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Abstract

Purpose With the recent development of deep learning technologies, various neural networks have been proposed for fundus

retinal vessel segmentation. Among them, the U-Net is regarded as one of the most successful architectures. In this work, we

start with simplification of the U-Net, and explore the performance of few-parameter networks on this task.

Methods We firstly modify the model with popular functional blocks and additional resolution levels, then we switch to

exploring the limits for compression of the network architecture. Experiments are designed to simplify the network structure,

decrease the number of trainable parameters, and reduce the amount of training data. Performance evaluation is carried out

on four public databases, namely DRIVE, STARE, HRF and CHASE_DB1. In addition, the generalization ability of the

few-parameter networks are compared against the state-of-the-art segmentation network.

Results We demonstrate that the additive variants do not significantly improve the segmentation performance. The per-

formance of the models are not severely harmed unless they are harshly degenerated: one level, or one filter in the input

convolutional layer, or trained with one image. We also demonstrate that few-parameter networks have strong generalization

ability.

Conclusion It is counter-intuitive that the U-Net produces reasonably good segmentation predictions until reaching the

mentioned limits. Our work has two main contributions. On the one hand, the importance of different elements of the U-Net

is evaluated, and the minimal U-Net which is capable of the task is presented. On the other hand, our work demonstrates that

retinal vessel segmentation can be tackled by surprisingly simple configurations of U-Net reaching almost state-of-the-art

performance. We also show that the simple configurations have better generalization ability than state-of-the-art models with

high model complexity. These observations seem to be in contradiction to the current trend of continued increase in model

complexity and capacity for the task under consideration.

Keywords U-Net · Vessel segmentation · Fundus image · Computation cost

Introduction

Retinal vessel segmentation from fundus images is an exten-

sively studied field [14,19,40]. Analysis of the distribution,
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thickness and curvature of the retinal vessels assists the

diagnosis, therapy planning, and treatment procedures of

circulatory system-related eye diseases such as diabetic

retinopathy (DR), glaucoma and age-related macular degen-

eration, which are the leading causes of blindness in the

aging population [48]. Previous work on retinal vessel seg-

mentation can be roughly divided into unsupervised and

supervised categories, where supervised approaches often

outperform the unsupervised ones. Unsupervised approaches

do not require manual annotations, and are usually based on

certain rules, such as template matching [4,21,45], vessel

tracking [49,54], region growing [35], multiscale analy-

sis [3,29,51], and morphological processing [7]. Supervised

approaches rely on ground truth annotations by expert

ophthalmologists. In conventional machine learning-based
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methods, hand-crafted or learnt features are used as input

for classifiers such as k-nearest neighbors (kNN) [46], sup-

port vector machine (SVM) [33], random forest (RF) [44],

AdaBoost [8], Gaussian mixture model (GMM) [39], and

the multilayer perceptron (MLP) [36]. With the recent

advancements in deep learning-based technologies [27], con-

volutional neural networks (CNNs), which do not explicitly

separate the feature extraction and the classification proce-

dures, are employed in this field and have achieved great

success [9,25,28]. Apart from models that are designed for

high-performance, researchers have proposed to improve the

interpretability of the constructed segmentation pipelines as

well. For instance, the Frangi-Net [11], which is the CNN

counterpart of the classical Frangi filter [6], has been pro-

posed and combined with a preprocessing net [10] to reach

the state-of-the-art performance.

Among the deep learning-based methods designed for

biomedical image segmentation, U-Net [37] is one of the

most successful models. Since published, U-Net and its

variants have achieved remarkable performance in various

applications and have been employed as the state-of-the-art

method for segmentation tasks to compare with [23,47,52].

Isensee et al. [18] even draw an empirical conclusion that

hyper-parameter tuning of the U-Net rather than new network

architecture design is the key to high performance. Since

the U-Net normally contains huge amounts of parameters,

training and inference processes are resource-consuming.

Compression of the network architecture has been tackled

in previous work, such as the U-Net++ [55] by Zhou et al..

Additional convolutional layers are inserted in-between the

skip connections to introduce self-similarity to the structure.

This modification enables easy pruning in the testing phase,

yet introduces parameters in the training phase. Besides, only

one decisive structural factor, namely the number of levels,

is considered.

This work is an extension of our previous publication [31],

which focuses on degenerating the U-Net for retinal ves-

sel segmentation on the DRIVE [41] database. The major

differences comparing to [31] are as follows. Firstly, the U-

Net variant with no skip connections is explored. Secondly,

all experiments are conducted on three additional fundus

databases besides the DRIVE [41], namely the STARE [15],

the HRF [3], and the CHASE_DB1 [34]. Fourfold cross-

validation is performed on these databases. Thirdly, param-

eter searching is conducted for training the default U-Net on

the HRF database, which contains the largest number of fun-

dus images, to explore how the hyperparameters affect the

training process. Fourthly, a five-level U-Net is trained on the

HRF database to explore how enlarging the model influences

the performance. Lastly, the performance and generalization

ability of our few-parameter nets are compared with that of

the SSA-Net [32], which yields state-of-the-art performance

on multiple fundus databases.

We start with a default U-Net and firstly seek to enhance its

performance by introducing additional resolution scales and

substituting the vanilla U-Net blocks with commonly used

functional blocks, namely the dense block [16], the resid-

ual block [13], the dilated convolution block [50], and the

side-output block [9]. Due to the observation of no remark-

able performance boost, we propose the assumption that the

default U-Net alone is capable or even over-qualified for the

task of retinal vessel segmentation. Thereafter, we turn our

focus onto simplification of the network architecture, aim-

ing for a minimized model which yields reasonably good

performance. Different components of the default U-Net are

explored independently using the “control variates” strategy,

where only one factor is changed while the others are fixed at

one time. The number of U-Net levels, the number of convo-

lutional layers in each U-Net block, and the number of filters

in the convolution layers are step-wise decreased; the non-

linear activation layers and skip connections are removed;

and the size of training set is reduced. Analysis of the perfor-

mance evaluation metrics yields unexpected conclusion; only

under substantially harsh conditions does the U-Net degen-

erate. With one down-/upsampling step, or one convolutional

layer in each U-Net block, or two filters in the input layer,

the segmentation performance remain satisfactory, produc-

ing AUC scores above 0.97. Comparison to the SSA-Net [32],

which is state-of-the-art retinal vessel segmentation network

model, also reveals that the few-parameter networks have

strong generalization ability. The contribution of this work

is two-sided. On the one hand, the importance of different

configuration components of the U-Net model is quantita-

tively assessed, and a minimized well-performing model is

obtained. On the other hand, this work provides an exemplary

reminder that the research behavior of pursuing marginal per-

formance gain at the cost of massive resource consumption

could be unworthy.

Materials andmethods

Default U-Net configuration

The default U-Net configuration in this work is illustrated

in Fig. 1. Likewise the original U-Net [37], each U-Net

block consists of two consecutive convolutional layers with

3 × 3 filters. The number of filters doubles after each

down-sampling, and halves after each up-sampling. Down-

sampling is performed by the max-pooling operation. ReLU

activation layers are employed to introduce nonlinearity into

the model, and the concatenation operation is used as the skip

connection to merge the localization and contextual informa-

tion. In comparison to the original U-Net architecture, four

major modifications are made. Firstly, our model is composed

of three rather than five scale levels. Secondly, the number of
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Fig. 1 Default U-Net configuration. The dash box defines one U-Net block

Fig. 2 Illustration of the dense block (a), residual block (b), and the side-output block (c)

filters in the first convolutional layer is set to 16 rather than

64. Thirdly, up-sampling is realized with an up-pooling layer

followed by a 1×1 convolutional layer rather than the trans-

posed convolutional layer. Lastly, batch normalization [17]

layers are applied after all but the last ReLU [31] layers to sta-

bilize the training process. The overall architecture contains

108,976 parameters.

Additive variants

Four structural additive modifications are applied on the

vanilla U-Net architecture, namely the dense block [16], the

residual block [13], the side-output block [9] (see Fig. 2), and

the dilated convolution block [50]. These structural modifi-

cations are chosen due to their popularity in the U-Net-based

medical image segmentation community [1,5,22,23,26,30,

43,53]. In the dense block, activation maps from all preceding

layers are concatenated to all latter ones. Such connections

create many additional channels and introduce a large amount

of parameters. Due to computational resource limits, dense

blocks replace the vanilla blocks only in the encoder path.

In the residual block, two additional convolutional layers are

inserted, where the activation maps from the first convolu-

tional layer are added to those of the third layer. The residual

blocks replace the vanilla U-Net blocks in the encoder, the

bottleneck, as well as the decoder. The concatenation opera-

tions in dense blocks and the addition operations in residual

blocks allow for better gradient backpropagation since pre-

ceding layers can receive more direct supervision from the

loss function. In dilated convolution layers, the kernels are

enlarged, creating holes in-between which are filled with

zeros. No additional parameters are introduced, while the

receptive field is enlarged. The dilated convolution block is

employed in the bottleneck of the model. The side-output

blocks are applied in the decoder path to provide step-wise

deep supervision, where the output maps from the U-Net

blocks are passed through a 1×1 convolutional layer, upsam-

pled to the shape of the network input, and compared with the

ground truth using a mean square error (MSE) loss. Besides,

a U-Net with five scale levels is trained on the biggest fun-

dus database, namely the HRF [3] database to explore how

enlarged architecture influences the network performance.

Subtractive variants

The default U-Net in this study is configured as described

in “Default U-Net configuration” section. Exploration of the

limits of subtractive U-Net variants follows the “control vari-

ates” strategy, which means only one aspect of the model is
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changed from the default configuration at one time. Experi-

ment series are designed as:

1. Nonlinear activation functions, i.e., the ReLU layers, are

removed.

2. Skip connections between the encoder and the decoder

are removed.

3. The number of convolutional layers in each U-Net block

is reduced to one.

4. The number of filters in the first level is halved from six-

teen down to one. Correspondingly, the number of filters

in deep levels is proportionally decreased.

5. The number of levels decreases step-wise to one, until the

network degenerates into a chain of convolutional layers.

6. The number of images for training the model is consec-

utively halved by a factor of two until only one image is

used.

Parameter searching

In order to investigate on the importance of parameter tun-

ing for the network performance, a random hyperparameter

searching [2] experiment is carried out for the default U-Net

configuration on the HRF [3] database which contains the

largest number of annotated fundus images. Nine different

hyperparameters which control the model architecture and

the training process are considered. The optimum parameter

combination is selected from 29 experiment roll-outs, and

utilized to retrain the default U-Net. The experimental details

for parameter searching are elaborated in the supplementary

material.

Comparison to the state-of-the-art method

To compare the performance of our few-parameter networks

with the state-of-the-art methods, we select the scale-space

approximated network [32] (SSA-Net) which reaches the

highest performance on various fundus databases as the tar-

get model. We firstly rerun the SSA-Net for five repetitive

times to obtain the mean and standard deviation of the exper-

iments rather than merely the optimum results as in [32].

Note that the SSA-Net is trained with the exactly same soft-

ware and configuration as in [32]. Since the SSA-Net utilizes

the backbone of ResNet34 [13] and contains more than 25

million trainable weights, it is natural to propose that the

high performance of the model could be due to overfitting.

Thereafter an experiment to investigate on the generaliza-

tion ability of the network models is designed. Both our

few-parameter networks and the SSA-Net are trained on

the DRIVE database and transferred to the STARE [15]

directly.

Database description

DRIVE

The digital retinal images for vessel extraction (DRIVE) [41]

database contains 40 8-bit RGB fundus images with a resolu-

tion of 565×584 pixels. The database consists of 33 healthy

cases and 7 cases with early signs of DR, and is evenly divided

into one training and one testing set. In this work, a subset

of four images is further separated from the training set for

validation purpose. For all images, FOV masks and manu-

ally labeled annotations are provided. In the training process,

each minibatch contains 50 image patches of size 168×168,

which are randomly sampled from the training images.

STARE

The structured analysis of the retina (STARE) database [15]

contains 20 8-bit RGB fundus photographs of size 605×700

pixels. Half of the images are from healthy subjects, while

the other half is corrupted with pathologies that affect the

visibility of retinal vessels. Manually labeled vessel masks

are available for all images. FOV masks are generated using a

foreground / background separation technique named “Grab-

Cut” [38]. Training and testing sets are not predefined. A

fourfold cross-validation is performed, with five images for

testing, eleven images for training and four images for val-

idation in each experiment. During the training process,

minibatches are constructed in the same way as for DRIVE.

HRF

The high-resolution fundus (HRF) image database [3] con-

sists of 45 8-bit RGB fundus photographs of size 2336×3504

pixels. It contains 15 images from healthy patients, 15 from

DR patients, and 15 from glaucomatous patients. For each

image, a manual annotation and an FOV mask are provided.

Training and testing sets are not predefined, and a fourfold

cross-validation is performed for evaluation. In each experi-

ment, 34 images are used for training, seven for validation,

and eleven/twelve for testing. In the training process, each

minibatch contains 15 patches of size 400 × 400 pixels.

CHASE_DB1

The CHASE_DB1 [34] database contains 28 fundus images

from both eyes of 14 pediatric subjects with a resolution of

999 × 960 pixels. Ground truth vessel maps are provided,

yet FOV masks are created using the GrabCut algorithm.

For evaluation, a fourfold cross-validation is performed. The

28 images are divided into a training set of 17 images, a

validation set of four images, and testing set containing seven
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Fig. 3 Preprocessing pipeline

(a) Raw (b) Raw patch (c) Prep. patch (d) Label patch

(e) Default U-Net (f) Dense (g) Residual (h) Dilate

(i) Side output (j) Level = 1 (k) Filter = 1 (l) Train set = 1

(m) Conv. = 1 (n) No ReLU (o) No connections (p) 5-level NC

Fig. 4 Probability predictions of U-Net variants with AUC scores pre-

sented on upper right corners. (f–i) are the additive variants of the U-Net.

(j–m) denote U-Net with one level, U-Net with one filter in the initial

convolutional layer, U-Net trained with one sample, and U-Net with one

convolutional layer in each block. (n–p) correspond to U-Net without

ReLU layers, three-level U-Net without skip connections, and five-level

U-Net without skip connections
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images in each experiment. For training, a minibatch contains

40 patches of shape 200 × 200 pixels.

Preprocessing pipeline

Before fed into network models, raw fundus photographs are

preprocessed using the pipeline illustrated in Fig. 3. Firstly,

the green channels of the RGB images, which exhibit the

best contrast between the retinal vessels and the background,

are extracted. Secondly, the CLAHE [56] algorithm, with

a window size of 8 × 8 pixels and the max slope equals

3.0, is applied to equalize the local histogram in an adaptive

manner and balance the illumination. The data range within

the FOV masks is then normalized between 0.0 and 1.0, and

a Gamma transform with γ = 0.8 is applied to further lift

the contrast in dark small vessel regions. Finally, the data

range within the FOV mask is standardized between −1.0

and 1.0 to generate input for the networks. Additionally for

HRF and CHASE_DB1 databases, images are down-sampled

with bilinear interpolation by a factor of 4 and 2, respectively,

before fed into networks, and up-scaled after the network

processing to restore their original shape.

The borders of FOV masks of all databases are inwardly

eroded by four pixels to remove potential border effects and

ensure meaningful comparison. In order to stress on the thin

vessels during training, weight maps are generated and mul-

tiplied to the pixel-wise loss as in Eq. (1), where dxi
is the

vessel diameter in the manual label map of the given pixel

xi :

W (xi ) =

{

1.0, if xi in background,

max(1.0, 1.0
0.18·dxi

), if xi in foreground,
(1)

Experimental details

The objective function in this work is a weighted sum of two

parts, namely the segmentation loss and the regularization

loss, i.e.,

L = Lseg + L reg =
1

N
·

N
∑

i=1

(L focal(xi ) ·W (xi ))+λ · Lℓ2 , (2)

where L focal(xi ) is the focal loss [24] for a given pixel xi ,

N is the overall number of pixels, and Lℓ2 is the regularizer

loss representing the ℓ2 norm of all network weights. For the

focal loss, the focusing factor γ is set to 2.0 to differentiate

between easy and hard cases, and a class-balancing factor

α is set to 0.9 to emphasize on the foreground pixels. The

ℓ2 loss is combined with the segmentation loss with a factor

λ = 0.2 to prevent over-fitting. The Adam optimizer [20]

with β1 = 0.9, β2 = 0.999 is used for the training process.

The learning rate decays by 10% after each 10,000 iterations.

Different initial learning rates are tailored for different mod-

els to achieve smooth loss curves; the more weights in the

model, the smaller the learning rate. Networks are trained

until convergence is observed in the validation loss curve.

Data augmentation techniques are utilized for better gen-

eralization, including rotation within 20 degrees, shearing

within 30% of the linear patch size, zooming between 50%

and 150% of the linear patch size, additive Gaussian noise

and uniform intensity shifting within the range of 8% of the

image intensities.

Experiments with each different configuration are repeated

for five times to make sure that the conclusion is not

dominated by certain specific initialization settings, and to

evaluate the stability of the model. The models are trained

on an NVIDIA GPU cluster. Projects are implemented in

Python 3.6.8., using the framework TensorFlow 1.13.1.

Results

Commonly used performance evaluation metrics for seman-

tic medical image segmentation, namely specificity, sensitiv-

ity, F1 score, accuracy and the AUC score [42], are employed

in this work. Binarization of the prediction maps from a

model is conducted by selecting a threshold which maxi-

mizes the average F1 score of the validation sets. The AUC

score, which is threshold-independent, is chosen as the major

performance indicator. The mean and standard deviation of

the metric values on each testing image over the five experi-

ment roll-outs are firstly computed individually. The average

of these mean and standard deviation values over all the

testing images are reported in Tables 1, 2, 3 and 4. The eval-

uation results to compare the generalization ability of our

few-parameter networks with the SSA-Net are presented in

Table 5. The significance analysis of predictions from differ-

ent U-Net variants is presented in the supplementary material.

The predicted probability maps from different network vari-

ants for one testing image in DRIVE are shown in Fig. 4a–o.

Performance evaluation of structural U-Net variants are

presented in Table 1. For additive variants, we observe that

comparing to the vanilla U-Net, the changes in AUC scores

stay in reach of the standard deviations. This implies that

the introduced functional blocks or the additional levels fail

to incur the expected performance enhancement. As for the

subtractive variants, the performance of U-Net with one con-

volutional layer in each block drops marginally and remains

satisfactory. Removing skip connections barely harms the

network performance; while eliminating the ReLU layer

causes 0.01 decrease in the AUC scores. In Table 2, the eval-

uation metrics of the U-Nets with decreased number of filters

in the initial convolutional layer are reported. A uniform per-

formance decay is observed as the network shrinks. However,

it is remarkable that the performance remains reasonable with
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Table 1 Performance w.r.t. structural variants. Additive variants: Ures,

Uden, Udil, Uside denote the U-Net with the residual blocks, U-Net

with the dense blocks, U-Net with the dilate convolution block, U-Net

with the side-output block; subtractive variants: U-lin, U-1C, U-ns rep-

resent U-Net without ReLU layers and U-Net with one convolutional

layer per level, and U-Net without skip connections, respectively. U-

par, U-5lv, and SSA represent default U-Net with parameter searching,

five-level U-Net and the SSA-Net, respectively

Model Parameter AUC Specificity Sensitivity F1 score Accuracy

DRIVE

U 108,976 0.9756 ± 0.0010 0.9758 ± 0.0016 0.7941 ± 0.0073 0.8101 ± 0.0032 0.9518 ± 0.0009

Ures 154,768 0.9765 ± 0.0009 0.9758 ± 0.0009 0.7994 ± 0.0053 0.8133 ± 0.0034 0.9525 ± 0.0008

Uden 2,501,067 0.9754 ± 0.0009 0.9742 ± 0.0017 0.8029 ± 0.0063 0.8110 ± 0.0042 0.9515 ± 0.0012

Udil 108,976 0.9741 ± 0.0013 0.9753 ± 0.0030 0.7944 ± 0.0151 0.8089 ± 0.0047 0.9513 ± 0.0014

Uside 109,072 0.9752 ± 0.0008 0.9757 ± 0.0013 0.7938 ± 0.0073 0.8097 ± 0.0033 0.9517 ± 0.0008

U-lin 108,976 0.9643 ± 0.0016 0.9693 ± 0.0024 0.7874 ± 0.0091 0.7885 ± 0.0035 0.9453 ± 0.0012

U-ns 97,456 0.9752 ± 0.0009 0.9745 ± 0.0015 0.7966 ± 0.0068 0.8082 ± 0.0036 0.9510 ± 0.0010

U-1C 49,072 0.9732 ± 0.0009 0.9742 ± 0.0010 0.7918 ± 0.0055 0.8043 ± 0.0028 0.9501 ± 0.0007

SSA 25,879,328 0.9810 ± 0.0004 0.9774 ± 0.0009 0.8205 ± 0.0051 0.8306 ± 0.0009 0.9567 ± 0.0002

STARE

U 108,976 0.9835 ± 0.0012 0.9813 ± 0.0017 0.7997 ± 0.0114 0.8115 ± 0.0059 0.9621 ± 0.0012

Ures 154,768 0.9836 ± 0.0012 0.9812 ± 0.0015 0.8024 ± 0.0096 0.8132 ± 0.0051 0.9624 ± 0.0011

Uden 2,501,067 0.9796 ± 0.0019 0.9822 ± 0.0013 0.7885 ± 0.0088 0.8075 ± 0.0046 0.9618 ± 0.0009

Udil 108,976 0.9838 ± 0.0023 0.9799 ± 0.0028 0.8092 ± 0.0181 0.8129 ± 0.0122 0.9620 ± 0.0023

Uside 109,072 0.9829 ± 0.0014 0.9816 ± 0.0017 0.7978 ± 0.0100 0.8110 ± 0.0050 0.9621 ± 0.0011

U-lin 108,976 0.9734 ± 0.0044 0.9788 ± 0.0029 0.7556 ± 0.0257 0.7723 ± 0.0149 0.9554 ± 0.0025

U-ns 97,456 0.9853 ± 0.0036 0.9807 ± 0.0057 0.8064 ± 0.0229 0.8149 ± 0.0187 0.9623 ± 0.0048

U-1C 49,072 0.9825 ± 0.0011 0.9815 ± 0.0015 0.7808 ± 0.0099 0.7997 ± 0.0052 0.9602 ± 0.0011

HRF

U 108,976 0.9810 ± 0.0010 0.9761 ± 0.0010 0.7921 ± 0.0073 0.7754 ± 0.0041 0.9590 ± 0.0008

Ures 154,768 0.9820 ± 0.0008 0.9764 ± 0.0009 0.7953 ± 0.0058 0.7785 ± 0.0031 0.9595 ± 0.0007

Uden 2,501,067 0.9821 ± 0.0006 0.9768 ± 0.0007 0.7949 ± 0.0060 0.7799 ± 0.0029 0.9599 ± 0.0006

Udil 108,976 0.9816 ± 0.0006 0.9765 ± 0.0013 0.7951 ± 0.0084 0.7788 ± 0.0034 0.9596 ± 0.0008

Uside 109,072 0.9822 ± 0.0007 0.9762 ± 0.0008 0.7980 ± 0.0061 0.7793 ± 0.0040 0.9595 ± 0.0008

U-lin 108,976 0.9641 ± 0.0069 0.9712 ± 0.0035 0.7599 ± 0.0216 0.7388 ± 0.0117 0.9519 ± 0.0025

U-ns 97,456 0.9815 ± 0.0007 0.9764 ± 0.0010 0.7926 ± 0.0081 0.7771 ± 0.0038 0.9593 ± 0.0008

U-1C 49,072 0.9779 ± 0.0023 0.9756 ± 0.0022 0.7804 ± 0.0136 0.7668 ± 0.0095 0.9575 ± 0.0019

U-par 108,976 0.9825 ± 0.0007 0.9767 ± 0.0010 0.7976 ± 0.0065 0.7809 ± 0.0033 0.9600 ± 0.0007

U-5lv 1,852,336 0.9831 ± 0.0006 0.9766 ± 0.0006 0.8004 ± 0.0050 0.7823 ± 0.0024 0.9602 ± 0.0005

CHASE_DB1

U 108,976 0.9806 ± 0.0010 0.9731 ± 0.0013 0.8225 ± 0.0073 0.7964 ± 0.0045 0.9575 ± 0.0011

Ures 154,768 0.9811 ± 0.0011 0.9737 ± 0.0015 0.8231 ± 0.0088 0.7987 ± 0.0049 0.9581 ± 0.0011

Uden 2,501,067 0.9799 ± 0.0010 0.9734 ± 0.0013 0.8180 ± 0.0068 0.7951 ± 0.0041 0.9574 ± 0.0010

Udil 108,976 0.9783 ± 0.0020 0.9734 ± 0.0020 0.8120 ± 0.0129 0.7921 ± 0.0066 0.9569 ± 0.0015

Uside 109,072 0.9806 ± 0.0010 0.9737 ± 0.0013 0.8174 ± 0.0084 0.7955 ± 0.0056 0.9576 ± 0.0012

U-lin 108,976 0.9619 ± 0.0047 0.9639 ± 0.0041 0.7910 ± 0.0180 0.7475 ± 0.0098 0.9462 ± 0.0029

U-ns 97,456 0.9793 ± 0.0009 0.9728 ± 0.0011 0.8145 ± 0.0061 0.7907 ± 0.0032 0.9564 ± 0.0008

U-1C 49,072 0.9773 ± 0.0012 0.9713 ± 0.0013 0.8096 ± 0.0070 0.7826 ± 0.0041 0.9546 ± 0.0010
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Table 2 U-Net performance w.r.t. different numbers of initial filters

# Parameter AUC Specificity Sensitivity F1 score Accuracy

DRIVE

8 27,352 0.9754 ± 0.0008 0.9754 ± 0.0012 0.7940 ± 0.0055 0.8089 ± 0.0036 0.9514 ± 0.0010

4 6892 0.9748 ± 0.0007 0.9746 ± 0.0012 0.7962 ± 0.0056 0.8080 ± 0.0025 0.9510 ± 0.0007

2 1750 0.9719 ± 0.0008 0.9728 ± 0.0009 0.7889 ± 0.0047 0.7986 ± 0.0021 0.9485 ± 0.0005

1 451 0.9637 ± 0.0014 0.9678 ± 0.0030 0.7776 ± 0.0110 0.7785 ± 0.0052 0.9427 ± 0.0018

STARE

8 27,352 0.9831 ± 0.0010 0.9812 ± 0.0013 0.7900 ± 0.0101 0.8052 ± 0.0053 0.9610 ± 0.0010

4 6892 0.9824 ± 0.0010 0.9811 ± 0.0013 0.7806 ± 0.0082 0.7988 ± 0.0047 0.9599 ± 0.0009

2 1750 0.9787 ± 0.0018 0.9794 ± 0.0017 0.7605 ± 0.0118 0.7799 ± 0.0078 0.9562 ± 0.0015

1 451 0.9752 ± 0.0016 0.9772 ± 0.0018 0.7405 ± 0.0119 0.7595 ± 0.0081 0.9522 ± 0.0017

HRF

8 27,352 0.9811 ± 0.0008 0.9763 ± 0.0009 0.7913 ± 0.0056 0.7760 ± 0.0038 0.9591 ± 0.0008

4 6892 0.9801 ± 0.0009 0.9762 ± 0.0008 0.7897 ± 0.0070 0.7744 ± 0.0038 0.9589 ± 0.0007

2 1750 0.9762 ± 0.0010 0.9752 ± 0.0011 0.7771 ± 0.0074 0.7633 ± 0.0037 0.9568 ± 0.0008

1 451 0.9679 ± 0.0014 0.9735 ± 0.0016 0.7520 ± 0.0111 0.7424 ± 0.0054 0.9531 ± 0.0012

CHASE_DB1

8 27,352 0.9798 ± 0.0010 0.9733 ± 0.0014 0.8169 ± 0.0085 0.7938 ± 0.0039 0.9571 ± 0.0009

4 6892 0.9788 ± 0.0009 0.9723 ± 0.0012 0.8133 ± 0.0069 0.7884 ± 0.0038 0.9559 ± 0.0009

2 1750 0.9734 ± 0.0015 0.9693 ± 0.0016 0.7966 ± 0.0090 0.7686 ± 0.0048 0.9515 ± 0.0011

1 451 0.9615 ± 0.0023 0.9622 ± 0.0042 0.7633 ± 0.0147 0.7269 ± 0.0090 0.9480 ± 0.0032

Table 3 U-Net performance w.r.t. different numbers of levels

# Parameter AUC Specificity Sensitivity F1 score Accuracy

DRIVE

2 23,984 0.9735 ± 0.0006 0.9733 ± 0.0017 0.7970 ± 0.0072 0.8050 ± 0.0027 0.9500 ± 0.0009

1 7344 0.9649 ± 0.0007 0.9652 ± 0.0015 0.7970 ± 0.0060 0.7832 ± 0.0026 0.9429 ± 0.0008

STARE

2 23,984 0.9813 ± 0.0011 0.9820 ± 0.0013 0.7645 ± 0.0090 0.7912 ± 0.0046 0.9590 ± 0.0009

1 7344 0.9702 ± 0.0012 0.9759 ± 0.0011 0.7235 ± 0.0090 0.7413 ± 0.0062 0.9494 ± 0.0012

HRF

2 23,984 0.9794 ± 0.0008 0.9760 ± 0.0011 0.7891 ± 0.0070 0.7736 ± 0.0034 0.9587 ± 0.0008

1 7344 0.9690 ± 0.0029 0.9741 ± 0.0019 0.7520 ± 0.0139 0.7448 ± 0.0086 0.9537 ± 0.0018

CHASE_DB1

2 23,984 0.9771 ± 0.0011 0.9731 ± 0.0013 0.8021 ± 0.0075 0.7844 ± 0.0036 0.9555 ± 0.0008

1 7344 0.9679 ± 0.0023 0.9685 ± 0.0017 0.7746 ± 0.0087 0.7533 ± 0.0058 0.9487 ± 0.0014

AUC scores above 0.96 for all databases even for the model

with a total of 451 parameters and with only one filter in

the first convolutional layer. U-Nets with reduced number

of levels are evaluated in Table 3. We notice that compared

to the default three-level U-Net, the segmentation capability

of the two-level U-Net is basically retained; and that even

if the model degenerates into a chain of convolutional lay-

ers, the predictions remain plausible, reaching AUC scores

above 0.96 for all databases. Experiment series of training

the default U-Net with decreased amount of data in Table 4

show the generalization ability of the model. In accordance

with expectation, a monotonous performance decline con-

curs with a decreasing number of samples in the training set.

However, it is unexpected that the U-Nets trained with only

two images achieve AUC scores above 0.96 in all databases.
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Table 4 U-Net performance w.r.t. various number of training images

# AUC Specificity Sensitivity F1 score Accuracy

DRIVE

8 0.9734 ± 0.0013 0.9732 ± 0.0025 0.7961 ± 0.0120 0.8043 ± 0.0050 0.9498 ± 0.0014

4 0.9686 ± 0.0019 0.9700 ± 0.0041 0.7926 ± 0.0161 0.7935 ± 0.0065 0.9465 ± 0.0021

2 0.9654 ± 0.0032 0.9657 ± 0.0080 0.7919 ± 0.0220 0.7818 ± 0.0123 0.9427 ± 0.0049

1 0.9564 ± 0.0068 0.9672 ± 0.0058 0.7508 ± 0.0274 0.7602 ± 0.0192 0.9387 ± 0.0054

STARE

5 0.9753 ± 0.0042 0.9789 ± 0.0035 0.7780 ± 0.0253 0.7890 ± 0.0149 0.9576 ± 0.0028

2 0.9614 ± 0.0030 0.9709 ± 0.0023 0.7413 ± 0.0110 0.7400 ± 0.0073 0.9463 ± 0.0018

1 0.9511 ± 0.0045 0.9709 ± 0.0026 0.7127 ± 0.0138 0.7197 ± 0.0108 0.9435 ± 0.0023

HRF

14 0.9817 ± 0.0007 0.9764 ± 0.0011 0.7934 ± 0.0071 0.7774 ± 0.0038 0.9593 ± 0.0008

7 0.9805 ± 0.0010 0.9755 ± 0.0015 0.7913 ± 0.0096 0.7730 ± 0.0051 0.9584 ± 0.0011

3 0.9779 ± 0.0017 0.9750 ± 0.0021 0.7804 ± 0.0149 0.7644 ± 0.0083 0.9569 ± 0.0018

1 0.9727 ± 0.0026 0.9724 ± 0.0026 0.7626 ± 0.0200 0.7441 ± 0.0127 0.9529 ± 0.0026

CHASE_DB1

8 0.9771 ± 0.0015 0.9718 ± 0.0022 0.8081 ± 0.0109 0.7833 ± 0.0060 0.9549 ± 0.0015

4 0.9728 ± 0.0020 0.9703 ± 0.0030 0.7953 ± 0.0123 0.7707 ± 0.0091 0.9522 ± 0.0023

2 0.9684 ± 0.0037 0.9693 ± 0.0028 0.7847 ± 0.0148 0.7609 ± 0.0115 0.9502 ± 0.0027

1 0.9590 ± 0.0059 0.9659 ± 0.0045 0.7631 ± 0.0170 0.7366 ± 0.0169 0.9449 ± 0.0044

Discussion and conclusion

In this work, we firstly attempt to improve the capability of

U-Net on the retinal vessel segmentation task by introduc-

ing functional blocks or additional scale levels to the model.

Although the modified models accommodate more param-

eters, their performance does not improve considerably. To

investigate on the impact of hyperparameters on the network

performance, a parameter searching experiment is carried

out for the default U-Net on the HRF database. However,

the optimum set of parameters also fails to introduce signifi-

cant improvement. Thereafter, we turn our research direction

into exploring the minimum configurations of the U-Net by

removing or reducing certain characteristics from a default

U-Net configuration. It is proved that ReLU layers have larger

impact on the model functionality than the amount of param-

eters. Linear U-Nets with no ReLU activation levels arrive

at the lowest segmentation performance among all structural

variants on all four databases. In the DRIVE database, the

default U-Net achieves an AUC score of 0.9756, the U-Net

with two filters in the input layer achieves an AUC score of

0.9719, while U-Net without ReLU layers yields an AUC

score of 0.9643, as presented in Tables 1, 2. One interest-

ing observation is that when skip connections are absent, the

high performance is maintained. A possible explanation is

that the detail loss due to resampling is limited in three-level

models and that the missing details can still be successfully

encoded in the bottleneck. In other words, for this specific

task, skip connections are not necessary when the network is

shallow. The assumption is confirmed by evaluating the seg-

mentation performance on a five-level U-Net without skip

connections. Comparing the prediction of the five-level lin-

ear U-Net in Fig. 4p and that of the three-level linear U-Net

in Fig. 4o, we observe that qualitatively not only are thin ves-

sels neglected, but adjacent big vessels get blended as well;

and that quantitatively the AUC score drastically drops from

0.9819 to 0.9689 as exhibited on the upper right corners of

corresponding image tiles.

The segmentation performance of U-Net-based few-

parameter networks are compared with the state-of-the-art

retinal vessel segmentation model SSA-Net. Although their

model performance is significantly better than ours, the dif-

ferences are on the third digit. Besides, the generalization

ability is another issue. When trained on the DRIVE database

and directly transferred to the STARE database, our few

parameter models exhibit much stronger generalization abil-

ity than the SSA-Net. The AUC scores yielded from our

models are all above 0.96, while that from the SSA-Net is

around 0.94 as presented in Table 5. The poor generalization

ability could be explained by overfitting since the SSA-Net

contains more than 25 million trainable parameters which is

over 250 times more than that of our default U-Net.

The observation that U-Net produces pleasing segmenta-

tion predictions even under extreme configuration conditions

is unanticipated and intriguing. Small networks save both

memory and computational resource, and allow for agile
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Table 5 The AUC scores of transferring each model that is trained on the DRIVE database directly onto the STARE database. Few-parameter

networks include the three-level U-Net with different numbers of filters in the first convolutional layer, and U-Net with few levels

AUC Default U SSA-Net 8 filter 4 filter

0.9760 ± 0.0041 0.9405 ± 0.0090 0.97426 ± 0.0044 0.9751 ± 0.0034

2 filter 1 filter 2 level 1 level

AUC 0.9706 ± 0.0047 0.9667 ± 0.0031 0.9710 ± 0.0029 0.9648 ± 0.0026

usage on mobile devices. Given the fundamental network

architecture, the performance gain caused by increasing the

amount of parameters or training data becomes marginal once

the corresponding conditions, namely the minimal number of

levels, number of filters, and number of convolutional layer

in each block, are sufficiently satisfied. On the one hand, this

observation could be explained by the simplicity of the task

and the similarity among fundus photographs; on the other

hand, it raises the question whether trading immense resource

cost with minor performance increase is worthwhile. As

future work, the same “control variates” methodology could

be applied on alternative tasks for compression. Smart rather

than bulky design should be the preferred research direction.
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