
Pacific
Journal of
Mathematics

KAZHDAN–LUSZTIG AND R-POLYNOMIALS,
YOUNG’S LATTICE, AND DYCK PARTITIONS

Francesco Brenti

Volume 207 No. 2 December 2002



PACIFIC JOURNAL OF MATHEMATICS
Vol. 207, No. 2, 2002

KAZHDAN–LUSZTIG AND R-POLYNOMIALS,
YOUNG’S LATTICE, AND DYCK PARTITIONS

Francesco Brenti

We give explicit combinatorial product formulas for the
maximal parabolic Kazhdan-Lusztig and R-polynomials of the
symmetric group. These formulas imply that these polyno-
mials are combinatorial invariants, and that the Kazhdan-
Lusztig ones are nonnegative. The combinatorial formulas are
most naturally stated in terms of Young’s lattice, and the one
for the Kazhdan-Lusztig polynomials depends on a new class
of skew partitions which are closely related to Dyck paths.

1. Introduction.

In their fundamental paper [9] Kazhdan and Lusztig defined, for every Cox-
eter group W , a family of polynomials, indexed by pairs of elements of W ,
which have become known as the Kazhdan-Lusztig polynomials of W (see,
e.g., [8], Chap. 7). These polynomials are intimately related to the Bruhat
order of W and to the geometry of Schubert varieties, and are of fundamen-
tal importance in representation theory. In order to prove the existence of
these polynomials Kazhdan and Lusztig defined another family of polyno-
mials (see [9], §2) which are now known as the R-polynomials of W (see,
e.g., [8], §7.5). Their importance stems mainly from the fact that their
knowledge is equivalent to that of the Kazhdan-Lusztig polynomials.

In 1987 Deodhar [5] introduced parabolic analogues of the Kazhdan-
Lusztig and R-polynomials. These polynomials are related to their ordinary
counterparts in several ways (see, e.g., §2). In particular, one type of par-
abolic Kazhdan-Lusztig and R-polynomials equals an alternating sum, over
the corresponding parabolic subgroup, of the ordinary ones. Aside from
these connections, the parabolic Kazhdan-Lusztig polynomials also play a
direct role in the theories of generalized Verma modules ([4]), tilting mod-
ules ([13], [14]), quantized Schur algebras ([17]), and in the representation
theory of the Lie algebra gln ([11]).

Our purpose in this paper is to study the maximal parabolic Kazhdan-
Lusztig and R-polynomials of the symmetric group. Our main results are
explicit combinatorial product formulas for these polynomials. These formu-
las imply, in particular, that the polynomials are combinatorial invariants,
and that the coefficients of the Kazhdan-Lusztig ones are nonnegative, thus
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verifying in this case a widely held belief (see, e.g., [11, §1]). The combina-
torial formulas are most naturally stated in terms of Young’s lattice, and the
one for the Kazhdan-Lusztig polynomials depends on a new combinatorial
concept, namely a class of skew partitions which we call (for very natural
reasons) Dyck partitions (see §4). These skew partitions possess remarkable
combinatorial and enumerative properties which make them interesting also
in their own right, and are closely related to Dyck paths, which have been
widely studied in combinatorics (see, e.g., [7]).

The organization of the paper is as follows. In the next section we collect
some definitions and results that are needed in the rest of this work. In
Section 3 we prove a combinatorial product formula for the maximal para-
bolic R-polynomials. We give two statements of this result, one in terms of
permutations (Theorem 3.1) and one in terms of partitions (Corollary 3.4),
and derive some consequences of it. In §4 we introduce the main new combi-
natorial concept of this work, namely Dyck partitions, and study some of its
basic properties. These are the cornerstones of the proof of our main result
in the following section. In Section 5 we prove our main theorem, namely an
explicit combinatorial product formula for the maximal parabolic Kazhdan-
Lusztig polynomials (Theorem 5.1) and derive some consequences of it, such
as the fact that the polynomials are combinatorial invariants (Corollary 5.6).
Finally, in §6, we give some further consequences of our results. These in-
clude some identities for the ordinary Kazhdan-Lusztig and R-polynomials,
a combinatorial invariance result for the ordinary Kazhdan-Lusztig polyno-
mials of Grassmannian permutations, and some further combinatorial and
enumerative properties of Dyck partitions.

2. Notations, definitions and preliminaries.

In this section we collect some definitions, notation and results that will be
used in the rest of this work. We let P def= {1, 2, 3, . . . }, N def= P ∪ {0}, Z
be the set of integers, and Q be the set of rational numbers; for a ∈ N
we let [a] def= {1, 2, . . . , a} (where [0] def= ∅). The cardinality of a set A will
be denoted by |A|. Given a polynomial P (q), and i ∈ Q, we denote by
[qi](P (q)) the coefficient of qi in P (q) (so [qi](P (q)) = 0 unless i ∈ N).

Given a set T we let S(T ) be the set of all bijections π : T → T , and
Sn

def= S([n]). If σ ∈ Sn then we write σ = σ1 . . . σn to mean that σ(i) = σi,
for i = 1, . . . , n. If σ ∈ Sn then we will also write σ in disjoint cycle form
(see, e.g., [15], p. 17) and we will usually omit to write the 1-cycles of σ. For
example, if σ = 365492187 then we also write σ = (9, 7, 1, 3, 5)(2, 6). Given
σ, τ ∈ Sn we let στ

def= σ ◦ τ (composition of functions) so that, for example,
(1, 2)(2, 3) = (1, 2, 3).
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We follow Chapter 3 of [15] for poset notation and terminology. In partic-
ular, given a poset (P,≤) and u, v ∈ P we let [u, v] def= {z ∈ P : u ≤ z ≤ v}
and call this an interval of P . We say that v covers u, denoted u / v (or,
equivalently, that u is covered by v) if |[u, v]| = 2. The Hasse graph of P
is the graph having P as vertex set and {{u, v} ⊆ P : u / v or v / u}
as set of edges. If P has a minimum element, denoted 0̂, then we call a
subset of the form [0̂, u], for u ∈ P , a lower interval of P . Similarly, we
define an upper interval. Given any Q ⊆ P we will always consider Q as a
poset with the partial ordering induced by P and call Q a subposet of P .
If u, v ∈ P are such that {z ∈ P : z ≥ u, z ≥ v} has a minimum element
then we call it the join of u and v. Similarly, we define the meet of u and
v if {z ∈ P : z ≤ u, z ≤ v} has a maximum element. We say that z ∈ P
is join-irreducible (respectively, minimal) if it covers at most one element
(respectively, no elements) of P . Similarly, we define meet-irreducible and
maximal. Given two posets P and Q we write P ∼= Q to mean that they are
isomorphic as posets.

We follow §7.2 of [16] for any undefined notation and terminology con-
cerning partitions. By an (integer) partition we mean a sequence of positive
integers λ = (λ1, . . . , λk) such that λ1 ≥ λ2 ≥ · · · ≥ λk. We identify a
partition λ with its diagram,

{(i, j) ∈ P2 : 1 ≤ i ≤ k, 1 ≤ j ≤ λi},
and consider λ as a poset with the partial ordering induced by P2 (where P2

has the product ordering induced by the natural ordering on P). For this
reason we draw the diagram of a partition λ rotated counterclockwise by 3

4π
radians with respect to the usual (Anglophone) convention (see, e.g., [15,
§1.3]). So, for example, the diagram of (7, 4, 2, 1) is illustrated in Figure 1.
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Figure 1.
We call the elements of P2, and hence of λ, cells. Expressions such as “to

the left of”, or “directly above”, always refer to these rotated diagrams. We
define the level of a cell (i, j) ∈ P2 by lv((i, j)) def= i + j. We denote by P
the set of all integer partitions. We will always assume that P is partially
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ordered by set inclusion. It is well-known, and not hard to see, that this
makes P into a lattice, usually called Young’s lattice (see, e.g., [16, §7.2]).
Given n ∈ P and i ∈ [n− 1] we let P(n, i) def= {µ ∈ P : µ ⊆ (n− i)i}. Given
λ = (λ1, . . . , λk) ∈ P we let d(λ) be the length of the Durfee square of λ, so

d(λ) def= max {i ∈ [k] : λi ≥ i}.(1)

Let µ, λ ∈ P, µ ⊆ λ. We then call λ \ µ a skew partition. Note that, in
poset theoretic language, partitions (respectively, skew-partitions) are the
finite order ideals (respectively, finite convex subsets) of P2. Given a skew
partition η ⊆ P2 its conjugate is

η′
def= {(j, i) ∈ P2 : (i, j) ∈ η}.

A connected (by which we mean “rookwise connected” so, e.g., (2, 1) \ (1) is
not connected) skew partition is uniquely determined, up to translation, by
the two ordered sequences of the lengths of the sides of the “polygon” that it
determines. For example, the skew partition depicted in Figure 2 is uniquely
determined by the sequences (4, 2, 1, 2, 2, 1, 1, 3) and (3, 1, 1, 1, 1, 2, 2, 1, 1, 3)
(in this order). We will use this “polygon notation” for skew partitions in
§5. Let θ be a connected skew partition, and consider θ as a subposet of P2.
We say that a cell x of θ is an upper peak (respectively, lower valley) of θ
if it is maximal (respectively, minimal). We call an element x ∈ θ an upper
valley of θ if x is covered by exactly two elements of θ whose join is not in
θ. Similarly, we define a lower peak.

We say that a skew partition is a border strip (also called a ribbon) if it
contains no 2 × 2 square of cells. For brevity, we call a connected border
strip a cbs. Let λ, µ, ν ∈ P be such that µ ⊆ ν ⊆ λ. We then say that
λ \ ν is a final segment of λ \ µ. The outer border strip θ of λ \ µ is the
largest final segment of λ \ µ which is a border strip. In other words, a cell
of λ \ µ is in θ if and only if there is no cell of λ \ µ directly above it. For
example, the cells of the outer border strip of the skew partition illustrated
in Figure 2 are numbered from 1 to 15. We will usually number the cells of
θ consecutively from left to right in this way, and identify them with their
corresponding number. So, for example, 1 is the leftmost cell of θ, and if
x ∈ θ, x > 1, then x− 1 is the cell of θ immediately to the left of x.

In a similar way, we define the inner border strip η of λ \ µ as the cells
of λ \ µ which have no cells of λ \ µ directly below them.

Given two skew partitions ρ, ν ⊂ P2 we write ρ ≈ ν if ρ is a translate of
ν. The verification of the following observation is left to the reader.

Proposition 2.1. Let λ, µ ∈ P, µ ⊆ λ, and θ, η be the outer and inner
border strips of λ \ µ, respectively. Then (λ \ µ) \ θ ≈ (λ \ µ) \ η.

We follow [8] for general Coxeter groups notation and terminology. In
particular, given a Coxeter system (W,S) and σ ∈ W we denote by l(σ) the
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Figure 2.

length of σ in W , with respect to S, and we let D(σ) def= {s ∈ S : l(σs) <

l(σ)}. We denote by e the identity of W , and we let T
def= {σsσ−1 : σ ∈

W, s ∈ S} be the set of reflections of W . Given J ⊆ S we let WJ be the
parabolic subgroup generated by J and

W J def= {σ ∈ W : l(sσ) > l(σ) for all s ∈ J}.

Note that W ∅ = W . If WJ is finite then we denote by wJ
0 its longest

element. We will always assume that W J is partially ordered by (strong)
Bruhat order. Recall (see, e.g., [8], §5.9) that this means that x ≤ y if and
only if there exist r ∈ N and t1, . . . , tr ∈ T such that tr . . . t1 x = y and
l(ti . . . t1 x) > l(ti−1 . . . t1x) for i = 1, . . . , r. Given u, v ∈ W J , u ≤ v, we let

[u, v]J
def= {z ∈ W J : u ≤ z ≤ v},

and consider [u, v]J as a poset with the partial ordering induced by W J .
The following two results are due to Deodhar, and we refer the reader to

[5, §§2-3] for their proofs.

Theorem 2.2. Let (W,S) be a Coxeter system, and J ⊆ S. Then, for each
x ∈ {−1, q}, there is a unique family of polynomials {RJ,x

u,v(q)}u,v∈W J ⊆ Z[q]
such that, for all u, v ∈ W J :

i) RJ,x
u,v(q) = 0 if u 6≤ v;

ii) RJ,x
u,u(q) = 1;

iii) if u < v and s ∈ D(v) then

RJ,x
u,v(q) =


RJ,x

us,vs(q), if s ∈ D(u),
(q − 1)RJ,x

u,vs(q) + qRJ,x
us,vs(q), if s 6∈ D(u) and us ∈ W J ,

(q − 1− x)RJ,x
u,vs(q), if s 6∈ D(u) and us 6∈ W J .

Theorem 2.3. Let (W,S) be a Coxeter system, and J ⊆ S. Then, for each
x ∈ {−1, q}, there is a unique family of polynomials {P J,x

u,v (q)}u,v∈W J ⊆ Z[q],
such that, for all u, v ∈ W J :
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i) P J,x
u,v (q) = 0 if u 6≤ v;

ii) P J,x
u,u (q) = 1;

iii) deg(P J,x
u,v (q)) ≤ 1

2 (l(v)− l(u)− 1), if u < v;
iv)

ql(v)−l(u) P J,x
u,v

(
1
q

)
=
∑

u≤z≤v

RJ,x
u,z(q) P J,x

z,v (q),

if u ≤ v.

The polynomials RJ,x
u,v(q) and P J,x

u,v (q), whose existence is guaranteed by
the two previous theorems, are called the parabolic R-polynomials and para-
bolic Kazhdan-Lusztig polynomials (respectively) of W J of type x. It follows
immediately from Theorems 2.2 and 2.3 and from well-known facts (see,
e.g., [8, §7.5] and [8, §§7.9-11]) that R∅,−1

u,v (q) (= R∅,q
u,v(q)) and P ∅,−1

u,v (q)
(= P ∅,q

u,v (q)) are the (ordinary) R-polynomials and Kazhdan-Lusztig polyno-
mials of W which we will denote simply by Ru,v(q) and Pu,v(q), as customary.

The parabolic Kazhdan-Lusztig and R-polynomials are related to their
ordinary counterparts also in the following way.

Proposition 2.4. Let (W,S) be a Coxeter system, J ⊆ S, and u, v ∈ W J .
Then we have that

RJ,x
u,v(q) =

∑
w∈WJ

(−x)l(w)Rwu,v(q),

for all x ∈ {−1, q}, and

P J,q
u,v (q) =

∑
w∈WJ

(−1)l(w)Pwu,v(q).

Furthermore, if WJ is finite then

P J,−1
u,v (q) = PwJ

0 u,wJ
0 v(q).

A proof of this result can be found in [5] (see Propositions 2.12 and 3.4,
and Remark 3.8). Yet another relation (which, however, we will not use)
between parabolic and ordinary Kazhdan-Lusztig polynomials is given in [5,
Proposition 3.5].

There are two more properties of the parabolic Kazhdan-Lusztig and R-
polynomials that we will use and that we recall here for the reader’s conve-
nience. Proofs of them can be found in [6, Corollary 2.2], and [5, Proposition
3.10].

Proposition 2.5. Let (W,S) be a Coxeter system, and J ⊆ S. Then

ql(v)−l(u)RJ,x
u,v

(
1
q

)
= (−1)l(v)−l(u)RJ,q−1−x

u,v (q)

for all u, v ∈ W J , and x ∈ {−1, q}.



KAZHDAN-LUSZTIG AND R-POLYNOMIALS 263

For u, v ∈ W J let, as customary,

µ(u, v) def=
[
q

1
2
(l(v)−l(u)−1)

]
(P J,q

u,v (q)).

Proposition 2.6. Let (W,S) be a Coxeter system, J ⊆ S, and u, v ∈ W J ,
u ≤ v. Then for each s ∈ D(v) we have that

P J,q
u,v (q) = P̃ −

∑
{u≤w≤vs: ws<w}

µ(w, vs)q
l(v)−l(w)

2 P J,q
u,w(q)

where

P̃ =

 P J,q
us,vs + qP J,q

u,vs, if us < u,
qP J,q

us,vs + P J,q
u,vs, if u < us ∈ W J ,

0, if u < us 6∈ W J .

Our purpose in this paper is to study the maximal parabolic Kazhdan-
Lusztig and R-polynomials of the symmetric group Sn. Therefore, from now
on we fix n ∈ P and i ∈ [n − 1], and we let W

def= Sn, si
def= (i, i + 1) for

i = 1, . . . , n − 1, S
def= {s1, . . . , sn−1}, and J

def= S \ {si}. It is well-known
that (Sn, S) is a Coxeter system of type An−1 (see, e.g., [8]) and that the
following characterization holds (see, e.g., [12]).

Proposition 2.7. Let v ∈ Sn. Then

l(v) = |{(i, j) ∈ [n]2 : i < j, v(i) > v(j)}|
and

D(v) = {si ∈ S : v(i) > v(i + 1)}.

Given v ∈ W J we associate to v the partition

Λ(v) def= (v−1(i)− i, . . . , v−1(2)− 2, v−1(1)− 1).(2)

The following is well-known (see, e.g., [12]).

Proposition 2.8. The map Λ defined by (2) is a bijection between W J and
P(n, i). Furthermore u ≤ v in W J if and only if Λ(u) ⊆ Λ(v).

We will find it sometimes convenient to identify a partition λ ∈ P(n, i)
with a lattice path, with (1, 1) and (1,−1) steps, starting at (0, 0) and ending
at (n, 2i−n) (equivalently, having n steps and exactly i (1, 1)-steps). We call
a (1, 1)-step (respectively, (1,−1)-step) an up-step (respectively, down-step).
Given j ∈ [n−1] we say that λ has a peak at j if the j-th step of λ is up and
its (j + 1)-st step is down. Note that there is an obvious bijection between
the peaks of λ (as a path) and the upper peaks of λ (as a partition). For
example, if λ = (4, 3, 2, 2, 1) ∈ P(9, 5) then the associated path is the one
shown in Figure 3 and it has peaks at 1, 3, 6, and 8. Note that this bijection
between partitions and paths depends on n and i. For example, the partition
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(4, 3, 2, 2, 1) corresponds to the path in Figure 4 if n = 12 and i = 6. Since
n and i are fixed throughout this work, this will cause no confusion.

��@@��@@�
�

�@@��@@r r r r r r r r r r
Figure 3. The lattice path corresponding to (4, 3, 2, 2, 1) if n = 9 and

i = 5.

@
@

@

��@@��@@�
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�@@��@@��r r r r r r r r r rrr r

Figure 4. The lattice path corresponding to (4, 3, 2, 2, 1) if n = 12 and
i = 6.

The following elementary lemma is certainly well-known. However, for
lack of an adequate reference, and because we will use it often, we give a
proof here.

Lemma 2.9. Let v ∈ W J , and j ∈ [n − 1]. Then sj ∈ D(v) if and only if
Λ(v) has a peak at n− j.

Proof. By Proposition 2.7 we have that sj ∈ D(v) if and only if v(j) >
v(j +1). On the other hand Λ(v) (as a path) has a peak at n− j if and only
if its (n− j)-th step is up and its (n− j + 1)-th step is down. But the k-th
step of Λ(v) is an up step if and only if

k ∈ {n + 1− v−1(i), n + 1− v−1(i− 1), . . . , n + 1− v−1(1)}.(3)

Therefore Λ(v) has a peak at n− j if and only if

j = v−1(k)− 1(4)

for some k ∈ [i], and

j 6= v−1(k)(5)

for all k ∈ [i]. But if this is true then, clearly, v(j) > i ≥ v(j + 1).
Conversely, if v(j) > v(j + 1) then, since v ∈ W J , we have that v(j) 6∈ [i]

and v(j + 1) ∈ [i], which implies (5) and (4), and therefore that Λ(v) has a
peak at n− j. �
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3. Parabolic R-polynomials.

In this section we prove an explicit combinatorial product formula for the
maximal parabolic R-polynomials of the symmetric group. We give two
formulations of this result, one in terms of permutations and one in terms of
partitions, and we derive some consequences of it. Recall that throughout
this work we fix n ∈ P and i ∈ [n− 1], and we let J

def= S \ {si}.
Let u, v ∈ W J , u ≤ v. For j ∈ [n] let

aj(u, v) def= |{r ∈ u−1([i]) : r < j}| − |{r ∈ v−1([i]) : r < j}|.(6)

For example, if n = 9, i = 5, u = 126347589, and v = 671823945 then

(a1(u, v), . . . , a9(u, v)) = (0, 1, 2, 1, 2, 2, 1, 2, 1).(7)

Note that it follows easily from Proposition 2.8 that aj(u, v) ≥ 0 for j =
1, . . . , n if and only if u ≤ v, and that aj(u, v) > 0 if j ∈ v−1([i]) \ u−1([i])
and u ≤ v. Also note that, if u ∈ W J and j ∈ [n], then

|{r ∈ u−1([i]) : r < j}| =
{

u(j)− 1, if j ∈ u−1([i]),
j + i− u(j), if j 6∈ u−1([i]).

This may be used to obtain a more explicit formula for aj(u, v), if desired.

Theorem 3.1. Let u, v ∈ W J , u ≤ v. Then

RJ,−1
u,v (q) = ql(v)−l(u)

∏
j∈v−1([i])\u−1([i])

(1− q−aj(u,v)).(8)

Proof. Let, for brevity, RJ
u,v(q)

def= RJ,−1
u,v (q), and Di(u, v) def= v−1([i]) \

u−1([i]).
We proceed by induction on l(v), the result being trivially true if u = v =

e. So suppose that l(v) ≥ 1. Let s = (k, k + 1) be such that s ∈ D(v). Note
that, since v ∈ W J , this implies that k + 1 ∈ v−1([i]) and k 6∈ v−1([i]). We
have three cases to consider.

a) s ∈ D(u).
Since u ∈ W J this implies that k 6∈ u−1([i]) and k + 1 ∈ u−1([i]). Therefore
(us, vs ∈ W J , and) Di(u, v) = Di(us, vs) and aj(u, v) = aj(us, vs) for all
j ∈ [n]. Hence, by Theorem 2.2 and our induction hypothesis,

RJ
u,v(q) = RJ

us,vs(q)

= ql(vs)−l(us)
∏

j∈Di(us,vs)

(1− q−aj(us,vs))

= ql(v)−l(u)
∏

j∈Di(u,v)

(1− q−aj(u,v)),

as desired.
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b) s 6∈ D(u), and us 6∈ W J .
Then either k, k + 1 6∈ u−1([i]) or k, k + 1 ∈ u−1([i]). In the first case

Di(u, vs) = (Di(u, v) \ {k + 1}) ∪ {k}

and aj(u, v) = aj(u, vs) for j ∈ [n] \ {k + 1}, ak+1(u, v) = ak(u, vs). There-
fore, by Theorem 2.2 and our induction hypothesis,

RJ
u,v(q) = qRJ

u,vs(q)(9)

= q ql(vs)−l(u)
∏

j∈Di(u,vs)

(1− q−aj(u,vs))

= ql(v)−l(u)
∏

j∈Di(u,v)

(1− q−aj(u,v)),

as desired. In the second case Di(u, vs) = Di(u, v) and aj(u, v) = aj(u, vs)
for all j ∈ [n] \ {k + 1}, and we again conclude as in (9).

c) s 6∈ D(u) and us ∈ W J .
Then k ∈ u−1([i]) and k + 1 6∈ u−1([i]). But

Di(u, vs) = Di(u, v) \ {k + 1},

and aj(u, v) = aj(u, vs) for j ∈ [n] \ {k + 1}. On the other hand

Di(us, vs) = (Di(u, v) \ {k + 1}) ∪ {k},

and

aj(us, vs) = aj(u, v)(10)

for j ∈ [n] \ {k + 1},

ak+1(u, v) = ak+1(us, vs) + 2.(11)

Therefore we have from our induction hypothesis that

RJ
u,vs(q) = ql(vs)−l(u)

∏
j∈Di(u,vs)

(1− q−aj(u,vs))(12)

= ql(v)−l(u)−1
∏

j∈Di(u,v)\{k+1}

(1− q−aj(u,v))

and, if us ≤ vs,

RJ
us,vs(q) = ql(vs)−l(us)

∏
j∈Di(us,vs)

(1− q−aj(us,vs))

= ql(v)−l(u)−2(1− q−ak(u,v))
∏

j∈Di(u,v)\{k+1}

(1− q−aj(u,v)).
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Hence, by Theorem 2.2,

RJ
u,v(q) = ((q − 1)q + q(1− q−ak(u,v)))ql(v)−l(u)−2

∏
j∈Di(u,v)\{k+1}

(1− q−aj(u,v))

= (1− q−ak(u,v)−1)ql(v)−l(u)
∏

j∈Di(u,v)\{k+1}

(1− q−aj(u,v)),

and the result follows since ak+1(u, v) = ak(u, v) + 1.
If us 6≤ vs then from (10) and (11), and the comments at the beginning

of this section we conclude that ak+1(u, v) = 1. Hence, by Theorem 2.2 and
(12),

RJ
u,v(q) = (q − 1)RJ

u,vs

= (q − 1)ql(v)−l(u)−1
∏

j∈Di(u,v)\{k+1}

(1− q−aj(u,v))

= ql(v)−l(u)
∏

j∈Di(u,v)

(1− q−aj(u,v)),

and the result again follows.
This completes the induction step and hence the proof. �

We illustrate the preceding theorem with an example. Let n, i, u and v
be as in the example preceding Theorem 3.1. Then Di(u, v) = {3, 6, 8, 9}
and hence, by (8) and (7),

RJ,−1
u,v (q) = q16−4(1− q−2)3(1− q−1) = q5(q2 − 1)3(q − 1).

As an immediate consequence of the previous result we obtain a corre-
sponding formula for the other type of maximal parabolic R-polynomials.

Corollary 3.2. Let u, v ∈ W J , u ≤ v. Then

RJ,q
u,v(q) = (−1)l(v)−l(u)

∏
j∈v−1([i])\u−1([i])

(1− qaj(u,v)),

where aj(u, v) is defined in (6).

Proof. This follows immediately from Theorem 3.1 and Proposition 2.5. �

Note that, although a nonrecursive formula for the parabolic R-polyno-
mials is given in [5, Theorem 2.11], it does not seem to be easy to deduce
Theorem 3.1 or Corollary 3.2 from it.

Because W J is isomorphic, as a poset, to a lower interval in Young’s
lattice (by Proposition 2.8), it is natural to rephrase Theorem 3.1 in the
language of partitions rather than in that of permutations.

Let µ, λ ∈ P(n, i), with µ ⊆ λ. Think of µ and λ as paths as explained
in §2. Then, by Proposition 2.8, the path λ lies (weakly) above the path µ.
Let 1 ≤ j ≤ n and consider the j-th step of λ (from the left). We say that
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such a step is allowable with respect to µ if it is an up-step and the j-th step
of µ is a down-step. For example, if n = 18, i = 9, λ = (9, 8, 6, 6, 5, 5, 3, 3, 3),
and µ = (4, 3, 3, 2, 2, 2, 1) then the j-th step of λ is allowable with respect
to µ exactly if j ∈ {1, 3, 7, 10, 14}. Now let ãj(µ, λ) be the vertical distance
(divided by two, since it is always even) between the (right end of the) j-th
step of λ and the (right end of the) j-th step of µ.

Proposition 3.3. Let u, v ∈ W J , u ≤ v. Then

aj(u, v) = ãn+1−j(Λ(u),Λ(v))

for j = 1, . . . , n. Furthermore n + 1 − j ∈ v−1([i]) \ u−1([i]) if and only if
the j-th step of Λ(v) is allowable with respect to Λ(u).

Proof. Let 1 ≤ j ≤ n. Clearly, the vertical height of a path λ after j steps,
hj(λ), equals the difference between the number of up-steps and that of
down-steps among the first j steps of λ. But, by our definitions, the k-th
step of λ is an up-step if and only if

k ∈ {n− i + 1− λ1, n− i + 2− λ2, . . . , n− λi}.
Therefore

hj(λ) = 2|{k ∈ [i] : n− i + k − λk ≤ j}| − j,

and hence

hj(Λ(v)) = 2|{k ∈ [i] : n + 1− v−1(i + 1− k) ≤ j}| − j

= 2|{k ∈ [i] : n + 1− v−1(k) ≤ j}| − j

= 2(i− |{k ∈ [i] : n + 1− v−1(k) > j}|)− j.

So

ãj(Λ(u),Λ(v)) =
1
2

(hj(Λ(v))− hj(Λ(u)))

= |{k ∈ [i] : u−1(k) < n + 1− j}|
− |{k ∈ [i] : v−1(k) < n + 1− j}|

= |{r ∈ u−1([i]) : r < n + 1− j}|
− |{r ∈ v−1([i]) : r < n + 1− j}|

= an+1−j(u, v),

as desired.
Furthermore, it follows from (3) that the j-th step of Λ(v) is an up-step

if and only if j = n + 1− v−1(k) for some k ∈ [i], which in turn happens if
and only if n+1− j ∈ v−1([i]). Therefore, the j-th step of Λ(v) is allowable
with respect to Λ(u) if and only if n + 1− j ∈ v−1([i]) \ u−1([i]). �

We can now rephrase Corollary 3.2 in terms of partitions.
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Corollary 3.4. Let u, v ∈ W J , u ≤ v. Then

RJ,q
u,v(q) = (−1)|λ\µ|

∏
j

(1− qeaj(µ,λ))(13)

where µ = Λ(u), λ = Λ(v) and j runs over all the allowable steps of λ with
respect to µ. In particular, RJ,q

u,v(q) depends only on Λ(v) \ Λ(u).

Because of the preceding corollary we will sometimes write RJ,q
θ (q), and

RJ,q
µ,λ(q), if θ is a skew partition, and µ, λ ∈ P.
In the case of a lower interval, the formula in Corollary 3.4 takes up a

particularly simple form.

Corollary 3.5. Let v ∈ W J . Then

RJ,q
e,v(q) = (−1)|µ|

d(µ)∏
j=1

(1− qj),

where µ = Λ(v) and d(µ) is the length of the Durfee square of µ.

Proof. We know from Corollary 3.4 that

RJ,q
e,v(q) = (−1)|µ|

∏
j

(1− qeaj(∅,µ))(14)

where j runs over all the allowable steps of µ with respect to ∅. But, clearly,
an up step of µ is allowable with respect to ∅ if and only if it is one of the
leftmost n− i steps of µ (seen as a path).

Let a be the number of such up steps. Since every up step (among the
leftmost n−i steps of µ) increases the vertical distance from ∅ to µ by 2, and
every down step (among the leftmost n − i steps of µ) leaves this distance
unchanged, we conclude that this vertical distance, after the leftmost n− i
steps of µ, is 2a, and that the vertical distance between the j-th allowable
step of µ and ∅ is 2j, for j = 1, . . . , a. Therefore, by (14),

RJ,q
e,v(q) = (−1)|µ|

a∏
j=1

(1− qj).

On the other hand, by the definition (1) of d(µ), the vertical distance be-
tween the (n− i)-th step of µ and ∅ is 2d(µ). Hence a = d(µ) and the result
follows. �

In the theory of the ordinary R-polynomials an interesting open problem
[1] is that of deciding whether any R-polynomial of W can be obtained as
the R-polynomial of a lower interval (i.e., if given u, v ∈ W there is a w ∈ W
such that Ru,v(q) = Re,w(q)). The last two results show that the analogous
question has a negative answer in the maximal parabolic case.
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We conclude this section by noting a further consequence of Corollary 3.4
that will be used in §6 to obtain a nontrivial combinatorial property of Dyck
partitions (defined in the next section).

Proposition 3.6. Let λ, µ be partitions, µ ⊆ λ. Then

lim
q→1

RJ,q
λ\µ(q)

q − 1

 =
{

(−1)|λ\µ|+1, if λ \ µ is a cbs,
0, otherwise.

(15)

Proof. Suppose that λ \ µ is a cbs. Then it is clear that there is exactly
one allowable step of λ with respect to µ (namely, the leftmost step where
λ and µ differ) and its vertical distance from the corresponding step of µ is
2. Hence, by (13),

RJ,q
λ\µ(q) = (−1)|λ\µ|(1− q)

and the first equality in (15) follows.
Suppose now that λ \ µ is not a cbs. There are two cases to consider.
If λ \ µ is not connected then there are at least two allowable steps of λ

with respect to µ (namely, the leftmost steps of each connected component
of λ \ µ). Hence, by Corollary 3.4, (1 − q)2 divides RJ,q

λ\µ(q), and the result
follows.

If λ \ µ is not a border strip then there is a step of λ that is at a vertical
distance of at least 4 from the corresponding step of µ. But this implies
that there are at least two allowable steps of λ with respect to µ to the
left of this step (since each allowable step increases the vertical distance
between corresponding steps of λ and µ by 2, while non-allowable steps
weakly decrease it). Therefore, by Corollary 3.4, (1 − q)2 divides RJ,q

λ\µ(q)
and the result again follows. �

Corollary 3.4, as well as the well-known combinatorial invariance con-
jecture for Kazhdan-Lusztig polynomials (see, e.g., [8, §8.6]), suggest the
question of whether the polynomials RJ,q

u,v(q) (and hence, by Theorem 2.3
and Proposition 2.5, also P J,q

u,v (q), RJ,−1
u,v (q), and P J,−1

u,v (q)) depend only on
the poset [u, v]J . Although it is possible to answer this question using the
results obtained so far, this is easier to do using those in §5.

4. Dyck partitions.

In this section we introduce the main new combinatorial concept of this work,
namely Dyck partitions, and study some of its basic properties. These form
the cornerstones of the proof of our main result on the parabolic Kazhdan-
Lusztig polynomials in the next section. Dyck partitions possess several
other interesting combinatorial and enumerative properties, some of which
are given in §6.
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Let θ ⊂ P2 be a connected border strip. We say that θ is a Dyck cbs if it
is a “Dyck path” (see, e.g., [16, p. 173]). In other words, it is a Dyck cbs if
no cell of θ has level strictly less than that of either the leftmost or rightmost
of its cells. In particular, in a Dyck cbs the leftmost and rightmost cells have
the same level. For example, the cbs’s in Figures 5 and 6 are Dyck, while
those of Figures 7 and 8 are not. It is clear that a cbs is Dyck if and only if
its conjugate is Dyck.

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

@@
@@ ��

��

Figure 5.

�
�

�
�

�
�

�
�

�

�
�

�
��

��

��@@ @
@

@ @
@

@

@
@

@
@@

@
@

@
@@

Figure 6.

@@

@
@

@
@@

@
@

@
@@

@
@

@ @
@

@

�
�

�

�
�

�

�
�

�
��

�
�

�
��

��

Figure 7.

@@
@@ @

@
@

@
@

@
@@

@
@

@

�
�

�
��

�
�

�
�

�
�

�
�

�

��

Figure 8.

Given λ, µ ∈ P, µ ⊆ λ, we let (λ \µ)(1) def= (λ \µ) \ θ, where θ is the outer
border strip of λ \ µ. We now come to the crucial definition of this work.
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Let η ⊂ P2 be a skew partition. We define η to be Dyck in the following
inductive way:

i) η is Dyck if and only if each one of its connected components is Dyck;
ii) if η is connected then η is Dyck if and only if:

a) Its outer border strip is a Dyck cbs;
b) η(1) is Dyck.

Finally, we define ∅ to be Dyck. So, for example, (4, 4, 4, 3) is not Dyck while
(4, 4, 4, 4)\(1) and (4, 4, 4, 3)\(1) are Dyck. Note that it follows immediately
from our definitions that η is Dyck if and only if η′ is Dyck.

Let η ⊂ P2 be a skew partition (not necessarily Dyck). We define the
depth of η, denoted dp (η), inductively by letting

dp (η) def= c(θ) + dp (η(1))

(and dp (∅) def= 0), where θ is the outer border strip of η, and c(θ) denotes the
number of connected components of θ. So, for example, dp ((4, 4, 4, 3)) =
dp ((4, 4, 4, 4) \ (1)) = 3, while dp ((4, 4, 4, 3) \ (1)) = 4. Note that, if η is
Dyck, then

dp (η) ≡ |η| (mod 2)

(since a Dyck cbs has always odd cardinality, so c(θ) ≡ |θ| (mod 2)). Also
note that dp (η) ≤ |η| for all η, and that dp (η) = 1 if and only if η is a cbs.

We begin with the following simple but fundamental property of Dyck
partitions:

Proposition 4.1. Let η be Dyck. Then, below every upper peak of η there
is either a lower peak or a lower valley.

Proof. We may clearly assume that η is connected and that |η| ≥ 2. We
proceed by induction on |η|.

Let x be an upper peak of η. Since η is Dyck x cannot be the leftmost
nor the rightmmost cell of η. Hence x − 1 and x + 1 are exactly one level
below that of x. If the cell directly below x is not in η then clearly η has a
lower peak below x. So assume that the cell directly below x, call it x(1), is
in η (see Figure 9). Let θ be the outer border strip of η.
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Then, clearly, x− 1, x, x + 1 ∈ θ and hence x(1) is an upper peak of η(1).
But, since η is Dyck, η(1) is also Dyck. Hence, by induction, there is either
a lower peak or a lower valley below x(1), and therefore below x. �

Let η be a skew partition and x be one of its cells. We denote by dη(x)
the number of cells of η that are below x, including x. So, for example, if
η is the skew partition depicted in Figure 2 then dη(1) = 1, dη(5) = 3, and
dη(9) = 1.

The following technical fact is needed in the proof of the main result of
this section:

Lemma 4.2. Let η be Dyck, and x be an upper peak of η. Then

lv(x) ≥ lv(1) + dη(x)− 1,

where 1 is the leftmost cell of the connected component of η that contains x.

Proof. We proceed by induction on dη(x), the result being clear if dη(x) = 1.
So suppose dη(x) ≥ 2. Then reasoning as in the proof of the last proposition
(and keeping the same notation) we conclude that η(1) is Dyck and has an
upper peak, x(1), directly below x. Therefore from our induction hypothesis
we have that

lv(x) = lv(x(1)) + 2 ≥ lv(1(1)) + dη(1)(x(1)) + 1

≥ lv(1) + dη(1)(x(1))

= lv(1) + dη(x)− 1,

as desired, where 1(1) denotes the leftmost cell of the connected component
of η(1) that contains x(1). �

We now come to the main result of this section:

Theorem 4.3. Let η be a skew partition, and x be an upper peak of η.
Suppose that η has a lower valley, y, below x, y 6= x. Then the following are
equivalent:

i) η is Dyck;
ii) either η \ {x} or η \ {x, y} is Dyck, but not both;
iii) η \ {y} is Dyck.

Furthermore,

dp(η) = dp(η \ {x}) + 1 = dp(η \ {x, y}) = dp(η \ {y}) + 1.

Proof. We may clearly assume that η is connected. Then, since x 6= y, we
conclude that 1 < x < m (where 1 and m are the leftmost and rightmost
cells of η). Therefore |η| ≥ 4, and dη(x) ≥ 2.

We proceed by induction on dη(x), the result being not hard to check
for dη(x) = 2.
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So assume dη(x) ≥ 3. Let θ be the outer border strip of η. Then x −
1, x, x+1 ∈ θ, and therefore x(1) is an upper peak of η(1) (where x(1) is the cell
directly below x), and η(1) has the lower valley y below x(1). Furthermore,
the outer border strip of both η \ {x} and η \ {x, y} is (θ \ {x}) ∪ {x(1)},
while the outer border strip of η \ {y} is θ. Therefore,

η(1) \ {x(1)} = (η \ {x})(1),(16)

η(1) \ {x(1), y} = (η \ {x, y})(1),(17)

and

η(1) \ {y} = (η \ {y})(1).
These observations immediately imply, by our induction hypotheses, the

equivalence of i) and iii), They also imply, by our definitions and induction
hypotheses, that

dp (η \ {x}) = c((θ \ {x}) ∪ {x(1)}) + dp ((η \ {x})(1))

= c(θ) + dp (η(1) \ {x(1)})

= c(θ) + dp (η(1))− 1

= dp (η)− 1,

and similarly

dp (η \ {x, y}) = c((θ \ {x}) ∪ {x(1)}) + dp ((η \ {x, y})(1))

= c(θ) + dp (η(1) \ {x(1), y})

= c(θ) + dp(η(1))

= dp (η),

and

dp (η \ {y}) = c(θ) + dp ((η \ {y})(1))

= c(θ) + dp (η(1) \ {y})

= c(θ) + dp (η(1))− 1

= dp(η)− 1.

This proves the equalities after “Furthermore”.
We now prove the equivalence of i) and ii).
Assume first that η is Dyck. Then θ is Dyck and η(1) is Dyck. Hence, by

our induction hypotheses, either η(1) \{x(1)} or η(1) \{x(1), y} are Dyck, but
not both. But (θ \ {x}) ∪ {x(1)} is a Dyck cbs since, by Lemma 4.2,

lv(x(1)) = lv(x)− 2 ≥ lv(1)

(since dη(x) ≥ 3) and θ is Dyck. Therefore we conclude from (16) and (17)
that either η \ {x} or η \ {x, y} is Dyck, but not both, and this proves ii).
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Conversely, suppose that η is not Dyck.
Suppose first that θ is not Dyck. Then (θ \ {x})∪ {x(1)} is not Dyck (for

if it were θ would also be), so η \ {x} and η \ {x, y} are not Dyck.
Suppose now that θ is Dyck. Then η(1) is not Dyck. Hence, by induction,

η(1) \ {x(1)} and η(1) \ {x(1), y} are not Dyck. But, by (16) and (17), this
implies that η \ {x} and η \ {x, y} are not Dyck. �

The preceding result has the following “dual version” which we will also
need in the next section.

Proposition 4.4. Let η be a skew partition, and x be an upper peak of η.
Suppose that η has a lower peak below x, and let y be the cell directly below
this lower peak. Then the following are equivalent:

i) η is Dyck;
ii) either η \ {x} or (η \ {x}) ∪ {y}, are Dyck, but not both.

Furthermore

dp(η) = dp((η \ {x}) ∪ {y}) = dp(η \ {x})− 1.

Proof. We know from Theorem 4.3 that, in our current hypotheses, η is
Dyck if and only if η ∪ {y} is Dyck. But, by Theorem 4.3 , η ∪ {y} is Dyck
if and only if either (η ∪ {y}) \ {x} or (η ∪ {y}) \ {x, y} are Dyck, but not
both, and

dp ((η ∪ {y}) \ {x}) + 1 = dp (η \ {x}) = dp (η) + 1.

The result follows. �

5. Parabolic Kazhdan-Lusztig polynomials

In this section, using the results in the previous one, we prove the main
result of this work, namely an explicit combinatorial formula for the maximal
parabolic Kazhdan-Lusztig polynomials of the symmetric group. We then
derive some consequences of this formula and in particular use it to prove
that the polynomials are combinatorial invariants. Recall that throughout
this work we fix n ∈ P and i ∈ [n− 1], and we let J

def= S \ {si}.

Theorem 5.1. Let u, v ∈ W J , u ≤ v. Then

P J,q
u,v (q) =

{
q

1
2
(|λ\µ|−dp(λ\µ)), if λ \ µ is Dyck,

0, otherwise,

where µ
def= Λ(u) and λ

def= Λ(v). In particular, P J,q
u,v (q) depends only on

Λ(v) \ Λ(u).

Proof. We proceed by induction on l(v) = |λ|, the result being clearly true
if v = e (i.e., if λ = ∅). Let, for notation simplicity, P J

x,y
def= P J,q

x,y (q), for all
x, y ∈ W J . We may clearly assume that l(v)− l(u) ≥ 2.
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Let x be an upper peak of λ \ µ, and s be the corresponding element of
D(v) (see Lemma 2.9). Note that Λ(vs) = λ \ {x}. Then we have from
Proposition 2.6 that

P J
u,v = P̃ −

∑
{u≤w≤vs: ws<w}

µ(w, vs)q
l(v)−l(w)

2 P J
u,w(18)

where

P̃ =


P J

us,vs + qP J
u,vs, if us < u,

qP J
us,vs + P J

u,vs, if u < us ∈ W J ,
0, if u < us 6∈ W J .

Now let w ∈ W J be such that u ≤ w ≤ vs and ws < w, and ν
def= Λ(w).

Then from Lemma 2.9 we have that ν has an upper peak, y, below x. Note
that this implies that x is neither the leftmost nor the rightmost cell of λ\µ.
Now, since l(vs) < l(v), we conclude from our induction hypothesis that if
µ(w, vs) 6= 0 then necessarily (λ \ {x}) \ ν is Dyck and dp((λ \ {x}) \ ν) = 1.
This, as observed in the previous section, implies that (λ \ {x}) \ ν is a cbs.
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Therefore, there is exactly one cell, z, strictly below x and above y (for if
there were none then (λ\{x})\ν would not be connected, and if there were
more than one then (λ \ {x}) \ ν would not be a border strip). Therefore z
is a lower peak and, at the same time, an upper valley, of (λ \ ν) \ {x} (see
Figure 10), which contradicts the fact that (λ \ ν) \ {x} is a cbs. This shows
that µ(w, vs) = 0 and hence that the sum on the RHS of (18) is also = 0.
Therefore

P J
u,v =


P J

us,vs + qP J
u,vs, if us < u,

qP J
us,vs + P J

u,vs, if u < us ∈ W J ,
0, if u < us 6∈ W J .

(19)

There are now three cases to consider.

a) u < us 6∈ W J .
Then, by Lemma 2.9, λ \ µ has neither a lower valley nor a lower peak

below x. But, in this case, we conclude from Proposition 4.1 that λ \ µ is
not Dyck, and the result follows from (19).
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b) u < us ∈ W J .
Then, by Lemma 2.9, λ \ µ has a lower valley, y, below x and, clearly,

Λ(us) = µ ∪ {y}.
Suppose that λ \ µ is not Dyck. Then by Theorem 4.3 we conclude that

(λ \µ) \ {x, y} and (λ \µ) \ {x} are not Dyck. Hence we conclude from (19)
and our induction hypothesis that P J

u,v = 0, as desired.
Suppose now that λ\µ is Dyck. Then from Theorem 4.3 we conclude that

exactly one of (λ\µ)\{x, y} and (λ\µ)\{x} is Dyck. If (λ\µ)\{x, y} is Dyck
then from Theorem 4.3, (19), and our induction hypothesis we conclude that

P J
u,v = qP J

us,vs

= q q
1
2
(|(λ\µ)\{x,y}|−dp((λ\µ)\{x,y}))

= q q
1
2
(|(λ\µ)|−2−dp(λ\µ))

= q
1
2
(|λ\µ|−dp(λ\µ))

as desired. If (λ \ µ) \ {x} is Dyck then we conclude similarly that

P J
u,v = P J

u,vs

= q
1
2
(|(λ\µ)\{x}|−dp((λ\µ)\{x}))

= q
1
2
(|(λ\µ)|−1−(dp(λ\µ)−1))

= q
1
2
(|λ\µ|−dp(λ\µ))

as desired.

c) u > us.
Then, by Lemma 2.9, λ \ µ has a lower peak below x. Let y be the cell

directly below this lower peak. Then, clearly, Λ(us) = µ \ {y}.
Suppose that λ \ µ is not Dyck. Then, by Proposition 4.4, (λ \ µ) \ {x}

and ((λ \ µ) \ {x}) ∪ {y} are not Dyck. Hence we conclude from (19) and
our induction hypothesis that P J

u,v = 0 , as desired.
Suppose now that λ \ µ is Dyck. Then from Proposition 4.4 we conclude

that exactly one of (λ\µ)\{x} and ((λ\µ)\{x})∪{y} is Dyck. If (λ\µ)\{x}
is Dyck then from (19), Proposition 4.4, and our induction hypothesis we
conclude that

P J
u,v = q q

1
2
(|(λ\µ)\{x}|−dp((λ\µ)\{x}))

= q
1
2
(|λ\µ|−dp(λ\µ))

as desired. If ((λ \ µ) \ {x}) ∪ {y} is Dyck then we conclude similarly that

P J
u,v = q

1
2
(|((λ\µ)\{x})∪{y}|−dp (((λ\µ)\{x})∪{y}))

= q
1
2
(|λ\µ|−dp(λ\µ))
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and the result again follows.
This concludes the induction step and hence the proof. �

Because of the preceding theorem we sometimes also write P J,q
µ,λ(q) and

P J,q
θ (q) if µ, λ ∈ P, and θ is a skew partition.
We illustrate Theorem 5.1 with an example. Let u, v ∈ W J be such that

Λ(v)\Λ(u) equals the skew partition depicted in Figure 2. Then Λ(v)\Λ(u)
is Dyck and dp(Λ(v) \ Λ(u)) = 7 so

P J,q
u,v (q) = q

1
2
(33−7) = q13.

Note that from Proposition 2.4 we have that P J,−1
u,v (q) = PwJ

0 u,wJ
0 v(q)

for all u, v ∈ W J . On the other hand, the polynomials PwJ
0 u,wJ

0 v(q) have
been computed combinatorially (for u, v ∈ W J , J = S \ {si}) in [10] (see
also [18]). Thus Theorem 5.1 completes the computation of the maximal
parabolic Kazhdan-Lusztig polynomials of the symmetric groups.

We give below three consequences of Theorem 5.1. The first one deals
with the special case of lower intervals. Its simple verification is left to the
reader. Recall that given a partition λ we denote by d(λ) the length of its
Durfee square (see (1)).

Corollary 5.2. Let v ∈ W J . Then

P J,q
e,v (q) =

{
q

1
2
(|λ|−d(λ)), if λ is a square,

0, otherwise,

where λ
def= Λ(v).

Theorem 5.1 and Corollary 5.2 show that (just as for the polynomials
RJ,q

u,v(q), see the comments following Corollary 3.5) given u, v ∈ W J there
may not exist a w ∈ W J such that P J,q

u,v (q) = P J,q
e,w(q). This situation con-

trasts strikingly with that for upper intervals, as the next result shows. We
denote by w0(J) the longest element of W J .

Corollary 5.3. Let m ∈ P, and µ ⊆ (mm). Then

P J,q
µ,(mm)(q) =

{
q(

m

2
)− 1

2
(|µ|−d(µ)), if µ is self-conjugate,

0, otherwise.
(20)

In particular, for all u, v ∈ W J there is a w ∈ W J such that P J,q
u,v (q) =

P J,q
w,w0(J)(q).

Proof. The statements before “In particular” are an easy consequence of
Theorem 5.1. Let u, v ∈ W J . If P J,q

u,v (q) = 0 then the result is clear. So

assume P J,q
u,v (q) 6= 0. Then u ≤ v. Let η

def= Λ(v) \ Λ(u). From Theorem 5.1
we then have that η is Dyck and P J,q

u,v (q) = qj where j = 1
2 (|η| − dp (η)).
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But it is easy to see (e.g., by induction on dp (η)) that for any Dyck partition
η

4(|η| − dp (η)) ≤ |θ|2 − 1,(21)

where θ denotes the outer border strip of η. Since θ is Dyck and η ⊆ (n− i)i

we conclude that |θ| ≤ 2m − 1 where m
def= min(n − i, i). Therefore from

(21) we deduce that

j =
1
2
(|η| − dp (η)) ≤ m

4
(2m− 2) =

(m

2

)
.

On the other hand, it is easy to see that then there is a self-conjugate
partition µ ⊆ (mm) such that 1

2(|µ| − d(µ)) =
(m

2

)
− j. Therefore, by (20)

and Theorem 5.1, P J,q
ν,(n−i)i(q) = P J,q

µ,(mm)(q) = qj = P J,q
u,v (q), where ν is the

unique partition in P(n, i) such that (n− i)i \ ν ≈ (mm) \ µ. �

The following result is an immediate consequence of Theorem 5.1 and the
comments preceding Proposition 4.1:

Corollary 5.4. Let u, v ∈ W J , u ≤ v. Then

µ(u, v) =
{

1, if Λ(v) \ Λ(u) is a Dyck cbs,
0, otherwise.

Note that, by Proposition 2.4 and Part iii) of Theorem 2.3,

µ(u, v) = [q
1
2
(l(v)−l(u)−1)](Pu,v),

for all u, v ∈ W J . In this formulation Corollary 5.4 is equivalent to a result
in [10].

We conclude this section by answering the question raised at the end of
Section 3, namely of whether P J,q

u,v (and hence, by Theorem 2.3 and Propo-
sition 2.5, also RJ,q

u,v, RJ,−1
u,v , and P J,−1

u,v ) depend only on [u, v]J . To do this
we need a purely order theoretic result on skew partitions.

Lemma 5.5. Let θ, η be two connected skew partitions that are isomorphic
as posets. Then either θ ≈ η or θ ≈ η′.

Proof. Let (a1, b1, . . . , ar, br), (c1, d1, . . . , cs, ds) be the polygon notation of θ
introduced in §2. It is clear that these two sequences (in this order) uniquely
determine θ up to translation. We will show that either the two sequences
(a1, b1, . . . , ar, br), (c1, d1, . . . , cs, ds) (in this order) or the two sequences
(br, ar, . . . , b1, a1), (ds, cs, . . . , d1, c1) (in this order) are uniquely determined
by the isomorphism class of θ as a poset. Since (br, ar, . . . , b1, a1), (ds, cs, . . . ,
d1, c1) is the polygon notation of θ′, this will establish the result.

First note that there are exactly r maximal (respectively, s minimal)
elements in θ. So r and s (in this order) are uniquely determined by the
isomorphism class of θ as a poset.
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Next consider the set E(θ) consisting of those elements x ∈ θ such that

|{a ∈ θ : a . x}| ≤ 1, |{a ∈ θ : a / x}| ≤ 1,

(i.e., x is both join and meet-irreducible) and θ \ {x} is connected. Note
that E(θ) depends only on the isomorphism class of θ as a poset. Clearly,
1 and m (the leftmost and rightmost cells of θ) are in E(θ). Let x ∈ E(θ),
x 6= 1,m. Then necessarily

|{a ∈ θ : a . x}| = |{a ∈ θ : a / x}| = 1.

Let a (respectively, b) be the only element of θ covering (respectively, covered
by) x. Then a and b must lie on opposites sides of x (else x would be either
the leftmost or rightmost element of θ). But this implies that θ \ {x} is not
connected (see Figure 11) and contradicts the assumption that x ∈ E(θ).
This shows that E(θ) = {1,m}.
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Figure 11. In these cases θ \ {x} is not connected.

Choose x ∈ E(θ). Suppose that x = 1. Let x1 be the maximal element of
θ which is closest to x (in the sense of the distance in the Hasse graph of θ).
Then the distance between x and x1 is a1 − 1 (note that x1 can equal x).
Now let y1 be the upper valley of θ which is closest to x1. Then the distance
between x1 and y1 is b1. Now let x2 be the closest element to y1 among
the maximal elements of θ which are different from x1. Then the distance
between x2 and y1 is a2. Continuing in this way we see that the sequence
(a1, b1, . . . , ar, br) depends only on the isomorphism class of θ as a poset.
Similarly, we obtain the same conclusion for the sequence (c1, d1, . . . , cs, ds).
If instead x = m then the procedure just described yields that the sequences
(br, ar, . . . , b1, a1), (ds, cs, . . . , d1, c1), in this order, depend only on the iso-
morphism class of θ as a poset.

Therefore, if η ∼= θ as a poset, then the above procedure applied to η will
yield either the pair of sequences (a1, b1, . . . , ar, br), (c1, d1, . . . , cs, ds), in this
order, or their reverses in the same order. But this, as already remarked,
implies that either θ ≈ η or θ ≈ η′, as desired. �

We can now prove the second main result of this section.

Corollary 5.6. Let L,K ⊆ S, |L| = |K| = |S| − 1, and u, v ∈ WL, w, z ∈
WK be such that [u, v]L ∼= [w, z]K . Then

PL,q
u,v (q) = PK,q

w,z (q)
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(and hence also RL,q
u,v (q) = RK,q

w,z (q), RL,−1
u,v (q) = RK,−1

w,z (q), and PL,−1
u,v (q) =

PK,−1
w,z (q)).

Proof. By Proposition 2.8 we have that [u, v]L is isomorphic, as a poset, to
the interval [Λ(u),Λ(v)] in Young’s lattice. But it follows immediately from
the definitions and well known results in the theory of partially ordered sets
(see, e.g., [15, §3.4]) that the subposet of join-irreducibles of [Λ(u),Λ(v)] is
isomorphic to Λ(v) \ Λ(u), where the skew partition Λ(v) \ Λ(u) is seen as
a poset. Therefore, since [u, v]L ∼= [w, z]K , we conclude that Λ(v) \ Λ(u) ∼=
Λ(z)\Λ(w) (as posets), and the result follows from Lemma 5.5, Theorem 5.1,
and the definitions of Dyck partition and depth. �

Note that the preceding result gives an explicit procedure for computing
P J,q

u,v (and hence also RJ,q
u,v, RJ,−1

u,v , and P J,−1
u,v ) from [u, v]J .

6. Consequences.

In this section we derive some consequences of our main results. These in-
clude some identities for the ordinary Kazhdan-Lusztig and R-polynomials,
a combinatorial invariance result for the ordinary Kazhdan-Lusztig polyno-
mials of Grassmannian permutations, and some further combinatorial and
enumerative properties of Dyck partitions.

Our first two results concern the ordinary Kazhdan-Lusztig and R-polyno-
mials. Although their proof is immediate from Proposition 2.4, Theorem 5.1,
and Theorem 3.1, we feel that they should be stated explicitly.

Corollary 6.1. Let u, v ∈ W J , u ≤ v. Then∑
w∈WJ

(−1)l(w)Pwu,v(q) =
{

q
1
2
(|λ\µ|−dp(λ\µ)), if λ \ µ is Dyck,

0, otherwise,

where µ = Λ(u) and λ = Λ(v).

Corollary 6.2. Let u, v ∈ W J , u ≤ v, and x ∈ {−1, q}. Then∑
w∈WJ

(−x)l(w)Rwu,v(q) = (q − 1− x)l(v)−l(u)

·
∏

j∈v−1([i])\u−1([i])

(
1−

(
x2

q

)j+i+1−u(j)−v(j)
)

.

The combinatorial invariance conjecture for Kazhdan-Lusztig polynomials
(see, e.g., [8, §8.6]) states that Pu,v(q) depends only on [u, v] as a poset.
Although, as mentioned in the comments following Theorem 5.1, an explicit
combinatorial formula for Pu,v(q) is known if u and v are Grassmannians (i.e,
if |D(v)| = |D(u)| = |S|−1) the conjecture is open even in that case (we refer
the interested reader to [3, §7] for further information on the combinatorial
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invariance conjecture). Using Corollary 5.6 we can prove a very similar, and
computationally simpler, statement. Note that it is well-known (see, e.g.,
[8, Corollary 7.14]) that if u, v ∈ W then there exists u′ ∈ W such that
D(u′) ⊇ D(v) and Pu,v(q) = Pu′,v(q).

Corollary 6.3. Let u, v ∈ W be such that D(u) = D(v) and |D(u)| =
|S| − 1. Then Pu,v(q) depends only on

{x ∈ [u, v] : D(x) = D(u)}(22)

as a poset.

Proof. Let w, z ∈ W be such that D(w) = D(z) and |D(w)| = |S| − 1, and
suppose that {x ∈ [w, z] : D(x) = D(w)} is isomorphic to (22) as a poset.
We will show that then Pu,v(q) = Pw,z(q). Let, for brevity, L

def= D(u) and

K
def= D(w). We claim that

{x ∈ [u, v] : D(x) = L} ∼= [wL
0 u−1, wL

0 v−1]L(23)

as posets. To see this note first that if x ∈ W then D(x) = L if and only if
wL

0 x−1 ∈ WL. Also, if x, y ∈ W with D(x) = D(y) = L then

l(wL
0 x−1) = l(x−1)− l(wL

0 ) = l(x)− l(wL
0 ),

and similarly for y. So l(y) > l(x) if and only if l(wL
0 y−1) > l(wL

0 x−1).
Finally, if x, y ∈ W then yx−1 ∈ T if and only if wL

0 (y−1x)wL
0 ∈ T . This

shows, by the definition of Bruhat order, that if x, y ∈ W are such that
D(x) = D(y) = L then x ≤ y if and only if wL

0 x−1 ≤ wL
0 y−1. Therefore

the map x 7→ wL
0 x−1 is a poset isomorphism from (22) to [wL

0 u−1, wL
0 v−1]L,

and this proves (23). We therefore conclude from our assumptions that
[wL

0 u−1, wL
0 vv−1]L ∼= [wK

0 w−1, wK
0 z−1]K . This, by Corollary 5.6, Propo-

sition 2.4, and a well-known property of the Kazhdan-Lusztig polynomi-
als (see, e.g., [2, Corollary 4.4]), implies that Pu,v(q) = Pu−1,v−1(q) =
PL,−1

wL
0 u−1,wL

0 v−1(q) = PK,−1

wK
0 w−1,wK

0 z−1(q) = Pw−1,z−1(q) = Pw,z(q), as desired.
�

We feel that the poset in (22) is the “right” poset to consider for the
computation of the Kazhdan-Lusztig polynomials, and that Corollary 6.3
holds even without the (strong) hypothesis that |D(u)| = |S| − 1.

The close connection given by Theorem 5.1 between Dyck partitions and
the maximal parabolic Kazhdan-Lusztig polynomials of Sn allows a transfer
of information between combinatorial properties of the partitions and alge-
braic properties of the polynomials. We close by giving two such examples.

Let λ be a partition and θ be its outer border strip. We call a cell x ∈ θ
a left-to-right minimum (or lrm, for short) of λ if:

i) lv(y) ≥ lv(x) for all y ∈ θ, y ≤ x;
ii) lv(x) < lv(1).
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So 1, in particular, is never a lrm. Furthermore, we say that x is a descending
lrm (or dlrm, for short) if x is a lrm and x is not an upper valley of λ. We
denote by dlrm(λ) the number of dlrms of λ. So, for example, if λ =
(7, 4, 2, 1) then its descending left-to-right minimums are the cells 2, 3 and
6 of its outer border strip (see Figure 1) so dlrm(λ) = 3. We let DFS(λ) be
the number of Dyck final segments of λ. So,

DFS(λ) = |{µ ∈ P : µ ⊆ λ, λ \ µ is Dyck }|.

Theorem 6.4. Let λ = (λ1, λ2, . . . , λl) be a partition. Then

DFS(λ) = 2λ1−dlrm(λ).

Proof. We proceed by induction on |λ|, the result being clear if |λ| = 1.
Assume first that the outer border strip θ of λ is not Dyck. Since the

number of Dyck final segments of λ and λ′ are clearly the same, we may
assume that there is a cell of θ which is at a level strictly below the level
of cell 1 (say lv(1) = r). Let x ∈ θ be the leftmost such cell. Suppose that
x = (h, k) ∈ P2. Then x is at level r − 1, and is also the leftmost left-to-
right minimum of λ. Clearly, x cannot be in any Dyck final segment of λ.
Therefore, the Dyck final segments of λ are contained in λL ] λR, where
λL

def= (λ1− k, λ2− k, . . . , λh− k) and λR
def= (λh+1, λh+2, . . . , λl). Hence, by

induction, their number is

2(λL)12(λR)1−dlrm(λR).

Let x+ a be the leftmost cell of λR ∩ θ (so a ≥ 1). Then the level of x+ a is
r−a+1 and the level of x+ i is r− i− 1 for i = 0, . . . , a− 1. Therefore, the
cells x, x+1, . . . , x+a−2 are exactly the descending left-to-right minimums
of λ that are weakly to the left of x + a. This implies that a cell of θ ∩ λR

is a dlrm of λR if and only if it is a dlrm of λ. Therefore we have that
dlrm(λ) = dlrm(λR)+a−1. But, clearly, (λL)1 +(λR)1 +a−1 = λ1. Hence

2(λL)1 2(λR)1−dlrm(λR) = 2λ1−dlrm(λ),

as desired.
Assume now that θ is Dyck. Let ν ⊆ λ be a Dyck final segment of λ.

If 1 ∈ ν then, since the outer border strip of ν is Dyck, we conclude that
θ ⊆ ν. If 1 6∈ ν then, by a similar reasoning, m 6∈ ν (where m is the
rightmost cell of θ). Therefore either ν ⊇ θ or ν 63 1,m. If ν ⊇ θ then the
outer border strip of ν coincides with θ and ν \ θ is a Dyck final segment of
λ \ θ, and this is a bijection. If 1,m 6∈ ν then ν ∩ η = ∅ (where η is the inner
border strip of λ) and hence ν is a Dyck final segment of λ \ η. Therefore
DFS(λ) = DFS(λ \ θ) + DFS(λ \ η). But, by Proposition 2.1, λ \ θ ≈ λ \ η,
hence

DFS(λ) = 2 DFS(λ \ θ).(24)
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Furthermore, by our induction hypothesis,

DFS(λ \ θ) = 2(λ\θ)1−dlrm(λ\θ).(25)

Also, since θ is Dyck,

(λ \ θ)1 = λ1 − 1,(26)

and each one of its cells is at level ≥ r. This implies that dlrm(λ) = 0 and
that each cell of θ(1) (the outer border strip of λ\θ) is at level ≥ r−1 except
possibly for some upper valley of λ \ θ which could be at level r − 2. Since
the leftmost cell of θ(1) is at level r − 1 this implies that the only lrm’s of
λ\θ are upper valleys of λ\θ. Hence dlrm(λ\θ) = 0 and therefore, by (24),
(25), and (26),

DFS(λ) = 2 2(λ\θ)1−dlrm(λ\θ) = 2λ1 ,

as desired, since dlrm(λ) = 0. �

One consequence of the preceding theorem is particularly elegant.

Corollary 6.5. Let λ be a partition whose outer border strip is Dyck. Then

DFS(λ) = 2λ1 .

Proof. It is clear from our definitions that if the outer border strip of λ is
Dyck then dlrm(λ) = 0, so the result follows from Theorem 6.4. �

The enumeration of the Dyck final segments of a partition that we have
just carried out immediately “translates”, by Theorem 5.1, into an identity
for the maximal parabolic Kazhdan-Lusztig polynomials of Sn.

Corollary 6.6. Let v ∈ W J . Then∑
u∈W J

P J,q
u,v (1) = 2λ1−dlrm(λ),

where λ = Λ(v).

We conclude this section with an example in the “opposite direction”.
Namely a purely combinatorial result on Dyck partitions that follows rather
easily from algebraic properties of the maximal parabolic Kazhdan-Lusztig
and R-polynomials of Sn.

Proposition 6.7. Let λ \ µ be a skew partition. Then λ \ µ is Dyck if and
only if

|{µ ⊂ ν ⊆ λ : λ \ ν is Dyck, ν \ µ is a cbs of odd size}|(27)

> |{µ ⊂ ν ⊆ λ : λ \ ν is Dyck, ν \ µ is a cbs of even size}|.
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Proof. From Theorems 2.3, 5.1 and Proposition 2.8 we have that

q|λ\µ|P J,q
µ,λ

(
1
q

)
− P J,q

µ,λ(q) =
∑

µ⊂ν⊆λ

RJ,q
µ,ν(q)P

J,q
ν,λ (q).

Therefore

lim
q→1

q|λ\µ|P J,q
µ,λ

(
1
q

)
− P J,q

µ,λ(q)

q − 1

 =
∑

µ⊂ν⊆λ

lim
q→1

(
RJ,q

µ,ν(q)
q − 1

P J,q
ν,λ (q)

)
.(28)

But, by Theorem 5.1 and Proposition 3.6, the limit on the RHS of (28) is 0
unless λ \ ν is Dyck and ν \ µ is a cbs, in which case it equals (−1)|ν\µ|+1.
Therefore the RHS of (28) equals

|{µ ⊂ ν ⊆ λ : λ \ ν is Dyck, ν \ µ is a cbs of odd size}|

−|{µ ⊂ ν ⊆ λ : λ \ ν is Dyck, ν \ µ is a cbs of even size}|.

On the other hand, by Theorem 5.1, the LHS of (28) is 0 unless λ \ µ is
Dyck in which case it equals dp(λ \ µ). The result follows. �

Note that, since |λ \ ν| < |λ \ µ| for all partitions ν appearing in (27),
Proposition 6.7 gives an alternative definition of Dyck partitions. It would
be interesting to have a purely combinatorial proof of Proposition 6.7.

Acknowledgments. I would like to thank T. Braden, I. Goulden, D. Jack-
son, P. Littelmann, G. Papadopoulo, W. Soergel, and D. Wagner for useful
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grassmanniennes, Young tableaux and Schur functions in algebra and geometry,
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