
Soft Comput
DOI 10.1007/s00500-008-0323-y

FOCUS

KEEL: a software tool to assess evolutionary algorithms
for data mining problems

J. Alcalá-Fdez · L. Sánchez · S. García · M. J. del Jesus ·
S. Ventura · J. M. Garrell · J. Otero · C. Romero ·
J. Bacardit · V. M. Rivas · J. C. Fernández · F. Herrera

© Springer-Verlag 2008

Abstract This paper introduces a software tool named
KEEL which is a software tool to assess evolutionary algo-
rithms for Data Mining problems of various kinds including
as regression, classification, unsupervised learning, etc. It
includes evolutionary learning algorithms based on differ-
ent approaches: Pittsburgh, Michigan and IRL, as well as
the integration of evolutionary learning techniques with dif-
ferent pre-processing techniques, allowing it to perform a
complete analysis of any learning model in comparison to
existing software tools. Moreover, KEEL has been designed
with a double goal: research and educational.

Supported by the Spanish Ministry of Science and Technology under
Projects TIN-2005-08386-C05-(01, 02, 03, 04 and 05). The work of
Dr. Bacardit is also supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) under grant GR/T07534/01.

J. Alcalá-Fdez (B) · S. García · F. Herrera
Department of Computer Science and Artificial Intelligence,
University of Granada, 18071 Granada, Spain
e-mail: jalcala@decsai.ugr.es

S. García
e-mail: salvagl@decsai.ugr.es

F. Herrera
e-mail: herrera@decsai.ugr.es

L. Sánchez · J. Otero
Department of Computer Science,
University of Oviedo, 33204 Gijón, Spain
e-mail: luciano@uniovi.es

J. Otero
e-mail: jotero@uniovi.es

M. J. del Jesus · V. M. Rivas
Department of Computer Science,
University of Jaén, 23071 Jaén, Spain
e-mail: mjjesus@ujaen.es

Keywords Computer-based education · Data mining ·
Evolutionary computation · Experimental design · Graphical
programming · Java · Knowledge extraction · Machine
learning

1 Introduction

Evolutionary Algorithms (EAs) (Eiben and Smith 2003) are
optimization algorithms based on natural evolution and
genetic processes. Nowadays in Artificial Intelligence (AI),
EAs are considered as one of the most successful search tech-
niques for complex problems.

In recent years EAs, particularly Genetic Algorithms
(GAs) (Goldberg 1989; Holland 1975), have proved to be
an important technique for learning and knowledge extrac-
tion. This makes them also a promising tool in Data Mining

V. M. Rivas
e-mail: vrivas@ujaen.es

S. Ventura · C. Romero · J. C. Fernández
Department of Computer Sciences and Numerical Analysis,
University of Córdoba, 14071 Córdoba, Spain
e-mail: sventura@uco.es

C. Romero
e-mail: cromero@uco.es

J. C. Fernández
e-mail: i82fecaj@uco.es

J. M. Garrell
Department of Computer Science,
University Ramon Llull, 08022 Barcelona, Spain
e-mail: josepmg@salle.url.edu

J. Bacardit
Department of Computer Science and Information Technology,
University of Nottingham, NG8 1BB Nottingham, UK
e-mail: jqb@cs.nott.ac.uk

123



J. Alcalá-Fdez et al.

(DM) (Cordón et al. 2001; Freitas 2002; Ghosh and Jain
2005; Grefenstette 1993; Pal and Wang 1996; Wong and
Leung 2000). The idea of automatically discovering knowl-
edge from databases is a very attractive and challenging task.
Hence, there has been a growing interest in DM in several
AI-related areas, including EAs. The main motivation for
applying EAs to knowledge extraction tasks is that they are
robust and adaptive search methods that perform a global
search in place of candidate solutions (for instance, rules or
other forms of knowledge representation). The use of EAs in
problem solving is a widespread practice. Problems such as
image retrieval (Stejić et al. 2007), the learning of control-
lers in robotics (Mucientes et al. 2006) or the improvement of
e-learning systems (Romero et al. 2004) show their suitabil-
ity as problem solvers in a wide range of scientific fields.

Although EAs are powerful for solving a wide range of
scientific problems, their use requires a certain programming
expertise along with considerable time and effort to write a
computer program for implementing the often sophisticated
algorithm according to user needs. This work can be tedious
and needs to be done before users can start focusing their
attention on the issues that they should be really working on.
Given this situation, the aim of this paper is to introduce a
non-commercial Java software tool named KEEL (Knowl-
edge Extraction based on Evolutionary Learning).1 This tool
empowers the user to analyze the behaviour of evolution-
ary learning for different kinds of DM problems: regression,
classification, unsupervised learning, etc.

This tool can offer several advantages. First of all, it
reduces programming work. It includes a library with evo-
lutionary learning algorithms based on different paradigms
(Pittsburgh, Michigan and IRL) and simplifies the integra-
tion of evolutionary learning algorithms with different pre-
processing techniques. It can alleviate researchers from the
mere “technical work” of programming and enable them to
focus more on the analysis of their new learning models
in comparison with the existing ones. Secondly, it extends
the range of possible users applying evolutionary learning
algorithms. An extensive library of EAs together with easy-
to-use software considerably reduce the level of knowledge
and experience required by researchers in evolutionary com-
putation. As a result researchers with less knowledge, when
using this framework, would be able to apply successfully
these algorithms to their problems. Third, due to the use of
a strict object-oriented approach for the library and software
tool, these can be used on any machine with Java. As a result,
any researcher can use KEEL on his machine, independently
of the operating system.

This paper is arranged as follows. The next section intro-
duces a study on some non-commercial DM software pack-
ages and the main benefits that the KEEL offers with respect

1 http://www.keel.es

to other software tools. Section 3 presents KEEL: its main
features and modules. In Sect. 4, two examples are given to
illustrate how KEEL should be used. Finally, Sect. 5 points
out some conclusions and future work.

2 A study on some non-commercial data mining
software

A search on the Internet for DM software reveals the exis-
tence of many commercial and non-commercial DM tools
and libraries, developed throughout the scientific commu-
nity. We recommend visiting the KDnuggets software direc-
tory2 and The-Data-Mine site3 for an overall view of most
of them. Although a lot of them are commercially distrib-
uted (some of the leading commercial software are mining
suites such as SPSS Clementine,4 Oracle Data Mining5 and
KnowledgeSTUDIO6), a few are available as open source-
software. Open source tools can play an important role as is
pointed out in Sonnenburg et al. (2007).

We can distinguish between libraries whose purpose is
to develop new EAs for specific applications and DM suites
that incorporate learning algorithms (some of them including
evolutionary learning methods) and which in addition pro-
vide mechanisms to establish scientific comparisons among
them. Over the Internet and in specialized literature we can
find a large number of libraries dedicated to evolutionary
computation. As generic tools by which it is possible to
develop different EAs for many problems we would mention
ECJ (Luke et al. 2007), EO (Keijzer et al. 2001), Evolvica
(Rummler 2007), JCLEC (Ventura et al. 2008) and Open
Beagle (Gagné and Parizeau 2006). There are also libraries
designed for a specific type of EA: genetic algorithms
(Chuang 2000), genetic programming Punch and Zongker
(1998), memetic algorithms (Krasnogor and Smith 2000),
learning classifier systems (Meyer and Hufschlag 2006),
evolutionary multiobjective optimization (Tan et al. 2001)
or distributed EAs (Tan et al. 2003).

Nowadays, many researchers base their work on DM tools
(Rodríguez et al. 2006), or they employ tools specifically
designed for an area of DM, such as Wang et al. (2007).
We centre our interest on free distributions of software ded-
icated to the whole range of the DM field. Moreover we
are interested in tools where developers, since the source
code is available, have the choice of extending their func-
tionality. Probably the most well-known open source DM
package is Weka (Witten and Frank 2005), a collection of

2 http://www.kdnuggets.com/software
3 http://the-data-mine.com/bin/view/Software
4 http://www.spss.com/clementine
5 http://www.oracle.com/technology/products/bi/odm
6 http://www.angoss.com/products/studio/index.php

123

http://www.keel.es
http://www.kdnuggets.com/software
http://the-data-mine.com/bin/view/Software
http://www.spss.com/clementine
http://www.oracle.com/technology/products/bi/odm
http://www.angoss.com/products/studio/index.php


KEEL: a software tool to assess evolutionary algorithms for data mining problems

Java implementations of Machine Learning (ML) algorithms.
Others packages are available as open source software.

The aim of this section is to present a survey of many of
such tools, to summarize their strong points and to introduce
the reason we have designed KEEL and its benefits.

2.1 Non-commercial suites

In this section we list the open source DM software tools that
deserve mention due to their acknowledgement qualities or
acceptance.

− ADaM (Rushing et al. 2005): This toolkit is packaged as
a suite of independent components intended to be used in
grid or cluster environments. It provides feature selection
capabilities, image processing and data cleaning.

− D2K (with E2K) (Llorà 2006): This Data to Knowledge
toolkit provides a visual programming environment and
a set of templates intended to connect it with other stan-
dard packages. It incorporates external packages to per-
form image and text mining. D2K also offers an external
set of evolutionary mechanisms designed for developing
basic GAs (E2K).

− KNIME (Berthold et al. 2006): This modular environ-
ment enables easy integration of new algorithms, data
manipulation and visualization methods as models. Com-
patible with Weka, it also includes statistical methods via
the embedded usage of R (R Development Core Team
2005).

− MiningMart (Morik and Scholz 2004) is developed with
the purpose of re-using best-practice cases of pre-
processing high volume data sets. MiningMart is not
focused on the whole process of DM but only on one
of its steps, the pre-processing chain.

− Orange (Demšar and Zupan) is a library of core objects
and routines that includes a large variety of standard and
not-so-standard ML and DM algorithms, in addition to
routines for data input and manipulation. It also includes
a scriptable environment for prototyping new algorithms
and testing schemes using Python.

− Tanagra (Rakotomalala 2005): Tanagra is a DM soft-
ware for educational and research purposes. It covers
several ML schemes, data preparation and experimental
analysis.

− Weka (Witten and Frank 2005): Weka is the most well-
known software tool to perform ML and DM tasks. Its
algorithms can either be applied directly to a dataset
from its own interface or used in your own Java code.
Weka contains tools for data pre-processing, classifi-
cation, regression, clustering, association rules, and
visualization. Due to its enormous widespread usage, a
complete set of extra packages are available for complet-
ing its functionalities.

− RapidMiner (formerly YALE) (Mierswa et al. 2006): It
is a free open-source environment for KDD and ML
that provides a rich variety of methods which allow the
prototyping of new applications and also makes costly
re-implementations unnecessary.

All these software tools provide several functionalities,
but each one supports them in a different way. In the follow-
ing subsection we analyze how these software tools tackle a
defined set of basic and advanced functionalities.

2.2 Study based on functionality

Having described some of the available DM software tools,
we continue with their analysis based on functionality cri-
teria. We do not want to establish a comparison among all
software tools or to emphasize the advantages of one over
another. Our aim is to point out the main strengths and weak-
ness of each tool in order to compile a set of characteristics
in which the existing software tools lack advanced function-
ality.

With this aim, we have established a set of basic and
advanced characteristics that the suites may possess or not.
Our objective is to detect the major differences in the soft-
ware tools and then to categorize KEEL as an alternative to
these suites when other research requirements are needed.
Table 1 shows a summary of the studied characteristics. All
of them have been selected by evaluating all the software
tools, tutorials and guidelines for the usage of such suites.
The only characteristic that we have added for a different
reason is EAs integration, given that this is the main moti-
vation for KEEL. We distinguish four levels of support in
these characteristics: none (N), basic support (B), intermedi-
ate support (I) and advanced support (A). If features do not
have intermediate levels of support, the notation used is Yes
(Y) for supporting and No (N) for no-supporting.

Selected criteria are briefly explained as follows:

− Language is the programming language used in the
development of the software. C++ language is less
portable with respect to Java.

− Graphical Interface includes functionality criteria
Which tool can be managed through a handy interface
by the user, and how.
− Graph representation indicates that the experiment

or knowledge flows are represented by graphs with
node-edge connections. This alternative is more
interpretable and user-friendly than using a chain
of processes or a tree representation of modules.

− Data visualization includes tools for representing
the data sets through charts, tables or similar mech-
anisms.

123



J. Alcalá-Fdez et al.

Ta
bl

e
1

Su
m

m
ar

y
of

th
e

ch
ar

ac
te

ri
st

ic
s

of
ea

ch
D

M
so

ft
w

ar
e

to
ol

So
ft

w
ar

e
L

an
gu

ag
e

G
ra

ph
ic

al
In

te
rf

ac
e

In
pu

t/O
ut

pu
t

Pr
e-

pr
oc

es
si

ng
V

ar
ie

ty
L

ea
rn

in
g

V
ar

ie
ty

R
un

Ty
pe

s
A

dv
an

ce
d

Fe
at

ur
es

G
ra

ph
re

pr
es

en
-

ta
tio

n

D
at

a
vi

su
al

iz
a-

tio
n

D
at

a
m

an
ag

e-
m

en
t

A
R

FF
da

ta
fo

rm
at

O
th

er
da

ta
fo

rm
at

s

D
at

a
B

as
e

co
nn

ec
-

tio
n

D
is

cr
et

i-
za

tio
n

Fe
at

ur
e

Se
le

ct
io

n
In

st
an

ce
Se

le
ct

io
n

M
is

si
ng

va
lu

es
im

pu
ta

-
tio

n

C
la

ss
ifi

-
ca

tio
n

R
eg

re
s-

si
on

C
lu

st
er

-
in

g
A

ss
oc

ia
-

tio
n

R
ul

es

O
n-

lin
e

ru
n

O
ff

-l
in

e
ru

n
Po

st
-

pr
oc

es
s-

in
g

M
et

a-
L

ea
rn

in
g

St
at

is
tic

al
te

st
s

E
A

s

A
D

aM
C

+
+

N
N

I
Y

N
N

N
A

B
N

I
N

A
B

Y
N

N
N

N
B

D
2K

Ja
va

Y
A

I
Y

Y
Y

I
A

B
B

A
A

A
A

Y
N

N
N

N
I

K
N

IM
E

Ja
va

Y
A

A
Y

Y
Y

I
A

B
B

A
A

A
A

Y
N

N
N

I
B

M
in

in
gM

ar
t

Ja
va

Y
B

A
N

N
Y

I
A

B
I

B
B

N
N

Y
N

N
N

N
B

O
ra

ng
e

C
+

+
Y

A
A

N
Y

N
A

I
B

B
I

N
I

I
N

Y
N

N
N

N

Ta
na

gr
a

+
+

C
+

+
A

A
Y

Y
N

B
A

B
N

A
I

A
A

Y
N

N
I

A
N

W
ek

a
Ja

va
Y

A
A

Y
Y

Y
I

A
B

B
A

A
A

A
Y

N
N

I
N

B

R
ap

id
M

in
er

Ja
va

N
A

A
Y

Y
Y

I
A

B
B

A
A

A
A

Y
N

N
A

B
I − Data management comprises of a set of toolkits that

allow us to perform basic manual operations with the
data, such as removing or modifying rows, columns,
etc.

− Input/Output functionality criteria pointing out the dif-
ferent data formats supported, such as ARFF (the Weka
standard), others (including C4.5 input .names standard
(Quinlan 1993), .xls, .csv, XML) and database connec-
tion. The tool supports this functionality if it can load or
save data in these formats or can transform them into a
standard one that it uses.

− Pre-processing Variety. This comprises of discretization
(Liu et al. 2002), feature selection (Oh et al. 2004),
instance selection (Wilson and Martinez 2000) and miss-
ing values imputation (Batista and Monard 2003). The
trend of most of the suites is to offer a good feature selec-
tion and discretization set of methods, but they overlook
specialized methods of missing values imputation and
instance selection. Usually, the contributions included
are basic modules of replacing or generating null val-
ues and methods for sampling the data sets by random
(stratified or not) or by value-dependence.

− Learning Variety is support over main areas of DM,
such as predictive tasks (classification, regression,
anomaly/deviation detection), and descriptive tasks
(clustering, association rule discovery, sequential
pattern discovery) (Tan et al. 2006). Intermediate level
is awarded if the tool includes the classical models, and
advance level is awarded it the tool contains advanced
DM models from these areas.

− Off/On-line run of the experiment set up. An On-line
run implies that the tool interface and algorithm modules
need to be in the same machine and the experiments are
completely dependent on the software tool. An off-line
run entails the independence of the experiments created
with respect to the suite interface, allowing the experi-
ment to be executed in other machines.

− Advanced Features includes some of the less common
criteria incorporated for extending the functionality of
the software tool.

− Post-processing, usually for tuning the model
learned by an algorithm.

− Meta-learning, which includes more advanced learn-
ing schemes, such as bagging or boosting, or meta
learning of the algorithm parameters.

− Statistical tests for establishing comparisons of
results. An advanced support of this property
requires a complete set of parametric and non-
parametric statistical tests; a basic support implies
the existence of well-known standard statistical tests
(such as t-test).

123



KEEL: a software tool to assess evolutionary algorithms for data mining problems

− EA support indicates the integration of EAs into the
DM areas that the software tool offers. A basic sup-
port of this feature implies the use of genetic algo-
rithms in some techniques (usually, genetic feature
selection). To upgrade the level it is necessary to
incorporate EAs in learning or meta-learning
models.

Analyzing the characteristics presented in Table 1 we can
highlight that most of software tools have a none/basic sup-
port for two type of pre-processing, statistical tests and EAs.
Moreover, the software tools studied usually integrate a rep-
resentative set of algorithms for each type of learning and
pre-processing task. However the experiments are meant to
be run in the same environment, which is not practical if the
algorithms require high computation times (as with the EAs).

From our point of view users need a software tool where
they can analyze the behaviour of evolutionary and non-
evolutionary algorithms in each type of learning and pre-
processing task, as well as run their experiments in both
modes (off-line and on-line). Based on these requirements
we have developed the KEEL software tool. In the next sec-
tion we will describe KEEL in detail.

3 KEEL

KEEL is a software tool that facilitates the analysis of the
behaviour of evolutionary learning in the different areas of
learning and pre-processing tasks, making the management
of these techniques easy for the user. The models corre-
spond with the most well-known and employed models in
each methodology, such as evolutionary feature and instance
selection (Cano et al. 2003; Llorà and Garrell 2003), evolu-
tionary fuzzy rule learning and Mamdani rule tuning (Alcalá
et al. 2006; del Jesus et al. 2004; Otero and Sánchez 2006),
genetic artificial neural networks (Martínez-Estudillo et al.
2006; Rivera et al. 2007), Learning Classifier Systems
(Bernadó-Mansilla and Ho 2005; Wilson 1995), etc.

The presently available version of KEEL consists of the
following function blocks:7

– Data Management: This part is made up of a set of tools
that can be used to build new data, to export and import
data in other formats to or from KEEL format, data edition
and visualization, to apply transformations and partition-
ing to data, etc.

– Design of Experiments (off-line module): The aim of this
part is the design of the desired experimentation over the
selected data sets and providing for many options in

7 http://www.keel.es/software/prototypes/version1.0//ManualKeel.
pdf

different areas: type of validation, type of learning
(classification, regression, unsupervised learning), etc...

– Educational Experiments (on-line module): With a simi-
lar structure to the previous part, this allows for the design
of experiment that can be run step-by-step in order to dis-
play the learning process of a certain model by using the
software tool for educational purposes.

With all of these function blocks, we can affirm that KEEL
can be useful by different types of user, each of whom may
expect to find specific features in a DM software.

In the following subsections we describe in detail the user
profiles for whom KEEL is intended, its main features and
the different integrated function blocks.

3.1 User profiles

KEEL is primarily intended for two categories of users:
researchers and students, each of whom have a different set
of needs:

− KEEL as a research tool: The most common use of this
tool for a researcher will be the automation of experi-
ments and the statistical of results. Routinely, an experi-
mental design includes a mix of evolutionary algorithms,
statistical and AI-related techniques. Special care was
taken to allow a researcher to use KEEL to assess the
relevance of his own procedures. Since present standards
in ML require heavy computational work, the research
tool is not designed to provide a real-time view of the
progress of the algorithms but rather to generate a script
and be batch-executed in a cluster of computers. The tool
allows the researcher to apply the same sequence of pre-
processing, experiments and analysis to large batteries
of problems and focus his attention on a summary of
results.

− KEEL as an educational tool: The needs of a student
are quite different to those of a researcher. Generally
speaking, the aim is no longer that of making statisti-
cally sound comparisons between algorithms. There is
no need of repeating an experiment a large number of
times. If the tool is to be used in class, the execution
time must be short and a real-time view of the evolu-
tion of the algorithms is needed by the student to learn
how to adjust the parameters of the algorithms. In this
sense, the educational tool is a simplified version of the
research tool, where only the most relevant algorithms
are available. Execution is carried out in real time and the
user has a visual feedback of the progress of the algo-
rithms, being able to access the final results from the
same interface used to design the experimentation in the
first place.

123

http://www.keel.es/software/prototypes/version1.0//ManualKeel.pdf
http://www.keel.es/software/prototypes/version1.0//ManualKeel.pdf


J. Alcalá-Fdez et al.

Each type of user requires the availability of a different set
of features in order to be interested in using KEEL. The fol-
lowing subsection will describe the main features of KEEL,
covering all the features required by both kinds of user pro-
file.

3.2 Main features

KEEL is a software tool developed to ensemble and use dif-
ferent DM models. We would like to remark that this is the
first software toolkit of this type containing a library of evo-
lutionary learning algorithms with open source code in Java.
The main features of KEEL are:

− EAs are presented in predicting models, pre-processing
(evolutionary feature and instance selection) and post-
processing (evolutionary tuning of fuzzy rules).

− Data pre-processing algorithms proposed in specialized
literature are included: data transformation, discretiza-
tion, instance selection and feature selection.

− It contains a statistical library to analyze algorithm results
and comprises of a set of statistical tests for analyzing the
normality and heteroscedasticity of the results, as well as
performing parametric and non-parametric comparisons
of the algorithms.

− Some algorithms have been developed using the Java
Class Library for Evolutionary Computation (JCLEC)
software8 (Ventura et al. 2008).

− A user-friendly interface is provided, oriented towards
the analysis of algorithms.

− The software is designed for experiments containing
multiple data sets and algorithms connected among them-
selves to obtain the desired result. Experiments are inde-
pendently script-generated from the user interface for an
off-line run in the same or other machines.

− KEEL also allows for experiments in on-line mode,
intended as an educational support for learning the oper-
ation of the algorithms included.

− It contains a Knowledge Extraction Algorithms Library9

with the incorporation of multiple evolutionary learning
algorithms, together with classical learning approaches.
The principal families of techniques included are:
− Evolutionary rule learning models. Including differ-

ent paradigms of evolutionary learning.
− Fuzzy systems. Fuzzy rule learning models with a

good trade-off between accuracy and interpretabil-
ity.

− Evolutionary neural networks. Evolution and prun-
ing in neural networks, product unit neural networks,
and radial base models.

8 http://jclec.sourceforge.net/
9 http://www.keel.es/algorithms.php

− Genetic programing. Evolutionary algorithms that
use tree representations for knowledge extraction.

− Subgroup discovery. Algorithms for extracting
descriptive rules based on patterns subgroup
discovery.

− Data reduction (instance and feature selection and
discretization). EAs for data reduction.

KEEL integrates the library of algorithms in each of its the
function blocks. We have briefly presented its function blocks
above but in the following subsections, we will describe the
possibilities that KEEL offers in relation to data management,
off-line experiment design and on-line educational design.

3.3 Data management

The fundamental purpose of data preparation is to manipu-
late and transform raw data so that the information content
enfolded in the data set can be exposed, or made more acces-
sible (Pyle 1999). Data preparation comprises those tech-
niques concerned with analyzing raw data so as to yield
quality data, mainly including data collecting, data integra-
tion, data transformation, data cleaning, data reduction and
data discretization (Zhang et al. 2003). Data preparation can
be even more time consuming than data mining, and can
present equal challenges to data mining. Its importance lies
in that the real-world data is impure (incomplete, noisy and
inconsistent) and high-performance mining systems require
quality data (the removal of anomalies or duplications). Qual-
ity data yields high-quality patterns (to recover missing data,
purify data and resolve conflicts).

The Data Management module integrated in KEEL allows
us to perform the data preparation stage independently of the
remaining of the DM process itself. This module is focused
on the group of users denoted as domain experts. They are
familiar with their data, they know the processes that produce
the data and they are interested in reviewing those to improve
upon or analyze them. On the other hand, domain users are
those whose interest lies in applying processes to their own
data and they usually are not experts in DM.

Figure 1 shows an example window of the Data Manage-
ment module in the section of Data Visualization. The mod-
ule has seven sections, each of which is accessible through
the buttons on the left side of the window. In the following,
we will briefly describe them:

− Creation of a new data set: This option allows us to gen-
erate a new data set compatible with the other KEEL
modules.

− Import data to KEEL format: Since KEEL works with
a specific data format (alike the ARFF format) in all its
modules, this section allows us to convert various data

123

http://jclec.sourceforge.net/
http://www.keel.es/algorithms.php


KEEL: a software tool to assess evolutionary algorithms for data mining problems

Fig. 1 Data Management

formats to KEEL format, such as CSV, XML, ARFF,
extracting data from data bases, etc.

− Export data from KEEL format: This is the opposite
option to the previous one. It converts the data handled by
KEEL procedures in other external formats to establish
compatibility with other software tools.

− Visualization of data: This option is used to represent
and visualize the data. With it, we can see a graphical
distribution of each attribute and comparisons between
two attributes.

− Edition of data: This area is dedicated to managing the
data manually. The data set, once loaded, can be edited
by terms of modifying values, adding or removing rows
and columns, etc.

− Data Partition: This zone allows us to make the parti-
tions of data needed by the experiment modules to val-
idate results. It supports k-fold cross validation, 5 × 2
cross validation and hold-out validation with stratified
partition.

− Data Preparation: This section allows us to perform
automatic data preparation for DM, including cleaning,
transformation and reduction of data. All techniques inte-
grated in this section are also available in the experi-
ments-related modules.

3.4 Design of experiments: off-line module

In the last few years, a large number of DM software tools
have been developed for research purposes. Some of them are
libraries that allow reductions in programming work when
developing new algorithms: ECJ (Luke et al. 2007), JCLEC
(Ventura et al. 2008), learning classifier systems
(Meyer and Hufschlag 2006), etc. Others are DM suites that
incorporate learning algorithms (some of them may use EAs

for this task) and provide a mechanism to establish compar-
isons among them. Some examples are Weka (Witten and
Frank 2005), D2K (Llorà 2006), etc.

This module is a Graphical User Interface (GUI) that
allows the design of experiments for solving various prob-
lems of regression, classification and unsupervised learning.
Having designed the experiments, it generates the directory
structure and files required for running them in any local
machine with Java (see Fig. 2).

The experiments are graphically modeled, based on data
flow and represented by graphs with node-edge connections.
To design an experiment, we have first to indicate the type
of validation (k-fold cross validation (Kohavi 1995) or 5 × 2
cross validation (Dietterich 1998) and the type of learning
(regression, classification or unsupervised) to be used. Then,
we have to select the data sources, drag the selected meth-
ods into the workspace and connect methods and datasets,
combining the evolutionary learning algorithms with differ-
ent pre-processing and post-processing techniques, if needed.
Finally, we can add statistical tests to achieve a complete
analysis of the methods being studied, and a report box to
obtain a summary of the results. Notice that each component
of the experiment is configured in separate dialogues that can
be opened by double-clicking the respective node. Figure 3
shows an example of an experiment following the MOGUL
methodology (Cordón et al. 1998) and using a report box to
obtain a summary of the results. The configuration window
of the MOGUL method is also shown in this figure.

When the experiment has been designed, the user can
choose either to save the design in a XML file or to obtain
a zip file. If the user chooses a zip file, then the system will
generate the file with the directory structure and required files
for running the designed experiment in any local machine
with Java. This directory structure contains the data sources,

Dataset

Pre-proc

Method 2

Method 3

Test

Method 1

exe scripts dataset results

1.- Graphic design of the experiment

2.- Obtain the directory structure with
the required files

3.- Execute in any local machine

Fig. 2 Design of experiments

123



J. Alcalá-Fdez et al.

Fig. 3 Example of an experiment and the configuration window of a
method

the jar files of the algorithms, the configuration files in XML
format, a script file with all the indicated algorithms in XML
format, and a Java tool, named RunKeel, to run the experi-
ment. RunKeel can be seen as a simple EA scripting envi-
ronment that reads the script file in XML format, runs all the
indicated algorithms and saves the results in one or several
report files.

Obviously, this kind of interface is ideal for experts of
specific areas who, knowing the methodologies and meth-
ods used in their particular area of interest, intend to develop
a new method and would like to compare it with the well-
known methods available in KEEL.

3.5 Computer-based education: on-line module

There is a variety of terms used to describe the use of com-
puters in education (Ortega and Bravo 2000). Computer-
assisted instruction (CAI), computer-based education (CBE)
and computer-based instruction (CBI) are the broadest terms
and can refer to virtually any kind of computer use in educa-
tional environments. These terms may refer either to stand-
alone computer learning activities or to computer activities
which reinforce material introduced and taught by teachers.

Most of the software developed in DM and evolution-
ary computation domain is designed for research purposes

(libraries, algorithms, specific applications, etc.). But there
is some free software that are designed not only for research
but also for educational purposes. These systems are easy to
use due to the fact that they provide a GUI to assist user inter-
action with the system in all the tasks (selecting data, choos-
ing parameters, running algorithms, visualize the results,
etc.). Some examples of open source DM systems are Weka
(Witten and Frank 2005), RapidMiner (Mierswa et al. 2006)
and Tanagra (Rakotomalala 2005).

This module is a GUI that allows the user to design an
experiment (with one or more algorithms), run it and visual-
ize the results on-line. The idea is to use this part of KEEL as
a guideline to demonstrate the learning process of a certain
model. This module has a similar structure as the previous
one but includes only those algorithms and options that are
suitable for academic purposes.

When an experiment is designed the user can choose either
to save the experiment in a XML file or to run it. If the
user chooses to run it, then the system will show an auxil-
iary window to manage and visualize the execution of each
algorithm. When the run finishes, this window will show the
results obtained for each algorithm in separate tags, showing
for example the confusion matrices for classification or the
mean square errors for regression problems (see Fig. 4).

4 Case studies

This section presents two case studies as examples of the
functionality and process of creating an experiment in the
KEEL software tool. The first study is focused on the devel-
opment of a comparison of some algorithms and a subse-
quent analysis of the results using the off-line module. The

Fig. 4 Auxiliary window of an experiment with two algorithms

123



KEEL: a software tool to assess evolutionary algorithms for data mining problems

second example is a presentation of the educational on-line
module.

4.1 Off-line case study

Our purpose in this example is to make a comparison of
three methods that belong to different ML techniques and
use EAs in the learning task. The experiment graph is repre-
sented in Fig. 5. In this example, we have used a k-Nearest
Neighbour classifier with a previous pre-processing stage of
prototype selection guided by a CHC model (IS-CHC + Clas-
KNN) (Cano et al. 2003). We have also used a XCS classifier
(Wilson 1995) and an Evolutionary Product Unit based Neu-
ral Networks (NNEP) (Martínez-Estudillo et al. 2006).

By clicking the Experiment option in the main menu of
the KEEL software tool, we define the experiment as a
Classification problem and we use a 10-fold cross valida-
tion procedure to analyze the results. Next, the first step of
the experiment graph set-up is to choose the data sets to be
used. This example uses only the Iris data set, but more that
one data set may be chosen at the same time.

The graph in Fig. 5 represents the flow of data and results
from the algorithms and procedures. A node can represent an
initial data flow (data set), a pre-process/post-process algo-
rithm, a learning method, test, or a visualization of results
module. They can be easily distinguished according to the
color of the node. All their parameters can be adjusted by
clicking twice on the node. Logically, directed edges con-
necting two nodes imply a relation between them (data or
results interchange). When the data is interchanged, the flow
includes pairs of train-test data sets in classification and
regression problems. Thus, the graph in this specific example
describes a flow of data from the Iris data set to three nodes,
two of which are learning methods. Above them, the flow of
data is the input of a pre-process method, which operation
consists of reducing the training data by removing instances.

Fig. 5 Experiment graph of the off-line example

The resultant subset is used subsequently as a reference set
for the k-NN classifier. XCS and NNEP will use the full
training data for learning the model.

After the models are trained, the instances of the data set
are classified according to the training and test files. These
results are the inputs for the visualization and test modules.
The module Vis-Clas-Tabular receives these results as inputs
and generates output files with several performance metrics
computed from them, such as confusion matrices for each
method, accuracy and error percentages for each method,
fold and class, and a final summary of results. Figure 5 also
shows another type of results flow, interconnecting each pos-
sible pair of methods with a test module. In this case, the test
module used is the signed-rank Wilcoxon non-parametrical
procedure Stat-Clas-WilcoxonSR for comparing two samples
of results. The experiment establishes a pair-wise statistical
comparison of the three methods.

Once the graph has been defined, we can set up the asso-
ciated experiment and save it as zip file for an off-line run.
Following the structure of directories shown in Fig. 2, the
experiment is set up as a set of XML scripts and a jar pro-
gram for running it. Within the results directory, there will be
directories used for housing the results of the methods dur-
ing the run. If the method is a learning method, its associated
directory will house the learned model. In case of a test/visu-
alization procedure, its directory will house the results files.
Once the experiment has been run we can find the result file
of the confusion matrix (see Fig. 6 for the confusion matrix
of the IS-CHC + Clas-KNN classifier) or the one associated
with a Wilcoxon comparison (Fig. 7).

With a simple design of a logical flow of data by means
of a graph representation, a user can set up an experiment
involving several data sets, interconnect pre-processing tasks
with learning tasks, integrate and configure powerful learn-
ing models with classical ones, compile the obtained results
establishing statistical comparisons of them, and finally run
the entire process in another machine, the only requirement
being that Java is installed.

Fig. 6 Confusion Matrix obtained for IS-CHC + Clas-KNN

123



J. Alcalá-Fdez et al.

Fig. 7 Results for signed-rank Wilcoxon test comparing XCS with
NNEP

4.2 On-line case study

An example of an educational application of KEEL is shown
in Fig. 8. Our purpose is to observe the learning process of
a regression algorithm using fuzzy rule learning (Wang and
Mendel 1992) over an electrical energy distribution problem
(Cordón et al. 1999) by using five labels per variable.

The run of the experiment takes place in a new window
(see Fig. 9). The user/teacher can start, suspend/pause and
stop the experiment at any moment in order to see step by
step partial reports of the execution. Information provided
after the run finishes is the run-time, accuracy in each fold,
average accuracy, and a brief description of functions used
for evaluating accuracy of the solutions.

This GUI is ideal for students who can interpret the results
and learn to change parameters to improve results. In this
example, they can prove for themselves that Wand and
Mendel’s ad-hoc method (Wang and Mendel 1992) is very
fast but its results far from accurate.

Fig. 8 Experiment graph of the on-line example

Fig. 9 Window of results obtained in the experiment

5 Conclusion and future work

In this paper, we have described a non-commercial Java
software tool, named KEEL, that provides a software tool
for the analysis of evolutionary learning methods applied
to Data Mining problems. This tool relieves researchers of
much technical work and allows them to focus on the analysis
of their new learning models in comparison with the exist-
ing ones. Moreover, the tool enables researchers with little
knowledge of evolutionary computation methods to apply
evolutionary learning algorithms to their work.

We have shown the main features of this software tool
and we have distinguished three main parts: a module for
data management, a module for designing experiments with
evolutionary learning algorithms, and a module educational
with goals. We have also shown two case studies to illustrate
functionalities and the experiment set up processes.

The KEEL software tool is being continuously updated
and improved. At the moment, we are developing a new set
of evolutionary learning algorithms and a test tool that will
allow us to apply parametric and non-parametric tests on any
set of data. We are also developing data visualization tools for
the on-line and off-line modules, as well as a graphical tool
to run in a distributed environment the experiments designed
with the off-line module. Finally, we are also working on the
development of a data set repository that includes the data
set partitions and algorithm results on these data sets, the
KEEL-dataset.10

10 http://www.keel.es/datasets.php

123

http://www.keel.es/datasets.php


KEEL: a software tool to assess evolutionary algorithms for data mining problems

References

Alcalá R, Alcala-Fdez J, Casillas J, Cordón O, Herrera F (2006) Hybrid
learning models to get the interpretabilityaccuracy trade-off in
fuzzy modeling. Soft Comput 10(9):717–734

Batista GE, Monard MC (2003) An analysis of four missing data
treatment methods for supervised learning. Appl Artif Intell
17:519–533

Bernadó-Mansilla E, Ho TK (2005) Domain of competence of XCS
classifier system in complexity measurement space. IEEE Trans
Evol Comput 9(1):82–104

Berthold MR, Cebron N, Dill F, Di Fatta G, Gabriel TR, Georg F, Meinl
T, Ohl P (2006) KNIME: The Konstanz Information Miner, In:
Proceedings of the 4th annual industrial simulation conference,
Workshop on multi-agent systems and simulations, Palermo

Cano JR, Herrera F, Lozano M (2003) Using evolutionary algorithms
as instance selection for data reduction in KDD: An experimental
study. IEEE Trans Evol Comput 7(6):561–575

Cordón O, del Jesus MJ, Herrera F, Lozano M (1999) MOGUL: a meth-
odology to obtain genetic fuzzy rule-based systems under the iter-
ative rule learning approach. Int J Intell Syst 14(9):1123–1153

Cordón O, Herrera F, Sánchez L (1999) Solving electrical distribution
problems using hybrid evolutionary data analysis techniques. Appl
Intell 10:5–24

Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy
systems: Evolutionary tuning and learning of fuzzy knowledge
bases. World Scientific, Singapore, p 488

Chuang AS (2000) An extendible genetic algorithm framework for
problem solving in a common environment. IEEE Trans Power
Syst 15(1):269–275

del Jesus MJ, Hoffmann F, Navascues LJ, Sánchez L (2004) Induc-
tion of Fuzzy-Rule-Based Classifiers with Evolutionary Boosting
Algorithms. IEEE Trans Fuzzy Syst 12(3):296–308

Demšar J, Zupan B Orange: From experimental machine learning to
interactive data mining, White Paper (http://www.ailab.si/orange).
Faculty of Computer and Information Science, University of
Ljubljana

Dietterich TG (1998) Approximate Statistica Tests for Comparing
Supervised Classification Learning Algorithms. Neural Compu-
tation 10(7):1895–1924

Eiben AE, Smith JE (2003) Introduction to evolutionary computing.
Springer, Berlin, p 299

Freitas AA (2002) Data mining and knowledge discovery with evolu-
tionary algorithms. Springer, Berlin, p 264

Gagné C, Parizeau M (2006) Genericity in evolutionary computation
sofyware tools: principles and case-study Int J Artif Intell Tools
15(2):173–194

Ghosh A, Jain LC (2005) Evolutionary Computation in Data Mining.
Springer, New York pp 264

Goldberg DE (1989) Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley, New York, pp 372

Grefenstette JJ (1993) Genetic Algorithms for Machine Learning.
Kluwer, Norwell, p 176

Holland JH (1975) Adaptation in natural and artificial systems. The
University of Michigan Press, London, p 228

Keijzer M, Merelo JJ, Romero G, Schoenauer M (2001) Evolving
objects: A general purpose evolutionary computation library. In:
Collet P, Fonlupt C, Hao JK, Lutton E, Schoenauer M (eds) Arti-
ficial evolution: selected papers from the 5th european conference
on artificial evolution, London, UK, pp 231–244

Kohavi R (1995) A study of cross-validation and bootstrap for accuracy
estimation and model selection. In: Proceedings of the 14th
International Joint Conference on Artificial Intelligence
2(12):1137–1143

Krasnogor N, Smith J (2000) MAFRA: A Java memetic algorithms
framework. In: Proceedings of the Genetic and Evolutionary Com-
putation Workshops. Las Vegas, Nevada, USA, pp 125–131

Llorà X (2006) E2K: Evolution to knowledge. SIGEVOlution
1(3):10–16

Llorà X, Garrell JM (2003) Prototype induction and attribute selection
via evolutionary algorithms. Int Data Anal 7(3):193–208

Liu H, Hussain F, Lim C, Dash M (2002) Discretization: an enabling
technique. Data Min Knowl Discov 6(4):393–423

Luke S, Panait L, Balan G, Paus S, Skolicki Z, Bassett J, Hubley R,
Chircop A (2007) ECJ: A Java based evolutionary computation
research system. http://cs.gmu.edu/~eclab/projects/ecj

Martínez-Estudillo A, Martínez-Estudillo F, Hervás-Martínez C,
García-Pedrajas N (2006) Evolutionary product unit based neural
networks for regression. Neural Netw 19:477–486

Meyer M, Hufschlag K (2006) A generic approach to an object-oriented
learning classifier system library. Journal of Artificial Societies and
Social Simulation 9:3 http://jasss.soc.surrey.ac.uk/9/3/9.html

Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) YALE:
Rapid Prototyping for Complex Data Mining Tasks. In: Proceed-
ings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp 1–6

Morik K, Scholz M (2004) The MiningMart Approach to Knowl-
edge Discovery in Databases. In: Zhong N, Liu J (eds) Intelligent
Technologies for Information Analysis. Springer, Heidelberg,
pp 47–65

Mucientes M, Moreno DL, Bugarín A, Barro S (2006) Evolutionary
learning of a fuzzy controller for wallfollowing behavior in mobile
robotics. Soft Comput 10(10):881–889

Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature
selection. IEEE Trans Pattern Anal Mach Intell 26(11):1424–1437

Ortega M, Bravo J (2000) Computers and education in the 21st century.
Kluwer, Norwell, p 266

Otero J, Sánchez L (2006) Induction of descriptive fuzzy classifiers
with the Logitboost algorithm. Soft Comput 10(9):825–835

Pal SK, Wang PP (1996) Genetic algorithms for pattern recognition.
CRC Press, Boca Raton,p 336

Punch B, Zongker D (1998) lib-gp 1.1 beta. http://garage.cse.msu.edu/
software/lil-gp

Pyle D (1999) Data preparation for data mining. Morgan Kaufmann,
San Mateo, p 540

Quinlan JR (1993) C4.5: programs for machine learning. Morgan
Kaufmann, San Mateo, p 316

R Development Core Team (2005) R: A language and environment
for statistical computing. R Foundation for Statistical Computing.
Vienna, Austria http://www.R-project.org

Rakotomalala R (2005) TANAGRA: un logiciel gratuit pour l’enseigne-
ment et la recherche. In: Proceedings of the 5th Journées d’Extrac-
tion et Gestion des Connaissances 2:697–702

Rivera AJ, Rojas I, Ortega J, del Jesus MJ (2007) A new hybrid method-
ology for cooperative-coevolutionary optimization of radial basis
function networks. Soft Comput 11(7):655–668

Rodríguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new
classifier ensemble method. IEEE Trans Pattern Anal Mach Intell
28(10):1619–1630

Romero C, Ventura S , de Bra P (2004) Knowledge discovery with
genetic programming for providing feedback to courseware author,
user modeling and user-adapted interaction. J Personal Res
14(5):425–465

Rummler A (2007) Evolvica: a Java framework for evolutionary
algorithms. http://www.evolvica.org

Rushing J, Ramachandran R, Nair U, Graves S, Welch R, Lin
H (2005) ADaM: a data mining toolkit for scientists and engineers.
Comput Geosci 31(5):607–618

123

http://www.ailab.si/orange
http://cs.gmu.edu/~eclab/projects/ecj
http://jasss.soc.surrey.ac.uk/9/3/9.html
http://garage.cse.msu.edu/software/lil-gp
http://garage.cse.msu.edu/software/lil-gp
http://www.R-project.org
http://www.evolvica.org


J. Alcalá-Fdez et al.

Sonnenburg S, Braun ML, Ong ChS, Bengio S, Bottou L, Holmes G,
LeCun Y, Müller K-R, Pereira F, Rasmussen CE, Rätsch G,
Schölkopf B, Smola A, Vincent P, Weston J, Williamson RC
(2007) The need for open source software in machine learning.
J Mach Learn Res 8:2443–2466

Stejić Z, Takama Y, Hirota K (2007) Variants of evolutionary learning
for interactive image retrieval. Soft Comput 11(7):669–678

Tan JC, Lee TH, Khoo D, Khor EF (2001) A multiobjective evolution-
ary algorithm toolbox for computer-aided multiobjective optimi-
zation. IEEE Trans Syst Man Cybern B Cybern 31(4):537–556

Tan JC, Tay A, Cai J (2003) Design and implementation of a distributed
evolutionary computing software. IEEE Trans Syst Man Cybern
B Cybern 33(3):325–338

Tan PN, Steinbach M, Kumar V (2006) Introduction to Data Mining.
Addison-Wesley, Reading, p 769

Ventura S, Romero C, Zafra A, Delgado JA, Hervás C (2008) JCLEC:
a java framework for evolutionary computation. Soft Comput
12(4):381–392

Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from
examples. IEEE Trans Syst Man Cybern 22(6):1414–1427

Wang X, Nauck DD, Spott M, Kruse R (2007) Intelligent data analysis
with fuzzy decision trees. Soft Comput 11(5):439–457

Wilson SW (1995) Classifier fitness based on accuracy. Evol Comput
3(2):149–175

Wilson DR, Martinez TR (2000) Reduction techniques for instance-
based learning algorithms. Mach Learn 38:257–268

Witten IH, Frank E (2005) Data mining: practical machine learning
tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco,
p 525. http://www.cs.waikato.ac.nz/ml/weka/index.html

Wong ML, Leung KS (2000) Data mining using grammar based genetic
programming and applications. Kluwer, Norwell, p 232

Zhang S, Zhang C, Yang Q (2003) Data preparation for data mining.
Appl Artif Intell 17:375–381

123

http://www.cs.waikato.ac.nz/ml/weka/index.html

	Abstract
	Introduction
	A study on some non-commercial data mining software
	Non-commercial suites
	Study based on functionality
	KEEL
	User profiles
	Main features
	Data management
	Design of experiments: off-line module
	Computer-based education: on-line module
	Case studies
	Off-line case study
	On-line case study
	Conclusion and future work

