

Christophe De Cannière¹, Orr Dunkelman^{1,2}, Miroslav Knežević¹

(1)Katholieke Universiteit Leuven, ESAT/SCD-COSIC

(2) Département d'Informatique, École normale supérieure

Outline

- Motivation
 - Why do we fight for a single gate?
 - What are the options so far?
 - Design Goals
- Design Rationale
 - Memory Issues
 - Control part
 - Possible Speed-Ups
- Implementation Results
- Conclusion

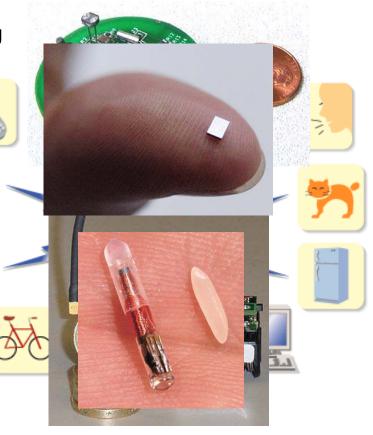
Why do we fight for a single gate?

Wireless Sensor Networks

Environmental and Health Monitoring

Wearable Computing

Military Surveillance, etc.


Pervasive Computing

Healthcare

Ambient Intelligence

Embedded Devices

It's a challenge!

What are the options so far?

- Stream ciphers
 - To ensure security, the internal state must be twice the size of the key.
 - No good methodology on how to design these.
- Use the standardized block cipher: AES
 - The smallest implementation consumes 3.1 Kgates.
 - Recent attacks in the related-key model.
- Other block ciphers?
 - HIGHT, mCrypton, DESL, PRESENT,...
 - Can we do better/different?

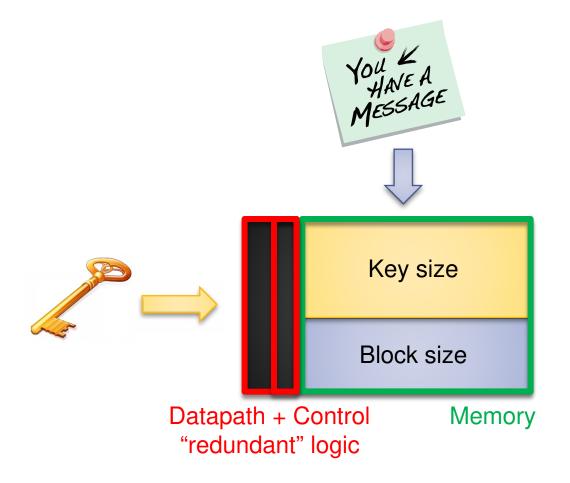
Design Goals

- Secure block cipher
 - Address Differential/Linear cryptanalysis, Related-Key/Slide attacks, Related-Key differentials, Algebraic attacks.
- Efficient block cipher
 - Small foot-print, Low power consumption, Reasonable performance (+ possible speed-ups).
- Application driven
 - Does an RFID tag always need to support a key agility?
 - Some low-end devices have one key throughout their life cycle.
 - Some of them encrypt very little data.
 - Why wasting precious gates if not really necessary?

The KATAN/KTANTAN Block Ciphers

Block ciphers based on Trivium (its 2 register version—Bivium).

Block size: 32/48/64 bits.


Key size: 80 bits.

Share the same number of rounds – 254.

KATAN and KTANTAN are the same up to the key schedule.

In KTANTAN, the key is fixed and cannot be changed!

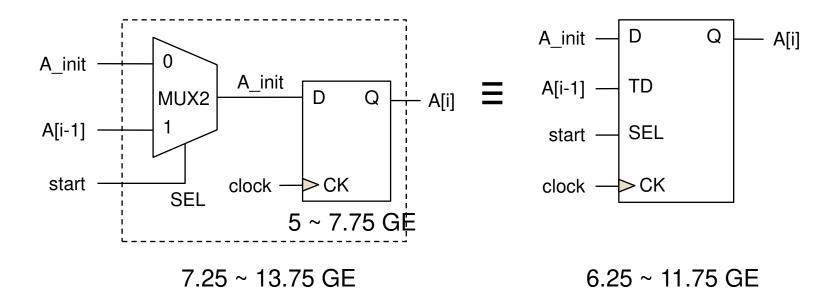
Block Cipher – HW perspective

Design Rationale – Memory Issues (1)

- The more compact the cipher is, a larger ratio of the area is dedicated for storing the intermediate values and key bits.
- Difference not only in basic gate technology, but also in the size of a single bit representation.

Cipher	Block [bits]	Key [bits]	Technology [<i>µ</i> m]	Size [GE]	M	emor [%]	У	mory/ [GE]	bit
AES-128 [8]	128	128	0.35	3400		60		7.97	
AES-128 [10]	128	128	0.13	3100		48		5.8	
HIGHT [12]	64	128	0.25	3048		49		~7	
mCrypton [15]	64	64	0.13	2420		26		5	
DES [19]	64	56	0.18	2309		63		12.19	
DESL [19]	64	56	0.18	1848		79		12.19	
PRESENT-80 [4]	64	80	0.18	1570		55		6	
PRESENT-80 [20]	64	80	0.35	1000		≥80		≤ 6	

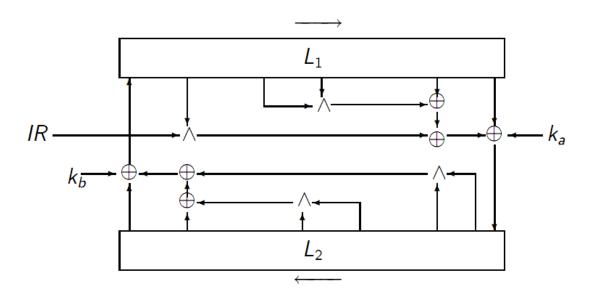
Design Rationale – Memory Issues (2)

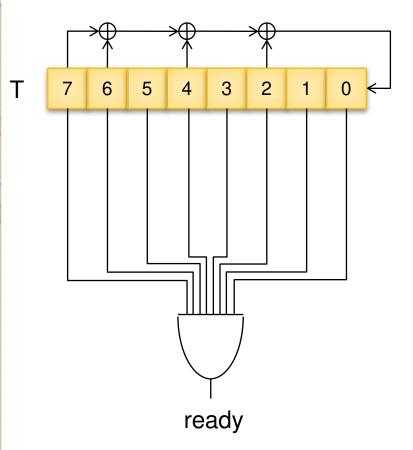

• The gate count (GE) DOES depend on the library and tools that are used during the synthesis.

Example:

- PRESENT[20] contains 1,000 GE in 0.35 μm technology 53,974 μm².
- PRESENT[20] contains 1,169 GE in 0.25 μm technology 32,987 μm².
- PRESENT[20] contains 1,075 GE in 0.18 μm technology 10,403 μm².
- Comparison is fair ONLY if the SAME library and the SAME tools are used.

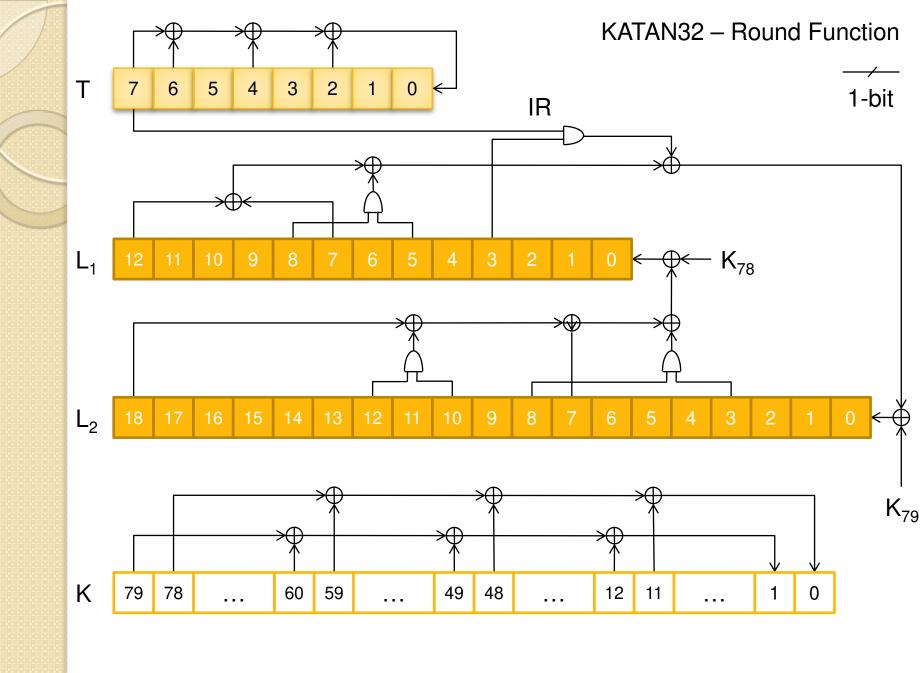
Design Rationale – A Story of a Single Bit

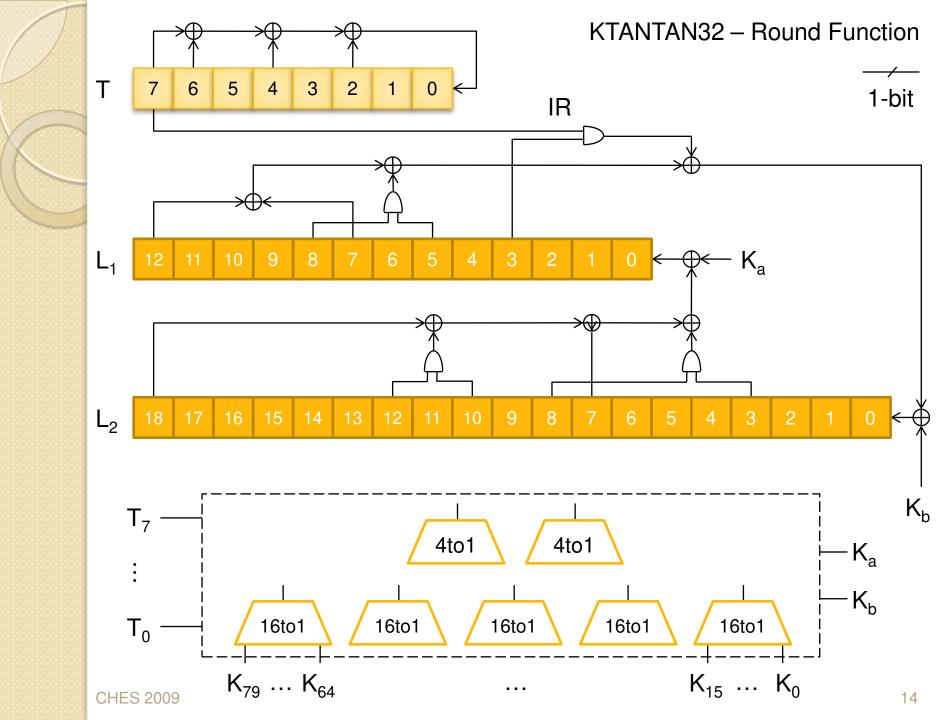

- Assume we have a parallel load of the key and the plaintext.
- A single Flip-Flop has no relevance MUXes need to be used.
- 2to1 MUX + FF = Scan FF: Beneficial both for area and power.


• (64 + 80 + 8) × 6.25 = 950 GE ☺

Design Rationale – Control Part

How to control such a simple construction?




- IR stands for Irregular update Rule.
- We basically need a counter only. Can it be simpler than that?
- Let the LFSR that is in charge of IR play the role of a counter.

KATAN32 – Control Part

1-bit

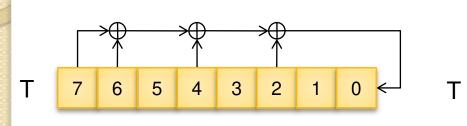
Implementation Results

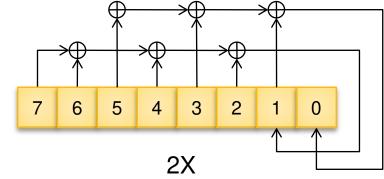
 All designs are synthesized with Synopsys Design Vision version Y-2006.06, using UMC 0.13µm Low-Leakage CMOS library.

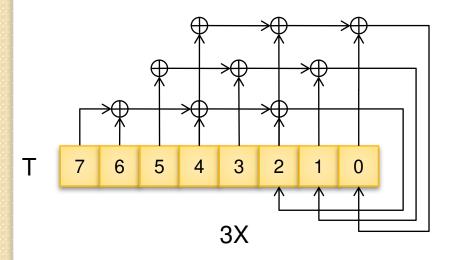
Cipher	Block [bits]	Key [bits]	Memory/bit [GE]	Throughput* [Kbps]	Size [GE]
KATAN32	32	80	6.18	12.5	802
KATAN48	48	80	6.19	18.8	927
KATAN64	64	80	6.15	25.1	1054
KTANTAN32	32	80	6.10	12.5	462
KTANTAN48	48	80	6.14	18.8	588
KTANTAN64	64	80	6.17	25.1	688

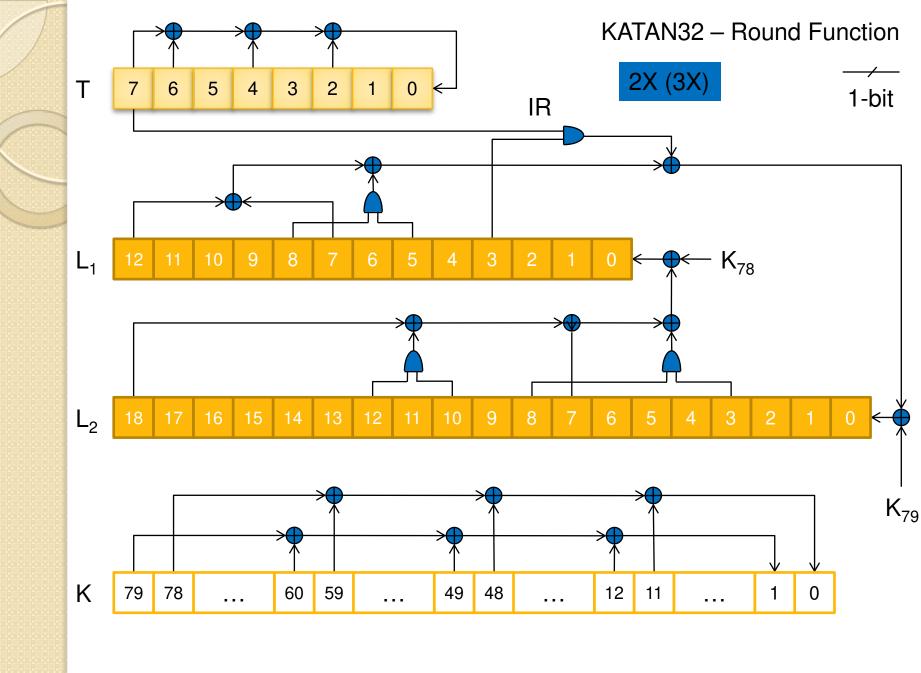
^{*} A throughput is estimated for frequency of 100 kHz.

1027 GE


Design Rationale – Memory Issues (3)


KATAN32 has only 7.5% of "redundant" logic.*


Cipher	Block [bits]	Key [bits]	Size [GE]	Memory /bit [GE]	Memory [GE]	[%]
KATAN32	32	80	802	6.18	742	92.5
KATAN48	48	80	927	6.19	842	90.8
KATAN64	64	80	1054	6.15	935	88.7
KTANTAN32	32	80	462	6.10	244	52.8
KTANTAN48	48	80	588	6.14	344	58.5
KTANTAN64	64	80	688	6.17	444	64.5


^{*} not including controlling LFSR

Possible Speed-Ups

How fast can KATAN/KTANTAN run?

• Optimized for speed, using UMC 0.13µm High-Speed CMOS library, KATAN64 runs up to 1.88 Gbps.

Cipher	Size [GE]	Frequency [GHz]	Throughput [Mbps]
KATAN32	975	2.86	1071.4
KATAN48	1201	2.86	1611.4
KATAN64	1399	2.50	1882.5
KTANTAN32	1328	1.25	468.7
KTANTAN48	1677	1.23	696.3
KTANTAN64	1589	1.19	896.4

Power Consumption

- Synthesis results only!
- Estimated with Synopsys Design Vision version Y-2006.06, using UMC 0.13µm Low-Leakage CMOS library.

Cipher	Size [GE]	Frequency [kHz]	Power [nW]
KATAN32	802	100	381
KATAN48	927	100	439
KATAN64	1054	100	555
KTANTAN32	462	100	146
KTANTAN48	588	100	234
KTANTAN64	688	100	292

Too optimistic?

Can we go more compact?

- Yes applies to KATAN48, KATAN64, KTANTAN48 and KTANTAN64.
- Use clock gating The speed drops down 2-3 times.
- The trick is to "clock" controlling LFSR every two (three) clock cycles.
- The improvement is rather insignificant:
 - 27 GE for KATAN64, 11 GE for KATAN48.
 - 4 GE for KTANTAN64, 17 GE for KTANTAN48.

Can we go even more compact?

- Probably! The speed drops down significantly.
- Serialize the inputs:
 - But, we still need a fully autonomous cipher.
 - Additional logic (counter and FSM) are needed in order to control the serialized inputs. Or try to reuse an LFSR for counting again...
- Combine it with clock gating.
- Worth trying if the compact design is an ultimate goal!

Conclusion

- KATAN & KTANTAN Efficient, hardware oriented block ciphers based on Trivium.
- Key size: 80 bits; Block size: 32/48/64 bits; Key agility is optional.
- KTANTAN32 consumes only 462 GE (1848 μm²).
- KATAN32 has only 7.5% of "redundant" logic.
- KATAN64 has a throughput of 1.88 Gbps.

Thank you!

Trade-Offs

Cipher	Block	Key	Size	Gates per	Throughput*	Logic
F-0.0 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1	(bits)	(bits)	(GE)	Memory Bit		Process
KATAN32	32	80	802	6.25	12.5	$0.13~\mu\mathrm{m}$
KATAN32	32	80	846	6.25	25	$0.13~\mu\mathrm{m}$
KATAN32	32	80	898	6.25	37.5	$0.13~\mu\mathrm{m}$
KATAN48 [†]	48	80	916	6.25	9.4	$0.13~\mu\mathrm{m}$
KATAN48	48	80	927	6.25	18.8	$0.13~\mu\mathrm{m}$
KATAN48	48	80	1002	6.25	37.6	$0.13~\mu\mathrm{m}$
KATAN48	48	80	1080	6.25	56.4	$0.13~\mu\mathrm{m}$
KATAN64 [†]	64	80	1027	6.25	8.4	$0.13~\mu\mathrm{m}$
KATAN64	64	80	1054	6.25	25.1	$0.13~\mu\mathrm{m}$
KATAN64	64	80	1189	6.25	50.2	$0.13~\mu\mathrm{m}$
KATAN64	64	80	1269	6.25	75.3	$0.13~\mu\mathrm{m}$
KTANTAN32	32	80	462	6.25	12.5	$0.13~\mu\mathrm{m}$
KTANTAN32	32	80	673	6.25	25	$0.13~\mu\mathrm{m}$
KTANTAN32	32	80	890	6.25	37.5	$0.13~\mu\mathrm{m}$
KTANTAN48†	48	80	571	6.25	9.4	$0.13~\mu\mathrm{m}$
KTANTAN48	48	80	588	6.25	18.8	$0.13~\mu\mathrm{m}$
KTANTAN48	48	80	827	6.25	37.6	$0.13~\mu\mathrm{m}$
KTANTAN48	48	80	1070	6.25	56.4	$0.13~\mu\mathrm{m}$
KTANTAN64†	64	80	684	6.25	8.4	$0.13~\mu\mathrm{m}$
KTANTAN64	64	80	688	6.25	25.1	$0.13~\mu\mathrm{m}$
KTANTAN64	64	80	927	6.25	50.2	$0.13~\mu\mathrm{m}$
KTANTAN64	64	80	1168	6.25	75.3	$0.13~\mu\mathrm{m}$

^{* —} A throughput is estimated for frequency of 100 KHz.

[—] Using clock gating.

Non-Linear Functions

$$f_a(L_1) = L_1[x_1] \oplus L_1[x_2] \oplus (L_1[x_3] \cdot L_1[x_4]) \oplus (L_1[x_5] \cdot IR) \oplus k_a$$
$$f_b(L_2) = L_2[y_1] \oplus L_2[y_2] \oplus (L_2[y_3] \cdot L_2[y_4]) \oplus (L_2[y_5] \cdot L_2[y_6]) \oplus k_b$$

Cipher	$ L_1 $	$ L_2 $	x_1	x_2	x_3	x_4	x_5
KATAN32/KTANTAN32	13	19	12	7	8	5	3
KATAN48/KTANTAN48	19	29	18	12	15	7	6
KATAN64/KTANTAN64	25	39	24	15	20	11	9
Cipher	y_1	y_2	y_3	y_4	y_5	y_6	
Cipher KATAN32/KTANTAN32	<i>y</i> ₁ 18	$\frac{y_2}{7}$	y_3 12	$\frac{y_4}{10}$	<i>y</i> 5	$\frac{y_6}{3}$	
		$\frac{y_2}{7}$					

Key Schedule – KTANTAN

- Main problem related-key and slide attacks.
- ▶ Solution A two round functions, prevents slide attacks.
- Solution B divide the key into 5 words of 16 bits, pick bits in a nonlinear manner.
- ▶ Specifically, let $K = w_4 ||w_3||w_2||w_1||w_0$, $T = T_7 ... T_0$ be the round-counter LFSR, set:

$$a_i = MUX 16 to 1(w_i, T_7 T_6 T_5 T_4)$$

$$k_a = \overline{T_3} \cdot \overline{T_2} \cdot (a_0) \oplus (T_3 \vee T_2) \cdot MUX4to1(a_4a_3a_2a_1, T_1T_0),$$

$$k_b = \overline{T_3} \cdot T_2 \cdot (a_4) \oplus (T_3 \vee \overline{T_2}) \cdot MUX4to1(a_3a_2a_1a_0, \overline{T_1T_0})$$

Key Schedule – KATAN

$$x^{80} + x^{61} + x^{50} + x^{13} + 1$$

In other words, let the key be K, then the subkey of round i is $k_a||k_b = k_{2\cdot i}||k_{2\cdot i+1}|$ where

$$k_i = \begin{cases} K_i & \text{for } i = 0 \dots 79 \\ k_{i-80} \oplus k_{i-61} \oplus k_{i-50} \oplus k_{i-13} & \text{Otherwise} \end{cases}$$

Security Targets

- ▶ Differential cryptanalysis no differential characteristics with probability 2^{-n} for 127 rounds.
- ▶ Linear cryptanalysis no approximation with bias $2^{-n/2}$ for 127 rounds.
- No related-key/slide attacks.
- No related-key differentials (probability at most 2^{-n} for the entire cipher).
- No algebraic-based attacks.

Security - Differential Cryptanalysis

- Computer-aided search for the various round combinations and all block sizes.
- ► KATAN32: Best 42-round char. has prob. at most 2⁻¹¹.
- ► KATAN48: Best 43-round char. has prob. at most 2⁻¹⁸.
- ► KATAN64: Best 37-round char. has prob. at most 2⁻²⁰.
- This also proves that all the differential-based attacks fail (boomerang, rectangle).

Security – Linear Cryptanalysis

- Computer-aided search for the various round combinations and all block sizes.
- ► KATAN32: Best 42-round approx. has prob. at most 2⁻⁶.
- KATAN48: Best 43-round char. has prob. at most 2⁻¹⁰.
- ► KATAN64: Best 37-round char. has prob. at most 2⁻¹¹.
- This also proves that differential-linear attacks fail.

Security - Slide/Related-Key Attacks

- Usually these are prevented using constants.
- ▶ In the case of KATAN/KTANTAN solved by the irregular function use.
- ▶ In KATAN the key "changes" (no slide).
- ▶ In KTANTAN order of subkey bits not linear.

Security – Related Key Differentials (1)

- No good methodology for that.
- ▶ In KATAN32 each key bit difference must enter (at least) two linear operations and two non-linear ones.
- ▶ Hence, an active bit induces probability of 2^{-2} , and cancels four other bits (or probability of 2^{-4} and 6).
- So if there are 76 key bits active there are at least 16 quintuples, each with probability 2⁻².
- The key expansion is linear, so check minimal hamming weight in the code.
- Current result: lower bound: 72, upper bound: 84.

Security – Related Key Differentials (2)

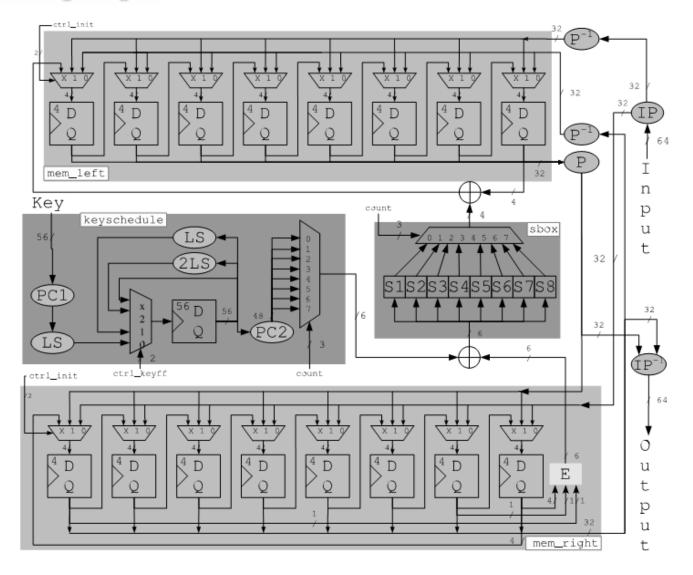
- ▶ In KATAN48 each key bit difference must enter (at least) four linear operations and four non-linear ones.
- Hence, an active bit induces probability of 2⁻⁴, and cancels four other bits (or probability of 2⁻⁸ and 6).
- Need 61 active bits in the expanded key. We have them.
- For KATAN64 need 56.
- Conclusion: no related-key differential in KATAN family.
- KTANTAN family: still checking computer simulations.

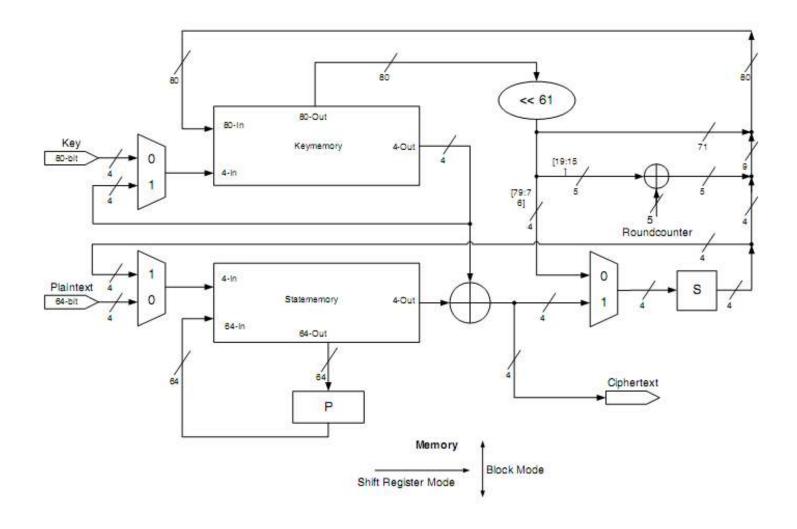
What does KATAN/KTANTAN mean?

Katan – קטן – Small

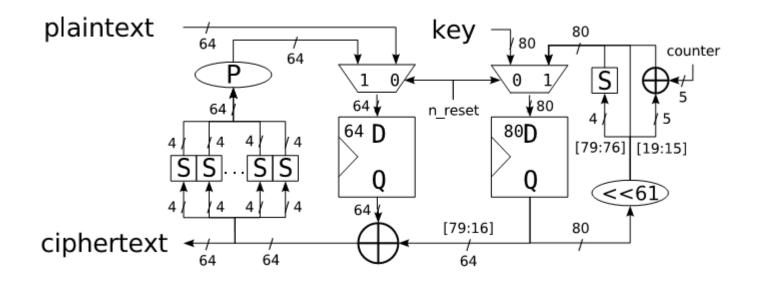
Ktantan – קטנטן – Tiny

- Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology 7(4), 229-246 (1994)
- Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)
- Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)
- Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)
- Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and Slide Attacks on KeeLoq. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg (2008)
- De Canniére, C., Preneel, B.: Trivium Specifications, eSTREAM submission, http://www.ecrypt.eu.org/stream/triviump3.html
- Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials, IACR ePrint report 2008/385, accepted to EUROCRYPT 2009 (2009)
- Feldhofer, M., Wolfkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. In: IEE Proceedings of Information Security, vol. 152(1), pp. 13–20. IEE (2005)
- Good, T., Benaissa, M.: Hardware results for selected stream cipher candidates. In: Preproceedings of SASC 2007, pp. 191–204 (2007)


- Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and Implementation of Low-Area and Low-Power AES Encryption Hardware Core. In: Ninth Euromicro Conference on Digital System Design: Architectures. IEEE Computer Society, Los Alamitos (2006)
- Hell, M., Johansson, T., Meier, W.: Grain A Stream Cipher for Constrained Environments, eSTREAM submission, http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
- Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)
- Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A Practical Attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 1–18. Springer, Heidelberg (2008)
- Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: Desmedt,
 Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17-25. Springer, Heidelberg (1994)
- Lim, C.H., Korkishko, T.: mCrypton A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243-258. Springer, Heidelberg (2006)
- Mentens, N., Genoe, J., Preneel, B., Verbauwhede, I.: A low-cost implementation of Trivium. In: Preproceedings of SASC 2008, pp. 197–204 (2008)
- 17. Microchip Technology Inc. KeeLoq® Authentication Products, http://www.microchip.com/keeloq/
- Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
 EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994)


References (3)

- Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Light-Weight DES Variants Suited for RFID Applications. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)
- Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implementations for smart devices security for 1000 gate equivalents. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Heidelberg (2008)


DESL[19]

PRESENT[20]

PRESENT[4]

