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Abstract We formalise a notion of dynamic rationality in terms of a logic of condi-
tional beliefs on (doxastic) plausibility models. Similarly to other epistemic statements
(e.g. negations of Moore sentences and of Muddy Children announcements), dynamic
rationality changes its meaning after every act of learning, and it may become true
after players learn it is false. Applying this to extensive games, we “simulate” the
play of a game as a succession of dynamic updates of the original plausibility model:
the epistemic situation when a given node is reached can be thought of as the result
of a joint act of learning (via public announcements) that the node is reached. We
then use the notion of “stable belief”, i.e. belief that is preserved during the play of
the game, in order to give an epistemic condition for backward induction: rationality
and common knowledge of stable belief in rationality. This condition is weaker than
Aumann’s and compatible with the implicit assumptions (the “epistemic openness
of the future”) underlying Stalnaker’s criticism of Aumann’s proof. The “dynamic”
nature of our concept of rationality explains why our condition avoids the apparent cir-
cularity of the “backward induction paradox”: it is consistent to (continue to) believe
in a player’s rationality after updating with his irrationality.
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Aumann has proved that common knowledge of substantive rationality
implies the backward induction solution in games of perfect information.
Stalnaker has proved that it does not. Halpern (2001)

The jury is still out concerning the epistemic conditions for backward induction, the
“oldest idea in game theory” (Aumann 1995, p. 635). Aumann (1995) and Stalnaker
(1996) take conflicting positions in the debate: the former claims that common “knowl-
edge” of “rationality” in a game of perfect information entails the backward induction
solution; the latter that it does not.1 Of course there is nothing wrong with any of
their relevant formal proofs, but rather, as pointed out by Halpern (2001), there are
differences between their interpretations of the notions of knowledge, belief, strategy
and rationality. Moreover, as pointed out by Binmore (1987, 1996), Bonanno (1991),
Bicchieri (1989), Reny (1992), Brandenburger (2007) and others, the reasoning under-
lying the backward induction method seems to give rise to a fundamental paradox: in
order even to start the reasoning, a player assumes that (common knowledge of, or
some form of common belief in) “rationality” holds at all the last decision nodes (and
so the obviously irrational leaves are eliminated); but then, in the next reasoning step
(going backward along the tree), some of these (last) decision nodes are eliminated,
as being incompatible with (common belief in) “rationality”! Hence, the assumption
behind the previous reasoning step is now undermined: the reasoning player can now
see that if those decision nodes that are now declared “irrational” were ever to be
reached, then the only way that this could happen is if (common belief in) “rational-
ity” failed. Hence, she was wrong to assume (common belief in) “rationality” when
she was reasoning about the choices made at those last decision nodes. This whole
line of arguing seems to undermine itself!

Belief dynamics

In this paper we use as a foundation the relatively standard and well-understood setting
of Conditional Doxastic Logic (CDL, Board 2002; Baltag and Smets 2006, 2008a, b),
and its “dynamic” version (obtained by adding to CDL operators for truthful public
announcements [!ϕ]ψ): the logic PAL-CDL, introduced by van Benthem (2007a). In
fact, we consider a slight extension of this last setting, namely the logic APAL-CDL,
obtained by further adding dynamic operators for arbitrary (truthful) public announce-
ments [!]ψ , as in Balbiani et al. (2008). We use this formalism to capture a novel notion
of “dynamic rationality” and to investigate its role in decision problems and games.
As usual in these discussions, we take a deterministic stance, assuming that the initial
state of the world at the beginning of the game already fully determines the future play,
and thus the unique outcome, irrespective of the players’ (lack of) knowledge of future

1 Others agree with Stalnaker in disagreeing with Aumann: for example, Samet (1996) and Reny (1992)
also put forwards arguments against Aumann’s epistemic characterisation of subgame-perfect equilibrium.
Section 7 is devoted to a discussion of related literature.
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moves. We do not, however, require that the state of the world determines what would
happen, if that state were not the actual state. That is, we do not need to postulate the
existence of any “objective counterfactuals”. But instead, we only need “subjective
counterfactuals”: in the initial state, not only the future of the play is specified, but also
the players’ beliefs about each other, as well as their conditional beliefs, pre-encoding
their possible revisions of belief. The players’ conditional beliefs express what one
may call their “propensities”, or “dispositions”, to revise their beliefs in particular
ways, if given some particular pieces of new information.

Thus at the outset of a game, all is “done”, including the future. But all is not neces-
sarily “said”. In a deterministic model, as time progresses the only thing that changes
are the pictures of the world in the minds of the players: the information states of the
players. This is “on-line” learning: while the game is being played, the players learn
the played moves, and so they may change their minds about the situation. We can
simulate this on-line learning (and its effect on the players’ beliefs) via off-line “public
announcements”: if, before the start of the game, the agents were publicly told that the
game will reach some node u, then they would be in the same epistemic state as they
would have been by (not having any such public announcement but instead) playing
the game until node u was reached.

So in this paper we stress the importance of the dynamics of beliefs and rationality
during a play of an extensive game, and we use dynamic operators in order to simulate
the play of the game. Since we focus on games of perfect information, we only need
public announcements to simulate the moves of the game. The idea of adding modal-
ities for public announcements to epistemic logic was introduced and developed in
Plaza (1989) and Gerbrandy and Groeneveld (1997). Dynamic epistemic logic (Baltag
et al. 1999) provides for much richer dynamic modalities than just public announce-
ments, capturing the effects of more complex and more “private” forms of learning.
We think these could be applied to the case of games with imperfect information.
However, for simplicity, we leave these developments for future work and consider
for now only perfect information, and so only public announcements.

Games

Using the terminology of Brandenburger (2007), ours is a belief-based approach to
game theory (in the same category as the work of Battigalli and Siniscalchi (1999,
2002)), in contrast to the knowledge-based approach of Aumann (1995) and others.
According to the belief-based approach, only observables are knowable. Unobserv-
ables are subject to belief, not knowledge. In particular, other players’ strategies are
unobservables, and only moves are observables (Brandenburger 2007, p. 489). This
means that we take the players’ beliefs (including conditional beliefs) as basic, instead
of their knowledge. However, there is a notion of knowledge that naturally arises in
this context: the “irrevocable knowledge”, consisting of the beliefs that are absolutely
unrevisable, i.e. believed under any conditions. This notion of knowledge is meant to
apply only to the players’ “hard information”, obtained by observation or by undoubt-
able evidence. This is a much stronger condition than “certain belief” (subjective
probability 1) or even “true belief”, and as a result it may happen that very few things
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are “known” in this sense. One of the things we assume to be irrevocably known is
the structure of the game: the possible outcomes, the players’ preferences etc; also, in
a game of perfect information, the played moves are observed, and thus known, after
they are played; finally, another thing irrevocably known to a player is her own beliefs:
by introspection, she knows what she believes and what not. Besides this, we do not
assume much else to be known, although our general setting is in principle consistent
with (common) knowledge of all the players’ beliefs, their strategies, their rationality
etc.

One thing we do not assume as known is the future of the game: no outcomes that
are consistent with the structure of the game are to be excluded at the outset of the
game. In fact, we make the opposite assumption: that it is common knowledge that
nobody knows the future, i.e. nobody knows that some outcome will not be reached.
This “open future” assumption seems to contradict common knowledge of rationality;
but in fact, it is consistent with it, if by rationality we only mean “rational planning”,
leaving open the possibility that players may make mistakes or may change their
minds. The players may certainly believe their rational plans will be faithfully carried
out, but they have no way to “know” this in advance. We think of our “open future”
assumption as being a realistic one, and moreover one that embodies the agents’ “free-
dom of choice”, as well as the “possibility of error”, that underly a correct notion of
rationality. An agent’s rationality can be assessed only if she is given some options
to freely choose from. There are certainly cases in which the future can be known,
e.g. when it is determined by a known natural law. But it is an essential feature of
rational agents that their own choices are not known to them to be thus determined;
or else, they would have no real choices, and thus no rational choice. Any natural
determinism is assumed to be absorbed in the definition of the game structure, which
does pose absolute limits to choices. In a sense, this simply makes precise the meaning
of our “knowledge” as “hard information”, and makes a strict delimitation between
the past and the future choices, delimitation necessary to avoid the various paradoxes
and vicious circles that plague the notions of rational decision and freedom of choice:
the agents may have “hard information” about the past and the present, but not about
their own future free choices (although they may have “soft” information, i.e. “certain”
beliefs, with probability 1, about their future choices).

Dynamic rationality

Maybe the most important original feature of our paper is our notion of “dynamic”
rationality, which takes into account the dynamics of beliefs, as well as the dynamics of
knowledge. On the one hand, following Stalnaker, Reny, Battigalli and Siniscalchi etc.
(and in contrast with Aumann), we assess the rationality of a player’s move at a node
against the beliefs held at the moment when the node is reached. On the other hand,
we incorporate the above-mentioned epistemic limitation to rationality: the rationality
of an agent’s move only makes sense when that move is not already known (in an
irrevocable manner) to her. Players cannot be held responsible for moves that they
cannot choose or change any more (including their own past moves). Since the play-
ers’ knowledge increases during a game of perfect information, their set of available
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options decreases: passed options/nodes, or nodes that were by-passed, cannot be the
objects of choice any more. As a result, our notion of rationality is future-oriented: at
any stage of the game, whether or not an agent is dynamically rational at that stage
depends only on her current and future moves. So a player can be rational now even if
in the past she has made some “irrational” moves. In effect, performing such an irra-
tional move in a game of perfect information is equivalent to a public announcement
that “the player is (currently) not rational” (at the moment of moving).2 All the players
jointly learn this “fact” (as a piece of ‘hard’ information), but the “fact” itself may
vanish after being learnt: while previously “irrational” (since about to make a ‘wrong’
move), the player may “become rational” after the wrong move (simply because, for
all the decisions that she can still make after that, she chooses the ‘right’ moves). So
the truth-value of the sentence “player i is (dynamically) rational” may change after
a move by player i . The way this is captured and explained in our formal setting is
original and interesting in itself: the meaning of our “rationality” changes in time, due
to the change of beliefs and of the known set of options. This is because the “rational-
ity of an agent” is an epistemic-doxastic concept, so it is obviously affected by any
changes in the information possessed by that agent (including the changes induced
by the agent’s own moves). In our Dynamic-Epistemic Logic setting, this is a natural
and perfectly standard feature, an immediate consequence of the epistemic definition
of rationality: in general, epistemic sentences do not necessarily preserve their truth
value after they are “learnt”. Epistemic logicians are already familiar with this phe-
nomenon, e.g. the examples of Moore sentences (Moore 1942) and of the repeated
public announcements of “ignorance” in the Muddy Children Scenario (Fagin et al.
1995).

Our concept of dynamic rationality, developed on purely a priori grounds, solves in
one move the “BI-paradox”: the first reasoning step in the backward-induction argu-
ment (dealing with the last decision nodes of the game) is not undermined by the result
of the second reasoning step, since the notion of “rationality” assumed in the first step
is not the same as the “rationality” disproved in the second step! The second step only
shows that some counterfactual nodes cannot be reached by rational play, and thus
it implies that some agent must have been irrational (or must have had some doubts
about the others’ rationality, or must have made some “mistake”) before such an “irra-
tional” node was reached; but this doesn’t contradict in any way the assumption that
the agents will be rational at that node (and further in the future).

Stability

Dynamics cannot really be understood without its correlative: invariance under change.
Certain truths, or beliefs, stay true when everything else changes. We have already
encountered an “absolute” form of invariance: “irrevocable knowledge”, i.e. belief that
is invariant under any possible information change. Now, we need a second, weaker
form of invariance: “stability”. A truth, or a belief, is stable if it remains true, or

2 Technically, this claim is correct only for binary games, in which at any node there are only two possible
moves; but a weak version of this claim holds in general.
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continues to be believed, after any (joint) learning of “hard” information (via some
truthful public announcement). In fact, in the case of an “ontic” (non-doxastic) fact
p, Stalnaker’s favourite notion of “knowledge” of p (Stalnaker 1996, 2006) (a modal
formalisation of Lehrer and Klein’s “defeasibility theory of knowledge”), also called
“safe belief” in Baltag and Smets (2008b), corresponds precisely to stable belief in p.
(But note that the two notions differ when applied to a doxastic-epistemic property,
such as “rationality”!) Stability can be or not a property of a belief or a common belief:
a proposition P is a “stable (common) belief” if the fact that P is (common) belief
is a stable truth, i.e. P continues to be (common) belief after any (joint) learning of
“hard” information.

What is required for achieving the backward induction outcome is stable belief
in dynamic rationality, as a default condition (i.e. commonly known to hold for all
agents). In some contexts, we can think of this condition as expressing an ‘‘optimis-
tic” belief-revision policy about the opponents’ potential for rationality: the players
“keep hoping for rationality” with respect to everybody’s current and future play,
despite any past irrational moves. Of course, whether or not the words “hope” and
“optimism” are appropriate depends on the players’ payoffs: e.g. in common interest
games (in which all players’ payoffs are identical at all nodes), it indeed makes sense
to talk about “hoping” for opponents’ rationality; while in other games, it may be
more appropriate to talk about “persistent cautiousness” and a “pessimistic” revision
policy.

We can now give an informal statement of the main theorem of this paper:

Common knowledge of (the game structure, of “open future” and of) stable
(common3) belief in dynamic rationality entails common belief in the backward
induction outcome.

Overview of the paper

To formalise stability and “stable common belief”, we introduce in the next sec-
tion Conditional Doxastic Logic CDL and its dynamic version APAL-CDL. Sec-
tion 2 recalls the definition of extensive games and shows how to build models of
those games in which the structure of the game is common knowledge, in our strong
sense of “knowledge”. In Sect. 3 we define “rationality” and “rational play”, start-
ing from more general decision-theoretic considerations, and arriving at a defini-
tion of dynamic rationality in extensive (aka “dynamic”) games, which is in some
sense a special case of the more general notion. Section 4 gives a formal state-
ment of our main results, to whose proofs Sect. 5 is devoted. In Sect. 6 we consider
a weaker condition that ensures the backward induction outcome, and is based on
what we call stable true belief. Finally, Sect. 7 discusses connections between our
work and some of the existing literature on the epistemic foundations of backward
induction.

3 Adding the word “common” to this condition doesn’t make a difference: common knowledge that every-
body has a stable belief in P is the same as common knowledge of common safe belief in P .
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1 Conditional doxastic logic and its dynamic extensions

CDL models, also called “plausibility models” are essentially the “belief revision
structures” in Board (2002), simplified by incorporating structurally the assumption
of Full Introspection of Beliefs (which allows us to use binary plausibility relations
on worlds for each agent, instead of ternary relations). But since we will also want to
talk about the actual change under the effects of actions, like moves in a game, rather
than just the static notion that is in effect captured by Board’s models, we will enrich
the language of CDL with model-changing dynamic operators for “public announce-
ments”, in the spirit of Dynamic Epistemic Logic (cf. Baltag et al. 1999; van Benthem
2007a, b).

The models are “possible worlds” models, where the worlds will usually be called
states. Grove (1988) showed that the AGM postulates (Alchourrón et al. 1985) for
rational belief change are equivalent to the existence of a suitable pre-order over the
state space.4 The intended interpretation of the pre-order ≤i of some agent i is the
following: s ≤i t means that, in the event {s, t}, i considers s at least as plausible as t .

In interactive situations, where there are several players, each player i has a doxastic
pre-order ≤i . In addition to having different beliefs, any two players might have dif-
ferent knowledge. We follow the mainstream in game theory since Aumann and model
interactive knowledge using a partitional structure. However, as in Board (2002), we
will derive i’s partition from i’s pre-order≤i . Let us be more precise: fix a set S and a
relation ≤i⊆ S × S; then we define the comparability class of s ∈ S for ≤i to be the
set [s]i = {t ∈ S | s ≤i t or t ≤i s} of states ≤i -comparable to s. Now we want the
set of comparability classes to form a partition of S, so we will define a plausibility
frame to be a sequence (S,≤i )i∈N in which S is a non-empty set of states, and each≤i

a pre-order on S such that for each s ∈ S, the restriction of ≤i to [s]i is a “complete”
(i.e. “total” or “connected”) pre-order.

Fact 1.1 In any plausibility frame, {[s]i | s ∈ S} forms a partition of S. We will inter-
pret this as the information partition for player i (in the sense of “hard” information,
to be explained below).

So we can define player i’s knowledge operator in the standard way, putting for any
“proposition” P ⊆ S:

Ki P := {s ∈ S | [s]i ⊆ P}

As explained below, this captures a notion of indefeasible, absolutely unrevisable
knowledge. But we also want a notion of belief B, describing “soft” information,
which might be subject to revision. So we want conditional belief operators B P ,
in order to capture the revised beliefs given some new information P . If S is finite,
let min≤i (P) denote the ≤i -minimal P elements {s ∈ P | ∀t ∈ P, s ≤i t}. So
min≤i (P) denotes the set of states which i considers most plausible given P . Then
min≤i (P ∩ [s]i ) denotes the set of that states which i considers most plausible given

4 A pre-order is any reflexive transitive relation. In Grove’s representation theorem the pre-order must also
be total and converse-well-founded.
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both P and i’s knowledge at state s. Thus we define player i’s conditional belief
operator as:

B Q
i P := {s ∈ S | min≤i (Q ∩ [s]i ) ⊆ P}.

There is a standard way to extend this definition to total pre-orders on infinite sets of
states, but we skip here the details, since we are mainly concerned with finite models.
B Q

i P is the event that agent i believes P conditional on Q. Conditional belief should

be read carefully: B Q
i P does not mean that after learning that Q, i will believe P;

rather it means that after learning Q, i will believe that P was the case before the
learning. This is a subtle but important point: the conditional belief operators do not
directly capture the dynamics of belief, but rather as van Benthem (2007a) puts it,
they ‘pre-encode’ it. We refer to van Benthem (2007a) and Baltag and Smets (2008b)
for more discussion. The usual notion of (non-conditional) belief can be defined as a
special case of this, by putting Bi P := BS

i P . The notions of common knowledge Ck P
and common belief CbP are defined in the usual way: first, one introduces general
knowledge Ek P :=⋂

i Ki P and general belief EbP :=⋂
i Bi P , then one can define

Ck P :=⋂
n(Ek)n P and CbP :=⋂

n(Eb)n P .
It will be useful to associate with the states S some non-epistemic content; for

this we use a valuation function. Assume given some finite set � of symbols, called
basic (or atomic) sentences, and meant to describe ontic (non-epistemic, non-doxastic)
“facts” about the (current state of the) world. A valuation on � is a function V that
associates with each p ∈ � a set V (p) ⊆ S: V specifies at which states p is true.
A plausibility model for (a given set of atomic sentences) � is a plausibility frame
equipped with a valuation on �.

1.1 Interpretation: ‘hard’ and ‘soft’ information

Information can come in different flavours. An essential distinction, due to van Benthem
(2007a), is between ‘hard’ and ‘soft’ information. Hard information is absolutely
“indefeasible”, i.e. unrevisable. Once acquired, a piece of ‘hard’ information forms
the basis of the strongest possible kind of knowledge, one which might be called irrev-
ocable knowledge and is denoted by Ki . For instance, the principle of Introspection of
Beliefs states that (introspective) agents possess ‘hard’ information about their own
beliefs: they know, in an absolute, irrevocable sense, what they believe and what not.
Soft information, on the other hand, may in principle be defeated (even if it happens
to be correct). An agent usually possesses only soft information about other agents’
beliefs or states of mind: she may have beliefs about the others’ states of mind, she may
even be said to have a kind of ‘knowledge’ of them, but this ‘knowledge’ is defeasible:
in principle, it could be revised, for instance if the agent were given more information,
or if she receives misinformation.

For a more relevant, game-theoretic example, consider extensive games of per-
fect information: in this context, it is typically assumed (although usually only in an
implicit manner) that, at any given moment, both the structure of the game and the
players’ past moves are ‘hard’ information; e.g. once a move is played, all players
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know, in an absolute, irrevocable sense, that it was played. Moreover, past moves
(as well as the structure of the game) are common knowledge (in the same absolute
sense of knowledge). In contrast, a player’s ‘knowledge’ of other players’ rationality,
and even a player’s ‘knowledge’ of her own future move at some node that is not
yet reached, are not of the same degree of certainty: in principle, they might have to
be revised; for instance, the player might make a mistake, and fail to play according
to her plan; or the others might in fact play “irrationally”, forcing her to revise her
‘knowledge’ of their rationality. So this kind of defeasible knowledge should better
be called ‘belief’, and is based on players’ “soft” information.5

In the ‘static’ setting of plausibility models given above, soft information is captured
by the “belief” operator Bi . As already mentioned, this is defeasible, i.e. revisable,
the revised beliefs after receiving some new information ϕ being pre-encoded in the
conditional operator Bϕi . Hard information is captured by the “knowledge” operator
Ki ; indeed, this is an absolutely unrevisable form of belief, one which can never be
defeated, and whose negation can never be accepted as truthful information. This is
witnessed by the following valid identities:

Ki P =
⋂

Q⊆S

B Q
i P = B¬P

i ∅.

1.2 Special case: conditional probabilistic systems

If, for each player i , we are given a conditional probabilistic system à la Rényi (1955)
over a common set of states S (or if alternatively we are given a lexicographic proba-
bility system in the sense of Blume et al. 1991), we can define subjective conditional
probabilities Probi (P|Q) even for events of zero probability. When S is finite and
the system is discrete (i.e., Prob(P|Q) is defined for all non-empty events Q), we
can use this to define conditional belief operators for arbitrary events, by putting
B Q

i P := {s ∈ S : Probi (P|Q) = 1}. It is easy to see that these are special cases of
finite plausibility frames, by putting: s ≤i t iff Probi ({s}|{s, t}) �= 0. Moreover, the
notion of conditional belief defined in terms of the plausibility relation is the same as
the one defined probabilistically as above.

1.3 Dynamics and information: ‘hard’ public announcements

Dynamic epistemic logic is concerned with the “origins” of hard and soft information:
the “epistemic actions” that can appropriately inform an agent. In this paper, we will
focus on the simplest case of hard-information-producing actions: public announce-
ments. These actions model the simultaneous joint learning of some ‘hard’ piece of
information by a group of agents; this type of learning event is perfectly “transparent”

5 By looking at the above probabilistic interpretation, one can see that the fact that an event or proposi-
tion has (subjective) probability 1 corresponds only to the agent having “soft” information (i.e. believing
the event). “Hard” information corresponds to the proposition being true in all the states in the agent’s
information cell.
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to everybody: there is nothing hidden, private or doubtful about it. But dynamic epi-
stemic logic (Baltag et al. 1999) also deals with other, more complex, less transparent
and more private, forms of learning and communication.

Given a plausibility model M = (S,≤i , V )i∈N and a “proposition” P ⊆ S,
the updated model M � P produced by a public announcement of P is given by
relativisation: (P,≤i� P, V � P), where ≤� P is the restriction of ≤ to P and
(V � P)(p) = V (p) ∩ P . Notice that public announcements can change the knowl-
edge and the beliefs of the players. So far we have, for readability, been writing events
without explicitly writing the frame or model in question. However, since we are now
talking about model-changing operations it is useful to be more precise; for this we
will adopt a modal logical notation.

1.4 APAL-CDL: language and semantics

Our language APAL-CDL is built recursively, in the usual manner, from atomic sen-
tences in �, using the Boolean connectives ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ and ϕ 
⇒ ψ , the
epistemic operators Kiϕ, Bϕi ψ,Ckϕ and Cbϕ and the dynamic modalities [!ϕ]ψ and
[!]ϕ. (The language C DL of conditional doxastic logic consists only of the formulas
of APAL-CDL that can be formed without using the dynamic modalities.)

For any formula ϕ of this language, we write �ϕ�M for the interpretation of ϕ,
the event denoted by ϕ, in M. We write Mϕ for the updated model M � �ϕ�M
after the public announcement of ϕ. The interpretation map is defined recursively:
�p�M = V (p); Boolean operators behave as expected; and the definitions given
above of the epistemic operators in terms of events give the interpretation of episte-
mic formulae. Then the interpretation of the dynamic formulae, which include public
announcement modalities [!ϕ]ψ , goes as follows:

�[!ϕ]ψ�M = {s ∈ S | s ∈ �ϕ�M ⇒ s ∈ �ψ�Mϕ }

Thus [!ϕ]ψ means that after any true public announcement ofϕ,ψ holds. The arbitrary
(public) announcement modality [!]ϕ is to be read: after every (public) announcement,
ϕ holds. Intuitively, this means ϕ is a “stable” truth: not only it is true, but it continues
to stay true when any new (true) information is (jointly) learned (by all the players).
There are some subtleties here: do we require that the new information/announcement
be expressible in the language for example? This is the option taken in Balbiani et al.
(2008), where the possible announcements are restricted to epistemic formulas, and a
complete axiomatisation is given for this logic. In the context of finite models (as the
ones considered here), this definition is actually equivalent to allowing all formulas
of our language APAL-CDL as announcements. As a result, we can safely use the
following apparently circular definition:

�[!]ϕ�M = {s ∈ S | ∀ψ s ∈ �[!ψ]ϕ�M}

Dynamic epistemic logic captures the “true” dynamics of (higher-level) beliefs after
some learning event: in the case of public announcements, the beliefs of an agent i
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after a joint simultaneous learning of a sentence ϕ are fully expressed by the operator
[!ϕ]Bi , obtained by composing the dynamic and doxastic operators. Note that this is
not the same as the conditional operator Bϕi , but the two are related via the following
“Reduction Law”, introduced in van Benthem (2007a):

[!ϕ]Biψ ⇔ (ϕ ⇒ Bϕi [!ϕ]ψ).

This is the precise sense in which the conditional belief operators are said to “pre-
encode” the dynamics of belief.

1.5 Special case: Bayesian conditioning

In the case of a conditional probability structure, the update M � P by a public
announcement !P corresponds to Bayesian update (conditionalisation): the state space
is reduced to the event P , and the updated probabilities are given by Prob′i (Q) :=
Probi (Q|P). So a dynamic modality [!P]Q corresponds to the event that, after con-
ditionalising with P , event Q holds. Similarly, the arbitrary announcement modality
[!]P is the event that P stably holds, i.e. it holds after conditionalising with any true
event.

2 Models and languages for games

The notion of extensive game with perfect information is defined as usual (cf. Osborne
and Rubinstein 1994): Let N be a set of ‘players’, and G be a finite tree of ‘decision
nodes’, with terminal nodes (leaves) O (denoting “possible outcomes”), such that at
each non-terminal node v ∈ G − O, some player i ∈ N is the decision-maker at v.
We write Gi ⊆ G for the set of nodes at which i is the decision-maker. Add to this a
payoff function hi for each player i , mapping all the leaves o ∈ O into real numbers,
and you have an extensive game. We write ‘G’ to refer both to the game and to the
corresponding set of nodes. We also write u → v to mean that v is an immediate suc-
cessor of u, and u � v to mean that there is a path from u to v. A subgame of a game G
is any game G ′, having a subset G ′ ⊆ G as the set of nodes and having the immediate
successor relation→′, the set of decision nodes G ′i and the payoff function h′i (for
each player i) being given by restrictions to G ′ of the corresponding components of
the game G (e.g. G ′i = Gi ∩ G ′ etc). For v ∈ G, we write Gv for the subgame of G
in which v is the root. A strategy σi for player i in the game G is defined as usually
as a function from Gi to G such that v → σi (v) holds for all v ∈ Gi . Similarly, the
notions of strategy profile, of the (unique) outcome determined by a strategy profile
and of subgame-perfect equilibrium are defined in the standard way (see e.g. Osborne
and Rubinstein 1994). Finally, we define as usually a backward induction outcome to
be any outcome o ∈ O determined by some subgame-perfect equilibrium. We denote
by BIG the set of all backward-induction outcomes of the game G.

Consider as an example the “centipede” game G (cf. Rosenthal 1981) given in
Fig. 1. This is a two-player game for a (Alice) and b (Bob).

[715] 123



312 Synthese (2009) 169:301–333

Fig. 1 The “centipede” game G

o1 (3, 0)

v0, a

o2 (2, 3)

v1, b

o4 (4, 5)o3 (5, 2)

v2, a

Here, we represent the nodes of the game by dots and the possible moves by arrows.
For each non-terminal node, the corresponding dot is labelled with the name of the
node and the name of the player who decides the move at that node; while the dots
corresponding to the terminal nodes (outcomes) are labelled with the name of the
node (o1, o2, o3, o4) and with the players’ payoffs, written as pairs (pa, pb), where
pa is Alice’s payoff and pb is Bob’s. Note that in this game there is one backward
induction outcome, o1, and furthermore that the unique backward induction strategy
profile assigns to each vm the successor om+1.

2.1 Language for games

For any given game G, we define a set of basic (atomic) sentences�G from which to
build a language. First, we require �G to contain a sentence for each leaf: for every
o ∈ O, there is a basic sentence o. For simplicity, we often just write o, instead of
o. In addition �G contains sentences to express the players’ preferences over leaves:
for each i ∈ N and {o, o′} ⊆ O,�G has a basic sentence o ≺i o′. Our formal lan-
guage for games G is simply the language APAL-CDL defined above, where the set
of atomic sentences is the set�G . To talk about the non-terminal nodes, we introduce
the following abbreviation:

v :=
∨

v�o

o,

for any v ∈ G−O. As for terminal nodes, we will often denote this sentence by v for
simplicity, instead of v.

2.2 Plausibility models for games

We now turn to defining models for games. A plausibility model for game G is just a
plausibility model (S,≤i , V )i∈N for the set �G . We interpret every state s ∈ S as an
initial state in a possible play of the game. Intuitively, the sentence o is true at a state
s if outcome o will be reached during the play that starts at s; and the sentence o ≺i o′
says that player i’s payoff at o is strictly smaller than her payoff at o′.

Observe that nothing in our definition of models for G guarantees that states come
with a unique outcome or that the players know the set of outcomes! To ensure this (and
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Fig. 2 A game model M1 for
the centipede game G o3

o1 o2

o4

a, b

a, b

a, b

a, b

Fig. 3 A plausibility model
M2 for G which is not a “game
model”

o3

o1 o2

o4

b

b

b

b

other desirable constraints), we later focus on a special class of plausibility models
for a game, called “game models”.
Examples Figures 2 and 3 represent two different plausibility models M1 and M2
for the centipede game G. Here, we use labelled arrows for the converse plausibility
relations ≥a (going from less plausible to more plausible states), but for convenience
we skip all the loops and all the arrows that can be obtained by transitivity.

Note that in the model M2, Alice (player a) knows the state of the world: in each
state, she knows both the outcome and Bob’s beliefs (and belief revision policy), i.e.
the sentence

∧
o∈O(o⇒ Kao) holds at all states of M2. But this is not true in model

M1: on the contrary, in M1 (it is common knowledge that) nobody knows the outcome
of the game, and moreover nobody can exclude any outcome. Intuitively, the future
is “epistemically open” in M1, but not in M2. However, we can also intuitively see
that, in both models, (it is common knowledge that) all the players know the (structure
of the) game: the available outcomes, the structure of the tree, the payoffs etc.

We now want to formalise our intuitions about open future and about having com-
mon knowledge of the structure of the game. To do this, we will focus on a special class
of models, that we call “game models”. Intuitively, each state of a game model comes
with a complete play of the game, and hence it should have a uniquely determined
outcome, and the set of possible outcomes as well as the players’ preferences over
them should be common knowledge. However, the players in this (initial) state should
not have non-trivial knowledge about the outcome of the play. Indeed, they should
have “freedom of choice” during the play, which means they can in principle play any
move, so that at the outset of the play they cannot exclude a priori any outcomes.
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2.3 Game models

The class of game models for G, denoted by MG , is the class of all plausibility model
for G satisfying the following conditions (for all players i ∈ N ):

1. ∀s ∈ S ∃!o ∈ O : s ∈ V (o)

2. V (o ≺i o′) =
{

S if hi (o) < hi (o′)
∅ otherwise

3. ∀s ∈ S ∀o ∈ O : V (o) ∩ [s]i �= ∅
The first condition entails that there is common knowledge of the set of possible out-
comes, as well as of the fact that to each state is associated a unique actual outcome.
This reflects the fact that the future, for each particular play (state), is determined. The
second condition entails that the preferences over outcomes are commonly known.
Finally, the third condition says that (it is common knowledge that) the future is epi-
stemically open: in the initial state of any play, no player has “knowledge” (in the
strong sense of “irrevocable”, absolutely unrevisable knowledge) that any outcome is
impossible. This is meant to apply even to the states that are incompatible with that
player’s plan of action.

2.4 Open future

We take condition (3) to embody the players’ freedom of choice, as well as the possi-
bility of error: in principle, players might always change their minds or make mistakes,
hence any belief excluding some of the outcomes may have to be revised later. Even
if we would assume (as is usually assumed) that players (irrevocably) know their own
strategy, i.e. even if they are not allowed to change their minds, and even if we assume
(as postulated by Aumann) that they have common knowledge of “rationality” (and so
that they can exclude some obviously irrational choices), it still would not follow that
they can completely exclude any outcome: mistakes can always happen, or players
may always lose their rationality and become temporarily insane; so a rational plan
does not necessarily imply a rational play, and hence the future still remains open.

Condition (3) is natural given our interpretation of the “knowledge” operator K as
representing hard information, that is absolutely certain and irrevocable. If any node
is “known” (in this sense) to be unreachable, then that node should simply be deleted
from the game tree: this just corresponds to playing a different game. So if a player
i were to irrevocably know that a given node is unreachable, then the structure of the
game would not really be common knowledge: i would in fact know that she is playing
another game than G. Thus, one can consider the “open future” postulate as a natural
strengthening of the “common knowledge of the game” assumption.

A different way to proceed would be to impose the above conditions only locally, at
the “real” (initial) state of the play. Let StructG be the following sentence, describing
the “structure of the game” G:

∨

o∈O
o ∧

∧

o �=o′∈O
¬(o ∧ o′) ∧

∧

i∈N ,o,o′∈O
s.t. hi (o)<hi (o′)

o ≺i o′ ∧
∧

i∈N ,o,o′∈O
s.t. hi (o)≥hi (o′)

¬o ≺i o′
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Fig. 4 A game model M3 in
which players don’t have
strategies

o3

o1 o2

o4

a, b

a, b

a, b

a, b

Similarly, let FG := ∧
o∈O,i∈N ¬Ki¬o be the sentence saying that at the outset of

game G the future is epistemically open. Then our proposed “local” requirement is
that in the initial state s we have “common knowledge of the structure of the game
and of open future”, i.e. s satisfies the sentence Ck(StructG ∧ FG). Then it is easy
to see that this “local” requirement is equivalent to the above global requirement of
having a “game model”: for every state s in any plausibility model M for G, s satisfies
Ck(StructG ∧ FG) iff it is bisimilar6 to a state in some game model M′ ∈MG .
Examples Note that the model M1 from Fig. 2 is a game model, while M2 from Fig. 3
is not: indeed, in M2 it is common knowledge that Alice always knows the outcome,
which contradicts the “Open future” assumption.

2.5 Encoding strategies as conditional beliefs

If a player adopts a particular (pure) strategy, our language can encode this in terms
of the player’s conditional beliefs about what she would do at each of her decision
nodes. For instance, we say that Alice “adopts the backward induction strategy” in a
given state s of a model for the Centipede Game in Fig. 1 iff the sentences Bao1 and
Bv2

a o3 hold at state s. Similarly, we can express the fact that Bob adopts a particular
strategy, and by putting these together we can capture strategy profiles. A given profile
is realized in a model if the correspondent sentence is true at a state of that model.

Note that, in our setting, nothing forces the players to adopt (pure) strategies.
Strategies are “complete” plans of action prescribing a unique choice (a belief that a
particular move will be played) for each decision node of the player. But the players
might simply consider all their options as equi-plausible, which essentially means that
they do not have a strategy.
Examples In (any state of) model M1 from Fig. 2, it is common knowledge that both
players adopt their backward induction strategies. In contrast, in the model M3 from
Fig. 4, it is common knowledge that no player has a strategy (at any node):

So the assumption that players have (pure) “strategies” is an extremely strong
assumption, which we will not need. There is no a priori reason to assume (and there
are good empirical reasons to reject) that players play according to fully-determined
strategies. Our models are general enough to dispense with this assumption; indeed,

6 Here, “bisimilarity” is the standard notion used in modal logic, applied to plausibility models viewed as
Kripke models with atomic sentences in � and with relations ≤i . The important point is that our language
APAL-CDL cannot distinguish between bisimilar models and states.
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our work shows that this assumption is not needed for proving (common belief) that
the backward induction strategy is played.

2.6 Intentions as beliefs

In the above discussion, we identified an agent’s intentions with her beliefs about
what she is going to do, and so we represented the decision maker’s plan of action as a
belief about her (future) action. This identification is philosophically debatable, since
agents may be aware of the possibility of mistakes, and so they may doubt that their
intentions will be realized. But one can also argue that, in the context of Game Theory,
such distinctions will be of very limited significance: indeed, an intention that is not
believed to be enforceable is irrelevant for strategic planning (though see Roy 2008
for a discussion of intentions in game theory). The players only need to know each
others’ beliefs about their future actions and about each others’ beliefs etc., in order
to make their own rational plans; whether or not they are being informed about each
others’ (completely unenforceable and not believed to be enforceable) “intentions”
will not make any difference. So, for the purposes of this paper, we can safely adopt
the simplifying assumption that the agents believe that they will be able to carry out
their plans. Given this assumption, an agent’s “intentions” can be captured by her
beliefs about her (future) actions.

2.7 Representing players’ evolving beliefs

Recall that we think of every state of a game model MG ∈ MG as an initial state
(of a possible play) of the game G. As the play goes on, the players’ hard and soft
information, their knowledge and beliefs, evolve. To represent this evolution, we will
need to successively change our model, so that e.g. when a node v is reached, we want
to obtain a corresponding model of the subgame Gv . That is precisely, in this perfect
information setting, what is achieved by updating the model with public announce-
ments: indeed, in a game of perfect information, every move, say from a node u to one
of its immediate successors u′, can be “simulated” by a public announcement !u′. In
this way, for each subgame Gv of the original model M, we obtain a model Mv , that
correctly describes the players’ knowledge and beliefs at the moment when node v is
reached during a play. This is indeed a model of the corresponding subgame Gv:

Proposition 2.1 If M ∈MG then Mv ∈MGv .

Example Consider a play of the Centipede game G that starts in the initial situation
described by the model M1 in Fig. 2, and in which the real state of the world is the
one having outcome o2: so Alice first plays “right”, reaching node v1, and the Bob
plays “down”, reaching the outcome o2. The model M1 from Fig. 2 gives us the ini-
tial situation, the model Mv1

1 in Fig. 5 describes the epistemic situation after the first
move, and then the model Mo2

1 in Fig. 6 gives the epistemic situation at the end of the
play:

In this way, for each given initial state s (of a given play v0, v1, . . . , o of the game,
where o is the unique outcome such that s ∈ V (o)), we obtain a sequence of evolving
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Fig. 5 The model Mv1
1

o3 o4

o2

a, b

a, b

a, b

Fig. 6 The model Mo2
1

o2

game models

M =Mv0 ,Mv1 , . . . ,Mo,

describing the evolving knowledge and beliefs of the players during any play. Each
model Mv accurately captures the players’ beliefs at the moment when node v is
reached. Note also that every such sequence ends with a model Mo consisting of
only one node (a leaf o); this reflects the fact that at the end of the game, there is
no uncertainty left: the outcome, as well as the whole history of the game, are now
common knowledge.

2.8 Simulating moves by public announcements

Using the dynamic “public announcement” modalities in constructs such as [!v]Bi , we
can talk, at the initial state s ∈M and without leaving the original model M ∈MG ,
about all these future, evolving beliefs of the players at nodes v other than the initial
node v0. Indeed, in a game of perfect information, all the moves are public. So the
epistemic effect of a move to node v is the same as that of a truthful public announce-
ment !v (saying that the node v is reached during the play). In other words, we can
“simulate” moves in games of perfect information by truthful public announcements.7

3 Dynamic rationality in decisions and games

We now define our fundamental notions of dynamic rationality and rational play. First
we will look at single-agent (one-step) decision situations, and then at interactive deci-
sion situations, i.e. games.

7 We believe that the more general case, of games of imperfect information, can also be handled by using
other kinds of epistemic actions proposed in Dynamic Epistemic Logic (Baltag et al. 1999). But we leave
this development for future work.
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3.1 Single agent decision problems

Given a one-step decision problem P with a set of outcomes O, the decision-maker i
selects one of the outcomes o ∈ O. The decision-maker may have various hard and
soft information about which outcomes can actually be realized and which not. This
will determine her knowledge and her beliefs. We assume that her “hard” knowledge
restricts her possible choices: she can only select outcomes that she doesn’t know to
be impossible.

What this amounts to is the following: for the decision maker i , the “true” set of
possible outcomes is {o ∈ O | ¬Ki¬o}, i.e. the set of all the “epistemically possible”
outcomes. So her selected option must satisfy: o ∈ {o ∈ O | ¬Ki¬o}. This allows us
to capture the “selection” problem using epistemic operators.

To assess whether the decision is “rational” or not, one considers the decision-
maker’s subjective preferences, modelled as a total pre-order �i on O. We assume
that agents know their preferences; indeed, these are interpreted as “doxastic” pref-
erences: beliefs about what’s best. Given this interpretation, the CDL postulation of
Full Introspection (of beliefs) implies that agents know their preferences.

3.1.1 Rational choice

Rationality, in this case, corresponds to requiring that the selected option is not worse
than any other (epistemically) possible alternative. In other words, i’s solution of the
decision problem P is rational if she does not choose any option that is strictly less
preferable than an option she doesn’t know to be impossible:

RP
i :=

∧

o,o′∈O
(o ≺i o′ ∧ ¬Ki¬o′ ⇒ ¬o).

The main difference between our definition and the standard definition of rational
decision-making is the epistemic limitation of the choice set. The epistemic operators
are used here to delimit what is currently known about the availability of options: i’s
choice should only be compared against options that are not known to be unavailable.
This is an important difference, and its importance becomes clear when we generalise
our definition to extensive games, cf. the difference between ‘dynamic’ rationality and
traditional ‘substantive’ rationality, described below.

3.2 Extensive games

We now aim to extend the above definitions to the case of multi-agent many-stage
decisions, i.e. extensive games (of perfect information). Recall that in an extensive
game we are given the players’ subjective preferences �i only over the leaves. How-
ever, at all the intermediate stages of the game, players have to make local choices,
not between “final” outcomes, but between “intermediary” outcomes, that is: between
other nodes of the game tree.
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So, in order to assess players’ rationality, we need to extend the subjective prefer-
ence relations to all the nodes of the game tree. Fortunately, given the above doxastic
interpretation of preferences, there is an obvious (and natural) way to define these
extensions. Namely, a player considers a node u to be strictly less preferable to a node
u′ if she believes the first to be strictly dominated by the second. More precisely, if
every outcome that she believes to be achievable given that u is reached is worse than
every outcome that she believes to be achievable given that u′ is reached:

u ≺i u′ :=
∧

o,o′∈O
(¬Bu

i ¬o ∧ ¬Bu′
i ¬o′ ⇒ o ≺i o′).

By the Full Introspection of beliefs (a postulate of the logic C DL), it follows that we
still have that players know their extended preferences over all the nodes of the game.

3.2.1 Rationality at a node

Each node v ∈ Gi can be considered as a (distinct) decision problem, in which the
decision-maker is i , the set of outcomes is the set {u ∈ G : v → u} of all immediate
successors of v, and the subjective preference relation is given by the (restriction of
the) extended relation ≺i defined above (to the set {u ∈ G : v → u}). So we can
define the rationality of a player i at a node v ∈ Gi as rationality for the correspond-
ing decision problem, i.e. the player’s selection at each decision node consists only
of “best answers”. Note that, as before, the player’s choice is epistemically limited:
if she has “hard knowledge” excluding some successors (for instance, because those
nodes have already been bypassed), then those successors are excluded from the set
of possible options. The only difference is that the “knowledge” involved is the one
the agent would have at that decision node, i.e. it is conditional on that node being
reached. Formally, we obtain:

Rvi :=
∧

u,u′←v
(u ≺i u′ ∧ ¬K v

i ¬u′ ⇒ ¬u)

where K ϕ
i ψ := Ki (ϕ ⇒ ψ).

3.2.2 Dynamic rationality

Let Ri be the sentence

Ri =
∧

v∈Gi

Rvi .

If Ri is true, we say that player i satisfies dynamic rationality. By unfolding the defi-
nition, we see it is equivalent to:

Ri =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ∧ ¬K v
i ¬u′ ⇒ ¬u).
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As we’ll see, asserting this sentence at a given moment is a way of saying that the
player will play rationally from that moment onwards, i.e. she will make the best move
at any current or future decision node.

In the following, “Dynamic Rationality” denotes the sentence

R :=
∧

i

Ri

saying that all players are dynamically rational.

3.2.3 Comparison with substantive rationality

To compare our notion with Aumann’s concept of “substantive rationality”, we have
to first adapt Aumann’s definition to a belief-revision context. This has already been
done by a number of authors e.g. Battigalli and Siniscalchi (1999, 2002), resulting
in a definition of “rationality at a node” that differs from ours only by the absence
of epistemic qualifications to the set of available options (i.e. the absence of the term
¬K v

i ¬u′). The notion of substantive rationality is then obtained from this in the same
way as dynamic rationality, by quantifying over all nodes, and it is thus equivalent to
the following definition:

SRi =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ⇒ ¬u).

It is obvious that substantive rationality implies dynamic rationality

SRi ⇒ Ri ,

but the converse is in general false. To better see the difference between SRi and
Ri , recall that a formula being true in a model M ∈ MG means that it is true at the
first node (the root) of the game tree G. However, we will later have to evaluate the
formulas Ri and SRi at other nodesw, i.e. in other models of the form Mw (models for
subgames Gw). Since the players’ knowledge and beliefs evolve during the game, what
is (not) known/believed conditional on v in model Mw differs from what was (not)
known/believed conditional on v in the original model (i.e. at the outset of the game).
In other words, the meaning of both dynamic rationality Ri and substantive rationality
SRi will change during a play. But they change in different ways. At the initial node
v0, the two notions are equivalent. But, once a node v has been bypassed, or once the
move at v has already been played by a player i , that player is counted as rational at
node v according to our definition, while according to the usual (non-epistemically
qualified) definition the player may have been irrational at v.

In other words, the epistemic limitations we imposed on our concept of dynamic
rationality make it into a future-oriented concept. At any given moment, the ratio-
nality of a player depends only on her current beliefs and knowledge, and so only
on the options that she currently considers possible: past, or by-passed, options are
irrelevant. Dynamic Rationality simply expresses the fact that the player’s decision
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in any future contingencies is rational (given her future options and beliefs). Unlike
substantive rationality, our concept has nothing to do with the past or with contingen-
cies that are known to be impossible: a player i may still be “rational” in our sense at
a given moment/node v even when v could only have been reached if i has already
made some “irrational” move. The (knowledge of some) past mistake(s) may of course
affect the others’ beliefs about this player’s rationality; but it doesn’t directly affect
her rationality, and in particular it doesn’t automatically render her irrational.

3.2.4 Solving the BI paradox

As explained above, our concept is very different from (and, arguably, more realistic
than) Aumann’s and Stalnaker’s substantive rationality, but also from other similar
concepts in the literature (for example Rabinowicz (1998) “habitual” or “resilient”
rationality, etc). The difference becomes more apparent if we consider the assumption
that “rationality” is common belief, in the strongest possible sense, including common
“strong” belief (in the sense of Battigalli and Siniscalchi 2002), common persistent
belief, or even common “knowledge” in the sense of Aumann. As correctly argued
by Stalnaker and Reny, these assumptions, if applied to the usual notions of rational-
ity in the literature, bear no relevance for what the players would do (or believe) at
the nodes that are incompatible with these assumptions! The reason is that, if these
counterfactual nodes were to be reached, then by that time the belief in “rationality”
would have already been publicly disproved: we cannot even entertain the possibilities
reachable by irrational moves except by suspending our belief (or “knowledge”) in
rationality. Hence, the above assumptions cannot tell us anything about the players’
behaviour or rationality at such counterfactual nodes, and thus they cannot be used to
argue for the plausibility of the backward induction solution (even if they logically
imply it)! In contrast, our notion of dynamic rationality is not automatically disproved
when we reach a node excluded by common belief in it: a player may still be rational
with respect to her current and future options and decisions even after making an
“irrational” move. Indeed, the player may have been playing irrationally in the past, or
may have had a moment of temporary irrationality, or may have made some mistakes
in carrying out her rational plan; but she may have recovered now and may play ratio-
nally thereafter. Since our notion of rationality is future-oriented, no information about
past moves will necessarily and automatically shatter belief in rationality (although
of course it may still shatter it, or at least weaken it). So it is perfectly consistent
(although maybe not always realistic) to assume that players maintain their common
belief in dynamic rationality despite all past failures of rationality. In fact, this is our
proposed solution to the BI paradox: we will show that such a “stable” common belief
in dynamic rationality (or more precisely, common knowledge of the stability of the
players’ common belief in rationality) is exactly what is needed to ensure common
belief in the backward induction outcome!

3.2.5 Rational planning

A weaker condition requires only that, for each decision node v, the option that the
decision-maker is planning at v to select (at v) is the best, given the other (epistemi-
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cally) possible alternatives. By identifying as above the players’ plans of actions with
their beliefs about their actions, we can thus say that a decision maker is a rational
planner in the game G if at each decision node she believes that she will take “the best
decision”, even if in the end she may accidentally make a wrong choice:

RPi :=
∧

v∈Gi

Bvi Rvi .

By unfolding the definition, we see it is equivalent to:

RPi =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ∧ ¬K v
i ¬u′ ⇒ Bvi ¬u).

3.2.6 No mistakes

RPi only states that the decision maker i has a rational plan for current and future
contingencies. But mistakes can happen, so if we want to ensure that the decision that
is actually taken is rational we need to require the player makes no mistakes in carrying
out her plan:

No-Mistakesi :=
∧

v∈Gi

∧

u←v
(Bvi ¬u ⇒ ¬u)

The sentence No-Mistakesi says that player i’s decision are always consistent with
her “plan”: she never plays a move that, at the moment of playing, she believed won’t
be played.

As expected, the conjunction of “rational planning” and “no mistakes” entails
“rational playing” (i.e., “dynamic rationality”):

RPi ∧ No-Mistakesi ⇒ Ri .

4 Backward induction in games of perfect information

It is easy to see that Aumann’s theorem stating that common knowledge of substantive
rationality implies the backward induction outcome (Aumann 1995) can be strength-
ened to the following

Proposition 4.1 In any state of any plausibility model for a game of perfect infor-
mation, common knowledge of dynamic rationality implies the backward induction
outcome.

Unfortunately, common knowledge of (either dynamic or substantive) rationality
can never hold in a game model: it is simply incompatible with the “Epistemically-
Open Future” condition. By requiring that players have “hard” information about the
outcome of the game, Aumann’s assumption does not allow them to reason hypothet-
ically or counterfactually about other possible outcomes, at least not in a consistent
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manner.8 This undermines the intuitive rationale behind the backward induction solu-
tion, and it is thus open to Stalnaker’s criticism.

So in this section, we are looking for natural conditions that can be satisfied on
game models, but that still imply the backward induction outcome (or at least com-
mon belief in it). One such condition is common knowledge of (general) stable belief
in (dynamic) rationality: Ck[!]EbR. This is in fact a “strong” form of common belief,
being equivalent to Ck[!]CbR, i.e. to common knowledge of stable common belief in
rationality.

Theorem 4.2 The following holds in any state s of any game model M ∈MG:

Ck[!]EbR ⇒ Cb(BIG),

where BIG :=∨{o | o ∈ BIG} is the sentence saying that the current state determines
a backward-induction outcome in the game G. Equivalently, the following formula is
valid over plausibility frames for the game G:

Ck(StructG ∧ FG ∧ [!]CbR) ⇒ Cb(BIG).

In English: assuming common knowledge of the game structure and of open future, if
it is common knowledge that, no matter what new (truthful) information the players
may (jointly) learn during the game (i.e. no matter what is played), general belief in
rationality will be maintained, then it is common belief that the backward induction
outcome will be reached. If we define “stable common belief” in a proposition P as
[!]CbP , then we can give a more concise English formulation of the above theorem:
common knowledge of the game structure, of open future and of stable common belief
in dynamic rationality implies common belief in the backward-induction outcome.

Although rationality cannot be common knowledge in a game model, rational
planning can be. When this is the case, we obtain the following

Corollary 4.3 In a game model, common knowledge of “rational planning” and of
stable belief in “no mistakes” implies the backward-induction outcome; i.e. the for-
mula

Ck(RP ∧ [!]EbNo-Mistakes) ⇒ Cb(BIG)

is valid on game models.

The above results only give us common belief in the backward-induction outcome,
but nothing ensures that this belief is correct. If we want to ensure that the backward-
induction outcome is actually played, we need to add the requirement that the (stable
common) belief in rational play assumed in the premise is correct, i.e. that players
actually play rationally:

8 Indeed, if o is the backward induction outcome, then the above Proposition entails Ki o for all players

i , and thus for every other outcome o′ �= o and every proposition P , we have Bo′
i P: the players believe

everything (including inconsistencies) conditional on o′.
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Theorem 4.4 The following holds in any state s of any game model M ∈MG:

R ∧ Ck[!]EbR ⇒ BIG

4.1 No strategies!

Observe that we did not assume that the players have complete (pure) “strategies”.
That is, we do not insist that they have fully determined plans of action, uniquely
specifying one move for at each decision node, but only that they have partial plans,
i.e. incomplete beliefs about what moves they should play: at each decision node they
choose a set of moves rather than one unique move. So an important side-result of
our work is that the assumption that players have (complete, pure) strategies is not
necessary for proving backward-induction results.

4.2 Ensuring backward-induction strategy profile

If, however, we want to postulate that every player does have a (complete, pure)
strategy, we need to say that, for each node v of her choice, there exists a (unique)
immediate successor u that she believes will be played if v is reached (i.e. she plans
to play u at v):

Strategies :=
∧

i

∧

v∈Gi

∨

u←iv

Bvi u.

In cases where Strategies is common knowledge as well, we can strengthen the The-
orem 4.2 to:

Corollary 4.5 The following holds in any state s of any game model M ∈MG:

Ck(Strategies ∧ [!]EbR) ⇒ Cb(BI-ProfileG)

where BI-ProfileG is the sentence saying that the strategies given by each player’s
conditional beliefs in the initial state s form a backward-induction profile.

Finally, the following theorem ensures that above results are not vacuous:

Theorem 4.6 For every extensive game G, there is a game model M ∈ MG and a
state s ∈M satisfying the sentence

No-Mistakes ∧ Ck(RP ∧ Strategies ∧ [!]EbNo-Mistakes).

As a consequence, the sentence R ∧ Ck[!]EbR ∧ CkStrategies is also satisfied.

The proofs of these theorems are in the next section. Some alternative (weaker)
conditions ensuring the backward induction outcome are given in Sect. 6.
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5 Proofs

Definition 5.1 For a finite set O of “outcomes” and a finite set P of “players”, we
denote by Games(O, P) the class of all perfect information games having any subset
of O as their set of outcomes and having any subset of P as their set of players.

Definition 5.2 For any sentence ϕ of our language,
ϕ is valid on a game G if ϕ is true at every state s of every game model M ∈MG .
ϕ is valid over Games(O, P) if ϕ is valid on every game G ∈ Games(O, P).

When the game G is implicit from the context, we will often abbreviate BIGu ,
i.e. the name for the formula that defines all the backward-induction outcomes in the
subgame of G that starts at the node u, to B I u .

Lemma 5.3 For every perfect information game G, if we denote the root of G by v0,
the first player of G (playing at v0) by i and the first move of i (the successor node
played at v0) by v1, then the sentence

Rv0
i ∧

∧

u←v0

Bu
i [!u]BIu ∧ [!v1]BIv1 ⇒ BI

is valid on G.

Proof This follows directly from the definition of rationality at a node and the defini-
tion of BI . The assumption that Bu

i [!u]B I u is true at s means that all the states (deemed
as “most plausible by i conditional on u”) in the set su

i := min≤i (u ∩ [s]i ) have only
outcomes that are backward induction outcomes in the corresponding subgame: i.e. we
have o(t) ∈ BIGu for all t ∈ su

i . Given that all these outcomes {u : u ← v0} are consis-
tent with i’s knowledge (since we are in a game model), the fact that i is rational at v0
implies that the successor node v1 chosen by i must be one that maximises her payoff
hi (o(su

i )) among all the outcomes in
⋃

u←v0
BIGu . But, by the definition, such a node

v1 is exactly the choice prescribed at v0 by the backward induction strategy! Given
this backward-induction choice (v1) of i at node v0, and given the fact (ensured by
the condition [!v1]B I v1 ) that starting from node v1 everybody will play the backward
induction choices, we can conclude that the outcome o(s) belongs to the backward
induction set of outcomes BIGv0 = BIG for the game G. Hence s satisfies BIG . ��

The Main Lemma underlying our results is the following:

Lemma 5.4 (“Main Lemma”) Fix a finite set O of outcomes and a finite set P of play-
ers. Let ϕ be any sentence in our language APAL-CDL having the following property:
for every game G ∈ Games(O, P), if we denote the root of G by v0, the first player
of G (playing at v0) by i and the first move of i (the successor node played at v0) by
v1, then the sentence

ϕ ⇒ Rv0
i ∧

∧

u←v0

Bu
i [!u]ϕ ∧ [!v1]ϕ
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is valid on G. Given this condition, we have that the sentence

ϕ ⇒ BIG

is valid over Games(O, P).

Proof We need to prove that, for every game G ∈ Games(O, P), the sentence ϕ ⇒
BIG is valid on G. The proof is by induction on the length of the game G.

For games of length 0 (only one outcome, no available moves), the claim is trivial
(since the only possible outcome is by definition the backward induction outcome).

Let G be now a game of length n > 0, and assume the claim is true for all games
of smaller length. Let v0 be the root of G, i be the first player of G,M ∈ MG be a
game model for G and s be a state in M such that s |
M ϕ.

Let u be any arbitrary immediate successor of v0 (i.e. any node such that u ← v0).
By the property assumed in the statement of this Lemma, we have that s |
M Bu

i [!u]ϕ,
and so (if su

i is the set defined in the proof of the previous Lemma, then) we have
t |
M [!u]ϕ for all t ∈ su

i . Hence, we have t |
Mu ϕ for all t ∈ su
i ∩ u. By the

induction hypothesis, we must have t |
Mu B I u (since Mu is a game model for Gu ,
which has length smaller than G, and so the implication ϕ ⇒ B I u is valid on Mu),
for all t ∈ su

i ∩ u. From this we get that t |
M [!u]B I u for all t ∈ su
i , and hence that

s |
M Bu
i [!u]B I u .

Let v1 be now the first move of the game in state s (i.e. the unique immediate
successor v1 ← v0 such that s |
M v1). By the property assumed in this Lemma, we
have that s |
M [!v1]ϕ. By the same argument as in the last paragraph, the induction
hypothesis gives us that s |
M [!v1]B I v1 . Putting together with the conclusion of
the last paragraph and with the fact (following from the Lemma’s hypothesis) that
ϕ ⇒ Rv0

i is valid on M, we infer that s |
M Rv0
i ∧

∧
u←v0

Bu
i [!u]B I u ∧ [!v1]B I v1 .

The desired conclusion follows now from Lemma 5.3. ��
Lemma 5.5 The sentence

ϕ := R ∧ Ck[!]EbR

has the property assumed in the statement of Lemma 5.4.

Proof The claim obviously follows from the following three sub-claims:

1. dynamic rationality is a “stable” property, i.e. the implication R ⇒ ∧
u[!u]R is

valid;
2. the implication Ck[!]Ebψ ⇒ Bu

i [!u]Ck[!]Ebψ is valid, for all formulas ψ and
all nodes u ∈ G;

3. the implication Ck[!]Ebψ ⇒ [!u]Ck[!]Ebψ is valid, for all formulas ψ and all
nodes u.

All these claims are easy exercises in dynamic-epistemic logic. The first follows
directly from the definition of dynamic rationality.

The second sub-claim goes as follows: assume that we have Ck[!]Ebψ at some
state of a given model; then we also have Ck[!u][!]Ebψ for any node u (since [!]θ
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implies [!u][!]θ ), and so also Ki Ck[!u][!]Ebψ (since common knowledge implies
knowledge of common knowledge), from which we get Bu

i Ck[!u][!]Ebψ (because
knowledge implies conditional belief under any conditions). This is the same as
Bu

i (u → Ck[!u][!]Ebψ), which implies Bu
i (u → Cku[!u][!]Ebψ) (since common

knowledge implies conditional common knowledge). But this last clause is equiva-
lent to Bu

i [!u]Ck[!]Ebψ (by the Reduction Law for common knowledge after public
announcements).

The third sub-claim goes as follows: assume that we have Ck[!]Ebψ in some state
of a given model; then as before we also have Ck[!u][!]Ebψ , and thus Cku[!u][!]Ebψ
(since common knowledge implies conditional common knowledge). From this we
get u → Cku[!u][!]Ebψ (by weakening), which is equivalent to [!u]Ck[!]Ebψ (by
the Reduction Law for common knowledge after public announcements). ��
Theorems 4.4 and 4.2

Proof Theorem 4.4 follows now from Lemma 5.4 and Lemma 5.5. Theorem 4.2
follows from Theorem 4.4, by applying the operator Ck[!]Eb to both its premiss and
its conclusion, and noting that the implication

Ck[!]Ebψ ⇒ Ck[!]EbCk[!]Ebψ

is valid. ��

6 An alternative condition: common stable true belief in dynamic rationality

The epistemic condition R∧Ck[!]EbR given above is not the weakest possible condi-
tion that ensures the backward induction outcome. Any propertyϕ satisfying the condi-
tion of our Main Lemma (Lemma 5.4) would do it. In particular, there exists a weakest
such condition (the smallest event E ⊆ S such that E ⊆ Rv0

i ∩
⋂

u←v0
Bu

i [!u]E ∩[!v1]E), but it is a very complicated and unnatural condition. The one given above
seems to be the simplest such condition expressible in our language APAL-CDL.

However, one can give weaker simple conditions if one is willing to go a bit beyond
the language APAL-CDL, by adding fixed points for other (definable) epistemic oper-
ators.

Let stable true belief be a belief that is known to be a stable belief and it is also a
stably true belief. Formally, we define:

Stbiϕ := Ki [!]Biϕ ∧ [!]ϕ.

Thus stable true belief is stable belief in a stably true proposition. Stable true belief is
a form of “knowledge”, since it implies truth and belief:

Stbiϕ ⇒ ϕ ∧ Biϕ.

We can also think of stable true belief as an epistemic attitude towards the stability of a
proposition: clearly it implies stably truth (Stbiϕ ⇒ [!]ϕ), but furthermore, knowledge

[731] 123



328 Synthese (2009) 169:301–333

that something is stably true implies stable true belief in it.

Ki [!]ϕ ⇒ Stbiϕ.

Stable true belief is inherently a “positively introspective” attitude, i.e.

Stbiϕ ⇒ Stbi Stbiϕ,

but it is not positively introspective with respect to (“hard”) knowledge:

Stbiϕ �⇒ Ki Stbiϕ.

Stable true belief is not negatively introspective, neither inherently nor with respect
to knowledge.

If we restrict our attention to only ontic (i.e. non-doxastic) facts p, then we can-
not detect the subtleties of stable true belief, and the difference between this con-
cept, “stable belief” (simpliciter) and “safe belief”. Notice in particular that, when
applied to ontic facts p, stable true belief of p is just the same as stable belief of p
and the same as the “safe belief” in p from Baltag and Smets (2008b) which is the
same as what Stalnaker calls “knowledge” (Stalnaker 2006). However, it is typical
of interactive epistemology that one is not in general interested in epistemic/dox-
astic attitudes towards ontic facts, but in attitudes towards propositions that in turn
depend on other attitudes. Examples of such higher-level attitudes are the important
game-theoretic notions of “common knowledge of (or common belief in) rationality”,
“common knowledge of stable belief in rationality” and “common stable true belief
in rationality”: exactly the notions that interest us in this paper!

We can define common stable true belief in the same way as common knowledge:
first define general stable true belief

Estbϕ =
∧

i∈P

Stbiϕ

(“everybody has stable true belief”), then put

Cstbϕ =
∧

n

(Estb)nϕ.

Note that this definition, although semantically meaningful, is not a definition in our
language APAL-CDL, since it uses infinite conjunctions. Indeed, we conjecture that
common stable true belief is undefinable in the language APAL-CDL, since it doesn’t
seem to be expressible as a combination of common knowledge, common belief and
dynamic operators.

Lemma 6.1 The sentence CstbR satisfies the condition of our Main Lemma (Lemma
5.4).

As an immediate consequence, we have:
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Theorem 6.2 The sentence

CstbR⇒ BIG

is valid over game models. In English: (if we assume common knowledge of the struc-
ture of the game and of open future, then) common stable true belief in (dynamic)
rationality implies the backward induction outcome.

7 Comparison with other work

The game-theoretic issues that we deal with in this paper originate in the work of
Aumann (1995), Stalnaker (1994, 1996, 1998) and Reny (1992), and have been inves-
tigated by a number of authors Binmore (1987), Binmore (1996), Bicchieri (1989),
Battigalli (1997), Battigalli and Siniscalchi (1999, 2002), Bonanno (1991), Branden-
burger (2007), Halpern (2001), Samet (1996), Clausing (2003) etc. Our work obviously
owes a great deal to these authors for their illuminating discussions of the topic.

The logic CDL of conditional belief was first introduced and axiomatised by Board
(2002), in a slightly more complicated form. The version presented here is due to
Baltag and Smets (2006, 2008b). The dynamic extension of CDL obtained by adding
the public announcements modalities (coming from the public announcement logic
PAL, originally developed by Plaza (1989)) has been developed by van Benthem
(2007a) and, independently, by Baltag and Smets (2006). The extension of PAL with
arbitrary announcement modalities [!]ϕ is due to Balbiani et al. (2008). The belief-
revision-friendly version of APAL presented here (obtained by combining APAL with
CDL) is an original contribution of our paper.

The work of Battigalli and Siniscalchi (2002) is the closest to ours, both through
their choice of the basic setting for the “static logic” (also given by conditional belief
operators) and through the introduction of a strengthened form of common belief
(“common strong belief”) as an epistemic basis for a backward-induction theorem.
Strong belief, though different from our “stable” belief, is another version of persistent
belief: belief that continues to be maintained unless and until it is contradicted by new
information. However, their notion of rationality is only “partially dynamic”: although
taking into account the dynamics of beliefs (using conditional beliefs given node v to
assess the rationality of players’ choices at v), it does not fully take into account the
limitations posed to the set of possible options by the dynamics of “hard knowledge”.
In common with most other previous notions of rationality, it requires agents to make
rational choices at all nodes, including the past ones and the ones that have already
been bypassed. As a result, it is enough for a player to make only one “irrational”
move to completely shatter the (common) belief (however strong) in rationality; and
as a consequence, common strong belief in rationality does not by itself imply back-
ward induction. To obtain their theorem, Battigalli and Siniscalchi have to add another
assumption: that the game model is a complete type structure, i.e. it contains, in a cer-
tain sense, every possible epistemic-doxastic “type” for each player. This means that
the players are assumed to have absolutely no “hard” information, not only about
the outcomes or about the other players’ strategies, but also about the other players’
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beliefs, so that they have to consider as epistemically possible all consistent (probabi-
listic) belief assignments for the other players! This is an extremely strong (and, in our
opinion, unrealistic) “completeness” assumption, one that can only be fulfilled in an
infinite model. In contrast, the analogue completeness assumption in our approach is
the much weaker “Open Future” assumption, postulating that (at the beginning of the
game) players have no non-trivial “hard” information about the outcomes (except the
information given by the structure of the game): they cannot foretell the future, cannot
irrevocably know the players’ freely chosen future moves (though they do irrevocably
know the past, and they may irrevocably know the present, including all the beliefs and
the plans of action of all the players). Our more realistic postulate is weak enough to
be realized on finite models. In particular, it can be realized on models as small as the
set of terminal nodes of the game tree (having one state for each terminal node), and
in which all the plans of action are common knowledge, so that the only uncertainty
concerns possible mistakes in playing (and hence the final outcome).

Samet (1996) introduces a notion of hypothetical knowledge, in order to develop
an epistemic characterisation of backward induction. Hypothetical knowledge looks
prima facie similar to conditional belief, except that the interpretation of the hypothet-
ical knowledge formula K ϕ

i ψ is different: “Had ϕ been the case, i would have known
ψ” (Samet 1996, p. 237). This mixture of counterfactual conditionals and knowledge
is specifically introduced in Samet (1996) only to discuss backward induction, and it
has not occurred before or subsequently in the literature. In contrast, our approach is
grounded in the relatively standard and well-understood foundations of Conditional
Doxastic Logic, independently studied by logicians and philosophers. While Samet
does make what we agree is the important point that some form of counterfactual
reasoning is of vital importance to the epistemic situation in extensive games, his
model and conditions seem to us more complex, less transparent and less intuitive
than ours.

We are aware of only one prior work that uses dynamic epistemic logic (more
precisely, the logic of public announcements, but in the context of “classical DEL”,
i.e. dealing only with knowledge update and not with belief revision) for the analy-
sis of solution concepts in extensive games: van Benthem (2007b). That work takes
Aumann’s “static” notion of rationality as given, and accepts Aumann’s classical result
as valid, and so it does not attempt to deal with the cases in which Aumann’s assump-
tions do not apply, nor to address the criticism and the issues raised by Stalnaker, Reny
and others. Instead, van Benthem’s contribution focuses on the sources of knowledge,
on explaining how complex epistemic conditions of relevance to Game Theory (such
as Aumann’s common knowledge of rationality) can be brought about, via repeated
public announcements of rationality. So van Benthem does not use public announce-
ments in order to simulate a play of the game. Public announcements in van Benthem’s
approach represent off-line learning, i.e. pre-play or inter-play learning, whereas the
public announcements in our present approach simulate on-line learning, i.e. learning
that takes place during the play of the game. A very interesting open question is to
address the same issue answered by van Benthem, but for the case of the dynamic-
epistemic condition proposed here, instead of Aumann’s condition: find some off-line
communication or learning protocol that can achieve common knowledge of stable
common belief in rational play.

123 [734]



Synthese (2009) 169:301–333 331

We should say how our result resolves the apparently conflicting positions of
Aumann and Stalnaker. Under sympathetic interpretations of those authors, we would
say that we agree with both of them:

We have already commented on the differences between our approach and that
of Aumann (1995). However, in order to find a similarity, notice that if we say that
strategies are beliefs, then the condition we give begins to look a little like common
knowledge of rational strategies. (This identification of strategies with beliefs was not
possible in Aumann’s framework, so even from this perspective our work would be a
considerable advance.)

Stalnaker writes that “[t]he rationality of choices in a game depend[s] not only on
what players believe, but also on their policies for revising their beliefs” (1998, p. 31).
He then gives a condition on belief revision policies in terms of “epistemic indepen-
dence” of the players. We agree entirely with the sentiment in the quoted sentence.
Indeed game models provide a specification of exactly how players will revise their
beliefs, including their beliefs about other players’ beliefs, so that these beliefs remain
consistent no matter how the play of the game goes. Theorem 4.4 goes further and
specifies conditions necessary on such models, purely in terms of epistemic and dox-
astic attitudes towards rationality, that ensure the backward induction outcome. Stable
belief in dynamic rationality is in effect a partial description of an “optimistic” belief
revision policy, that says: ‘when you revise your beliefs, maintain at all costs a belief
in the opponents’ rational potential, despite their past deviations from rationality’.

In fact, as mentioned in the introduction, whether this policy can appropriately
be called “optimistic” or “pessimistic” depends on the game and the players’ pay-
offs. In many contexts, such an “incurably optimistic” (or “persistently pessimistic”)
revision policy may seem naïve, but our point is that only such a policy can offer a
rational doxastic justification to backward induction. The well-known examples of
‘catastrophic’ BI outcomes can thus been seen to illustrate the dangers of “rational”
pessimism, while the examples of ‘desirable’ BI outcomes illustrate the saving power
of “incurable” optimism.
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