
Kasbah: An Agent Marketplace for Buying and Selling Goods

Anthony Chavez and Pattie Maes
MIT Media Lab
20 Ames Street

Cambridge, MA 02139
asc/pattie@media.mit.edu

Abstract

While there are many Web services which help
users find things to buy, we know of none which
actually try to automate the process of buying
and selling. Kasbah is a system where users cre-
ate autonomous agents to buy and sell goods on
their behalf. In this paper, we describe how Kas-
bah works. We also discuss the implementation
of a simple proof-of-concept prototype.

Introduction
Kasbah is a Web-based system which allows users to
create autonomous agents which buy and sell goods on
their behalf.

Kasbah originated with the notion of reinventing the
classified ads. We observed that there are many sites
on the Web that list ads. Some of these sites allow
users to perform keyword searches on the database
of ads (Seattle Times/PI 1996). Some have their ads
nicely categorized, making it easy to find ones of inter-
est (ADWorld 1996). Other sites have more advanced
searching capabilities. For example, Stanford’s Info-
master (Infomaster 1995) (Geddis et al. 1995) allows
users to specify a query that precisely describes the
kind of apartment they are looking for. Infomaster
searches the ad databases of several local newspapers
and returns ads for those apartments which match the
user’s description.

These "classified ad" sites have different types of
functionality, yet all work under the same basic
premise: to provide a tool for the user to find ads which
they are interested in. Certainly, such tools are impor-
tant and useful. Yet, they only help with one part of
the entire process of buying or selling, that of finding
ads which match what one is looking for. The idea be-
hind Kasbah is to provide agents which help users by
actually buying and selling goods for them.

Overview of Kasbah
Kasbah is a Web site where users go to buy and sell
things. They do this by creating buying and selling
agents, which then interact in the marketplace.

Selling and Buying Agents

Think of a selling agent as being analogous to a classi-
fied ad. When a user creates a new selling agent, they
give it a description of the item they want it to sell.
Unlike the traditional classified ad, though, which sits
passively in its medium and waits for someone to no-
tice it, Kasbah’s selling agents take a pro-active role.
Basically, they try to sell themselves, by going into the
marketplace, finding interested parties (namely, buy-
ing agents) and negotiating with them to reach a deal.

A selling agent is autonomous in that, once released
into the marketplace, it negotiates and makes decisions
on its own, without user intervention. Of course, the
user does have overall control of its behavior. When
the user first creates a selling agent, they set several
parameters to guide its behavior as it tries to sell the
item. These parameters are:

* Desired date to sell the item by. People often have
deadlines by which they need to sell something. For
example, a graduating student might want to sell
their bicycle before they leave school, because they
cannot take it with them. In other cases, a person
may not care when they sell something by, and are
willing to wait until they receive their desired price.

¯ Desired price. This is the price the user would like
to receive for the good they are selling.

¯ Lowest acceptable price. This is the lowest price the
user will sell their good for. If the user has "junk"
in their basement that they want to get rid of, they
may set the desired price rather high, hoping some-
one might be willing to pay it, and also set the low-
est acceptable price to a more realistic level. On the
other hand, a person willing to accept nothing less
than their asking price would set the lowest accept-
able price to be the desired price.

These parameters define the agent’s goal: to sell the
item in question for the highest possible price -- ide-
ally, the desired price, but as low as the lowest ac-
ceptable price, if that is what it takes to attract buyer
interest. Exactly how to achieve this goal is left to
the agent. The appropriate metaphor here is that of

From: AAAI Technical Report SS-96-02. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

a personal assistant (Maes 1994). You tell your per-
sonal assistant what you would like to be done ("sell
this for the best possible price"), and trust it to fig-
ure out how to accomplish this task, freeing your time
and energy for more interesting pursuits. In addition,
we hope that agents might be able to sell (and buy)
goods better than the user would be able to, by tak-
ing advantage of their edge in processing speed and
communication bandwidth.

While an agent is "free" in terms of how to achieve
its objective, the parameters described above suggest
how it should work. The crude heuristic is: begin by
offering the good at the desired price. If there are
willing buyers, great. If not, as time goes along, lower
the asking price to entice more interest. When the
desired date to sell the good by rolls around, the asking
price should be about the lowest acceptable price. Of
course, all the interesting action is in the subtleties and
nuances of how the selling agent goes about lowering
the price. It is possible that there will be no buyers
(perhaps the lowest acceptable price is too high, or no
one interested in what the agent is selling). In this
case, the agent fails to achieve its goal.

The user can check on its selling agents, see who
they have talked to, and what prices they have been
offered. This information might prompt the user to
do something like lower an agent’s price parameters,
if they see that offers are coming in much lower than
expected.

The user will always have final control over their
agents. When a selling agent reaches an agreement
with a buying agent, the user may want to give the ok,
so to speak, before the agents "shake hands" on the
deal. The user has a couple of parameters they can set
on both selling and buying agents:

¯ Get user approval before finalizing deal.

¯ Send email notification when agreement reached.
The user might not be logged into Kasbah when
their agent reaches a tentative agreement, and send-
ing email is a convenient way to alert them.

The five parameters given above are by no means
exhaustive. One can imagine many more controls a
user might want to set on their agents, depending on
the complexity of these agents. For example, there
could be a parameter that defines the function used by
the selling agent to lower its asking price over time.
There might be a parameter that tells the agent to
only negotiate with agents whose users are in a certain
physical region (e.g., within the city of Boston). There
could also be a parameter which tells the agent what
selling strategy to use, if indeed the agent is smart
enough to have multiple strategies. The parameters
we have given constitute what is minimally necessary
for the agents to be of use.

Thus far we have discussed selling agents. There
are also buying agents. They are essentially the sym-
metric opposite of selling agents. Their job is to buy

goods on behalf of users. One can think of a buying
agent as a want ad which actively seeks to find and buy
what it’s looking for. When creating a buying agent,
the user describes the item of interest. Alternatively,
they could specify a set of selling agents already in
the marketplace, and direct their buying agent to buy
from one of them. Like for selling agents, the user sets
parameters to guide the agent’s negotiation behavior:

¯ Desired price. What the user wants to pay for the
good.

¯ Highest acceptable price. The highest price the user
is willing to pay for the good.

¯ Date to buy the item by.

Once created, the buying agent is released into the
marketplace, where it negotiaties with selling agents,
trying to make the best possible deal.

Once a buying and selling agent have reached agree-
ment on a price, and gotten their respective user’s ap-
proval, then the physical transaction of the good can
occur. At this point, the human users must take over.
In the future, agents may be able to do this too, us-
ing electronic cash, and if the goods in question are
things which do not require a physical medium, such
as information and knowledge.

We would not be building Kasbah if we did not think
buying and selling agents would be useful for the ev-
eryday end-user. Here are some of the services and
benefits which these agents will provide:

¯ Spare the user from having to find, negotiate, and in
general deal with buyers and sellers. Kasbah will be
eliminating human-human contact. On the surface,
this might sound like a bad thing. But let’s admit it,
a lot of people don’t like talking to strangers, which
is what is generally required when buying or sell-
ing something via the classifieds. Language barriers
and misunderstandings are often a problem. With
agents doing the talking, though, this process is de-
personalized. Here is a case where technology is not
increasing human interaction, but reducing it, free-
ing people to pursue their more meaningful relation-
ships.

¯ Know who are prospective buyers and sellers. The
buying and selling agents we are building remember
everyone who they have talked to. This informa-
tion can be accessed by their creators, which can
be very useful. Suppose that a potential buyer asks
you to clarify your item description. You respond
to their query, but you may receive several more re-
quests for clarification, and answering them all is an-
noying. Armed with information about which peo-
ple are interested in what you’re selling, you can
pre-emptively send out a clarification to all of those
users.

¯ Enable better pricing. In addition to recording who
they have talked to, the agents also record the con-
tent of their conversations (e.g., Agent 14 offered me

$60.) This allows users to gather price information.
They may see that they are asking too much, or al-
ternatively, asking too little.

The Marketplace

Buying and selling agents meet and negotiate in the
Kasbah marketplace. The marketplace’s job is to fa-
cilitate interaction between agents. There are many
possible roles the marketplace could play depending
on the type of market. At a minimum, the market-
place needs to ensure that the agent’s participating in
it speak a common language. Kasbah’s marketplace
will be more pro-active. It will direct agents to ar-
eas of common interest within the marketplace. What
this means is that when an agent enters, the market-
place will ask what it is buying or selling, and direct
it to other agents buying and selling the same kinds of
things. The other agents in the marketplace are also
notified of the arrival of the new agent. Think of this
process as the marketplace forming "tents" within it-
self. For example, there might be a tent for cars, a tent
for apartments in Cambridge, a tent for stereo equip-
ment, etc. The marketplace also determines the ter-
minology spoken, that is, how goods are described. In
Kasbah, this terminology will be extendible by users.

We can consider more complex marketplaces. We
might want to have marketplaces which regulate the
activities that occur within them. As buying and sell-
ing agents become more intelligent, we can easily imag-
ine malicious and deceitful agents, trying to rip off
honest ones. In such a world, there will need to be
some kind of law enforcement. We might have regu-
lator agents roaming the marketplace to ensure that
no illict activity takes place. We have not yet consid-
ered in depth the social issues associated with complex
agent communities, but we are aware of them, and a
lot of theoretical research has been done in this area
(Rosenschein and Zlotkin 1994).

It is very important to note that Kasbah’s archi-
tecture is agent independent. As long as an agent
can speak the common marketplace language, i.e., can
present the appropriate interface, then the agent can
participate in the marketplace. Our goal is not to try
to once and for all create the world’s best buying and
selling agents. People will always want to design new,
improved agents, using clever techniques to make them
as smart as possible. We want to encourage people to
do this. Hopefully, Kasbah will provide a real-world
incentive to create many new, innovative agents.

Kasbah Prototype

To test the basic concepts and feasibility of what has
been described above, we have built a Kasbah Proto-
type.

Implementation
The Kasbah Prototype is implemented i9 CLOS using
Harlequin Lisp. As is standard in CLOS, everything is

an object (an instance of a class) -- the marketplace,
the agents, the item descriptions, etc.

The marketplace language is implemented by requir-
ing the agents to support certain methods that can be
called on them. All these methods can be called on
both buying and selling agents. They are:

¯ accept-offer?(agent, from-agent, offer)
This method is used to ask agent whether or not
they accept the offer of offer from from-agent.
agent returns either "accepted" or "rejected".

¯ what-is-price?(agent, from-agent)
This method is called by from-agent to ask agent

what its price is, which is returned. If agent is a
buying agent, then its price is how much it is willing
to pay. If agent is a selling agent, then its price is
how much it is willing to sell for.

¯ what-is-item?(agent, from-agent)
This method is called by from-agent to ask agent
what item it is trying to sell or buy, depending on
whether agent is a buying or selling agent. An item
description is returned.

A marketplace object contains buying and selling
agents. Agents are added to the marketplace by call-
ing the methods add-sell-agent and add-buy-agent.
When an agent is added to the marketplace, it is no-
tiffed of agents who are interested in buying (selling)
the item it is selling (buying). In addition, the appro-
priate agents already in the marketplace are notified of
the existence of the new agent. The marketplace does
this notification by calling the following two methods,
which must be supported by all agents:

¯ add-potential-customers(sell-agent,
potential-customers)
Notifies sell-agent that the buying agents speci-
fied by potential-customers want to purchase the
type of item it is selling.

¯ add-potential-sellers(buy-agent,
pot ential-sellers)
Notifies buy-agent that the selling agents specified
by potential-sellers wish to sell the type of item
it wants to buy.

In addition, buying and selling agents must also sup-
port the methods remove-potential-sellers and
remove-potential-customers, which the market-
place calls to notify agents that other agents are no
longer of interest (for instance, because they have ter-
minated or already reached a deal with someone else).

Agents also need to be able to send messages to the
marketplace. There are two methods which the mar-
ketplace supports:

¯ agent-terminated(marketplace, agent)
Called by agent to notify marketplace that it has
ceased to exist.

¯ deal-made(marketplace, sell-agent,
buy-agent, item, price)

i0

Notifies marketplace that
sell-agent and buy-agent have agreed to transact
item for the given price.

The items that are bought and sold are described by
feature vectors. These vectors consists of (feature, fea-
ture value) pairs. Describing items in this way makes
it easy to determine if two item descriptions match.

Conceptually, buying and selling agents in the mar-
ketplace are constantly talking to each other, moving
from agent to agent, all at the same time. Because we
cannot really run the agents in parallel, the market-
place simulates this by implementing a simple schedul-
ing algorithm. The algorithm works as follows. Each
agent is allowed exactly one "slice" of execution time
per marketplace "cycle". During this slice, an agent
can do whatever -- talk to other agents, do internal
computations, etc. There should be a mechanism that
limits how much processing time an agent can consume
per slice, but this has not been implemented. The
order in which the agents execute per cycle is deter-
mined randomly. To execute an agent during its slice,
the marketplace calls the method do_thing, which all
agents must support.

Note that the architecture described is independent
of agent implementation. The agents are only required
to support a specified interface, i.e. a certain set of
methods that can be called on them. What they do
within these methods is up to them.

We now describe how selling and buying agents
work. We will refer to selling agents; buying agents
work in the obviously symmetrical way. (While it is
possible to build buying and selling agents which use
different strategies, we chose for convenience to have
ours use the same framework.)

An agent consists of the following components: con-
trol parameters, negotiation history, and internal state.
Each of these will be described in turn. In addition, an
agent stores the date it was created and a description
of what it is selling (or buying).

The control parameters are just the five user-
specified parameters described earlier in the paper.

The negotiation history stores each conversation
that the agent has had with other agents. It consists of
a list of (date, event) pairs, where each event describes
the conversation that occured on that particular date.
An example conversation is "I offered Agent 3 a price
100. They rejected the offer.", or "Agent 14 asked my
asking price. I replied 91." As discussed previously,
recording all the conversations that an agent has had
can provide useful information to the user.

The internal state of an agent contains information
that the agent uses to decide what it will do each slice,
i.e. when do_thing is called. The internal state con-
tains a list of "potential contacts", which are those
agents interested in buying (selling) what that agent
is selling (buying). With each potential contact
recorded its last known asking price (what the agent
wishes to buy or sell the item for), and whether it has

been asked this round (explained later). The internal
state also stores the agent’s current asking price.

The strategy an agent uses to decide what to do each
slice is very simple, and is described below.

1. Determine the current asking price.
The agent lowers (raises) its asking price according
to a linear decay (growth) function. When the agent
is created, its asking price is the desired price. By
the date to sell by, the asking price is the lowest
price. At any moment in between, the current asking
price can be linearly interpolated.

2. Decide which agent to talk to.
The agent’s strategy is to talk to each potential con-
tact exactly once per "round". In other words, an
agent will never talk to a given potential contact un-
til it has first talked to all other potential contacts.
The algorithm for deciding which potential contact
to talk to during that slice works as follows: Con-
sider the potential contacts that have not yet been
spoken to in the current round. If all have been
spoken to, then consider all the potential contacts.
From this set of considered agents, pick one that has
never been contacted, or, if all agents under con-
sideration have been contacted, then pick the one
whose asking price is the highest (lowest). The idea
is to first talk to those agents which seem the most
promising -- first those who have never been spoken
to, and then agents who have indicated a willingness
to pay a higher (sell for a lower) price.

3. Talk to the potential contact.
First, the agent offers to sell (buy) the item at its
current asking price. If the contacted agent accepts,
then the agent’s job is done! If the contacted agent
rejects the offer, then the agent asks its asking price.
This price is recorded for that potential contact, and
its asked-this-round flag is set to true.

Experimental Application Domain

To test the Kasbah Prototype, we have come up with
a simple experiment: buying and selling playing cards.
The idea of the experiment is to have a small group of
users buy and sell playing cards using the Prototype’s
buying and selling agents, rather than conducting the
negotiations themselves. The goal for each user is to
maximize the value of their hand (as in poker, so
royal flush would be the most valuable). Because this
is meant to be a fun experiment, the person with the
highest hand at the end will receive a small prize.

At the start of the experiment, each person is given a
random set of cards and some play money. They then
proceed to buy cards that improve their hand and sell
cards that don’t, in order to get more money to buy
cards. Thus, there is an incentive for people to create
both buying and selling agents.

We are presently building a Web interface for the
Kasbah Prototype to make it easy to conduct the ex-
periment. Preliminary results are encouraging, and we

11

expect more results in the near future.

Related Work
Much work has been done over the past few years on
intelligent agents. The overall goal is to help users deal
with "information and work overload" (Maes 1994),
and that it is what we are trying to do with Kasbah.

The notion of autonomous agents is not a new one.
It appears extensively throughout computer science lit-
erature, in several different contexts. In the field of
Distributed AI, agents are entities which collaborate to
solve a specific problem (Demazeau and Muller 1990).
In Decentralized AI, the focus is more on the inter-
actions of agents with different motivations. The un-
derlying notion, though, is that the agent interaction
should further some organizational goals (Demazeau
and Muller 1990).

Agents are often seen as a general technique for solv-
ing problems, be they very specific (planning the path
of a robot) or broader (managing resources). This
notion of agents is somewhat different from the one
we take, which is more task-oriented. Also, Kasbah’s
agents not only don’t share common goals, they have
conflicting aims. This contrasts to a system such as
Firefly (Shardanand and Maes 1995), where agents
serve individual users (to make music recommenda-
tions), yet cooperate and exchange information in
mutually beneficial fashion.

A lot of work has also been done in the area of agent
communication. KQML is perhaps the most notable
attempt to design a general purpose agent language
(Labrou and Finin 1994). We have chosen not to use
KQML thus far, since all our agents are local and
can easily communicate via a predefined set of meth-
ods. For the future, though, we are considering using
KQML to easily allow agents designed by outside par-
ties to participate in the marketplace.

As Kasbah’s agents evolve and become more ad-
vanced, we will want a richer semantics of agent com-
munication to allow more complex and subtle negotia-
tions to take place. The field of speech acts (Winograd
and Flores 1986) has investigated such theoretical is-
sues in depth.

Conclusion
Kasbah is a system where users create buying and sell-
ing agents to transact goods on their behalf. We have
built a simple prototype to test the basic concepts
and feasiblity, and are currently conducting more user
tests. Though we have only just scratched the sur-
face in terms of making a truly useful system, we are
excited about this work and believe it has the chance
to fundamentally change the way people buy and sell
goods and services in the not-so-distant future.

References
AdWorld, 1996.
http://www.scbe.on.ca/int/adworld.html

Seattle Times/PI, 1996.
http://webster.seatimes.com/classified/index.html
Infomaster, 1995.
http://infomaster.stanford.edu:4000/ASK/RENTAL

Demazeau, Y., and Muller, J. Decentralized Artifi-
cial Intelligence. In: Decentralized AI. Eds. Demazeau
and Muller. Elsevier Science Publishers, North Hol-
land. 1990.

Geddis, D., Genesereth, M., Keller, A., and Singh., N.
1995. "Infomaster: A Virtual Information System".
In Proceedings of CIKM 95 Workshop on Intelligent
Information Agents. Baltimore, Maryland.

Labrou, Y., and Finin, T. 1994. "A Semantics ap-
porach for KQML -- a general purpose communica-
tion language for software agents." In Proceedings of
CIKM 94. New York: ACM Press.
Maes, P. 1994. Agents that Reduce Work and Infor-
mation Overload. Communication of the ACM Vol.
37, No. 7.31-40.
Rosenschein,]., and Zlotkin, G. 1994. Rules of en-
counter: designing conventions for automated nego-
tiation among computers. Cambridge, Mass.: MIT
Press.

Shardanand, U., and Maes, P. 1995. "Social Informa-
tion Filtering: Algorithms for Automating Word of
Mouth". In Proceedings of CHI 95 Conference, Den-
ver, Colorado.

12

