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Abstract

Measurements of Earth’s atmosphere as it occults sunlight can be obtained advantageously from a

spacecraft placed in the proximity of the Sun-Earth Lagrange point L2. Maintaining the condition

of continuous solar occultation by all parts of the atmospheric disk requires that the displacement

of the spacecraft perpendicular to the Sun-Earth line remains less than 200 km. However, the

gravitational force exerted by the Earth’s moon must be negated by propulsion in order to meet

this rather tight constraint. We provide an estimate of propulsive force needed to keep the space-

craft coincident with L2, as well as estimates of velocity increments needed to maintain various

trajectories in the close vicinity of L2.

Introduction

The benefits of placing spacecraft in halo orbits about Lagrange or libration points are widely

discussed in the literature, as are methods for controlling such orbits. Use of the collinear Sun-

Earth Lagrange points in particular for the conduct of Earth and space science missions is reviewed,

for example, in Refs. [1], [2], and [3]. Halo orbits, and the more general Lissajous orbits, typically

involve displacements from the Sun-Earth line ranging from thousands to hundreds of thousands

of kilometers. Such relatively large excursions can not be tolerated for certain missions proposed
1A previous version of this work was presented as Paper AAS 04-246 at the AAS/AIAA Space Flight Mechanics

Meeting, Maui, Hawaì i, February, 2004.
2Spacecraft and Sensors Branch, NASA Langley Research Center, Hampton, VA 23681-2199.
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recently. For instance, as discussed in Ref. [3] it is advantageous to study Earth’s atmosphere

from the trans-Earth equilibrium point L2 via solar occultation in the near infrared spectra. From

this unique vantage point the entire limb of the Earth provides permanent occultation, making

it possible to obtain hourly measurements at all latitudes of the atmosphere as the Earth rotates

and produce nearly global high-resolution three-dimensional maps of the geographic distribution

of major atmospheric constituent gas species such as CO2, O3, O2, CH4, H2O, and N2O. Such

measurements can not be obtained by spacecraft in low Earth orbit and have never before been

achieved.

Maintaining the condition of continuous solar occultation by all parts of the atmospheric disk

requires that the displacement of the spacecraft perpendicular to the Sun-Earth line remains less

than 200 km. Views of Earth occulting the Sun from various positions in the neighborhood of L2

are contained in Fig. 1. The rectangular border around each image marks a 1◦× 0.65◦ field of view.

Figures 1a, b, and c show Earth centered in front of the solar disk when viewed from three points

on the Sun-Earth line; the distance is 1.5082 ×106 km from Earth in Fig. 1a, 50,000 km farther

away in Fig. 1b, and 50,000 km closer in Fig. 1c. In Figs. 1d and e the vantage point is 1.5082

×106 km from Earth along the Sun-Earth line, and displaced in the ecliptic plane by some distance

in a direction perpendicular to the Sun-Earth line. From a perpendicular displacement of 200 km

the Earth is somewhat off center but still completely within the solar disk as displayed in Fig. 1d;

however, a majority of Earth’s limb fails to occult the Sun from a perpendicular displacement of

5,000 km as one can see in Fig. 1e.

As is well known from the study of the circular restricted three-body problem, a particle at

L2 is considered to be in dynamic equilibrium based on the assumptions that the Sun and Earth

orbit their common barycenter circularly and, more importantly, that only these two bodies exert

gravitational force on the particle. The gravitational attraction of the Earth’s moon (a fourth body)

displaces the point of equilibrium by nearly 5,000 km in a roughly circular path with the period

of the lunar cycle; although a spacecraft excursion of this amount in a direction parallel to the

Sun-Earth line would not violate the science requirement, displacement of this magnitude in the

perpendicular direction is unacceptable. Solutions of the circular restricted three-body problem

reveal the existence of nearly rectilinear orbits in the halo family as described in Refs. [4] and

[5]; however, the resulting displacement is perpendicular to the line between the primaries, and the
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Figure 1: Views from the neighborhood of L2
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perturbation exerted by a fourth body is not accounted for in this result. Consequently, a spacecraft

such as the one proposed in Ref. [3] must possess a propulsion system capable of offsetting the lunar

gravitational attraction; preliminary design of the system requires an estimate of the associated

force per unit mass and corresponding velocity increment. Previous research, reported in Ref. [6],

has determined that in the restricted four-body problem the position of a dynamic equilbrium lies on

a line joining the Sun and the Earth-Moon barycenter. Motion in the vicinity of this equilibrium

has been analyzed in that work as well. In this paper, however, we are concerned with motion

near Sun-Earth L2, a point that ceases to correspond to equilibrium once the lunar gravitational

perturbation is considered.

The paper proceeds as follows. First, we briefly review the approach taken by other researchers

in showing that, to first order, one can neglect the solar gravitational perturbation at the collinear

Earth-Moon libration points. This approach is then applied to the collinear Sun-Earth equilibrium

point L2 to obtain the first-order lunar perturbation, which does not vanish. After neglecting the

inclination of the lunar orbit plane relative to the ecliptic we obtain approximate expressions for

projections of the lunar perturbation in directions parallel and perpendicular to the Sun-Earth line;

these are in turn used to show the approximate displacement of the equilibrium point from L2. It

becomes clear right away that a spacecraft coincident with the perturbed equilibrium will be dis-

placed well in excess of 200 km from the Sun-Earth line. An exact expression for the propulsive force

needed to counter the lunar gravity is evaluated numerically over one lunar cycle using positions of

the Earth, Sun, and Moon specified by published ephemerides; approximate expressions for the two

ecliptic-plane projections are seen to agree well with the exact results. Analytic integration of the

relationships for the two projections furnishes an estimate of the velocity increment ∆V expected

from a propulsion system for one lunar cycle in the event the spacecraft is to remain coincident with

L2. Velocity increments needed to keep the spacecraft fixed at other points on the Sun-Earth line

are also provided. Fixing the spacecraft is admittedly overly restrictive; as mentioned previously,

solar occultation by the atmosphere will occur even when the spacecraft is permitted to move a

reasonable distance along the Sun-Earth line. Thus, less propellant is needed if thrusters are used

solely to offset the lunar perturbing force perpendicular to the Sun-Earth line. We conclude by

quantifying reductions in the required velocity increments made possible by some trajectories that

stay within the immediate neighborhood of L2.
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Perturbation of Collinear Libration Points

Previous researchers have addressed the solar gravitational perturbation of spacecraft motion near

the collinear Earth-Moon libration points. It is instructive to review briefly their approach before

employing it to study the lunar perturbation of a collinear Sun-Earth libration point. Colombo

was the first to investigate the matter. In Ref. [7] he shows that, for a particle coincident with

a libration point, the solar perturbation can be neglected to first order. In Ref. [8], Nicholson

carries the analysis to second order and applies it to motion within 10 km of the cislunar point L1.

Farquhar treats the solar perturbation of an object in a periodic orbit about a collinear point in

Ref. [9].

Figure 2 depicts a system of four particles Pi, each of mass mi (i = 1, 2, 3, 4), moving in

a Newtonian reference frame N under the influence of mutual gravitational attraction. We are

particularly interested in a system where P1, P2, P3, and P4 represent respectively the Earth, a

spacecraft, the Sun, and the Moon. Using the notation employed in Ref. [10], r indicates the

position vector from P1 to P2. The vectors di represent the position vectors from Pi to P2 (i = 3, 4)

and are used to express the direct effects of these particles on P2, whereas the indirect effects are

expressed in terms of the position vectors ρi from P1 to Pi (i = 3, 4).

Solar Perturbation of Collinear Earth-Moon Libration Points

Nicholson’s demonstration makes use of two equations of motion relative to Earth, one for the

spacecraft and one for the Moon, and a third expression relating the libration point position to

the position of the Moon. The motion of a spacecraft relative to Earth, perturbed by the Sun and

Moon, can be described with the aid of Eq. (8.55) in Ref. [10] where the number of particles n is 4.

N
d2

dt2
r +

G(m1 + m2)r
r3

= −G

[
m3

(
d3

d3
3 +

ρ3

ρ3
3

)
+ m4

(
d4

d4
3 +

ρ4

ρ4
3

)]
(1)

(Nicholson immediately neglects Gm2 in comparison to Gm1.) The motion of the Moon relative to

Earth, perturbed by the Sun, is governed by the vector differential equation

N
d2

dt2
ρ4 + G(m1 + m4)

ρ4

ρ4
3

= −Gm3

(
− z

z3
+

ρ3

ρ3
3

)
(2)

where z is the magnitude of the position vector z from P4, the Moon, to P3, the Sun, which can

be written as z = ρ3 − ρ4.
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Figure 2: Four-Body System

In each relationship the solar term is expanded in a binomial series to obtain, for r < ρ3 in the

first instance,

−Gm3

(
d3

d3
3 +

ρ3

ρ3
3

)
= −Gm3

(
r− ρ3

|r− ρ3|
3 +

ρ3

ρ3
3

)
=

Gm3

ρ3
3

(3ρ̂3ρ̂3 −U) · r + · · · (3)

where ρ̂3 is a unit vector having the same direction as ρ3, U denotes the unit dyadic, and where

the remaining terms are of second or higher degree in r/ρ3. The right hand member of Eq. (2) is

likewise expanded to obtain, for ρ4 < ρ3,

−Gm3

(
− z

z3
+

ρ3

ρ3
3

)
= −Gm3

(
ρ4 − ρ3

|ρ4 − ρ3|
3 +

ρ3

ρ3
3

)
=

Gm3

ρ3
3

(3ρ̂3ρ̂3 −U) · ρ4 + · · · (4)

In the absence of solar gravitation, the position vectors from P1 to the three libration points

on the Earth-Moon line are given by γiρ4, where γ1, γ2, and γ3 are three distinct constants whose

values are determined by the masses of the Moon and Earth. When the spacecraft is coincident

with one of the collinear libration points, the position vector r is given by

r = γiρ4 (i = 1, 2, 3) (5)

Relative velocity and acceleration of the coincident spacecraft are obtained by differentiating these

relationships with respect to time in N . Because the ratios of r to ρ4, Ndr/dt to Ndρ4/dt, and
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Nd2r/dt2 to Nd2ρ4/dt2 are all given by the same constant γi, Colombo calls the motion of a

libration point homothetic to the motion of the Moon relative to the Earth. The relationship

involving the second derivative plays a key role in what follows.

N
d2

dt2
r = γi

N
d2

dt2
ρ4 (i = 1, 2, 3) (6)

The solar perturbation at the collinear Earth-Moon equilibrium points is shown to be negligible

to first order by substituting from Eqs. (3) and (4) into (1) and (2) respectively, and substituting

from the resulting expressions into (6).

N
d2

dt2
r− γi

N
d2

dt2
ρ4 =− Gm1r

r3
−Gm4

(
d4

d4
3 +

ρ4

ρ4
3

)
+

Gm3

ρ3
3

(3ρ̂3ρ̂3 −U) · r + · · ·

+ G(m1 + m4)γi
ρ4

ρ4
3
− Gm3

ρ3
3

(3ρ̂3ρ̂3 −U) · γiρ4 − · · · (i = 1, 2, 3) (7)

where Gm2 has been neglected in comparison to Gm1. Upon appealing to Eqs. (5), it can be seen

immediately that the terms involving Gm3 cancel one another. If the surviving terms on the right

hand side are to vanish, thereby satisfying Eqs. (6), there arise polynomials that are quintic in γi

with coefficients that are related to the ratio of the masses of the Moon and Earth.

Lunar Perturbation of Collinear Sun-Earth Libration Point L2

An approach similar to the one taken by Colombo and Nicholson can be followed to analyze the

lunar perturbation at the collinear Sun-Earth libration point L2. In contrast to their results for

the Earth-Moon system, the lunar perturbation to the Sun-Earth system does not vanish, even to

first order.

We begin with a counterpart to Eq. (1),

N
d2

dt2
r +

G(m1 + m2)r
r3

=
p

m2
−G

[
m3

(
d3

d3
3 +

ρ3

ρ3
3

)
+ m4

(
d4

d4
3 +

ρ4

ρ4
3

)]
(8)

where p/m2 is a propulsive force per unit mass that can be applied to P2 to control its motion. In

place of Eq. (2) we use an equation governing the motion of the Sun relative to the Earth, perturbed

by the Moon.
N
d2

dt2
ρ3 + G(m1 + m3)

ρ3

ρ3
3

= −Gm4

(
z
z3

+
ρ4

ρ4
3

)
(9)
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The lunar term in Eq. (8) is expanded in a binomial series as follows. After recognizing that

ρ4 + d4 = r, one may write

−Gm4

(
d4

d4
3 +

ρ4

ρ4
3

)
= −Gm4

(
r− ρ4

|r− ρ4|
3 +

ρ4

ρ4
3

)
(10)

The distance r from Earth to L2 is approximately 1.5×106 km, or four times the distance ρ4 from

Earth to the Moon, 384,400 km. Thus, we factor out r from the denominator of the first term

1
|r− ρ4|

3 = [(r− ρ4) · (r− ρ4)]
− 3

2 = r−3

[
1− 2

r · ρ4

r2
+
(

ρ4

r

)2
]− 3

2

(11)

and define x as

x
4
= −2

r · ρ4

r2
+
(

ρ4

r

)2

(12)

Neglecting the inclination of the Moon’s orbit plane to the ecliptic, about 5◦, the largest value of x

is found to be about 0.58, whereas the smallest value is approximately −0.45; hence, −1 < x < 1,

and one can employ the binomial series

(1 + x)−
3
2 = 1− 3

2
x +

15
8

x2 − · · · (13)

to write [
1− 2

r · ρ4

r2
+
(

ρ4

r

)2
]− 3

2

= 1 + 3
r · ρ4

r2
+ · · · (14)

where the remaining terms are of second or higher degree in ρ4/r. Substitution from Eq. (14) into

(11) and then into (10) yields, for r > ρ4,

−Gm4

(
d4

d4
3 +

ρ4

ρ4
3

)
= −Gm4

[
r− ρ4

r3

(
1 + 3

r · ρ4

r2
+ · · ·

)
+

ρ4

ρ4
3

]
= −Gm4

{[
3r̂r̂
r3

+
(

1
ρ4

3
− 1

r3

)
U
]

· ρ4 +
r
r3

+ · · ·
}

(15)

where r̂ is a unit vector having the same direction as r, and a term involving (ρ4/r)2 has been

neglected in the final step. Proceeding similarly with the lunar perturbation in Eq. (9), we obtain

−Gm4

(
z
z3

+
ρ4

ρ4
3

)
= −Gm4

(
ρ3 − ρ4

|ρ3 − ρ4|
3 +

ρ4

ρ4
3

)

= −Gm4

{[
3ρ̂3ρ̂3

ρ3
3

+
(

1
ρ4

3
− 1

ρ3
3

)
U
]

· ρ4 +
ρ3

ρ3
3

+ · · ·
}

(16)

for ρ3 > ρ4.

8



As counterparts to Eqs. (5) and (6) we require expressions involving the position of a spacecraft

that is coincident with the trans-Earth libration point on the Sun-Earth line,

r = −γ2ρ3 (0 < γ2 < 1) (17)

and
N
d2

dt2
r = −γ2

N
d2

dt2
ρ3 (18)

Substitution from Eqs. (8), (9), (15), and (16) into (18) yields

N
d2

dt2
r + γ2

N
d2

dt2
ρ3 =

− Gm1r
r3

+
p

m2
−Gm3

(
d3

d3
3 +

ρ3

ρ3
3

)
−Gm4

{[
3r̂r̂
r3

+
(

1
ρ4

3
− 1

r3

)
U
]

· ρ4 +
r
r3

+ · · ·
}

−G(m1 + m3)γ2
ρ3

ρ3
3
−Gm4γ2

{[
3ρ̂3ρ̂3

ρ3
3

+
(

1
ρ4

3
− 1

ρ3
3

)
U
]

· ρ4 +
ρ3

ρ3
3

+ · · ·
}

(19)

where Gm2 has been neglected in comparison to Gm1.

Perturbed Motion in the Neighborhood of L2

With suitable initial position and velocity, a spacecraft will remain coincident with L2 when the

right hand member of Eq. (19) vanishes. The propulsive force per unit mass p/m2 can be used

to counter the lunar gravitational perturbation as will be discussed presently. The terms involving

Gm1 and Gm3 can be collected and set equal to zero, giving rise to a quintic polynomial for γ2;

the result given in Ref. [9] is 1.0037× 10−2.

The lunar perturbational force per unit mass acting on a spacecraft coincident with L2 is

developed as follows. In view of Eq. (17) we observe that ρ3 = −r/γ2, ρ3 = r/γ2, and ρ̂3 = −r̂.

Thus,

f
m2

4
= −Gm4

{[
3r̂r̂
r3

+
(

1
ρ4

3
− 1

r3

)
U
]

· ρ4 +
r
r3

+ · · ·
}

−Gm4γ2

{[
3ρ̂3ρ̂3

ρ3
3

+
(

1
ρ4

3
− 1

ρ3
3

)
U
]

· ρ4 +
ρ3

ρ3
3

+ · · ·
}

= −Gm4

{[
3r̂r̂
r3

+
(

1
ρ4

3
− 1

r3

)
U
]

· ρ4 +
r
r3

+ · · ·
}

−Gm4γ2

{[
3γ2

3 r̂r̂
r3

+

(
1

ρ4
3
− γ2

3

r3

)
U

]
· ρ4 −

r
γ2

γ2
3

r3
+ · · ·

}

= −Gm4

{[
3r̂r̂
r3

(1 + γ2
4) +

(
1 + γ2

ρ4
3

− 1 + γ2
4

r3

)
U

]
· ρ4 + (1− γ2

3)
r
r3

+ · · ·
}

(20)
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It is worth noting that 1 + γ2 ≈ 1 + 10−2 ≈ 1, 1− γ2
3 ≈ 1− 10−6 ≈ 1, and 1 + γ2

4 ≈ 1 + 10−8 ≈ 1.

It is clear from Eq. (20) that the lunar perturbation can not be discarded from the right hand

member of Eq. (19). In contrast, the solar perturbation disappears (to first order) from Eqs. (7).

This observation can be accompanied by others regarding the relative magnitudes of the position

vectors involved in the direct terms of the perturbations in Eqs. (15) and (16) in the first instance,

and in Eqs. (3) and (4) in the second instance. In Eq. (3) the position vector d3 in the direct term is

written as the difference r−ρ3. As noted previously, r < ρ3; thus, a denominator 1/ρ3
3 is factored

out in the binomial expansion of the direct term and a cancellation of the indirect term ρ3/ρ3
3

occurs when the direct and indirect terms are added together. The position vector z = −(ρ4 − ρ3)

in the direct term in Eq. (4) is treated in an analagous manner when ρ4 < ρ3. In constrast, the

position vector d4 involved in the direct term in Eq. (15) is written as r−ρ4 but in this case r > ρ4

so 1/r3 is factored out in the binomial expansion rather than 1/ρ4
3, and there is no cancellation

of the indirect term ρ4/ρ4
3 when the sum of the direct and indirect terms is formed. A similar

situation exists with z = ρ3 − ρ4 in the direct term in Eq. (16), with ρ3 > ρ4.

Consider a reference frame A, shown in Fig. 3, in which the line passing through P3, P1 and

L2 is fixed. It is convenient to introduce three mutually perpendicular unit vectors â1, â2, and â3

fixed in A, where â1 = r̂, â2 lies in the ecliptic plane, and â3 = â1 × â2. In view of the negligible

inclination of the Moon’s orbit plane to the ecliptic, ρ4 can be approximated by

ρ4 ≈ ρ4(cos θ4â1 + sin θ4â2) (21)

where ρ4 is regarded as constant, and where the angle between r and ρ4 is given by θ4 = nst
4
=

(n4 − n3)t. The mean motions of the Earth-Moon and Sun-Earth orbits are denoted by n4 and

P3(!)

P4(  )â2

â1

P1(⊕) P2(L2)

!

r

ρ4
θ4

d4A

Figure 3: Spacecraft on the Sun-Earth Line
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n3 respectively, and θ4 goes from 0 to 2π during one lunar synodical period. Using the terms that

appear in Eq. (20), projections of f/m2 in the directions of â1 and â2 are given by

f1
4
=

f · â1

m2
= −Gm4

{[
1 + γ2

ρ4
3

+
2(1 + γ2

4)
r3

]
ρ4 cos θ4 +

1− γ2
3

r2

}
(22)

f2
4
=

f · â2

m2
= −Gm4

(
1 + γ2

ρ4
3

− 1 + γ2
4

r3

)
ρ4 sin θ4 (23)

Linearized equations governing motion in the neighborhood of a collinear libration point in the

circular restricted three-body problem are presented, for example, in Refs. [6], [8], and [9]. The

derivation of these equations rests on the assumption that two massive bodies orbit each other in a

circle of constant radius, and a third body whose motion is of interest has mass that is insignificant

in comparison. The homogeneous form of the equations (Ref. [9]) is based on the additional

assumption that the only forces acting on the third body are those due to gravitational attraction

from the two primary bodies. A nonhomogeneous form accounts for a perturbing force; for example,

the gravitational attraction of a fourth body. In the case of Ref. [8], components of solar gravitation

acting at Earth-Moon L1 or L2 serve as forcing functions for the in-plane equations, whereas lunar

gravitation acting at Sun-Earth L2 perturbs the in-plane motion in Ref. [6]. Here, we employ f1 and

f2 to approximate the lunar perturbation acting near Sun-Earth L2. In the absence of propulsion,

linear differential equations describing motion in the ecliptic plane are written as

ẍ− 2n3ẏ − (1 + 2BL)n3
2x = f1 (24)

ÿ + 2n3ẋ + (BL − 1)n3
2y = f2 (25)

where in-plane displacements of the spacecraft from L2 are assumed to be small, and are denoted

by x = (r + γ2ρ3) · â1 and y = (r + γ2ρ3) · â2. The constant BL for Sun-Earth L2 is given by

BL =
1− µ

(1 + γ2)3
+

µ

γ2
3

(26)

where the mass ratio for the Earth and Sun is simply µ = m1/(m3 + m1). A numerical value of

3.9408 for BL is reported in Ref. [9].

Using the numerical values in Table 1, one finds

f1 = −259 cos nst− 16 km/day2 (27)

f2 = −246 sinnst km/day2 (28)
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Table 1: ASTRONOMICAL PARAMETERS

ρ4 384,400 km

r 1.50151×106 km

Gm1 3.986×105 km3/s2

Gm3 1.327×1011 km3/s2

Gm4 4.903×103 km3/s2

n3 0.0172 rad/day

n4 0.2300 rad/day

γ2 1.0037×10−2

BL 3.9408

in which case a particular solution of Eqs. (24) and (25) is given by

x = 4666 cos nst + 6177 km (29)

y = 4770 sin nst km (30)

In a study of the restricted four-body problem presented in Ref. [6] (or Ref. [9], pp. 42–44),

Farquhar determines the location of an equilibrium point O′ displaced from L2 by the lunar per-

turbation. A line joining the Sun and O′ passes through the Earth-Moon barycenter, as shown in

Fig. 4. The path described by Eqs. (29) and (30), marked by the symbol × in Fig. 5, is seen to

be similar to the trajectory of O′, indicated with an O. Corresponding points on the two paths

are approximatley 250 km from each other. Data points are one day apart and motion proceeds

P3(§)

P4(  )

O´

â1 P1(⊕) L2

!

ρ4

Figure 4: Equilibrium Point Perturbed by Lunar Gravitation
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counterclockwise. By accounting for higher order terms in the lunar perturbation Farquhar is able

to show in Ref. [6] that a spacecraft remains within 20 km of O′, as illustrated in Ref. [11]. Thus

it would be possible, with proper initial conditions, for a spacecraft to move in the ecliptic plane

unaided by propulsion such that it remains coincident with the equilibrium point in a 4666 × 4770

km ellipse centered on the Sun-Earth line about 6177 km farther away from the Earth than L2.

However, this first order perturbed motion is unsatisfactory in the case of the Earth observation

telescope for reasons discussed previously. The excursions in y are not permissible even though the

excursions in x do not present a problem. Consequently, propulsion is required to negate the lunar

perturbation at Sun-Earth L2.

Propulsive Force Per Unit Mass

A spacecraft can be made to remain coincident with L2 by countering the lunar perturbation with

propulsion, in which case

p/m2 = −f/m2 (31)

Referring to Eqs. (8), (9), and (18), an exact expression can be written as

p
m2

= Gm4

[(
d4

d4
3 +

ρ4

ρ4
3

)
+ γ2

(
z
z3

+
ρ4

ρ4
3

)]
(32)

Alternatively, the inclination of the Moon’s orbit plane to the ecliptic can be neglected once again

and, in view of Eqs. (22) and (23), an approximate relationship can be written

p
m2

≈ Gm4

{[(
1 + γ2

ρ4
3

+ 2
1 + γ2

4

r3

)
ρ4 cos θ4 +

1− γ2
3

r2

]
â1 +

(
1 + γ2

ρ4
3

− 1 + γ2
4

r3

)
ρ4 sin θ4â2

}
(33)

The foregoing expressions are evaluated numerically, and the quantities pi = (p · âi)/m2 (i =

1, 2, 3) and p =
√

p · p/m2 are compared in Fig. 6. Solid curves are associated with Eq. (32) and

dashed curves represent Eq. (33). The position vector r is given a magnitude of 1.5015 ×106 km

and the direction of â1. The positions of P3 (Sun), P1 (Earth), and P4 (Moon) are obtained from

the ephemerides published in Ref. [12] for a 30-day period beginning on the epoch of March 20,

2000, 16h:40m:00s GMT (Greenwich Mean Time), selected so that Earth lies between the Sun and

Moon, and ρ4 · â2 ≈ 0. The projection p1 along the Sun-Earth line is shown on the upper left

in Fig. 6 with a solid curve, and is seen to vary between 3.8 × 10−5 m/s2 and −3.4 × 10−5 m/s2.
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Figure 6: Lunar Perturbing Force Per Unit Mass
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The projection p2 in the ecliptic and perpendicular to the Sun-Earth line, displayed in the upper

right, varies nearly sinusoidally between 2.9× 10−5 m/s2 and −3.6× 10−5 m/s2. The projection p3

perpendicular to the Sun-Earth line and to the ecliptic, contained in the lower left, varies nearly

sinusoidally between 2.8× 10−6 m/s2 and −3.1× 10−6 m/s2, an order of magnitude less than the

other two projections. The magnitude p is displayed in the plot on the lower right, and is observed

to vary between 3.8 × 10−5 and 2.9 × 10−5 m/s2. The approximate relationships for p1 and p2 in

Eq. (33) are evaluated with the numerical values listed in Table 1 and the lunar synodical period is

used to convert the independent variable θ4 to time; the results are depicted with dashed curves in

Fig. 6 where it is evident that the approximations are reasonably good for this particular month.

Estimate of ∆V

The velocity increments that must be supplied each month by thrusters aimed in the directions of

â1, â2, and â3 are simply the areas under the corresponding three curves of Fig. 6. Approximate

relationships formed from Eq. (33) can be integrated analytically to obtain estimates of the velocity

increments to be supplied by thrusters parallel to the â1 and â2 directions. The velocity increment

in each direction over one lunar orbit is given by

∆Vi
4
=
∫ 2π/ns

0

|p · âi|
m2

dt = 4
∫ π/2

0

|p · âi|
nsm2

dθ4 (i = 1, 2) (34)

where θ4 = nst. The trigonometric functions in Eq. (33) allow setting the upper limit of integration

to π/2 and quadrupling the result. Consequently,

∆V1 =
4Gm4

ns

{[
1 + γ2

ρ4
3

+
2(1 + γ2

4)
r3

]
ρ4 +

π

2
1− γ2

3

r2

}
(35)

∆V2 =
4Gm4

ns

(
1 + γ2

ρ4
3

− 1 + γ2
4

r3

)
ρ4 (36)

Using the values in Table 1, one obtains ∆V1 = 62 m/s and ∆V2 = 54 m/s. Hence, the monthly

velocity increment needed to keep the spacecraft fixed on the Sun-Earth line is estimated to be

116 m/s. However, the science requirements of a telescope for observing Earth’s atmosphere are

satisfied even if it is permitted to take excursions of several thousand km along the Sun-Earth line.

In this case the propulsion system need only supply a monthly velocity increment of 54 m/s, saving

more than 50% of the propellant compared to what must be expended to prevent any lunar-induced

excursions.
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Figure 7: Monthly In-Plane Velocity Increments to Keep Spacecraft Fixed

The monthly values of ∆V1 and ∆V2 needed to keep a spacecraft fixed at other points on the

Sun-Earth line are shown in Fig. 7; the range of r considered is within 5× 105 km of the nominal

value in Table 1. Variations of the monthly in-plane velocity increments are not drastic, but the

cumulative change for a mission lasting several years will of course be significant. The sensitivity

of ∆V2 to changes in r is markedly less than that of ∆V1; hence, allowing the spacecraft to move

up and down the Sun-Earth line is once again seen to be advantageous.

Keeping a spacecraft fixed at some point on the Sun-Earth line is recognized to be overly

restrictive and requires a monthly expenditure of propellant according to the results shown in

Fig. 7. On the other hand propellant cost could be virtually eliminated by attempting to keep
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Figure 8: Monthly In-Plane Velocity Increments for Circular Spacecraft Motion
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a spacecraft coincident with the equilibrium point displaced by lunar gravitation as illustrated in

Fig. 5, but this is clearly too permissive in view of the science requirements. As has been mentioned

already, a compromise between the two extremes of motion is needed. A simple way to investigate

the benefits of relaxing the constraint is to prescribe the spacecraft’s position over the course of a

month and determine the associated velocity increments. For example, motion depicted in Fig. 5

may be regarded as approximately circular and hence be described by the relationships

x = R cos nst + 6177 km (37)

y = R sinnst km (38)

where the radius R of the circle can be varied. The propulsive force per unit mass needed to bring

about the prescribed motion is given by

p1 = ẍ− 2n3ẏ − (1 + 2BL)n3
2x− f1 (39)

p2 = ÿ + 2n3ẋ + (BL − 1)n3
2y − f2 (40)

where x, y, and their first and second derivatives with respect to time are obtained from Eqs. (37)

and (38), and f1 and f2 are given in Eqs. (27) and (28).

In-plane velocity increments are obtained via numerical quadrature in accordance with Eqs. (34)

for various radii R and the results are shown in Fig. 8. When R = 0 the spacecraft is fixed on

the Sun-Earth line and ∆V2 has the monthly value of 54 m/s as reported previously, whereas ∆V1

is reduced to 56 m/s due to the additional displacement of 6177 km in the direction of â1. As

expected, ∆V1 and ∆V2 become very small when R reaches 4700 km. The science requirements,

however, require R ≤ 200 km.

An elliptical trajectory of appropriate size will allow motion along the Sun-Earth line while

constraining the excursion in the perpendicular direction. Equations (37) and (38) can be replaced

by

x = 4700 cos nst + 6177 km (41)

y = 200 sin nst km (42)

to prescribe motion in a 4700 × 200 km ellipse. Numerical quadrature of Eqs. (39) and (40) then

yields monthly values of ∆V1 = 6.9 m/s and ∆V2 = 44.1 m/s, for a total of 51 m/s.
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Reference [13] takes up optimal control of the Earth observation telescope discussed here. An

interesting in-plane periodic trajectory in the shape of a candy wrapper is shown to satisfy the

contraint y ≤ 200 km, with an associated minimum total monthly ∆V of less than 40 m/s. The

authors of that work also report a progression of optimal trajectories that take on the shape of

a peanut as the constraint is relaxed from y ≤ 0 until the contraint is absent, whereupon the

trajectory becomes similar to what is shown in Fig. 5.

Mission plans discussed in Ref. [14] call for measurements to be taken with the telescope over a

period of 5 to 10 years. The total velocity increment needed for stationkeeping would amount to 3

to 6 km/s, assuming a conservative monthly figure of 50 m/s. Mettler et al. note that the mission

becomes feasible with the use of a future low-thrust electric propulsion system having a forecast

specific impulse of 6000 sec. A high-thrust chemical propulsion upper stage would supply ∆V = 3.2

km/s to depart low Earth orbit and enter a transfer trajectory to L2. The cost of low-thrust orbit

insertion near L2 is approximately 336 m/s. A complete assessment of mission feasibility would

require careful study of the cost of orbit determination and maneuver execution errors.4

Conclusion

A spacecraft, stationed on the Sun-Earth line near the trans-Earth Lagrange point L2 in order

to obtain measurements of Earth’s atmosphere as it occults the Sun, must possess a propulsion

system capable of countering the lunar gravitational perturbation. Expressions for the associated

force per unit mass and for the corresponding velocity increment needed to keep a vehicle fixed

on the Sun-Earth line have been developed and subsequently evaluated numerically. A spacecraft

permitted to move along the Sun-Earth line in response to the Moon’s influence needs less than

half the amount of propellant required to negate completely the lunar disturbance. The benefits

of allowing relatively tightly restricted motion in the proximity of L2 are quantified by studying

prescribed motion in some simple trajectories.
4The authors thank Greg Marr, NASA Goddard Space Flight Center, for providing the information regarding the

transfer trajectory and orbit insertion.
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