
Kawasaki disease is a systemic vasculitis that affects infants 
and young children1–3. Kawasaki disease is now the leading 
cause of acquired heart disease among children in North 
America, Europe and Japan4,5. The cardiovascular sequelae 
resulting from childhood Kawasaki disease are increas-
ingly recognized to extend into adulthood, and the dis-
ease is no longer considered self- limiting6–9. The triggering 
agents for Kawasaki disease remain unidentified; however, 
results from our laboratory10,11 and others12,13 are consistent 
with the interpretation that a conventional antigen is prob-
ably responsible. Coronary arteritis and predominantly 
coronary artery aneurysms (CAAs) occur in up to 30% of 
untreated children, although this rate is reduced to 5–7% 
in children treated with high- dose intravenous immuno-
globulin (IVIG)3,14,15. IVIG treatment leads to CAA regres-
sion in 60–75% of patients with Kawasaki disease16,17. 
However, the exact mechanisms by which IVIG reduces 
the rate of cardiovascular complications are unknown18. 
Up to 15–20% of patients with Kawasaki disease do not 
respond to IVIG treatment, and these individuals have an 
increased rate of CAA development3,15,19–21.

Kawasaki disease is associated with infiltration of  
the coronary artery wall by a broad variety of innate and 
adaptive immune cells. Immunohistochemical analysis 
of human post- mortem tissues shows accumulation in 
the arterial wall of monocytes, macrophages and neutro-
phils22,23, and the presence of activated CD8+ T cells24 as well 

as IgA+ plasma cells25,26. The release of pro- inflammatory 
cytokines, such as TNF and IL-1β, by infiltrating immune 
cells promotes vascular endothelial cell damage and the 
development of CAAs27,28.

However, understanding of Kawasaki disease patho-
physiology is limited by the low availability of human tis-
sues of the disease, failure to identify specific aetiological 
agents triggering the disease, and incomplete understand-
ing of the molecular and cellular mechanisms leading to 
cardiovascular sequelae. Therefore, experimental animal 
models mimicking the human features of Kawasaki dis-
ease and their translational utility have been invaluable 
to investigation of this disease. In this Review, we dis-
cuss advances from human and mouse studies that have 
contributed to an improved understanding of Kawasaki 
disease pathophysiology and the cellular and molecular 
circuitries involved in disease development. We also out-
line how evidence obtained from experimental mouse 
models of Kawasaki disease vasculitis has paved the way 
for the development of new efficient therapeutics to treat 
human Kawasaki disease.

Aetiological agents

The causative agents initiating the disease have still  
not been identified >50 years after the first description 
of Kawasaki disease. However, the trigger is suspected 
to be of viral origin and to enter the body through the 
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mucosal surfaces in the lung29 (Fig. 1). This hypothesis is 
supported by the seasonality of Kawasaki disease out-
breaks, which is similar to that of other respiratory infec-
tions. In Japan, two seasonal peaks have been observed, 
one in winter and another in summer, whereas in the 
USA, the incidence peaks are observed during spring 
and winter30. Development of Kawasaki disease is age 
specific, with children from 6 months to 5 years of age at 
greatest risk3,30,31, which suggests a protective mater-
nal passive immunity against the causative agent from  
birth to 6 months of age and the importance of immune 
system maturation in children ≥6 years of age29.

The clinical features of Kawasaki disease, such as high 
fever, skin rash and peeling, conjunctivitis and intense 
release of pro- inflammatory cytokines, are reminiscent 
of other infectious diseases such as staphylococcal and 
streptococcal toxic shock syndromes32. Some studies 
have shown that, compared with healthy control indi-
viduals, patients with Kawasaki disease have a skewed 
Vβ T cell repertoire and increased frequencies of cir-
culating Vβ2+ and Vβ8.1+ T cells, leading to the early 
suggestion that a superantigen toxin might have a role 
in triggering Kawasaki disease33–35. However, similar 
results were not reproduced in later studies36,37, leading 
to the more generalized hypothesis that the develop-
ment of Kawasaki disease might be triggered by multiple 
conventional antigens.

Several early studies showed reduced prevalence of 
antibodies to the Epstein–Barr virus (EBV) capsid anti-
gen in Japanese children with Kawasaki disease com-
pared with age and sex- matched control patients38–40, 
suggesting the involvement of an abnormal immune 
response to EBV in disease development. However, this 
difference in EBV antibody seropositivity could not 
be reproduced in other studies41–43. A human corona-
virus was detected more frequently in respiratory secre-
tions of patients with Kawasaki disease than in control 
individuals44, although, again, other studies could not 
replicate this finding45,46, indicating that the original 
association might have been coincidental. The possibil-
ity that a retrovirus is the triggering agent for Kawasaki 
disease has also been proposed, owing to detection of 
retrovirus- specific reverse transcriptase activity in the 

co- culture supernatant of peripheral blood mononu-
clear cells (PBMCs) from patients with Kawasaki disease 
but not controls47,48. However, this result could not be 
replicated in later studies49–51. A peptide recognized by 
antibodies produced during the acute phase of Kawasaki 
disease has been identified in 2020 (reF.52). Although 
the protein epitopes seem similar to hepaciviruses53, 
further studies are required to determine the specific 
gene sequence from which this peptide emerges.

Altogether, the absence of consistent and reproduc-
ible studies pinpointing a specific aetiological agent 
suggests that Kawasaki disease is caused not by one but 
by multiple infectious agents. Acute Kawasaki disease is 
associated with infiltration of IgA+ plasma cells in the 
respiratory tract, implying that the upper airways act as 
a portal of entry25,26. One suggestion is that the trigger-
ing agent might be an environmental toxin or antigen 
transported by wind currents54; however, this possibility 
cannot be rigorously assessed until precise identification 
of the aetiological agents is achieved29.

SNPs influencing susceptibility

Although Kawasaki disease has been observed around 
the world and in multiple ethnic groups, geographical 
differences exist in incidence. The highest incidence is 
in Asian countries such as Korea and Japan, where it has 
increased over the past decades and is now 10–20 times 
more prevalent than in North America and Europe30. 
This increased susceptibility in Asian children, as well 
as in children with Asian ancestry living in North 
America31, indicates that genetic components predispose 
to disease susceptibility. In Japan, siblings of children 
with Kawasaki disease are at increased risk of developing 
the disease55. Single nucleotide polymorphisms (SNPs) 
in multiple genes have been associated with increased 
susceptibility to Kawasaki disease (Fig. 1); however, 
mechanisms linking those SNPs with Kawasaki disease 
progression are not yet well understood and require 
more investigation.

Calcium signalling pathway. Inositol 1,4,5- trisphosphate 
3- kinase C (ITPKC), a kinase that phosphorylates inositol 
1,4,5- triphosphate (IP3), is involved in many signalling 
processes in a wide array of cells. In T cells, IP3 is released 
after T cell receptor stimulation, thus increasing levels 
of intracellular Ca2+ through IP3 receptors expressed on 
the endoplasmic reticulum and leading to nuclear trans-
location of nuclear factor of activated T cells (NFAT), 
IL-2 production and T cell activation56. By blocking the 
interaction of IP3 with its receptor, ITPKC negatively 
regulates T cell activation. A functional SNP in ITPKC 
has been associated with increased risk of coronary 
artery lesions in Taiwanese57, Japanese and American 
patients with Kawasaki disease58. Mechanistically, 
this ITPKC polymorphism might directly contrib-
ute to T cell hyperactivity, and more importantly, it 
might promote NLRP3 inflammasome activation and 
increase production of IL-1β and IL-18 (reF.59). ORAI1 
is a membrane- bound Ca2+ channel protein encoded by 
ORAI1 that is involved in the Ca2+–calcineurin–NFAT 
signalling pathway. Although no significant association 
between ORAI1 polymorphisms and Kawasaki disease 
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susceptibility or IVIG treatment response was initially 
reported in the Taiwanese population60, an SNP in 
exon 2 of ORAI1 is associated with Kawasaki disease 
susceptibility in the Japanese population61, and inter-
estingly this SNP is 20 times more frequent in the gen-
eral Japanese population than in the general European 
population61. Another SNP in SLC8A1, which encodes 
the Na+–Ca2+ exchanger, is also associated with suscep-
tibility to Kawasaki disease and aneurysm formation62, 
further highlighting the critical role of calcium sig-
nalling pathways in development of Kawasaki disease. 
Crucially, the Ca2+–NFAT signalling pathway is also key 
to intracellular Ca2+ regulation and therefore to NLRP3 
inflammasome activation and IL-1β production63,64.

CD40 ligand. CD40 ligand (CD40L) is a protein 
expressed by a large array of cells including activated 
T cells, B cells, monocytes and platelets. CD40L receptor, 
CD40, is expressed by antigen- presenting cells as well  

as endothelial cells65. CD40 engagement is associated 
with cell survival, activation, proliferation and cyto kine 
production65. Compared with control patients with  
other febrile illnesses, patients with Kawasaki disease 
have increased CD40L expression on CD4+ T cells 
and platelets, which correlates with increased develop-
ment of coronary artery lesions and is reduced by IVIG 
treatment66. An SNP in CD40L has been reported in 
Japanese patients with Kawasaki disease and is more 
frequent in male patients with coronary artery lesions 
than in female patients67. This polymorphism was not 
observed in a cohort of Taiwanese patients68; however, 
another SNP in the CD40 gene has been reported in an 
independent cohort of Taiwanese patients and is asso-
ciated with increased susceptibility to Kawasaki disease 
and development of coronary artery lesions69. These 
results indicate a role of the CD40–CD40L pathway in 
the development and severity of Kawasaki disease and 
highlight this pathway as a potential therapeutic target.

Mannose- binding lectin. Mannose- binding lectin (MBL),  
a pattern recognition molecule of the innate immune 
system, binds the surface of pathogenic organisms and  
activates the complement pathway70. A polymorphism 
in MBL2 was found to be an age- related risk factor 
for development of coronary artery lesions in a Dutch 
cohort of patients71,72. Another study in a cohort of 
Japanese patients with Kawasaki disease showed that 
codon 54 variants in MBL2 are significantly associated 
with susceptibility to Kawasaki disease73. Interestingly, 
in the Candida albicans water- soluble fraction (CAWS) 
mouse model of Kawasaki disease vasculitis, MBL- A 
and MBL- C deposition are observed in the aortic root, 
suggesting involvement of the MBL- dependent lectin 
pathway in this experimental model74. However, fur-
ther studies are required to understand the pathogenic 
roles of those two proteins as well as their potential as 
therapeutic targets.

Fcγ receptors. Polymorphisms in genes encoding the 
receptors for the Fc portion of immunoglobulins, Fcγ 
receptors (FcγRs), have been associated with the devel-
opment of autoimmune and infectious diseases75–77. As 
Kawasaki disease is considered an infectious disorder, 
several studies have investigated the potential associ-
ation of FcγR SNPs with Kawasaki disease suscepti-
bility and the development of coronary artery lesions.  
In a cohort of Dutch patients, no difference in FcγR SNP 
distribution was observed between healthy individuals 
and patients with Kawasaki disease, and no association 
was noted between SNPs in FcγR genes and Kawasaki 
disease susceptibility78. However, a later study with 
>2,000 patients with Kawasaki disease and 9,000 con-
trol patients from multiple independent cohorts across 
different populations highlighted a Kawasaki disease- 
associated polymorphism in the FCGR2A locus, which 
encodes FcγRIIA (CD32a), a member of the family 
of IgG receptors79. This polymorphism has important 
implications as the standard of care for Kawasaki dis-
ease is IVIG, a pool of plasma IgG that interacts with 
FcγRs on immune cells. Interestingly, 15–20% of patients 
with Kawasaki disease have IVIG- resistant disease and 
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Fig. 1 | Environmental and genetic factors implicated in the development of 

Kawasaki disease. Different aetiological agents, from viruses to environmental toxins, 

have been proposed as triggering agents for Kawasaki disease; however, none has been 

corroborated, and the aetiological agent remains unidentified. Increased numbers of 

IgA+ plasma cells have been detected in the pancreas, the kidneys, the coronary artery 

wall and the respiratory tract of patients with Kawasaki disease. Patients with Kawasaki 

disease have increased concentrations of secretory IgA in their serum, indicative of 

defective intestinal barrier function and increased intestinal permeability. Changes in 

the gut microbiota composition (dysbiosis) have also been suggested to have a role  

in the development of Kawasaki disease. Single nucleotide polymorphisms in the  

genes listed have been associated with susceptibility to Kawasaki disease and disease 

severity. The current understanding is that Kawasaki disease is triggered in genetically 

predisposed children by a ubiquitous environmental stimulus that typically would not 

result in an uncontrolled immune response and development of vasculitis.
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require another round of IVIG treatment or the use of 
adjunctive therapies15,19,20,80. The exact mechanisms by 
which IVIG mediates its therapeutic effect and how 
IVIG resistance develops remain unknown, and the 
potential involvement of this FcγRIIA polymorphism 
in IVIG resistance requires further investigation.

Pathophysiology of Kawasaki disease

The innate immune response. The immune response 
associated with Kawasaki disease is complex and involves 
the activation and infiltration of the coronary artery wall 
by both innate and adaptive immune cells (Fig. 2). On the 
basis of studies of post- mortem tissue from patients with 
Kawasaki disease, Kawasaki disease vascular pathology 
has been classified into three sequential linked patho-
logical processes81. Necrotizing arteritis develops in the  
first 2 weeks of the disease and is associated with neutro-
philic infiltrations, which gradually destroy the coronary 
artery intima, media and some portions of the adven-
titia. Alarmins from the S100 protein family, which 
are present in the cytoplasm of neutrophils, monocytes 
and macrophages82, also participate in this inflamma-
tory process. Concentrations of circulating S100A8/A9 
hetero dimers (calprotectin) and S100A12 are substan-
tially higher in patients with Kawasaki disease during the 
acute phase than in control patients with other febrile 
illnesses and decline after IVIG treatment83–85. After the 
acute phase of Kawasaki disease, plasma concentrations 
of S100A8/A9 heterodimers only remain elevated in 
patients with giant CAAs84, highlighting its potential 
utility as a biomarker to monitor long- term persistence  

of inflammation. S100A12 also contributes to the acute 
inflammatory response by directly stimulating mono-
cytes to produce IL-1β, which in turn activates coronary 
endothelial cells85. Necrotizing arteritis might result in 
the formation of CAAs and is followed by two other 
processes, subacute or chronic vasculitis and luminal 
myofibroblast proliferation (LMP), which occur simul-
taneously and might be observed for months to years 
after disease onset81. The inflammatory infiltrates are 
composed of CD8+ T cells, IgA+ plasma cells, eosino-
phils and macrophages, which release pro- inflammatory 
cytokines contributing to cardiovascular pathology. 
Meanwhile, myofibroblasts, mainly derived from 
smooth muscle cells, and their matrix products progres-
sively obstruct the coronary lumen81 (Fig. 2). Persistent 
subacute and chronic vasculitis and LMP can lead to 
stenosis and thrombosis after acute illness6,9.

Matrix metalloproteinases. Matrix metalloproteinases 
(MMPs; zinc- dependent endopeptidases that degrade 
extracellular matrix components) are known to have an 
important role in both inflammation and tissue remod-
elling processes86. Increased expression and activity of 
a diverse set of MMPs has been demonstrated in acute 
Kawasaki disease87–89. The expression levels of MMP3 
and MMP9, both known to mediate vascular smooth 
muscle cell migration and neointimal formation90, 
are increased in patients with Kawasaki disease91, and  
the circulating levels of these MMPs correlate with the 
development of CAAs in these patients92. MMP3 SNPs 
are also associated with the development of CAAs88, and 

Normal coronary artery Necrotizing arteritis
Subacute chronic arteritis with

luminal myofibroblast proliferation

MyofibroblastMonocyte

NeutrophilIgA+ plasma cells CD8+ T cell

Smooth muscle cell Macrophage

Intima

Adventitia

Media

Fig. 2 | Pathophysiology of Kawasaki disease vasculitis. The normal coronary artery is composed of three general layers: 

the tunica intima, tunica media and tunica adventitia. The intima is mainly composed of endothelial cells, the media of 

smooth muscle cells and the adventitia of loose connective tissue. In Kawasaki disease, necrotizing arteritis develops in 

the first 2 weeks of the disease and is associated with neutrophilic infiltration, which gradually destroys the intima, media 

and some portions of the adventitia of the coronary artery. CD8+ T cells, IgA+ plasma cells, monocytes and macrophages 

compose the inflammatory infiltrate during subacute chronic arteritis. These cells release pro- inflammatory cytokines 

such as IL-1β and TNF, which contribute to luminal myofibroblast proliferation, in which myofibroblasts, mainly derived 

from smooth muscle cells, and their matrix products progressively obstruct the coronary lumen.
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this protease is considered to be a driving factor allowing 
IL-1- induced signalling to lead to migration of vascular 
smooth muscle cells and their transition to proliferating 
myofibroblasts93–95. Whereas MMP9 has been studied 
and implicated in elastin breakdown in the Lactobacillus 
casei cell wall extract (LCWE)- induced Kawasaki disease 
mouse model96,97, information about the role of MMP3 
in this mouse model is lacking.

MicroRNAs. MicroRNAs (miRNAs; a class of small 
non- coding RNAs that regulate mRNA expression) are 
emerging as critical gene regulators in a host of cellu-
lar processes, including inflammation98. Of human 
coding genes, 60–70% are estimated to be regulated 
by miRNAs99. Several studies attempting to discover 
Kawasaki disease biomarkers have found that the miRNA 
profiles of serum exosome or coronary artery tissues 
are associated with acute Kawasaki disease100–104. These  
miRNAs include miR-23a100–103, miR-27b100, miR-223 
(reFs100–103) and miR-145 (reF.103). These miRNAs might 
provide clues as to the molecular mechanisms involved 
in the development of the cardiovascular lesions asso-
ciated with Kawasaki disease. For example, miR-145 is 
highly expressed in vascular smooth muscle cells and has 
been reported to promote their switching to neointimal 
proliferating cells105,106 and to regulate the transforming 
growth factor- β signalling pathway103. Increased lev-
els of miR-23a contribute to cardiomyocyte apoptosis 
and may promote inflammatory responses by blocking 
macrophage autophagy activity107,108. However, improved 
understanding and characterization of the molecular 
and cellular mechanisms underlying the different roles 
of miRs during Kawasaki disease require further studies 
with animal models.

Myocarditis. Most attention in Kawasaki disease 
research and clinical practice has focused on the devel-
opment of CAAs and long- term complications of cor-
onary artery stenosis and ischaemia109. However, the 
subacute and chronic inflammation of Kawasaki dis-
ease is also associated with the development of myo-
carditis3,6,110–112. Myocarditis has been described as the 
‘hidden face of the moon’ in Kawasaki disease110. Reports 
indicate that myocarditis occurs frequently during 
acute Kawasaki disease111, and serial myocardial biopsy 
studies have documented that histological myocarditis 
develops in the majority of patients with Kawasaki dis-
ease, even in the absence of coronary aneurysms113,114. 
More recent data indicate that myocardial inflamma-
tion can be documented in 50–70% of patients using 
gallium citrate (67Ga) scans and technetium-99 (99mTc)- 
labelled white blood cell scans115. Another study has 
shown that myocardial inflammatory changes and myo-
cardial oedema in Kawasaki disease occur even before 
coronary artery abnormalities and without concurrent 
ischaemic damage112.

Myocarditis in Kawasaki disease tends to develop 
early, and acute left ventricular dysfunction is generally 
transient and responds readily to anti- inflammatory 
treatment116. However, Kawasaki disease myocarditis 
might be associated with fatal arrhythmias in infants, and 
in certain cases might lead to long- term complications 

including myocardial fibrosis81,117. Therefore, myo-
carditis during Kawasaki disease and its potential con-
sequences deserve serious investigation, and long- term 
studies into late adulthood are needed.

Complement and immune complexes. Kawasaki disease 
affects small and medium sized vessels, particularly 
the coronary arteries; however, dilatations and aneu-
rysms can occur systemically, including in the axillary, 
subclavian, brachial, renal and iliac arteries as well as 
the abdominal aorta23,118–120. Post- mortem findings 
have revealed that 73% of patients with Kawasaki dis-
ease have renal artery involvement and acute kidney 
injury121 involving glomerulonephritis with intracapil-
lary changes and deposition of immune complex com-
posed of IgA and complement component 3 (C3)22,122,123. 
These findings are comparable to those in two other 
human vasculitis diseases, IgA vasculitis (IgAV) and 
IgA nephropathy (IgAN), which are similarly character-
ized by IgA immune complexes with C3 deposition in 
kidney glomeruli (see below). Increased concentrations 
of circulating IgA and secretory IgA (sIgA) have been 
reported in the serum of children with Kawasaki disease 
during the acute phase124. IgA+ plasma cells are present 
in the coronary artery wall and in non- vascular tissues, 
such as the kidney, trachea and pancreas of patients with 
Kawasaki disease25,26. This IgA response is oligoclonal, 
seems to be antigen driven and might be caused by 
Kawasaki disease- triggering agents125,126.

The IL-1 signalling pathway. Evidence from mouse 
models of Kawasaki disease11,127,128, as well as transcrip-
tome analysis performed on whole blood of patients 
with Kawasaki disease during the acute or conva-
lescent phase129,130, demonstrate the involvement of 
innate immune cells and inflammasome overactiva-
tion throughout the acute phase of the disease. In vitro 
cultured PBMCs isolated from patients with Kawasaki  
disease spontaneously release IL-1β into the superna-
tant, and this process is substantially reduced after IVIG 
treatment28. Serum concentrations of both IL-1β and 
IL-18 are also higher in children with acute Kawasaki 
disease than in control patients with other febrile 
illnesses, and markedly decrease during the convales-
cent phase59, supporting the concept of activation of 
the NLRP3 inflammasome complex. Similarly, IL-1 
and NLRP3- related gene transcripts are upregulated 
in PBMCs from patients with acute Kawasaki disease 
and are decreased during the convalescent phase of the 
disease59, and an IL1B- gene- related signature is asso-
ciated with acute phase disease and IVIG resistance130. 
Furthermore, a study has shown that differential expres-
sion of IL-1β and related signalling genes might have 
a role in mediating the sex- based differences seen in 
patients with Kawasaki disease131. In the LCWE mouse 
model of Kawasaki disease, the activation of caspase 1, 
IL-1α and IL-1β is key to the development of coronary 
arteritis, aneurysms, myocarditis and abdominal aorta 
aneurysms127,128,132. IL-1 has the capacity to expand and 
promote the differentiation of antigen- specific CD8+ 
T cells133, and indeed the frequencies of circulating CD4+ 
and CD8+ T cells are increased in patients with Kawasaki 
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disease134. Infiltrations of mature dendritic cells as well 
as activated cytotoxic CD8+ T cells have been reported 
in arterial layers of coronary aneurysms24,135. Therefore, 
blocking the NLRP3–IL-1β pathway seems to be a valid 
therapeutic option in Kawasaki disease.

Role of the gastrointestinal tract

Intestinal permeability. The intestinal barrier has a 
critical role in maintaining intestinal homeostasis and 
health by preventing harmful organisms and lumi-
nal antigens from entering the circulation. A dysfunc-
tional intestinal barrier, characterized by increased 
intestinal permeability, is recognized as a pathogenic 
factor in many inflammatory diseases136. In Kawasaki 
disease, abdominal pain, diarrhoea and vomiting are 
often observed at the onset of acute illness, affecting 
up to 60% of diagnosed patients and indicating that the 
gastrointestinal tract is also affected4,137–140. A multicen-
tre study of >300 patients revealed that gastrointestinal 
manifestations at onset of disease complicate diagnosis, 
delay adequate treatment and correlate with IVIG resist-
ance and severity of CAAs141. Immunohistochemical 
studies have revealed higher numbers of activated 
CD4+ T cells and macrophages along with lower num-
bers of CD8+ T cells in the jejunum lamina propria in 
patients with Kawasaki disease than in control patients 
with diarrhoea from cows’ milk protein intolerance142. 
However, these cellular abnormalities are specific to  
the acute phase of the disease and return to normal 
during the convalescent phase142. IgA+ plasma cells 
have also been observed in a variety of different vascu-
lar and non- vascular tissues in patients with Kawasaki 
disease26, and patients with Kawasaki disease also have 
increased concentrations of sIgA, which is produced at 
the intestinal mucosal surface, in their serum124. These 
studies indicate that the gastrointestinal tract is affected 
during Kawasaki disease and that mucosal immune 
activation might compensate and protect from defective 
intestinal barriers.

The role of gut- related immunity in the induction 
of inflammation in organ systems distant from the 
gut has been the subject of intensive investigation. 
We have observed increased intestinal permeability 
and a dysregulated intestinal immune response char-
acterized by increased numbers of IgA+ B cells in the 
Peyer’s patches in the LCWE- induced mouse model of 
Kawasaki disease143 (Fig. 3). In this model, the excessive 
IL-1β release associated with LCWE injection acts on 
intestinal epithelial cells to open tight junctions, and 
administration of IVIG or pharmacological agents 
that block intestinal permeability significantly reduces 
disease development143. Altogether, these observations 
link increased intestinal permeability and defective 
intestinal barrier function with systemic IL-1β release 
in Kawasaki disease.

The intestinal microbiome. Despite the strong connec-
tion between the intestinal microbiome and develop-
ment of cardiovascular diseases144,145, only a few studies 
have investigated the role of the intestinal microbiome 
during development of Kawasaki disease or treatment 
resistance. Microbiological culture- based methods 

demonstrated that, compared with healthy control 
individuals, patients with Kawasaki disease have a dif-
ferent intestinal microbiota composition characterized 
by a lower incidence of the Lactobacillus genus146,147 and 
increased Streptococcus and Staphylococcus148 species. 
Lactobacilli have been reported to prevent diarrhoeal 
disorders149,150 and to improve intestinal barrier func-
tion by increasing the expression of intestinal tight 
junctions151,152, enhancing the intestinal mucus layer153 
and modulating the intestinal microbiota composi-
tion154. Lactobacilli have also been shown to boost innate 
and immune functions against a variety of bacterial 
infections155–157, and their disappearance during acute 
Kawasaki disease might lead to the blooming of other 
bacterial pathogens, which might further promote intes-
tinal barrier dysfunction and inflammation. Intriguingly, 
a retrospective study of 364 patients with Kawasaki dis-
ease showed that children who received microbiome- 
altering antibiotics in the week before Kawasaki disease 
diagnosis were substantially more likely to have IVIG- 
resistant disease than those who did not receive anti-
biotics158. Antibiotics alter the abundance, taxonomic 
richness and diversity of the bacterial159,160 as well as 
fungal161 intestinal microbiome, and those alterations 
might persist from weeks to years after treatment discon-
tinuation159,160,162. A longitudinal metagenomic study of 
faecal samples derived from patients with Kawasaki dis-
ease showed a marked increase of five Streptococcus spp. 
during the acute phase of Kawasaki disease163; however, 
all patients in that study were treated with antibiotics 
in the early stage of disease, therefore this observation 
might be reflective of antibiotic- induced dysbiosis and 
not Kawasaki disease itself. Nonetheless, how this intes-
tinal dysbiosis occurs and how its effect on intestinal 
permeability affects the development of cardiovascu-
lar lesions during Kawasaki disease vasculitis remains 
unknown and under- appreciated.

Link with IgA vasculitis

IgAV, or Henoch- Schönlein purpura, is an IgA- mediated 
necrotizing vasculitis resulting in fibrinoid destruction 
of the affected small vessels. Renal involvement, charac-
terized by IgA deposition in the kidney glomeruli, is also 
observed in IgAV164. IgAV nephritis is closely related to 
another glomerular disease, IgAN, wherein accumula-
tion and deposition of IgA and IgA immune complexes 
in the kidney glomerular mesangium drive glomerular 
inflammation165. As IgA is mainly found at mucosal sur-
faces, a ‘gut–kidney axis’, influenced by a mix of genetic, 
microbial and dietary factors, has been suggested to be 
involved in the development of both IgAN166 and IgAV in 
paediatric and adult patients167. We have demonstrated 
that the LCWE- induced mouse model of Kawasaki dis-
ease vasculitis is associated with the deposition of IgA 
and IgA–C3 immune complexes in vascular tissues, such 
as the inflamed coronary artery and abdominal aorta143. 
Deposited IgA and IgA–C3 immune complexes might 
result in overactivation of the immune cells present 
in the cardiovascular lesions and subsequent amplifi-
cation of inflammation143. Substantial evidence indi-
cates that immune complexes might promote vascular 
damage during human Kawasaki disease through the 
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activation and aggregation of platelets, the release of 
vasoactive mediators, and the subsequent recruitment 
of neutrophils and leukocytes to the site of inflammation 
(reviewed elsewhere168).

Interestingly, we have also observed IgA and C3 
deposition in the kidney glomeruli of LCWE- injected 
mice developing Kawasaki disease143, and immune 
complex- mediated nephropathy has also been observed 
in Kawasaki disease123. However, to date IgA deposi-
tion has not been reported in CAAs of patients with 
Kawasaki disease. Given that availability of human tis-
sue samples is limited, and those that are available are 
usually collected at the end stage of the disease, they 
might not be representative of active Kawasaki disease 
pathological features, and further studies are warranted. 
Like Kawasaki disease, IgAV develops mostly in chil-
dren, affects males more than females, is more predo-
minant in Asian countries such as Japan and Korea, and 
is also associated with abdominal pain, diarrhoea, skin 
rash and IgA deposition in the affected small vessels169. 

IgAN also shares pathological features with Kawasaki 
disease, such as increased intestinal permeability, low 
to moderate intestinal inflammation associated with 
activation of inflammatory cells in the small intesti-
nal mucosa and colocalization of sIgA- complement 
in the glomerular mesangium165,170. Moreover, a poly-
morphism in the promoter of the lipopolysaccharide  
(LPS) receptor CD14 (CD14/159) is associated with 
coronary artery abnormalities in patients with Kawasaki 
disease171 and has been linked to progression of IgAN 
to more severe renal disease172. IL-1β has a key patho-
genic role during Kawasaki disease and also seems to 
be implicated in renal complications related to IgAV173 
and IgAN174. Altogether, given that Kawasaki disease 
shares clinical features and pathological mechanisms 
with both IgAV and IgAN, it is possible that Kawasaki 
disease is a form of IgAV. Similarly, treatments that have 
shown efficacy in Kawasaki disease, such as anakinra 
and IVIG, might be suitable and useful for treating 
IgAV175 and IgAN.

Human or LCWE-induced mouse 
model of Kawasaki disease

IL-1β

Healthy state

Barrier
integrity

• Enhancement of
coronary vasculitis

• Abdominal aorta
aneurysm

Blood
circulation

‘Leaky gut’

Normal
metabolites

Gut dysbiosis MetabolitessIgA

B cells Plasma cell

IgA

Fig. 3 | Existence of a ‘gut–vascular’ axis in Kawasaki disease vasculitis. In healthy individuals, intestinal  

epithelial cells are sealed together by intestinal tight junctions, and the intestinal epithelium acts as a barrier that 

prevents the passage of commensal bacteria and pathogens while permitting intercellular flux of ions, molecules and 

metabolites. Lactobacillus casei cell wall extract (LCWE)- induced Kawasaki disease vasculitis and human Kawasaki 

disease are associated with increased IL-1β production, which leads to decreased expression of intestinal tight 

junctions, resulting in increased intestinal permeability. Differences in intestinal microbiota composition have been 

observed in patients with Kawasaki disease, and intestinal dysbiosis might contribute further to the inflammatory 

process. LCWE injection is also associated with a dysregulated intestinal immune response characterized by increased 

numbers of IgA+ B cells in the gastrointestinal tract and elevated secretory IgA (sIgA) concentrations. Intestinal barrier 

dysfunction results in sIgA leakage to the systemic circulation and pathogenic IgA–C3 immune complex deposition in 

the vascular tissues.
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Mouse models of Kawasaki disease

The lack of identification of specific aetiological agents 
and incomplete understanding of the molecular mecha-
nisms involved in Kawasaki disease cardiovascular 
pathology have delayed the development of targeted and 
effective treatment options for this disease. In addition, 
the limited availability of tissue samples from patients 
with Kawasaki disease has considerably impeded pro-
gress in understanding the pathogenesis of the disease, 
making the availability of relevant animal models of 
Kawasaki disease extremely valuable. Kawasaki dis-
ease vasculitis can be induced in mice by injection of 
cell wall components from L. casei176, C. albicans177 or 
nucleotide- binding oligomerization domain contain-
ing 1 (Nod1) ligand178 (Table 1). These mouse models 
of Kawasaki disease have accelerated research and have 
enhanced understanding of the pathogenesis of this dis-
ease. However, no animal model perfectly recapitulates 
human disease. Particularly in the context of Kawasaki 
disease, given that the aetiology remains unknown, 
researchers must exercise caution in interpreting results 
based on experimental models and confirm findings in 
patient cohorts. Nevertheless, even though the extra-
polation of preclinical mouse data to humans is far  
from straightforward, mouse models are still invalua-
ble tools to study certain pathological aspects of human 
inflammatory diseases and gain mechanistic insights.

The LCWE mouse model. L. casei is a Gram- positive bac-
teria that colonizes the gastrointestinal and urogenital 
tracts of both human and animals179. More than 35 years 
ago, Lehman et al.180 demonstrated that a single intraperi-
toneal injection of LCWE induces a dose- dependent and 
chronic polyarthritis in rats. However, when injected into 
mice, LCWE induces instead a focal coronary arteritis176. 
How and which element of LCWE triggers Kawasaki dis-
ease vasculitis is unknown. LCWE is mainly composed 
of peptidoglycans, contains high levels of rhamnose and 
is resistant to lysozyme degradation176.

The cardiovascular lesions induced in mice by LCWE 
are histologically similar to those observed in human 

disease. LCWE- induced Kawasaki disease vasculitis 
is characterized by infiltration of inflammatory cells  
in the aortic root, development of necrotizing arteritis in  
the coronary artery followed by luminal obstruction 
due to LMP that can lead to complete coronary artery 
stenosis181, recapitulating the three pathological pro-
cesses of human Kawasaki disease described above 
(Fig. 4a–d). In children with Kawasaki disease, throm-
botic occlusion of the inflamed coronary artery leads 
to ischaemic heart disease23,120, and similarly, occlud-
ing organizing thrombus in the coronary artery can 
be observed in LCWE- injected mice (Fig. 4e). Acute 
myocarditis and chronic scarring of the coronary arter-
ies with the formation of stenotic fragments are also 
observed in LCWE- induced Kawasaki disease vasculi-
tis (Fig. 4f), even long after the acute phase182, which is 
similar to the fibrotic lesions that might lead children  
with Kawasaki disease to develop long- term cardiovas-
cular sequelae in adulthood8,9. MRI and echocardio-
graphy in LCWE- injected mice demonstrate the 
presence of electrocardiographic changes (as observed in 
human Kawasaki disease) and myocardial dysfunction, 
which are responsive to anakinra therapy183,184.

The LCWE- induced Kawasaki disease vasculitis in 
mice is dependent on intact TLR2 and MyD88 signal-
ling and the subsequent release of pro- inflammatory 
cytokines, including IL-1β, IL-6 and TNF10. Genetic 
depletion of the TNF receptor or pharmacological 
blockade of the TNF signalling pathway (with inflix-
imab (monoclonal antibodies to TNF) or etanercept 
(soluble TNF receptors)) protects mice from LCWE- 
 induced Kawasaki disease vasculitis132,185. This model 
is also T cell dependent, as Rag1–/– mice develop fewer 
cardiovascular lesions11. CD8+ T cells are specifically 
required for LCWE- induced Kawasaki disease vas-
culitis as treatment of LCWE- injected mice with an 
anti- CD8- depleting antibody prevents the develop-
ment of vasculitis181. This finding correlates with human 
disease, in which infiltrations of CD3+ T cells135, and 
particularly CD8+ T cells, are detected in the CAAs24. 
The LCWE model has also confirmed the importance 

Table 1 | Comparison of the three mouse models of Kawasaki disease

Characteristic Lactobacillus casei cell wall 
extract

Candida albicans water- soluble 
fraction

Nod1 ligand (FK565)

Induction Single intraperitoneal injection Repeated intraperitoneal injections Priming with LPS 
and Nod1 ligand 
intraperitoneal injection

Pathology Aortic root inflammation; coronary 
arteritis; epicardial coronary 
arteritis; luminal myofibroblast 
proliferation; development of 
abdominal aorta aneurysms

Aortic root inflammation; coronary 
arteritis; inflammation focally 
extending to coronary arteries; 
development of abdominal aorta 
aneurysms

Aortic root inflammation; 
coronary arteritis

Immune 
characteristics

MyD88–TLR2- dependent; NLRP3 
inflammasome- dependent; 
innate immune cell dependent 
(neutrophils and macrophages);  
T cell dependent

Dectin-2 receptor- dependent; 
increased antineutrophil 
cytoplasmic antibodies; innate 
immune cell dependent (neutrophils 
and macrophages); T cell dependent

CD11c+ 
macrophage- dependent; 
T cell- independent

Therapy IVIG; anakinra; IL-1α antibody; 
IL-1β antibody; TNF antibody

IVIG; IL-1β antibody; GM- CSF 
antibody

NA

GM- CSF, granulocyte–macrophage colony- stimulating factor; IVIG, intravenous immunoglobulin; LPS, lipopolysaccharide;  
NA, not available.
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of the ITPKC pathway in Kawasaki disease development 
and demonstrated that ITPKC deficiency is associated 
with increased Ca2+ flux and levels of IL-1β in vitro59. 
Interestingly, the relatively mild development of coro-
nary arteritis in LCWE- injected CBA/N mice — which 
are characterized by a defective B cell maturation pro-
cess and poor humoral immune responses — suggests 
that the humoral immune response might participate in 
amplification of the disease186. IgA+ plasma cells infil-
trate vascular and non- vascular tissues during the acute 
phase of Kawasaki disease25,26, resulting in the develop-
ment of an oligoclonal IgA response in the coronary 
artery125,126. Interestingly, we have observed increased 
numbers of IgA+ plasmablasts in the spleen, Peyer’s 
patches and abdominal aorta draining lymph nodes 
of LCWE- injected mice, as well as increased concen-
trations of circulating IgA and IgA deposition in heart 
tissues, abdominal aorta and kidney glomureli143.

Mouse models also provide a useful opportunity 
to evaluate the efficacy of therapeutic regimens on the 
development and healing of cardiovascular lesions. 
When given up to 5 days after LCWE injection, IVIG 
substantially decreases the severity of cardiovascular 
lesions in mice187, mirroring the effects of IVIG treat-
ment in humans. As described above, IL-1β signal-
ling is higher in patients with Kawasaki disease than 
in age- matched control patients with other febrile 
illnesses91,188, and studies using the LCWE model helped 
lead to the discovery of the importance of this pathway 
in the pathogenesis of the disease and the therapeutic 
potential of IL-1 blockade. Depletion of macrophages 
or blocking the IL-1 pathway either genetically using 

IL1R−/−, IL1α−/− or IL1β−/− mice or with antibodies target-
ing IL-1α or IL-1β, or anakinra (IL1Ra), strongly reduces 
cardiovascular lesion development as well as myocardial 
dysfunction in LCWE- injected mice128,132,184.

The CAWS mouse model. C. albicans is a harmless 
commensal fungus normally present in the human gas-
trointestinal tract that can transition into a pathogen 
capable of inducing inflammation in immune- impaired 
hosts. In 1979, Murata demonstrated that an alkaline 
extract made from C. albicans isolated from faeces 
from a patient with Kawasaki disease induced coronary 
arteritis in mice177. CAWS is composed of polysaccha-
rides, mainly β- glucans and α- mannan proteins of the 
yeast cell wall189, and needs to be injected intraperito-
neally for five consecutive days in the first week of the 
disease to induce vasculitis in the aortic valves and  
the coronary arteries189,190. In this model, recognition of 
α- mannan proteins by the dectin-2 receptor seems to 
be essential, as CAWS- injected Dectin-2−/− mice do not 
develop vasculitis191.

The CAWS model shares some histological similar-
ities with human Kawasaki disease pathology in that  
inflammation affects both the aortic root and the proxi-
mal region of the coronary arteries190. Inflammation 
can also affect non- coronary artery sites in 25% of 
CAWS- injected mice and can be observed in the lymph 
nodes, the kidneys and the liver190,192. CAWS- induced 
coronary artery lesions resemble those of human 
Kawasaki disease and are typically proliferative, gran-
ulomatous and characterized by intimal thickening 
with destruction of the elastic lamina and media190. 

a  Aortic root inflammation b  Epicardial coronary arteritis c  Luminal myofibroblast proliferation

d  Occluded coronary artery e  Organized thrombus f  Myocarditis

Ao

Ao

CA

CA

LMP

CA

Fig. 4 | Histological and morphological findings in the LCWE-induced mouse model of Kawasaki disease vasculitis. 

Wild- type mice underwent intraperitoneal injection with Lactobacillus casei cell wall extract (LCWE), and heart tissues 

were harvested 2 weeks later. Haematoxylin and eosin (H&E) and trichrome staining were performed on heart sections.  

a | Inflammatory cell infiltration in the aortic route (H&E staining; ×40). b | Arteritis development in epicardial muscular 

coronary artery (H&E staining; ×20). c | Luminal myofibroblast proliferation (LMP) and non- specific neointimal proliferation 

injury to the arterial wall (trichrome staining; ×200). d | Complete occlusion of the coronary artery by LMP (trichrome 

staining; ×20). e | Organized thrombus in the coronary artery (H&E staining; ×200). f | Myocarditis (H&E staining; ×200). Ao; 

aorta, CA; coronary artery.
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Echocardiography in CAWS- injected mice indicates 
a marked decrease of cardiac function, which can be 
restored by IL-10 supplementation193. IL-10 is a potent 
anti- inflammatory cytokine that might improve the 
outcome of CAWS- induced vasculitis by inhibiting 
the release of pro- inflammatory mediators, such as 
TNF and IL-1β, from tissue- infiltrating innate immune 
cells194. Interestingly, CAWS- induced Kawasaki disease 
vasculitis is also strain dependent, as CAWS injections 
lead to a high incidence of vasculitis in CD-1, C3H/HeN, 
DBA/2 and C57BL/6N mice, but the CBA/JN strain is 
resistant to coronary arteritis190,195. The DBA/2 strain 
is the most sensitive, with the highest mortality rate 
resulting from a more intense coronary arteritis195. The 
sensitivity of DBA/2 mice is associated with increased 
production of the pro- inflammatory cytokines TNF, 
IL-6 and IFNγ195,196, whereas resistance of CBA/JN mice 
is explained by increased levels of IL-10 production in 
that strain197.

Despite the presence of T cell and B cell infiltration 
in the inflamed coronary artery, mice lacking T cells 
still develop moderate to typical cardiac inflammation, 
indicating that T cells might not be required in the devel-
opment of Kawasaki disease vasculitis in this particu-
lar model198,199. Absence of both T cells and B cells in 
Rag1−/− mice leads to lower incidence of CAWS- induced 
Kawasaki disease vasculitis; reconstitution of Rag1−/− 
mice with wild- type, but not CCR2−/−, T cells and B cells 
restores cardiovascular lesions, suggesting roles for 
both T cells and B cells and the modulation of disease  
development by CCR2 expression200. The innate immune 
response also participates in vasculitis development; 
resident macrophages recognize the CAWS antigens 
through the dectin-2 receptor, leading to their activa-
tion, release of CCL2, and recruitment of neutrophils 
and inflammatory monocytes producing IL-1β in the 
aortic root201.

CAWS- induced vasculitis is also associated with the 
rapid production of granulocyte–monocyte colony- 
 stimulating factor in the heart, which subsequently 
drives inflammatory myocarditis by activating tissue 
macrophages and promoting recruitment of neutro-
phils and monocytes199. TNF is also produced during the 
acute phase of CAWS- induced Kawasaki disease vascu-
litis and is essential for the development of acute myo-
carditis, as TNF receptor- deficient mice are protected 
from the development of CAWS vasculitis202. IVIG 
administration substantially reduces CAWS- induced 
heart vessel inflammation203. Like the LCWE model, 
the CAWS model is also dependent on the IL-1 path-
way, as IL1R−/−, IL1β−/−, Asc−/− and Nlrp3−/− mice are 
protected from induction of vasculitis, and treatment  
with anti- IL-1β agents substantially attenuates CAWS 
vasculitis202,204,205.

The Nod1 ligand mouse model. Endothelial cells are 
equipped to sense microbial components through 
Toll- like receptors and nucleotide- binding oligomeri-
zation domain- containing protein like receptors. Sub-
cutaneous injection or oral delivery of FK565, a specific 
synthetic Nod1 ligand, in mice primed with LPS results 
in a diffuse cellular inflammation of the aortic root and 

transmural infiltration of inflammatory cells in the cor-
onary artery wall178,206. Other arteries, such as the iliac 
and renal arteries, also show signs of inflammation 
associated with a thickening of the intima206.

The mechanisms by which FK565 induces coronary 
arteritis in mice remain unknown. When adminis-
tered orally, FK565 does not induce intestinal mucosa 
inflammation, but specifically activates vascular cells to 
produce a diverse array of pro- inflammatory cytokines, 
including IL-1β206, and chemokines such as CCL2, 
resulting in the recruitment of inflammatory cells in 
the tissues178. This model seems to be independent of 
T cells, B cells and natural killer T cells, as LPS- primed 
Rag-1−/− mice still develop aortitis and coronary arteri-
tis after FK565 injection207. The inflammatory infiltrates 
observed around the inflamed aortic root and coronary 
arteries mainly comprise neutrophils and CD11c+ 
cardiac macrophages; their specific depletion consid-
erably reduces the development of FK565- induced 
Kawasaki disease vasculitis178,207. The concentration 
of circulating IL-1β is substantially increased in the 
serum of FK565- injected mice compared with control 
or CAWS- injected animals, and higher IL-1β levels 
correlate with a larger inflammation area206. However, 
specific studies further investigating the role of IL-1β in 
this model are needed.

Treatment of Kawasaki disease

Traditional and novel therapies in humans. The cur-
rent standard of care for Kawasaki disease is the use of 
high- dose IVIG together with aspirin. If given during 
the first 10 days of the disease, IVIG reduces the risk 
of development of coronary arteritis and aneurysms 
from about 30% to 5–7%14,15. The mechanisms by which 
IVIG treatment reduces the inflammatory responses 
are still unknown; however, IVIG is suspected to have 
a wide spectrum of action targeting multiple arms of 
the immune response18. IVIG has been shown to inhibit 
IL-1β production from in vitro stimulated macro-
phages and to stimulate the production of IL-1Ra208,209.  
During Kawasaki disease, IVIG reduces production of 
inflammatory cytokines and chemokines, and decreases 
the activation and number of circulating neutrophils, 
monocytes, macrophages and activated T  cells by 
saturating Fc receptors18. The majority of patients with 
Kawasaki disease who are treated with IVIG improve 
and do not develop coronary artery damage; however, 
up to 20% of children with Kawasaki disease do not 
respond to treatment or have fever recurrence after ini-
tial IVIG treatment, and these patients are at the highest 
risk of developing coronary artery lesions3,20,210.

The involvement of pro- inflammatory cytokines in 
the acute phase of Kawasaki disease suggests that com-
binational therapy, composed of IVIG associated with 
TNF inhibitors, steroids, calcineurin inhibitors or anak-
inra, might be useful to treat patients with IVIG- resistant 
disease. The use of TNF inhibitors in combination with 
IVIG has had mixed results thus far. Infliximab was asso-
ciated with decreased fever duration and reduced mark-
ers of inflammation (C- reactive protein and neutrophil 
counts), suggesting a possible improvement of coro-
nary artery outcomes211; however, etanercept treatment 
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resulted in a substantial reduction in IVIG resistance 
only in patients >1 year old212.

An important area of research is the use of biomark-
ers to predict IVIG resistance in Kawasaki disease. The 
Kobayashi scoring system, based on a combination of 
laboratory test results (for example, C- reactive protein 
levels, neutrophil percentages, platelets counts and levels  
of aspartate and alanine aminotransferase) and demo-
graphic variables (sex, age and number of days of illness 
before the start of the treatment) has been successfully 
used to predict IVIG- resistance in Japanese patients213, 
but not in North American children with Kawasaki 
disease214. The combination of prednisolone and IVIG 
to treat Japanese patients with Kawasaki disease pre-
dicted to have IVIG- resistant disease according to 
the Kobayashi score (RAISE study) resulted in more 
rapid fever resolution, reduced development of CAAs 
and lower incidence of additional rescue treatment215 
compared with IVIG alone.

As discussed above, Kawasaki disease susceptibility 
and increased coronary artery lesion risk are associated 
with an SNP in ITPKC58 that results in a lack of NFAT 
regulation and activation of the T cell compartment 
owing to increased IL-2 production216. CD8+ cytotoxic 
T cells are present in the inflamed arterial wall during 
Kawasaki disease24,135; therefore, targeting T cell expan-
sion might be an efficient approach to preventing CAAs 
during Kawasaki disease. A combination treatment of 
IVIG and ciclosporin, a calcineurin inhibitor that sup-
presses IL-2 production and T cell activation, was tested 
in a clinical trial in Japanese patients with Kawasaki 
disease predicted to have IVIG- resistant disease based 
on the Kobayashi score (KAICA trial)217. In this trial, 
the combination treatment was shown to be safe and 
associated with a lower incidence of CAAs; however, 
treatment was linked with increased risk of relapse217. 
Furthermore, the scoring system used to identify 
IVIG- non- responders is poorly predictive in European 
children with Kawasaki disease, limiting the conclusions 
of this study.

The important role of the IL-1β–IL-1 receptor pathway 
in Kawasaki disease development has been demonstra-
ted in both human patients27,28,129,130 and mouse mod-
els127,132,202,204. Therefore, clinical trials investigating IL-1 
pathway inhibition by using anakinra, which blocks both 
IL-1α and IL-1β, have been initiated in North America 
(ANAKID; ClinicalTrials.gov identifier NCT02179853)218 
and Europe (Kawakinra; European Clinical Trials num-
ber 2014-002715-4)219. Already, multiple case reports 
exist of the successful use of anakinra to treat patients 
with IVIG- resistant Kawasaki disease220–224, indicating 
the promise of this second- line therapy.

Therapeutic insights from mouse models. Although 
no animal model can fully mimic human disease, the 
LCWE- induced Kawasaki disease mouse model has 
been accepted by many in the research community as 
a reliable experimental model providing novel insights 
that can be tested in patients. For example, IVIG effi-
ciently prevents coronary arteritis development in 
LCWE- injected mice187 as well as in the CAWS mouse 
model of Kawasaki disease203.

The effects of the calcineurin inhibitors ciclo-
sporin and tacrolimus have been investigated in the 
Nod1 ligand- induced mouse model of Kawasaki dis-
ease vasculitis225. This approach was rational given the 
established role of T cells and calcium signalling in 
Kawasaki disease. However, contrary to the expected 
outcome, these inhibitors exacerbated the coronary 
arteritis225. Notably, however, this result was proba-
bly related to the choice of mouse model, as the Nod1 
ligand- mediated mouse model of Kawasaki disease 
vasculitis has previously been shown to be T cell- 
 independent207. Indeed, in an independent study using 
the CAWS mouse model, which is T cell dependent, 
ciclosporin suppressed CAWS- induced vasculitis226, 
emphasizing the importance of model selection in 
preclinical studies. Most importantly, results in human 
studies bear out the therapeutic potential of calcineurin 
inhibition, as the Japanese phase III trial (KAICA trial) 
showed that adding ciclosporin to IVIG in patients with 
Kawasaki disease who were at high risk of IVIG resist-
ance was beneficial in diminishing overall incidence  
of CAAs217.

The role of TNF has been investigated in both the 
LCWE and the CAWS mouse models of Kawasaki 
disease vasculitis185. Initially, etanercept treatment or 
genetic deletion of TNF receptor 1 was shown to pro-
tect mice from LCWE- induced coronary arteritis185,202. 
Infliximab treatment also prevented the development 
of both LCWE- induced coronary arteritis and myo-
carditis132. Similar results were obtained in the CAWS 
mouse model of Kawasaki disease vasculitis, in which 
etanercept226,227 suppressed the incidence and decreased 
the severity of vasculitis. Mechanistically, TNF has 
been proposed to be produced by myeloid cells in the 
acute phase and to promote myocarditis and recruit-
ment of immune cells by acting on cardiac stromal 
cells202. However, infliximab and etanercept might not 
directly target the TNF signalling pathway, and their 
observed effects might be indirect. Indeed, infliximab 
is not able to bind mouse TNF227,228; therefore, the 
anti- inflammatory effect of infliximab might be attrib-
utable to the binding of Fc receptors at the surface of 
activated cells229,230.

The overwhelming evidence for the critical role of 
IL-1β in promoting LCWE- induced Kawasaki disease 
vasculitis in mice127,128,132 led to the initiation of clin-
ical trials testing the effect of anakinra for blocking 
IL-1β as a second therapy option to treat children with 
IVIG- resistant Kawasaki disease. Multiple case reports 
now outline the successful use of anakinra to treat 
patients with IVIG- resistant Kawasaki disease221–224. 
Alternatively, direct inhibition of the NLRP3 inflam-
masome might be a more targeted therapeutic strat-
egy to treat Kawasaki disease, as it would affect several 
pathways beyond IL-1β, including IL-1α and IL-18. 
Several NLRP3 inhibitors have been identified231 and 
tested in mouse models of inflammatory diseases, such 
as experimental autoimmune encephalomyelitis and 
cryopyrin- associated periodic syndrome232. It would be 
interesting to determine if such drugs could be used to 
prevent and reduce the cardiovascular complications in 
mouse models of Kawasaki disease vasculitis.
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Conclusions

Over the past 40 years, research has improved our 
understanding of Kawasaki disease pathology and the 
development of coronary vasculitis. However, some 
questions still remain unanswered, such as the iden-
tification of the aetiological agents, how the disease is 
triggered, and the specific immune pathways associated 
with coronary vasculitis development and IVIG resist-
ance. Owing to the rarity of human tissues from patients 
with Kawasaki disease, the use of animal models repro-
ducing human Kawasaki disease features is invaluable. 
Many advances have been made over the decades by 
combining biological observations in human samples 
with mechanistic insights from experimental animal 
models. This ‘bench to bedside’ approach successfully 
led to the identification of the critical role of IL-1β in 
Kawasaki disease and resulted in the development of 
clinical trials in which anakinra is being used to treat 
children with IVIG- resistant Kawasaki disease.

LCWE- injected mice exhibit a dysfunctional intesti-
nal barrier, and the increased IgA response and elevated 
sIgA levels in both LCWE- injected mice and children 
with Kawasaki disease reveal the existence of a ‘gut–
vascular’ axis143. In evaluating this model system and the 
role of IgA, it should not be forgotten that injection of 

identically prepared LCWE induces chronic polyarthri-
tis in selected inbred rat strains180,233. This observation 
implies that a common immunogenetic pathway might 
underlie a variety of autoimmune illnesses, with disease 
expression moderated not by the inducing agent, but 
rather by host genetics. The fact that cell wall fragments 
of common gut bacteria can produce varying disease 
manifestations in the face of inflammation- induced 
increased gut permeability suggests that some auto-
immune diseases might not in fact be induced by the 
normal response to an unusual agent, but rather an 
unusual response to a common agent. Similarly, we 
hypothesize that vasculitic diseases, including Kawasaki 
disease, are not a usual response to an unusual envi-
ronmental stimulus, but rather an unusual response 
(genetically determined) to a common environmental 
stimulus. This hypothesis has major implications for 
understanding the aetiology and pathogenesis of not 
only Kawasaki disease but also IgA- mediated diseases 
and perhaps others. In addition, it strongly suggests 
that inhibition of IL-1β might be effective for the many 
chronic inflammatory diseases in which IgA deposition 
is a key finding.
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