
KEA: Practical Automatic Keyphrase Extraction

Ian H. Witten,* Gordon W. Paynter,* Eibe Frank,* Carl Gutwin† and Craig G. Nevill-Manning‡

* Dept of Computer Science,
University of Waikato,

Hamilton, New Zealand.
{ihw,gwp,eibe}@cs.waikato.ac.nz

† Dept of Computer Science,
University of Saskatchewan,

Saskatoon, Canada
gutwin@cs.usask.ca

‡ Dept of Computer Science,
Rutgers University,

Piscataway, New Jersey
nevill@cs.rutgers.edu

ABSTRACT
Keyphrases provide semantic metadata that sum-
marize and characterize documents. This paper de-
scribes Kea, an algorithm for automatically extract-
ing keyphrases from text. Kea identifies candidate
keyphrases using lexical methods, calculates fea-
ture values for each candidate, and uses a machine-
learning algorithm to predict which candidates are
good keyphrases. The machine learning scheme
first builds a prediction model using training
documents with known keyphrases, and then uses
the model to find keyphrases in new documents.
We use a large test corpus to evaluate Kea’s effec-
tiveness in terms of how many author-assigned
keyphrases are correctly identified. The system is
simple, robust, and publicly available.

INTRODUCTION
Keyphrases provide a brief summary of a docu-
ment’s contents. As large document collections
such as digital libraries become widespread, the
value of such summary information increases.
Keywords and keyphrases1 are particularly useful
because they can be interpreted individually and
independently of each other. They can be used in
information retrieval systems as descriptions of the
documents returned by a query, as the basis for
search indexes, as a way of browsing a collection,
and as a document clustering technique.

In addition, keyphrases can help users get a feel for
the content of a collection, provide sensible entry
points into it, show how queries can be extended,
facilitate document skimming by visually empha-
sizing important phrases; and offer a powerful
means of measuring document similarity (e.g. [6],
[8], [13]).

1 throughout this document we use the latter term to

subsume the former

Keyphrases are usually chosen manually. In many
academic contexts, authors assign keyphrases to
documents they have written. Professional indexers
often choose phrases from a predefined “controlled
vocabulary” relevant to the domain at hand. How-
ever, the great majority of documents come without
keyphrases, and assigning them manually is a tedi-
ous process that requires knowledge of the subject
matter. Automatic extraction techniques are poten-
tially of great benefit.

Several methods have been proposed for generat-
ing or extracting summary information from text
(e.g. [1], [7], [10]). In the specific domain of key-
phrases, there are two fundamentally different ap-
proaches: keyphrase assignment and keyphrase extrac-
tion. Both use machine learning methods, and re-
quire for training purposes a set of documents with
keyphrases already attached.

Keyphrase assignment seeks to select the phrases
from a controlled vocabulary that best describe a
document. The training data associates a set of
documents with each phrase in the vocabulary, and
builds a classifier for each phrase. A new document
is processed by each classifier, and assigned the
keyphrase of any model that classifies it positively
(e.g. [3]). The only keyphrases that can be assigned
are ones that have already been seen in the training
data.

Keyphrase extraction, the approach used here, does
not use a controlled vocabulary, but instead
chooses keyphrases from the text itself. It employs
lexical and information retrieval techniques to ex-
tract phrases from the document text that are likely
to characterize it [12]. In this approach, the training
data is used to tune the parameters of the extraction
algorithm.

This paper describes a new keyphrase extraction
algorithm, Kea, that is simple and effective, and

performs at the current state of the art [5]. It uses
the Naïve Bayes machine learning algorithm for
training and keyphrase extraction. An implementa-
tion is available from the New Zealand Digital Li-
brary project (http://www.nzdl.org/).

Kea’s output is illustrated in Table 1, which shows
the titles of three research articles and two sets of
keyphrases for each article. One set gives the key-
phrases assigned by the author; the other was de-
termined automatically from the article’s full text.
Phrases in common between the two sets are itali-
cized.

In each case, the author’s keyphrases and the auto-
matically-extracted keyphrases are quite similar,
but it is not too difficult to guess which phrases are
the author’s. The giveaway is that Kea, in addition
to choosing several good keyphrases, also chooses
some that authors are unlikely to use—for example,
gauge, smooth, and especially garbage! Despite these
anomalies, the automatically-extracted lists seem to
provide a reasonable description of the three pa-
pers. In the case where no author-specified key-
phrases were available, Kea’s choices would be a
valuable resource to someone encountering these
three articles for the first time.

Our goal, therefore, is to provide useful metadata
where none existed before. Although we evaluate
Kea’s performance by comparing with the author’s
own keyphrases, we do not expect to equal them. If
we can extract reasonable summaries from text
documents, we give a valuable tool to the designers
and users of digital libraries. The remainder of this
paper describes Kea. The next section details the
design of the algorithm. We then give an example
of the prediction model generated by Kea and show
how it is used to assess a candidate keyphrase. Fol-
lowing that, we report on several experiments de-
signed to test Kea’s effectiveness and to explore the

effects of varying parameters in the extraction proc-
ess.

THE KEA ALGORITHM
Kea’s extraction algorithm has two stages:

1. Training: create a model for identifying key-
phrases, using training documents where the
author’s keyphrases are known.

2. Extraction: choose keyphrases from a new
document, using the above model.

The process is outlined in Figure 1. Both stages
choose a set of candidate phrases from their input
documents, and then calculate the values of certain
attributes (called features) for each candidate. We
describe these two steps first, and then outline the
training and extraction stages in more detail.

Candidate phrases
Kea chooses candidate phrases in three steps. It first
cleans the input text, then identifies candidates, and
finally stems and case-folds the phrases.

Input cleaning
ASCII input files are filtered to regularize the text
and determine initial phrase boundaries. The input
stream is split into tokens (sequences of letters, dig-
its and internal periods), and then several modifica-
tions are made:
• punctuation marks, brackets, and numbers are

replaced by phrase boundaries;
• apostrophes are removed;
• hyphenated words are split in two;
• remaining non-token characters are deleted, as

are any tokens that do not contain letters.

The result is a set of lines, each a sequence of tokens
containing at least one letter. Acronyms containing
periods, like C4.5, are retained as single tokens.

Protocols for secure, atomic transac-
tion execution in electronic commerce

Neural multigrid for gauge theories and
other disordered systems

Proof nets, garbage, and computa-
tions

anonymity
atomicity
auction
electronic

commerce
privacy
real-time
security
transaction

atomicity
auction
customer
electronic

commerce
intruder
merchant
protocol
security
third party
transaction

disordered sys-
tems

gauge fields
multigrid
neural multi-

grid
neural net-

works

disordered
gauge
gauge fields
interpolation

kernels
length scale
multigrid
smooth

cut-elimination
linear logic
proof nets
sharing

graphs
typed lambda-

calculus

cut
cut elimination
garbage
proof net
weakening

Table 1 Titles, and author- and machine-assigned keyphrases, for three papers

Phrase identification
Kea then considers all the subsequences in each line
and determines which of these are suitable candi-
date phrases. We have investigated several meth-
ods for determining suitability, such as looking for
noun phrases, but we have found that the following
rules are both simple and effective:
1. Candidate phrases are limited to a certain

maximum length (usually three words).
2. Candidate phrases cannot be proper names (i.e.

single words that only ever appear with an ini-
tial capital).

3. Candidate phrases cannot begin or end with a
stopword.

The stopword list contains 425 words in nine syn-
tactic classes (conjunctions, articles, particles,
prepositions, pronouns, anomalous verbs, adjec-
tives, and adverbs). For most of these classes, all the
words listed in an on-line dictionary were added to
the list. However, for adjectives and adverbs, we
introduced several subclasses, and words from the
subclasses were added only if they overlapped the
sixty most common words in the Brown corpus [9].
Furthermore, we only added frequently-occurring
words from these subclasses.

All contiguous sequences of words in each input
line are tested using the three rules above, yielding
a set of candidate phrases. Note that subphrases are
often candidates themselves. Thus, for example, a
line that reads the programming by demonstration
method will generate programming, demonstration,
method, programming by demonstration, demonstration
method, and programming by demonstration method as

candidate phrases, because the and by are on the
stopword list.

Case-folding and stemming
The final step in determining candidate phrases is
to case-fold all words and stem them using the iter-
ated Lovins method. This involves using the classic
Lovins stemmer [11] to discard any suffix, and re-
peating the process on the stem that remains until
there is no further change. So, for example, the
phrase cut elimination becomes cut elim.

Stemming and case-folding allow us to treat differ-
ent variations on a phrase as the same thing. For
example, proof net and proof nets are essentially the
same, but without stemming they would have to be
treated as different phrases. In addition, we use the
stemmed versions to compare Kea’s output to the
author’s keyphrases. We consider an author-
specified keyphrase to have been successfully iden-
tified if, when stemmed, it is the same as a ma-
chine-generated keyphrase, also stemmed. That is
why in Table 1 the phrases cut-elimination and cut
elimination, and proof nets and proof net, are consid-
ered equivalent.

We retain the unstemmed words for each phrase, in
their original capitalization, for presentation to the
user in case the phrase does turn out to be a key-
phrase. When several different capitalizations oc-
cur, the most frequent version is chosen.

Feature calculation
Two features are calculated for each candidate
phrase and used in training and extraction. They
are: TF IDF, a measure of a phrase’s frequency in a

Figure 1 The training and extraction processes

candidate
phrase

identification

feature
calculation

phrase in
document
frequency
calculation

candidate
phrase

identification

candidate
phrase

identification

global
corpus

training
documents

test
documents

learning

feature
generation

model

keyword
ranking

DF

training

extraction

document compared to its rarity in general use; and
first occurrence , which is the distance into the docu-
ment of the phrase’s first appearance.

TF IDF
This feature compares the frequency of a phrase’s
use in a particular document with the frequency of
that phrase in general use. General usage is repre-
sented by document frequency—the number of
documents containing the phrase in some large
corpus. A phrase’s document frequency indicates
how common it is (and rarer phrases are more
likely to be keyphrases). Kea builds a document
frequency file for this purpose using a corpus of
about 100 documents. Stemmed candidate phrases
are generated from all documents in this corpus
using the method described above. The document
frequency file stores each phrase and a count of the
number of documents in which it appears.

With this file in hand, the TF×IDF for phrase P in
document D is:

TF×IDF =
freq(P, D)

size(D)
×− log2

df(P)
N

, where

1. freq(P,D) is the number of times P occurs in D
2. size(D) is the number of words in D
3. df(P) is the number of documents containing P

in the global corpus
4. N is the size of the global corpus.

The second term in the equation is the log of the
probability that this phrase appears in any docu-
ment of the corpus (negated because the probability
is less than one). If the document is not part of the
global corpus, df(P) and N are both incremented by
one before the term is evaluated, to simulate its ap-
pearance in the corpus.

First occurrence
The second feature, first occurrence, is calculated as
the number of words that precede the phrase’s first
appearance, divided by the number of words in the
document. The result is a number between 0 and 1
that represents how much of the document pre-
cedes the phrase’s first appearance.

Discretization
Both features are real numbers and must be con-
verted to nominal data for the machine-learning
scheme. During the training process, a discretiza-
tion table for each feature is derived from the train-
ing data. This table gives a set of numeric ranges for
each feature, and values are replaced by the range
into which the value falls. Discretization is accom-

plished using the supervised discretization method
described in [4].

Training: building the model
The training stage uses a set of training documents
for which the author’s keyphrases are known. For
each training document, candidate phrases are
identified and their feature values are calculated as
described above. To reduce the size of the training
set, we discard any phrase that occurs only once in
the document. Each phrase is then marked as a
keyphrase or a non-keyphrase, using the actual
keyphrases for that document. This binary feature
is the class feature used by the machine learning
scheme.

The scheme then generates a model that predicts
the class using the values of the other two features.
We have experimented with a number of different
machine learning schemes; Kea uses the Naïve
Bayes technique (e.g [2]) because it is simple and
yields good results. This scheme learns two sets of
numeric weights from the discretized feature val-
ues, one set applying to positive (“is a keyphrase”)
examples and the other to negative (“is not a key-
phrase”) instances. An example model is described
in Section 3.

Extraction of new keyphrases
To select keyphrases from a new document, Kea
determines candidate phrases and feature values,
and then applies the model built during training.
The model determines the overall probability that
each candidate is a keyphrase, and then a post-
processing operation selects the best set of key-
phrases.

When the Naïve Bayes model is used on a candi-
date phrase with feature values t (for TF×IDF) and
d (for distance), two quantities are computed:

P[yes] =
Y

Y + N
PTF IDF [t | yes] Pdistance[d | yes] (1)

and a similar expression for P[no], where Y is the
number of positive instances in the training
files—that is, author-identified keyphrases—and N
is the number of negative instances—that is, candi-
date phrases that are not keyphrases. (The Laplace
estimator is used to avoid zero probabilities. This
simply replaces Y and N by Y+1 and N+1.)

The overall probability that the candidate phrase is
a keyphrase can then be calculated:

p = P[yes] / (P[yes]+P[no]) (2)

Candidate phrases are ranked according to this
value, and two post-process steps are carried. First,
TF×IDF (in its pre-discretized form) is used as a tie-
breaker if two phrases have equal probability
(common because of the discretization). Second,
we remove from the list any phrase that is a sub-
phrase of a higher-ranking phrase. From the re-
maining ranked list, the first r phrases are returned,
where r is the number of keyphrases requested.

KEYPHRASE EXTRACTION EXAMPLE
To illustrate the Naïve Bayes modeling method, we
exhibit a model for keyphrase extraction that was
learned in one experiment, and show its application
to a particular phrase.

Sample model
Table 2 shows the model. For this training set,
TF×IDF was discretized into five fixed levels, and
first occurrence into four levels. The discretization
boundaries are given at the top of Table 2.

Using this discretization, there are nine feature
weights for positive examples and nine for negative
ones. For example, PTF IDF[1 | yes] is the proportion
of positive examples that have a discretized TF×IDF
value of 1. The values learned for these weights are
shown in the middle of Table 2.

The final component of the learned model is the
number of positive and negative instances in the
training set, shown at the bottom of Table 2. These
determine the prior probability of a candidate
phrase being a keyphrase, in the absence of any
other information.

Application of the model
As an example of keyphrase assignment, the phrase
cut elimination , with stem cut elim , appears 16 times
in the third paper of Table 1. The size of this paper

is 5114 words; the phrase first appears at word 130.
There are 132 documents in the global corpus, and
cut elim appears in just one, but this paper is not in
the global corpus, so these counts are incremented
by 1. This gives cut elim the feature values TF×IDF =
0.0189, distance = 0.0254. After discretization, these
become 4 and 3.

The a posteriori likelihoods of this phrase being in
the yes and no classes are calculated from Equation
(1), and the overall probability for it being a key-
phrase is calculated from Equation (2) as 0.0805.
This makes it the fifth candidate phrase in the
probability ordered list, so it will be returned as a
keyphrase provided five or more are requested.

The individual words cut and elim are also candi-
date phrases. Although cut has the same probability
as cut elimination , it is ranked higher because its
(undiscretized) TF×IDF is greater; thus it will also
appear as a keyphrase. On the other hand, elim will
never be chosen as a keyphrase, no matter how
many are sought, because its probability is lower
than that of its superphrase.

EVALUATION
We carried out an empirical evaluation of Kea us-
ing documents from the New Zealand Digital Li-
brary. Our goals were to assess Kea’s overall effec-
tiveness, and also to investigate the effects of vary-
ing several parameters in the extraction process. We
measured keyphrase quality by counting the num-
ber of matches between Kea’s output and the key-
phrases that were originally chosen by the docu-
ment’s author. The following sections outline our
experimental methodology and report the results.

Discretization table Feature Discretization ranges

1 2 3 4 5

TF×IDF < 0.0031 [0.0031, 0.0045) [0.0045, 0.013) [0.013, 0.033) ≥ 0.033
distance < 0.0014 [0.0014, 0.017) [0.017, 0.081) ≥ 0.081

Class probabilities Feature Values Discretization ranges

1 2 3 4 5

TF×IDF P[TF×IDF | yes] 0.2826 0.1002 0.2986 0.1984 0.1182
P[TF×IDF | no] 0.8609 0.0548 0.0667 0.0140 0.0036

distance P[distance | yes] 0.1952 0.3360 0.2515 0.2173
P[distance | no] 0.0194 0.0759 0.1789 0.7333

Prior probabilities Class Training instances Prior probability

yes 493 P(yes) = Y/(Y+N) = 0.0044
no 112183 P(no) = N/(Y+N) = 0.9956

Table 2 A particular learned model for keyphrase identification

Methodology
Procedure
Kea was evaluated using the Computer Science
Technical Reports (CSTR) collection of the NZDL.
From the 46,000 documents in this corpus, we chose
1800 where the author had supplied keyphrases.
From these 1800, we randomly chose a test set of
500 documents, leaving 1300 as a pool from which
to select training documents. The large test set re-
duces measurement error, so our results will closely
approximate the expected values for any particular
document. Finally, a further set of documents were
chosen at random from the remainder of the CSTR
as our global corpus, used to build the document-
frequency file.

We then carried out four experiments to determine:
• Kea’s overall effectiveness
• the effect of changing the size and source of the

global corpus
• the effect of changing the number of training

documents
• Kea’s performance using abstracts rather than

full text

Results from each of these experiments are given
below; first, however, we describe our quality
measures, and discuss the advantages and disad-
vantages of using author-specified keyphrases as a
standard.

Measures
We assess Kea’s effectiveness by counting the key-
phrases that were also chosen by the document’s
author, when a fixed number of keyphrases are ex-
tracted. We use this measure instead of the more
common information-retrieval metrics of precision
and recall for three reasons. First, a single overall
value is more easily interpreted than two values.
Second, precision and recall can be misleading, for
it is easy to maximize precision at the expense of
recall (by returning the single most promising can-
didate phrase), or recall at the expense of precision
(by returning all candidates). Third, our measure
fits well with the expected behaviour of end-users,
who will likely ask for a certain number of key-
phrases for a document. If required, however, pre-
cision can be calculated by dividing our measure by
the number of phrases retrieved.

We chose to measure Kea against the choices of the
document’s author for several reasons: this method
of evaluation is simple, can be carried out auto-
matically, and allows the comparison of different
extraction schemes. However, there are several dis-
advantages to using author keyphrases as a stan-
dard—primarily that authors do not always choose

keyphrases that best describe the content of their
paper. Authors might choose phrases to slant their
work a certain way, or to maximize its chance of
being noticed by particular searchers. Also, key-
phrases are often chosen hastily, just before a
document is finalized. Finally, one can argue that
authors are in any case poorly qualified to choose
phrases to describe their work for others.

This problem raises two issues. First, the variance
in author choices makes it more difficult for an
automatic extraction scheme to perform well. Sec-
ond, Kea’s incorrect choices (those that did not
match an author choice) are not necessarily poor
keyphrases. A more revealing approach might be to
use human judges to independently assess the qual-
ity of Kea’s phrases, without using the original
author’s choices at all. This approach, however, re-
quires considerable resources even for a single ex-
periment, and so we leave this method for future
studies.

Results
Overall effectiveness
Our first experiment assessed Kea’s overall effec-
tiveness, when extracting up to 20 keyphrases per
test document. This experiment used 50 training
documents, the standard 500-document test set,
and a global corpus of 100 documents. Selected re-
sults are shown in Table 3 below, and illustrated in
Figure 2.

Keyphrases extracted Average matches with
author keyphrases

5 0.93
10 1.39
15 1.68
20 1.88
Table 3 Overall performance

Figure 2 Overall performance

In Figure 2, the lowest line shows the average
number of correct identifications. The upper lines
show three limits on possible performance. The first
shows how many keyphrases the author assigned:
clearly it is not possible for any algorithm to do bet-
ter than this using our measure of success. The as-
ymptote shows that the test set has an average of
5.4 author-assigned keyphrases per document. The
second line from the top indicates the number of
keyphrases that appear in the document’s text. No
method of keyphrase extraction (as opposed to as-
signment) can possibly identify keyphrases that do
not appear in the text. The third gives the number
of keyphrases appearing within the candidate
phrases (see Section 2.1).

Figure 2 thus illustrates where Kea loses ground.
The difference between the two middle lines repre-
sents how many keyphrases are not selected by the
candidate selection process. The difference between
the bottom two lines represents how much better
the machine learning scheme could conceivably do
in finding the authors’ keyphrases from among the
candidates.

The error bars on the lowest line (which are so
small as to be barely visible) represent variance due
to the choice of training documents. If one consid-
ers the population of all training sets of size 50,
there is a 99% chance that the population mean lies
within the error bar. Using training sets of only 50
documents represents the realistic situation where
there are not many documents available with
known keyphrases. Although the results for any
given training set will differ, we can be 99% sure
that Figure 2 accurately portrays the expected result
over different training sets.

Effect of size and source of global corpus
We carried out a series of tests to determine how
the size and source of the global corpus affects per-
formance. As described in Section 2.2, the global
corpus is used to build a document frequency file
used in TF×IDF calculations. We were interested in
the corpus’ size since a larger global corpus will
more closely approximate a phrase’s true frequency
in general use. We were also interested in the
source of the global corpus’ documents—in particu-
lar, whether the similarity of these documents to
the test documents would affect performance.

To test the effect of the source, we built different
global corpuses from: an independent set of similar
documents, the training set, the training and test
sets, the test set alone, and a set of documents con-
taining a different kind of material. In our trials, no
one global corpus significantly outperformed the
others.

Documents
in corpus

Average #
matches

(5 extracted)

Average #
matches

(15 extracted)
0 ? ?
1 0.674 1.307
5 0.738 1.445

10 0.822 1.560
50 0.884 1.644
100 0.868 1.644

1000 0.854 1.596
Table 4 Effect of varying global corpus size

To test the effect of global corpus size, we tested
Kea using corpuses of different sizes. For these tri-
als, we used a training set of 130 documents, and
the standard 500-document test set. All global cor-
puses were formed randomly from the CSTR
documents without author-assigned keyphrases. As

Figure 3 Effect of number of documents used
when calculating TF×IDF

Figure 4 Performance against number of training
files

shown in Table 4 and in Figure 3, there is little to be
gained by increasing the size of the global corpus
beyond about ten documents, and after 50 docu-
ments, there is no further improvement. However,
the document-frequency file is crucial for good re-
sults: without one, performance drops off dramati-
cally.

Figure 3 plots the number of keyphrases matched
against the size of the global corpus. The error bars
give 95% confidence intervals for the number of
correct keyphrases extracted from a test document,
given the particular training set.

Effect of training set size
Our third experiment investigated whether the
number of training documents (those with key-
phrases identified) affect performance. We were
interested in the practical problem of how many
training documents are necessary for good results.
In this experiment, we use a standard global corpus
of 100 CSTR documents, and the standard test set.
We varied the size of the training set from 1 to 130
documents, and tested Kea’s performance with
each set.

Training
documents

Average #
matches

(5 extracted)

Average #
matches

(15 extracted)
0 0.684 1.266
1 0.717 1.301
5 0.819 1.508

10 0.840 1.542
20 0.869 1.625
50 0.898 1.650
100 0.908 1.673
Table 5 Effect of varying training set size

Our results (Table 5 and Figure 4) show that per-
formance improves steadily up to a training set of
about 20 documents, and smaller gains are made
until the training set holds 50 documents. Figure 4
plots the number of correctly-identified keyphrases,
when 5 and 15 phrases are extracted, against the
number of documents used for training. The error
bars show 99% confidence limits.

These results indicate that good extraction per-
formance can be had with a relatively small set of
training documents. In a real-world situation where
a collection without any keyphrases is to be proc-
essed, human experts need only read and assign
keyphrases to about 25 documents in order to ex-
tract keyphrases from the rest of the collection.

Effect of document length
Our final experiment considered whether Kea’s
performance suffers when it only uses the abstracts
of documents to extract keyphrases, and compares
it to performance on the full text. This experiment
used the standard training, testing, and global cor-
pus sets, except that documents with no abstract
were ignored (leaving 110 training documents and
429 testing documents).

Table 6 shows the number of correct keyphrases
extracted using both the short and full documents.
As expected, Kea extracts fewer keyphrases from
abstracts than from the full document text.

Document
length

Average #
matches

(5 extracted)

Average #
matches

(15 extracted)
Full text 0.909 1.712

Abstracts 0.655 1.028
Table 6 Effect of varying document length

Figure 5 plots curves for the short document trial
only. The four solid lines, from top to bottom, indi-
cate: the number of keyphrases assigned by the
author, the number appearing in the shortened
document, the number that appear in the candidate
list, and the number that are correctly identified by
Kea. The dashed line is the number of correct key-
phrases identified when using the full document
text. The main reason for the reduced performance
when using abstracts seems to be that—not surpris-
ingly—far fewer of the author’s keyphrases appear
in the abstract than can be found in the entire
document.

Figure 5 Number of correct keyphrases against
number of phrases extracted

CONCLUSION
We have described and evaluated an algorithm for
automatically extracting keyphrases from text. Our
results show that Kea can on average match be-
tween one and two of the five keyphrases chosen
by the author in this collection.2 We consider this to
be good performance. Although Kea find less than
half the author’s phrases, it must choose from many
thousands of candidates; also, it is highly unlikely
that even another human would select the same set
of phrases as the original author.

Therefore, our next project is to leave the author’s
phrases behind and evaluate Kea’s phrases with a
more robust measure. We will use human judges to
rate how well a set of extracted keyphrases summa-
rize a particular document. Although this experi-
ment will provide a more realistic assessment, it is
clear that some of Kea’s phrases are poor regardless
of the measure. These poor phrases are not easy to
weed out: the reason that garbage is a poor keyword
(see Table 1) is subtle from a computational view-
point. Therefore, we will also investigate tech-
niques for determining what makes a phrase rea-
sonable from a human perspective.

At present, Kea’s performance is sufficient for the
applications it was designed for: providing support
for summarizing, browsing, searching and cluster-
ing in cases where manual keyphrase assignment is
infeasible. It can and will greatly assist designers
and users of large document collections.

Kea is available from the New Zealand Digital Li-
brary project (http://www.nzdl.org/).

ACKNOWLEDGMENTS
We would like to thank Peter Turney for sharing
his datasets, discoveries, and experiences.

REFERENCES

1. Brandow, R., Kitze, K. and Rau, L.R. “The
automatic condensation of electronic publica-
tions by sentence selection.” Information Proc-
essing and Management, 31 (5).

2 The version of Kea described here is domain-
independent. Other experiments [5] show how per-
formance can be improved by incorporating a de-
gree of domain dependence.

2. Domingos, P. and Pazzani, M. (1997) “On the
optimality of the simple bayesian classifier un-
der zero-one loss. Machine Learning, 29 (2/3),
103-130.

3. Dumais, S. T., Platt, J., Heckerman D., and Sa-
hami M. (1998). “Inductive learning algorithms
and representations for text categorization.”
Proceedings of ACM-CIK International Confer-
ence on Information and Knowledge Manage-
ment, pp 148-155

4. Fayyad, U.M. and Irani, K.B. (1993) “Multi-
interval discretization of continuous-valued at-
tributes for classification learning.” Proc
IJCAI’93, 1022-1027.

5. Frank, E., Paynter, G.W., Witten, I.H., Gutwin,
C. and Nevill-Manning, C.G. (1999) “Domain-
specific keyphrase extraction.” Submitted to
IJCAI.

6. Gutwin, C., Paynter, G.W., Witten, I.H., Nevill-
Manning, C.G. and Frank, E. (1998) “Improving
browsing in digital libraries with keyphrase in-
dexes.” Technical Report, Department of Com-
puter Science, University of Saskatchewan,
Canada.

7. Johnson, F.C., Paice, C.D., Black, W.J. and Neal,
A.P. (1993) “The application of linguistic proc-
essing to automatic abstract generation.” J
Documentation and Text Management 1.

8. Jones, S. (1998) “Link as you type.” Working
Paper 98/16, Department of Computer Science,
University of Waikato, New Zealand.

9. Kucera, H. and Francis, W.N. (1967) Computa-
tional analysis of present-day American English.
Brown University Press, Providence.

10. Kupiec, J., Pedersen, J. and Chen, F. (1995) “A
trainable document summarizer.” Proc SIGIR,
ACM Press, 68–73.

11. Lovins, J.B. (1968) “Development of a stemming
algorithm.” Mechanical Translation and Computa-
tional Linguistics, 11, 22-31.

12. Turney, P.D. (1999), Learning to Extract Key-
phrases from Text, National Research Council,
Institute for Information Technology, Technical
Report ERB-1057.

13. Witten, I.H. (1999) “Browsing around a digital
library.” Proc. Australasian Computer Science
Conference, Auckland, New Zealand, 1–14.

