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This paper considers the stability of a one-dimensional system during a catastrophic shift de-
scribed by the Hill function. Because the shifting process goes through a non-equilibrium region,
we applied the theory of Kosambi, Cartan, and Chern (KCC) to analyze the stability of this
region based on the differential geometrical invariants of the system. Our results showed that
the Douglas tensor, one of the invariants in KCC theory, affects the robustness of the trajectory
during a catastrophic shift. In this analysis, the forward and backward shifts can have different
Jacobi stability structures in the non-equilibrium region. Moreover, the bifurcation curve of the
catastrophic shift can be interpreted geometrically, as the solution curve in which the nonlin-
ear connection and the deviation curvature become zero. KCC analysis also shows that even if
the catastrophic pattern itself is similar, the stability structure in the non-equilibrium region is
different in some cases, from the viewpoint of the Douglas tensor.

Keywords: Jacobi stability; KCC theory; catastrophic shifts; deviation curvature; nonlinear con-
nection; differential geometry

1. Introduction

It is well known that although nonlinear systems (e.g., ecosystems) may experience gradual changes (e.g.,
temperature change), this can be punctuated by a sudden drastic shift to a contrasting state (e.g., a drastic
change in a population) ([May, 1977; Van Nes & Scheffer, 2007; Xiang et al., 2016]). In previous studies
([Scheffer et al., 2001; Kéfi et al., 2013; Donangelo et al., 2010]), this jump phenomenon (bifurcation) is
referred to as a catastrophic shift; thus, we use this term in the present paper. Catastrophe theory are
introduced by R. Thom (e.g., [Thom, 2018]), and Gilmore shows a thorough analysis of catastrophe theory
for scientists and engineers [Gilmore, 1981]. Since then, catastrophic shifts have been observed in various
areas of research, such as the spin system in a random magnetic field [Mirollo & Strogatz, 1990], complex
disease propagation [Wang & Zou, 2016], and nonlinear oscillations in the Jeffcott rotor model [Saeed &
El-Gohary, 2017].

As a typical example of catastrophic shifts, this paper considers the following type of ordinary differ-
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Fig. 1. Equilibrium points plotted against r for K = 1, 5 and 10. The light gray curve is na (the refuge level). The black curve
is nc (the outbreak level). The dotted curve is nb. The catastrophic shifts occurred at points B (r ≈ 0.38) and A (r ≈ 0.56)

ential equation in terms of the Hill function, which has been applied to various catastrophic phenomena
such as the sudden outbreak of an insect infestation (e.g., [Ludwig et al., 1978; Strogatz, 2014]):

dn

dt
= rn

(

1− n

K

)

− n2

1 + n2
, (1)

where n is a variable, and r and K are parameters. In an ecosystem, n, r, and K correspond to the
population size, growth rate, and carrying capacity, respectively. This paper uses the two parameters
(growth rate r and carrying capacityK) to consider the bifurcation curve in (K, r) space of the catastrophic
phenomena. Based on dn/dt = 0, we have four equilibrium points: n∗ = 0, na, nb, and nc, where 0 < na <
nb < nc. The points 0 and nb are unstable, while na and nc are stable. In an ecosystem, the smaller stable
point na is known as the refuge level of the population, and the larger stable point nc is the outbreak level.
In this case, the unstable point nb acts as a threshold.

The system undergoes saddle bifurcation. In ecosystems, the refuge level na exists for low carrying
capacities (see K = 1 in Fig. 1). When K increases, the outbreak level nc emerges (K = 5 in Fig. 1). The
new feature with larger K is the unstable state nb, which disrupts the stable states na and nc (K = 10 in
Fig. 1). The feature in a larger K is accompanied by hysteresis, or a lack of reversibility as a parameter is
varied; under these circumstances, the catastrophic shift behaves as follows. Suppose we increase parameter
r along the curve of K = 10 in Fig. 1. At point A, we see a shift from the equilibrium point to another
position. If r is reduced, another shift appears at point B.

Few studies have focused on the stability of a system during catastrophic shifts, as the shifting time
of catastrophes is regarded as near-instantaneous. However, catastrophic shifts in real ecosystems are not
instantaneous but they take time [Scheffer et al., 2009]. For instance, when the variable n in Eq. (1)
corresponds to the number of species (e.g., [Chiba, 1998; Yoshida, 2002]), the time scale of Eq. (1) is
geological; thus, the catastrophic shift cannot be regarded as instant. As such, there is the possibility that
some perturbations are added to the system during the shifting process.

Here, we consider system stability during catastrophic shifts, i.e., when a system shifts from one
equilibrium point to another, such that the shifting process goes through a non-equilibrium region. Thus,
stability analysis during a catastrophic shift should be conducted from a non-equilibrium perspective.

Recently, the theory of Kosambi, Cartan, and Chern (KCC) has received considerable attention due
to its ability to characterize the stability of non-equilibrium regions (e.g., [Antonelli et al., 2014; Gupta, &
Yadav, 2017; Chen, & Yin, 2019]). The theory derives geometrical invariants of an ordinary differential
equation, such as Eq. (1), and applies them to various systems, such as a dynamic system with bifurcations
in the non-equilibrium region (e.g., [Yamasaki & Yajima, 2017]). In this study, KCC theory is applied
to Eq. (1) for stability analysis during a catastrophic shift. In this application, the Douglas tensor, one
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of the invariant quantities in KCC theory, is used to investigate stability in the non-equilibrium region
([Yamasaki & Yajima, 2017])

The structure of this paper is as follows. In Section 2, we provide a brief review of KCC theory. In
Section 3, we provide a brief review of time-like potential in KCC theory. In Section 4, based on KCC
theory, we derive the geometrical quantities of Eq. (1) and consider stability during a catastrophic shift. In
Section 5, we consider climate change in terms of a catastrophic pattern similar to the one shown in Fig.
1, in which the controlling equation is not equivalent to Eq. (1). This analysis will show that the stability
during the catastrophic shift differs in some cases, even if the catastrophic pattern itself is similar. Section
6 provides our conclusions.

2. KCC theory

2.1. Basic theory

The study of the geometric invariants of a second-order ordinary differential equation is commonly called
KCC theory, i.e., the general path-space theory (e.g., [Antonelli, & Bucataru, 2003; Sabău, 2005a; Udriste &
Nicola, 2009; Neagu, 2013; Harko et al., 2016]). Because a dynamic system is often described by ordinary
differential equations, KCC theory has been applied to the geometric aspects of various dynamic systems,
including those for high-energy physics (e.g., [Lake & Harko, 2016; Dănilă et al., 2016]) and biological
populations (e.g., [Sabău, 2005b; Yamasaki & Yajima, 2013]). In this section, we provide a brief review of
KCC theory, as it relates to catastrophic shifts.

Let us consider the path equation

ẍi + gi(x, ẋ) = 0, (2)

where gi(x, ẋ) is a smooth function. According to KCC theory (e.g., [Antonelli, & Bucataru, 2003]), a small
perturbation in the trajectory of (2) gives the covariant form of the variational equation:

D2ui

Dt2
= P i

ju
j , (3)

where D(· · · )/Dt is a covariant differential and the initial conditions are given by u(0) = 0 and u̇(0) ̸= 0.
P i
j is the geometric object, called the deviation curvature tensor, defined by the following relation:

P i
j = − ∂gi

∂xj
+

∂N i
j

∂xk
ẋk −Gi

jkg
k +N i

kN
k
j , (4)

N i
j is a coefficient related to the nonlinear connection:

N i
j =

1

2

∂gi

∂ẋj
, (5)

and Gi
jk is a Berwald connection:

Gi
jk =

∂N i
j

∂ẋk
. (6)

Here, we consider the deviation curvature, which is an invariant quantity in KCC theory. According to
previous studies, there are other invariant quantities in KCC theory: the torsion tensor Qi

jk, the Riemann–

Christoffel curvature tensor Ri
jkl, and the Douglas tensor Di

jkl ([Douglas, 1927; Antonelli, & Bucataru,

2003]). They are defined as

Qi
jk =

1

3

(

∂P i
j

∂ẋk
− ∂P i

k

∂ẋj

)

, (7)
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Fig. 2. Type and stability of the equilibrium points (modified from [Yamasaki & Yajima, 2013]). (a) The well-known diagram
is expressed in terms of a Jacobian J of the linearized system around the equilibrium points. (b) The corresponding diagram is
expressed in terms of the geometrical quantities based on the theory presented by Kosambi, Cartan, and Chern (KCC theory).
Note that the N -axis is reversed. From [Yamasaki & Yajima, 2013], N = −(1/2)tr[J ], Z = det[J ] and P = N2

− Z.

Ri
jkl =

∂Qi
jk

∂ẋl
, (8)

Di
jkl =

∂Gi
jk

∂ẋl
. (9)

In previous analyses, the Douglas tensor was not considered because the function Di
jkl often takes a zero

value. In catastrophic shifts, the function Di
jkl can take a nonzero value, so we consider it here. Other

functions, such as Qi
jk and Ri

jkl, are not defined in a one-dimensional system, so we do not consider them.
As will be shown, the Douglas tensor controls stability during catastrophic shifts, i.e., in the non-equilibrium
region.

As the one-dimensional case is considered here, we set n1 = n, x1 = x, g1 = g, G1
11 = G, N1

1 = N , and
P 1
11 = P for simplicity.

2.2. J-stability and N-stability

It is known that the deviation curvature (4) is closely related to the Jacobi stability. The Jacobi stability
can be taken to represent the robustness of the whole trajectory of a system, in terms of small perturbations
[Lake & Harko, 2016; Sabău, 2005a]. According to previous studies [Antonelli, & Bucataru, 2003; Sabău,
2005a,b], the trajectories of a one-dimensional system are Jacobi-stable when P < 0, and Jacobi-unstable
when P ≥ 0. In this paper, we refer to the system as J-stable when P < 0, and as J-unstable when P ≥ 0.
Around the equilibrium points, J-stable and J-unstable correspond to a spiral and a node, respectively
(e.g., [Sabău, 2005b; Yamasaki & Yajima, 2013, 2016]).

Moreover, we consider the stability related to the nonlinear connection (5). In this paper, we refer to the
system as being N-stable when N > 0, as N-unstable when N < 0, and as N-neutral when N = 0. Around
the equilibrium points, N-stable, N-unstable, and N-neutral correspond to linear stable, linear unstable,
and neutral, respectively [Yamasaki & Yajima, 2013, 2016]. This association has been confirmed in well-
known systems, such as the prey–predator model and the two-species competition model ([Yamasaki &
Yajima, 2013]).

The relationship between the stability type of bifurcation theory and the geometric terms of KCC
theory around the equilibrium points is summarized in Fig. 2 [Yamasaki & Yajima, 2013] and Table 1.

In the last, we review the relationship between the stability in KCC theory and other definitions,
such as Lyapunov and orbital stability. Abolghasem (2013b) reviewed the relationship between Jacobi
and Lyapunov stability. Boehmer et al. (2010) analyzed the relationship between the Jacobi and linear
Lyapunov stability of dynamical systems in the fields of gravitation and astrophysics, and show that there
are cases in which Lyapunov and Jacobi stability do not agree. Abolghasem showed that these stability
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Table 1. Summary of the results presented in Fig. 2.

P > 0 P = 0 P < 0

N > 0 stable nodes degenerate nodes stable spirals

N = 0 saddle degenerate nodes center

N < 0 unstable nodes degenerate nodes unstable spirals

concepts agree in three cases of torque-free rigid body motion around a stationary point, circular orbits
in a central force field, and circular orbits in Schwarzschild spacetime ([Abolghasem, 2012a,b, 2013a]).
Abolghasem (2013b) explicitly showed that the stability derived from Lyapunov analysis is the same as
Jacobi stability for a Hamiltonian system with one degree of freedom. There few studies have examined the
relationship between KCC theory and orbital stability, although asymptotical orbital stability is considered
in predation and herbivory ecosystems ([Antonelli, & Kazarinoff, 1984]).

3. Time-like potential of KCC theory in bifurcation

Following Antonelli’s approach [Antonelli et al., 1993; Yamasaki & Yajima, 2017], we introduce the concept
of time-like potential xi, defined as

ni = aẋi, (10)

where a( ̸= 0) is a constant. This approach is well-suited to the study of bifurcation in dynamical systems
[Yamasaki & Yajima, 2017]. Here, the deviation curvature (4) can be simplified as follows

P i
j = −Gi

jkg
k +N i

kN
k
j . (11)

In the following analysis, we use (11) with (5) and (6).

3.1. A brief review of time-like potential in KCC theory

The concept of time-like potential in KCC theory is utilized, as described above. Time-like potential is a
complex subject, so a brief explanation of the concept is provided here. This work focuses on the jump
phenomenon (bifurcation) referred to as a catastrophic shift, so time-like potential is discussed in this
context in the next subsection.

The subject of KCC theory is a second-order ordinary differential equation (ODE), so KCC theory
cannot be applied to a first-order ODE. Therefore, the Jacobi stability bifurcations described by first-order
ODEs has not been studied. Antonelli et al., (1993) introduced the production process concept, which
enables the application of KCC theory to first order ODEs such as the logistic equation (see Antonelli,
1985). Here, the logistic equation becomes the second-order ODE that has been applied to real growth
data for several species ([Antonelli, 1985; Antonelli et al., 1993]). Furthermore, Yamasaki and Yajima
(2017) applied this technique to typical one-dimensional bifurcations described by first-order ODEs, such
as saddle-node, transcritical, and pitchfork bifurcations.

The production process is described in terms of the time-like potential defined by n = aẋ where
a > 0 ([Antonelli et al., 1993]). For example, the variable n corresponds to the number of individuals
in an ecosystem population. The population n physically exists, whereas the time-like potential x is a
purely mathematical construct. The time-like potential corresponds to the time integral of the population.
Therefore, this formulation has been used to study transient behaviors during the production process, such
as the effects of time feedback ([Hutchinson, 1948; Wright, 1955]) and the logistics of a system in a limited
environment ([Antonelli et al., 1993]).

It would be appropriate to express the analytical results in terms of n, rather than in the time-like
potential x. Specifically, this paper considers bifurcation stability, so it is necessary to express the geometric
quantities related to stability in terms of n. As we will see in the later section, the nonlinear connection
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related to N-stability given by Eq. (33), and the deviation curvature related to J-stability given by Eq.
(35), are expressed in terms of n in the last step (r and K are parameters). Thus, the time-like potential
can be used as part of the analytical process, but is not necessary for interpretation of the bifurcation
stability.

The equation derived by the time-like potential exhibits the same bifurcation as the original equation
([Yamasaki & Yajima, 2017]). In the next subsection, we will consider this point in the context of a more
general case by focusing on the bifurcation occurrence condition with respect to the geometric quantities
of KCC theory.

3.2. Bifurcation in a time-like potential system

The catastrophic shifts considered in this paper undergo saddle-node bifurcation [Strogatz, 2014]. Therefore,
it is important to consider the relationship between the bifurcation and time-like potential in KCC theory.
In this subsection, we consider this point by focusing on the bifurcation occurrence condition and implement
typical birfurcations, such as the saddle-node, transcritical, and pitchfork birfurcations in one-dimensional
space.

First, we consider the saddle-node bifurcation, which plays an essential role in catastrophic shifts. The
normal form of the saddle-node bifurcation is given by ṅ+ f(n, r) = 0, where

f(n, r) = −r − n2. (12)

The saddle-node bifurcation occurrence condition at the point x = 0, with the bifurcation parameter r = 0
is given by (e.g., [Iooss, & Joseph, 1980; Komuro, 2002]):

f(0, 0) = ∂nf(0, 0) = 0, ∂rf(0, 0) ̸= 0, ∂n∂nf(0, 0) ̸= 0. (13)

Eq. (12) satisfies all the conditions (13).
Next, we consider the time-like potential of the saddle-node bifurcation. From n = aẋ, the basic

equation ṅ + f(n, r) = 0 becomes aẍ + f(n, r) = 0. Through comparison between this equation and the
basic KCC theory equation: ẍ+ g(ẋ, r) = 0, we obtain (1/a)f(n, r) = g(ẋ, r). Moreover, the differential is
∂ẋ(· · · ) = a∂n(· · · ). From a > 0, the condition n = 0 corresponds to ẋ = 0, so several relationships can
be obtained between g and f , such as ∂ẋg(0, r) = a∂n((1/a)f(0, r)) = ∂nf(0, r). Alternatively, g leads to
geometric quantities such as (5), (6), (9) and (11). Therefore, geometric quantities can be derived directly
from f :

g =
f

a
, (14)

N =
1

2
∂nf, (15)

G =
1

2
a∂n∂nf, (16)

P = −1

2
f∂n∂nf +

1

4
(∂nf)

2, (17)

D =
1

2
a2∂n∂n∂nf. (18)

As n = 0 corresponds to ẋ = 0, these relationships show that conditions written in terms of f (13) can be
rewritten as conditions in terms of the geometric quantities of KCC theory:
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g(0, 0) = N(0, 0) = 0, ∂rg(0, 0) ̸= 0, G(0, 0) ̸= 0. (19)

The geometric quantities of saddle-node bifurcation derived using the time-like potential are given by
[Yamasaki & Yajima, 2017]:

g = −r

a
− n2

a
, N = −n, G = −a. (20)

These satisfy all of the conditions (19). That is, saddle-node bifurcation also occurs in the time-like potential
system.

Next, in a similar fashion, we consider transcritical bifurcation. The normal form of the system is given
by ṅ+ f(n, r) = 0, where

f(n, r) = −rn+ n2 (21)

The transcritical bifurcation occurrence condition is given by

f(0, 0) = ∂nf(0, 0) = f(0, r) = ∂rf(0, 0) = 0,

∂n∂rf(0, 0) ̸= 0, ∂n∂nf(0, 0) ̸= 0.
(22)

From (14), (15) and (16), these conditions can be rewritten geometrically

g(0, 0) = N(0, 0) = g(0, r) = ∂rg(0, 0) = 0,

∂rN(0, 0) ̸= 0, G(0, 0) ̸= 0.
(23)

The geometric quantities of transcritical bifurcation derived using the time-like potential are given by
[Yamasaki & Yajima, 2017]:

g = −r
n

a
+

n2

a
, N = −1

2
r + n, G = a. (24)

These satisfy all of the conditions (23). That is, transcritical bifurcation also occurs in the time-like potential
system.

Finally, we consider pitchfork bifurcation. The normal form of the system is given by ṅ+ f(n, r) = 0,
where

f(n, r) = −rn+ n3 (25)

The pitchfork bifurcation occurrence condition is given by

f(−n, r) = −f(n, r),

f(0, 0) = ∂nf(0, 0) = ∂rf(0, 0) = ∂n∂nf(0, 0) = 0,

∂n∂rf(0, 0) ̸= 0, ∂n∂n∂nf(0, 0) ̸= 0.

(26)

From (14), (15), (16) and (18), these conditions can be rewritten geometrically:

g(−n, r) = −g(n, r),

g(0, 0) = N(0, 0) = ∂rg(0, 0) = G(0, 0) = 0,

∂rN(0, 0) ̸= 0, D(0, 0) ̸= 0.

(27)

The geometric quantities of pitchfork bifurcation derived using time-like potential are given by [Yamasaki &
Yajima, 2017]:

g = −r
n

a
+

n3

a
, N =

1

2
(−r + 3n2), G = 3an, D = 3a2. (28)

These satisfy the necessary conditions (27), that is, pitchfork bifurcation also occurs in the time-like
potential system.

These results show that the typical bifurcation of a one-dimensional system also occurs in the time-like
potential system. Therefore, this approach can be used to consider the catastrophic shifts associated with
bifurcation.
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4. KCC theory and catastrophic shift

4.1. Geometrical quantities of the catastrophic shift

In KCC theory, the stability of the system is characterized by geometrical quantities, such as the nonlinear
connection and the deviation curvature. To derive these geometrical quantities of (1), this paper follows
Antonelli’s approach [Antonelli et al., 1993; Yamasaki & Yajima, 2017], in which the time-like potential
ni = aẋi is substituted into the basic equation (1):

ẍ+ g = 0 (29)

with

g = −rẋ+
r

K
aẋ2 +

aẋ2

1 + (aẋ)2
. (30)

Given that the term g is given by (30), we can use Eqs. (5), (6), and (11) to obtain the differential
geometrical quantities, as follows. From Eq. (5), the nonlinear connection can be derived by

N =
1

2

∂g

∂ẋ
(31)

= r

(

aẋ

K
− 1

2

)

+
aẋ

(1 + (aẋ)2)2
(32)

= r

(

n

K
− 1

2

)

+
n

(1 + n2)2
, (33)

where we use n = aẋ in the last step to express the geometrical quantity in terms of n. In a similar fashion,
Eq. (6) gives the Berwald connection:

G = a

(

r

K
+

1− 3n2

(1 + n2)3

)

, (34)

and Eq. (11) gives the deviation curvature:

P =
r2

4
+

rn3(3n− n3 − 4K)

K(1 + n2)3
+

3n4

(1 + n2)4
. (35)

As mentioned in Section 2.2, from the sign of the nonlinear connection and the deviation curvature,
we can consider the stability in the non-equilibrium region. To obtain a visual image of this structure, we
can rewrite the results of Fig. 1 as Fig. 3, in which we add the contour plots based on the geometrical
quantities (33) and (35) for each carrying capacity: K = 1, K = 5, and K = 10.

First, we consider the left side of Fig. 3. The positive N region is N-stable. Especially around the
equilibrium points, N-stable corresponds to linear stable (Fig. 2). In fact, Fig. 3 shows that the white solid
line (stable equilibrium points) is always in the positive N region. On the other hand, the white dotted line
(unstable equilibrium points) is in the negative N region (i.e., the N-unstable region). Next, we consider
the right side of Fig. 3, which shows that the region around the equilibrium points has a positive P , i.e.,
J-unstable. From Fig. 2, it can be seen that this corresponds to the node-type around the equilibrium
points, in agreement with the results of previous analyses (e.g., [Strogatz, 2014]).

Combining the contour plots in Fig. 3, we can draw Figs. 4 and 5, in which the areas are denoted as
follows: N-unstable (negative N) and J-unstable (positive P ), black; N-unstable and J-stable, white; N-
stable and J-unstable, dark gray; and N-stable and J-stable, light gray. The change in the equilibrium line
(white line) for each K is simple; however, the change in the non-equilibrium region (gray-scale patterns)
for each K is relatively complicated. In the next section, we will see that this complicated pattern affects
stability during a catastrophic shift.
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Fig. 3. Contour plots of the nonlinear connection (left) and the deviation curvature (right) for K = 1, 5, and 10. The white
solid and dotted lines indicate stable and unstable equilibrium lines, respectively (see Fig. 1). Note that the aspect ratio of
the figures of K = 1 and 5 is different from that in Fig. 1.

4.2. Stability during a catastrophic shift

As mentioned in the Introduction, the case of K = 10 is accompanied by a catastrophic shift, as shown
in Fig. 5. We plot the starting points as A1 and B1, and the corresponding ending points as A2 and B2.
During the catastrophic shift, the system shifts from one equilibrium point (A1 or B1) to another (A2 or
B2); during the shifting process, the system goes through a region of non-equilibrium.

First, we consider the J-stability of the shift from point A1 to A2. During this shift, the system goes
through two stability regions, denoted in black and dark-gray in Fig. 5. Given that the sign of the deviation
curvature is always positive, the system is always Jacobi unstable during the catastrophic shift. However,
the starting point A1 is located near the white region (J-stable region); thus, it is expected that the degree
of J-instability is smaller closer to point A1. To show this more clearly, the cross-section of the topographic
profile of the catastrophic shift in Fig. 3 is shown on the left side of Fig. 6. This shows that the degree of
J-instability increases toward the ending point A2. As mentioned in Section 2.2, the Jacobi stability can
be taken to represent the robustness of the system trajectory [Lake & Harko, 2016; Sabău, 2005a], and the
degree of Jacobi instability is inversely proportional to the value P (> 0). Therefore, the left side of Fig. 6
indicates that the trajectory robustness during the catastrophic shift decreases from A1 to A2.
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areas. The light (dark) gray region shows N-stable and J-stable (unstable) areas. The jump occurs at A1 (r ≈ 0.56, the right
gray arrow line) and B1 (r ≈ 0.38, the left gray arrow line)).
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Fig. 6. Cross-section of ”the topographic profile” of the deviation curvature in K = 10 (Fig. 3) along the catastrophic shift.
The left figure is the profile along A1 to A2 (the backward shift). The right figure is the profile along B1 to B2 (the forward
shift).

Next, we consider the J-stability of the shift from point B1 to B2. In a similar fashion, we draw the
cross-section from B1 to B2 (the right side of Fig. 6). This is different from the cross-section A1A2, i.e.,
the maximum value of the J-instability is not the ending point B2. In previous studies, this difference
between the two cross-sections, A1A2 and B1B2, was not addressed. KCC theory shows that the forward
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shift, B1B2 (the catastrophic shift to the lower alternative stable state), differs in trajectory robustness
compared with the backward shift, A1A2 (the catastrophic shift to the upper alternative stable state).

We consider the results in Fig. 6 based on the extremum of P and the equilibrium solution of n. From
Eqs. (1) and (35), we obtain

dP

dn
=

12

(1 + n2)4
(n+ 1)n(n− 1)

dn

dt
. (36)

This equation shows that the non-zero solutions of (1): na < nb < nc also give the extremum of P . On
the left side of Fig. 6 (i.e., n > 1), Eq. (36) shows the catastrophic shift from A1 to A2 (i.e., dn/dt > 0),
resulting in dP/dn > 0. On the right side of Fig. 6, Eq. (36) shows that the catastrophic shift from B1 to
B2 (i.e., dn/dt < 0) gives dP/dn < 0 for n > 1 and dP/dn > 0 for n < 1. From Eq. (11) with (5) and (6),
the general equation between dP/dn and dn/dt is given by [Yamasaki & Yajima, 2017]

dP

dn
=

D

a2
dn

dt
, (37)

where D is the Douglas tensor in one-dimensional space defined by D = a(∂G/∂n). In general, the Douglas
tensor is one of the invariant quantities in KCC theory, defined by Di

jkl = a(∂Gi
jk/∂n

l)([Douglas, 1927;

Antonelli, & Bucataru, 2003]). In fact, from (34), we obtain D/a2 = (1/a)(∂G/∂n) = 12n(n2−1)/(1+n2)4,
in agreement with the coefficient of Eq. (36). In previous analyses of KCC theory, the Douglas tensor had
not received attention for the following two reasons: (1) the function Dijkl often takes a zero value, because
we considered a system that includes a lower-order term; and (2) the stability analysis was conducted
around the equilibrium points. However, [Yamasaki & Yajima, 2017] suggests that the Douglas tensor is
a useful invariant quantity when considering N-stability and J-stability in the non-equilibrium region. In
fact, Eq. (37) shows that the sign of the Douglas tensor affects the robustness of the trajectory in the
non-equilibrium region (i.e., dn/dt ̸= 0).

Finally, we consider the large change in n in the non-catastrophic case. Enough perturbation at the
fold point of the equilibrium line can also cause a significant change in n in the absence of true bifurcation
(non-catastrophic shift) (e.g., Fig. b in [Scheffer et al., 2009]). In this paper, this case corresponds to the
right of Fig. 4; the perturbation at the fold point causes the system to go through two stability regions,
shown as light-gray and dark-gray areas. Thus, the non-catastrophic shift goes from the J-stable region to
the J-unstable region. As the catastrophic shift is always J-unstable, the robustness of a non-catastrophic
shift trajectory is qualitatively different from that of a catastrophic shift.

4.3. Bifurcation curve

The system described by Eq. (1) undergoes saddle bifurcation(e.g., [Strogatz, 2014]). The conditions for a
saddle-node bifurcation in Eq. (1) give r(1−n/K) = n/(1+n2) and (d/dn)[r(1−n/K)] = (d/dn)[n/(1+n2)].
From these two equations, we have

r =
2n3

(n2 + 1)2
and K =

2n3

n2 − 1
. (38)

These two equations give the bifurcation curve in (K, r) space. We consider the geometrical aspect of this
result from the viewpoint of KCC theory.

First, we consider the boundary of the N-stability in the non-equilibrium region. When N = 0 in Eq.
(33), we have

r =
2Kn

(K − 2n)(1 + n2)2
. (39)

This equation gives the boundary between N-stable and N-unstable conditions. For instance, on the left side
of Fig. 4, the boundary line between the black region (N-unstable and J-unstable) and the dark-gray region
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(N-stable and J-unstable) is given by Eq. (39). Since r > 0 in the ecological system, the boundary line
should satisfy n < K/2. This means that the carrying capacity K determines the limit of the N-unstable
region. The boundary line of the N-stability does not necessarily correspond to the equilibrium line (the
white line).

Next, we consider the boundary of J-stability. When P = 0 in Eq. (35), we have

r =
2n2

K(n2 + 1)3
(A±

√
B), (40)

with

A = n(n3 − 3n+ 4K), (41)

B = (n2 − 3)(n6 − 3n4 + 8Kn3 − 3K2n2 +K2). (42)

This equation corresponds to the boundary between J-stable and J-unstable. In Figs. 4 and 5, the white
lines are always included in the J-unstable region. This reflects the fact that the equilibrium point of Eq.
(1) is node-type.

The bifurcation curve described by Eq. (38) is expected to be related to the sign of the geometrical
quantities N and P . Then, we consider the simultaneous equations N = 0 and P = 0. The solutions of
these equations are given by

{

r = 2n3

(n2+1)2

K = 2n3

n2
−1

(43)

or

{

r = 8n3

(n2+1)3

K = 8n3

3n2
−1

(44)

The solutions (43) are in agreement with the previous solutions (38). This means that the bifurcation curve
can be interpreted geometrically as the solution curve in which all of the geometrical quantities, related to
the stability, become zero. Notably, other solutions (44) can be obtained; however, interpretation of these
solutions is beyond the scope of this paper. Further consideration of (44) will be undertaken in future
works.

5. Comparison with the results of other models: climate change

Climate change is one of the phenomena accompanied by a catastrophic shift (e.g., [Ghil, & Childress,
1987; Eisenman, & Wettlaufer, 2009; Bathiany et al., 2018]). In fact, the equilibrium temperature curve of
climate change, shown in Fig. 7, is folded backwards (e.g., [Li et al., 1997]), similar to the white equilibrium
curve of Fig. 5. Here we compare our results with those of the climate change model, from the viewpoint
of KCC analysis.

The model considered in this section is the classical climate change model, or zero-dimensional energy
balance model (e.g., [Budyko, 1969; Sellers, 1969; Crafoord, & Källén, 1978]):

C
dT

dt
= Ri −Ro, (45)

where C is the heat capacity of the system, T is the globally averaged temperature of the Earth, Ri

is the net incoming radiation, and Ro is the outgoing radiation. The functional form of Ri is given by
Ri = µS(1− α)/4, where S is the solar constant, i.e., 1.37× 103 [Wm−2], and µS corresponds to present-
day radiation conditions for µ = 1. The parameter α is the albedo considered below. Following [Crowley, &
North, 1991], the functional form of Ro is Ro = −363 + 2.1T . Several functional forms of the albedo α are
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Fig. 7. Equilibrium temperature depends on µ. The white solid and dotted lines indicate the stable and unstable equilibrium
lines, respectively. The black region shows N-unstable and J-unstable areas. The dark gray region shows N-stable and J-unstable
areas. The parameters are as follows: α0 = 0.7, α1 = 0.3, T1 = 230, and T2 = 270.

available in the literature ([Roques et al., 2014]). This paper follows the Sellers-type model, a widely used
model presented here as a step function ([Sellers, 1969]):

α =











α0, for T ≤ T1,

α0 + (α1 − α0)(T − T1)/(T2 − T1), for T1 < T < T2,

α1, for T ≥ T2,

(46)

where α0 > α1 > 0 and T1 < T2 are all constants.
From dT/dt = 0, we obtain the equilibrium temperature curve shown in Fig. 7 as white solid and

dotted lines. As described above, this pattern is folded backwards similar to the white equilibrium curve
shown in Fig. 5. Thus, climate change in the Seller-type model also shows a catastrophic shift.

Next, KCC theory was applied to derive the geometrical invariants of Eq. (45) with Eq. (46), similar to
the approach discussed in Section 3. As a result, we obtain the N-stability and J-stability shown in Fig. 7
as a gray-scale pattern. The results shown in Fig. 7 differ from those in Fig. 5, in that climate change in the
Seller-type model shows an another stability structure in the non-equilibrium region. In fact, the Douglas
tensor D of the model is calculated to be zero. Therefore, Eq. (37) shows that the deviation curvature is
constant during the catastrophic shift, which differs from the topographic profiles shown in Fig. 6. Given
that D = ∂G/∂ẋ = ∂2N/∂ẋ2 = (1/2)∂3g/∂ẋ3, the deviation curvature (i.e., J-stability) is not constant
(i.e., dP/dn ̸= 0) during the catastrophic shift when the system includes terms higher than second-order.

Moreover, the white area (J-stable area), seen near the bifurcation points A1 and B1 in Fig. 5, does not
exist in Fig. 7. Therefore, although the perturbation is added to the system at the bifurcation point, the
catastrophic process associated with climate change never goes through the J-stable region. These results
imply that even if the catastrophic pattern itself is similar, the stability structure in the non-equilibrium
region is different in some cases.

6. Conclusions

Our main conclusions are as follows.

(1) In our investigation of stability during a catastrophic shift (i.e., non-equilibrium), we identified a
difference between the backward shift and the forward shift. During the backward shift, the robustness
of the trajectory decreases toward the upper alternative equilibrium point. During the forward shift,
the robustness retains its minimum value during the catastrophic shift. The J-stability during these
catastrophic shifts can be described by the following:
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dP

dn
=

D

a2
dn

dt
, (47)

where D is the Douglas tensor. This equation means that the sign of the Douglas tensor determines
the extremum of P during the backward shift (dn/dt > 0) and the forward shift (dn/dt < 0).

(2) In KCC analysis, the bifurcation curve can be interpreted geometrically as the solution curve, in which
the nonlinear connection and the deviation curvature become zero.

(3) This paper considers mainly the catastrophic model often used to describe the ecosystem. We compared
the model with other catastrophic models often used to describe climate change, to show that even if
the catastrophic pattern itself is similar, the stability structure in the non-equilibrium region is different
in some cases. In this model, the Douglas tensor is zero; thus, Eq. (47) indicates that the deviation
curvature (i.e., J-stability) is constant during the catastrophic shift. In general, the J-stability of the
system is not constant during the catastrophic shift when the system includes terms higher than
second-order.
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scalar field models with minimal coupling to gravity in a cosmological background,” Adv. High Ene.

Phy. 2016, p. 26.
Eisenman, I., & Wettlaufer, J. S. [2009] ”Nonlinear threshold behavior during the loss of Arctic sea ice,”

PNAS, 106, 28–32.
Ghil, M., & Childress, S. [1987] ”Persistent anomalies, blocking and predictability,” Topics in Geophysical

Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics, (Springer, New
York), pp. 125–201.

Gilmore, R. [1981] Catastrophe theory for scientists and engineers, (Dover, New York).
Gupta, M. K., & Yadav, C. K. [2017] ”Jacobi stability analysis of Rössler system,” Int. J. Bifurcat. Chaos,
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