and also of 45S rDNA in

nemacheilids. The dominance of the ancestral 2n = 50

karyotype in Nemacheilidae refutes chromosomal rear-

rangements as the trigger mechanism for this dispersion,

but amplification and dispersion of 5S rDNA clusters

may also be caused by transposition and unequal

crossing-over or ectopic recombination between various

tandemly-arrayed sequences in adjacent heterochroma-

tin [102, 115, 116]. Thus, rDNA clusters themselves can

provide a substrate for non-homologous recombination,

thereby promoting chromosomal rearrangements [101].

A significant fraction of the rDNA units in animals are

interrupted by TEs highly specialized for insertion into

conserved sites within the rRNA genes [114, 117] and

recent studies suggested that they might cause rDNA

mobility [118–120]. Co-localization of non-LTR RTEs of

the Rex family with rDNA followed by a subsequent ex-

pansion of rDNA sites have been uncovered by FISH

analyses for 5S [94] and 45S rDNA [121, 122]. It is

tempting to hypothesize that a similar mechanism

could cause the amplification of 5S/45S rDNA in

other fish species with documented extensive rDNA

dispersion. In our study, we have found the non-LTR

retrotransposon L1-2_DR element, from the Tx1 clade

(L1 lineage) – inserted close to a coding region of 5S

rDNA in S. pridii. This element has been previously

described in zebrafish [123].

Since the karyotype of S. pridii exhibit a large number

of 5S rDNA loci (18), the L1-2_DR may have been

inserted into the NTS of both analysed 5S variants and

subsequently retrotransposed to other chromosomal

loci. RTEs of this L1 family preferentialy jump into AT-

rich regions [123], therefore the AT-rich pericentromeric

heterochromatin of S. pridii located adjacent to 5S

rDNA could serve as a primary location for this mech-

anism. Alternatively and/or as secondary consequences,

the L1-2_DR (or other TEs) could provide the substrate

for non-homologous (ectopic) recombination between

centromeres of several chromosomes in S. pridii yielding

to a dispersion of 5S rDNA to other sites. Both hy-

potheses deserve further investigation regarding the

localization of L1-2_DR elements on the chromo-

somes of S. pridii and also the investigation of pos-

sible rDNA/TEs association in other river loaches

through FISH analysis. However, we can not rule out the

hypothesis, that L1-2_DR elements are just following the

spread of 5S rDNA and not driving it (for additional note,

see Additional file 1: Supplementary Discussion).

The variation observed in the distribution of 5S rDNA

sites implies a complex microevolutionary mechanism

behind the organization of nemacheilid genomes. The

final questions are: wheter or not a dispersion of 5S

rDNA is only a byproduct of rapid genomic change, is

there any possible contribution to the host genome

worth maintaining such a high number of copies, or are

the excessive copies most likely sentenced to pseudogen-

ization and elimination? Could an extensively elevated

number of rDNA loci somehow contribute to the speci-

ation process? We are still far from understanding this

but some indications have come from studies on 45S

rDNA in notothenoid fishes [111] and humans [124].

According to Pisano and Ghigliotti [111] the differential

pattern of the rDNA phenotype could have a possible

adaptive significance in subzero temperatures. Further-

more, the study of Gibbons et al. [124] shows that 45S

rDNA dosage is correlated with mitochondrial DNA

abundance and with the expression of some chromatin

modifiers thereby affecting mitochondrial-related pro-

cesses and changes in global gene expression. However,

whether a similar correlation is true also for 5S rDNA

dosage remains an open question (but see [125]). Thus,

such an explanation does not yet fit our hypotheses

about the mechanisms behind nemacheilid radiation

success, although, it does suggest a frame in which to

evaluate the contribution of multiple 5S rDNA to adap-

tation and speciation processes.

Conclusively, our data suggest frequent changes of 5S

rDNA phenotypes in contrast to the stable pattern of

45S rDNA. Extensive variability of 5S rDNA loci may be

regarded as an indicator of significant intragenomic pro-

cesses [115, 116] and thus can be viewed in the context

of an incipient stage of speciation, where evolutionary

changes driven by the dynamics of repetitive DNA are

currently in action [59]. This process can be also re-

lated to extreme ecological conditions possibly result-

ing in (re)activation of TEs [122]. As documented in

several animal and plant species, elevated activity of

TEs may contribute to adaptation to a new environ-

ment [126, 127]. Furthermore, the processes of trans-

position and/or ectopic recombination were not likely
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restricted only to regions of 5S rDNA. Numerous

studies have documented the involvement of TEs in

chromosomal rearrangements [59, 115, 126, 128]. We

therefore conjecture that TEs might also contribute to

the dynamics of nemacheilid genomes in this way.

Phylogenetic and ecological inferences

We have used a phylogenetic tree to show the relation-

ships between the analysed individuals. When mapped

on this tree, the observed cytogenetic characteristics did

not reflect the phylogenetic pattern, suggesting that cer-

tain cytogenetic character stages, like a lowered number

of chromosomes, did not occur in closely related, but in

non-related species. Therefore the parallel occurrence of

cytogenetic character stages in two species is not the re-

sult of a single evolutionary event, but of convergence or

parallel evolution. Our study has revealed a high vari-

ability in cytogenetic characters with almost none of

them producing a phylogenetic signal. Therefore, a vast

number of independent events with no general direction

must have happened to cause the observed cytogenetic

variability. The frequent occurrence of independent

cytogenetic changes as revealed by the phylogenetic

reconstruction further emphasises the high mutational

activity of the nemacheilid genome at the cytogenetic

level.

In contrast to the general observation of independent

cytogenetic events, one of the variable cytogenetic char-

acters did show an interesting pattern. The highest num-

bers of 5S rDNA loci (up to 20 sites) were almost

exclusively observed in local endemics or inhabitants of

small, fragmented habitats (P. brevis, P. elongata, P. sp.,

S. hypsiura and S. pridii – see Fig. 2). This produces a

comparably small effective population size and therefore

a small gene pool for the species, encouraging the estab-

lishment of new chromosomal patterns through genetic

drift, meiotic drive and inbreeding [60]. In P. brevis the

actual population size is quite large, but as it occurs only

in a single lake, it can be assumed that the species has

undergone through a serious bottleneck during the

colonization of this area.

Conclusions
Our data provides important information regarding the

karyotype differentiation trends in Nemacheilidae. The

majority of surveyed species showed the karyotype char-

acteristics common for teleost fishes – e.g., 2n = 50 chro-

mosomes with a slightly changing centromere position, a

single pair of NOR and its association with GC-rich

blocks of heterochromatin. However, a number of devia-

tions were also apparent – e.g., reduced 2n in two

species, atypical locations of GC-rich heterochromatin

(e.g., in 5S rDNA sites), cases of multiple rDNA sites

and the presence of putative sex chromosomes. While

conventional staining showed prevailing uniformity of

the nemacheilid karyotypical macrostructure, analysis at

the molecular-cytogenetic level revealed much more

variability and greater diversity than previously expected.

An increased number of 5S rDNA sites were observed,

especially in species with a small effective population

size. The mechanisms responsible for such intense dy-

namics can possibly be attributed to the presence of re-

petitive sequences and could contribute to enormous

success of Nemacheilidae in their colonization and ex-

ploitation of new niches, as well as with their adaptation

processes. Our study presents river loaches as a new at-

tractive model fish group for investigating the dynamics

of cytogenetic markers in association with evolutionary

and ecological questions. Importantly, we have also

introduced a new non-invasive technique for obtain-

ing chromosome spreads for molecular-cytogenetics

protocols.
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Additional file 1: Supplementary Methods 1. Taxonomic identification

of nemacheilids. Supplementary Methods 2. Preparation of chromosomes

from regenerating fin tissue. Supplementary Methods 3. PCR conditions

of 5S and 45S rDNA amplification. Supplementary Methods 4. PCR

conditions of RAG1, IRBP and cyt b amplification. Supplementary

Discussion. Possible functional consequences of excessive 5S rDNA

copies. (PDF 181 kb)

Additional file 2: Figure S1. Mitotic metaphases of selected nemacheilid

species after C-banding or DAPI-staining. (A,D,C,F.G,H,I,J,M,O,P,Q) DAPI

staining; (D,E,K,L,N) C-banding improved with DAPI counterstaining.

Metaphases from both methods are converted to inverted pictures.

(A) B. barbatula, (B) L. costata, (C,D) M. guentheri (E) N. binotatus, (F) P. pictilis,

(G) P. zonalternans, (H) P. brevis, (I) P. sp., (J) P. elongata, (K) P. lucidorsum,

(L) S. bolavenensis, (M) S. corica, (N) S. hypsiura, (O) S. pridii, (P) S. savona,

(Q) S. lendlii. Arrows depicts whole-armed heterochromatin, arrowheads

denote interstitial heterochromatin, the asterisk indicates C-positive

NORs (as rare feature among species under study). For comparison of

banding patterns between both methods, see pics. C and D. Note

that several species share marked interstitial heterochromatic sites

indicating the remnants of putative chromosomal rearrangements

(e.g., pericentric inversion) (A,E,L,M,Q). Of particular interest are the

completely heterochromatic arms in m-sm chromosomes occuring in

a subset of species (C,D,L,M,P,Q). Note also heterochromaic p-arms in

some st-a chromosomes (C,D,E,O,P). Bar = 10 μm. (ZIP 4276 kb)

Additional file 3: Table S1. Primer sequences used in this study.

(PDF 221 kb)

Additional file 4: Table S2. GenBank accession numbers of cyt b, IRBP

and RAG1 sequences of nemacheilids and one botiid species (B. lohachata).

(XLSX 17 kb)

Additional file 5: Table S3. GenBank accession numbers of 5S and 28S

rRNA sequences of four nemacheilids (P. elongata, S. bolavenensis, S. corica,

S. fasciolata) and one botiid species (B. almorhae). (XLSX 14 kb)

Additional file 6: Figure S2. Sequence alignment of cloned 5S rDNA

fragments from S. pridii. Nucleotide sequences (5′-3′) obtained from both

specimens (A7548, A7549) corresponding to the short (A) and long (B)

variant of 5S rDNA, containing partial 5S rDNA coding sequence (green),

partial sequence of L1-2_DR non-LTR retrotransposon (in red) and a
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putative non-transcribed spacer (NTS) (rest of the sequence). In the short

fragment (A), the consensus sequence is shown for specimen no. A7548

and only base changes according to this sequence are shown for the

specimen no. A7549. Dots indicate the upper consensus sequence.

Sequence of the long fragment (B) was assembled only from specimen

no. A7548. (PDF 111 kb)

Additional file 7: Figure S3. Karyotypes arranged from Giemsa-stained

chromosomes and dual-colour FISH showing 5S and 45S rDNA sites.

Giemsa-stained karyotypes (left column) and dual-colour FISH (right

column) with 45S rDNA (red, arrows) and 5S rDNA (green, arrowheads)

probes on (A,B) L. costata, (C,D) M. guentheri, (E,F) N. binotatus, (G,H) P. pictilis,

(I,J) P. brevis, (K.L) P. lucidorsum, (M,N) S. bolavenensis, (O,P) S. corica, (Q,R) S.

hypsiura, (S,T) S. pridii, (U,V) S. lendlii, (W) S. savona. The FISH chromosomes

were counterstained with DAPI and the images were converted to

grayscale. Inset (D) – chromosome pair 18 from M. guentheri female

showing absence of heterochromatic p-arm in contrast to a single

homologue in the male karyotype. Inset (V) depicts the absence of a

45S rDNA site on one homologue in female (pair 3). In P. brevis (J),

note the syntenical association of both rDNAs on pair 13. Note also

the intense size polymorphism in S. bolavenensis (pair 1) (N) and S. corica

(pair 7) (P). Additional polymorphic rDNA sites from the other specimen

are boxed for S. corica (pairs 7 and 17) (P) and S. hypsiura (pair 18) (R).

Bar = 10 μm. (ZIP 2482 kb)

Additional file 8: Figure S4. Karyotypes of S. notostigma after different

cytogenetic protocols. (A-D) karyomorph with 44 chromosomes, (E,F)

karyomorph with 48 chromosomes. (A,E) conventional Giemsa staining,

(C) C-banding, (B,D,F) dual-colour FISH with 45S rDNA (red, arrows) and

5S rDNA (green, arrowheads) probes. Arrangement of st-a chromosome

pairs 18 and 19 (E,F) demonstrates a putative origin (centric fusion) of

metacentric chromosome pair 2 (A-D). Note also chromosome pairs

heterozygous for presence/absence of 45S rDNA site (pair 12) (D) or

5S rDNA site (pair 22) (F). Finally, notice conspicuous regions of constitutive

heterochromatin located in centromeres of metacentric pairs 1 and 2 and

those located intercalarly on q-arms of sm chromosome pairs 11, 13,

14, 15, 17. Bar = 10 μm. (TIF 540 kb)

Additional file 9: Table S4. Distribution of AT- and GC-rich sites and its

relation to constitutive heterochromatin and rDNA regions in nemacheilid

genomes as inferred from C-banding, DAPI- and CMA3-stainings. Species

order reflects their phylogenetic relationships. (XLSX 13 kb)

Additional file 10: Figure S5. Mitotic metaphases of selected

nemacheilid species after CDD banding. (A) L. costata, (B) P. zonalternans,

(C) P. sp., (D) P. lucidorsum, (E) S. fasciolata, (F) S. hypsiura, (G) S. notostigma

(karyomorph with 48 chromosomes) (H) S. pridii, (I) S. savona, (J) S. lendlii.

Pictures were pseudocoloured in red (for CMA3) and green (for DAPI).

Bar = 10 μm. (TIF 2549 kb)

Additional file 11: Figure S6. Karyotypes of P. zonalternans and

P. elongata after Giemsa staining and dual-colour (5S/45S) rDNA FISH.

45S rDNA (red, arrows) and 5S rDNA (green, arrowheads) probes on (A,B)

P. zonalternans and (C,D) P. elongata. Insets – chromosomes showing

co-localization of 45S and 5S rDNA – P. zonalternans, pair 12 (B); P. elongata

pairs 4, 12 (D). For clarity, chromosomes are arranged as separated images

for each rDNA probe. Note also the heterozygosity for inverted 45S rDNA

locus – P. zonalternans, pair 10 (B); P. elongata, pair 5 (D). The asterisk

denotes a missing chromatid in one homologue of chromosome pair

25 in P. elongata (D). Bar = 10 μm. (TIF 522 kb)

Additional file 12: Figure S7. Mitotic metaphases of selected

nemacheilid species after TSA FISH with telomeric (TTAGGG)n probe.

(A) L. costata, (B) P. brevis, (C) P. lucidorsum, (D) S. notostigma (karyomorph

with 48 chromosomes). Chromosomes with the telomeric repeat probe

(green) are counterstained with DAPI, pseudocoloured in red for better

contrast. Bar = 10 μm. (TIF 785 kb)
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