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Abstract—The secret keys of critical network authorities –
such as time, name, certificate, and software update services
– represent high-value targets for hackers, criminals, and spy
agencies wishing to use these keys secretly to compromise other
hosts. To protect authorities and their clients proactively from
undetected exploits and misuse, we introduce CoSi, a scalable
witness cosigning protocol ensuring that every authoritative
statement is validated and publicly logged by a diverse group
of witnesses before any client will accept it. A statement S

collectively signed by W witnesses assures clients that S has
been seen, and not immediately found erroneous, by those W

observers. Even if S is compromised in a fashion not readily
detectable by the witnesses, CoSi still guarantees S’s exposure
to public scrutiny, forcing secrecy-minded attackers to risk that
the compromise will soon be detected by one of the W witnesses.
Because clients can verify collective signatures efficiently without
communication, CoSi protects clients’ privacy, and offers the
first transparency mechanism effective against persistent man-in-
the-middle attackers who control a victim’s Internet access, the
authority’s secret key, and several witnesses’ secret keys. CoSi
builds on existing cryptographic multisignature methods, scaling
them to support thousands of witnesses via signature aggrega-
tion over efficient communication trees. A working prototype
demonstrates CoSi in the context of timestamping and logging
authorities, enabling groups of over 8,000 distributed witnesses
to cosign authoritative statements in under two seconds.

I. INTRODUCTION

Centralized authorities provide critical services that many

hosts and users rely on, such as time [96] and timestamp

services [2], certificate authorities (CAs) [35], directory au-

thorities [47], [119], software update services [116], digital

notaries [3], and randomness services [103], [110]. Even when

cryptographically authenticated, authorities represent central

points of failure and attractive attack targets for hackers,

criminals, and spy agencies. Attackers obtaining the secret

keys of any of hundreds of CAs [50] can and have misused

CA authority to impersonate web sites and spy on users [8],

[21], [22], [130]. By impersonating a time service an attacker

can trick clients into accepting expired certificates or other

stale credentials [86]. Criminals increasingly use stolen code-

signing keys to make their malware appear trustworthy [66].

Logging and monitoring proposals such as Perspec-

tives [134], CT [76], [78], AKI [68], ARPKI [10], and

PoliCert [126] enable clients to cross-check certificates against

public logs, but this checking requires active communication.

To avoid delaying web page loads this checking is usually done

only retroactively, leaving a time window an attacker could

exploit to serve the client malware or backdoored software,

which can then disable detection. An attacker who controls

the client’s access network – such as a compromised home or

corporate network, or an ISP controlled by authoritarian state

– can block access to uncompromised log servers, permanently

evading detection if the targeted client is not sufficiently

mobile. Finally, checking logs can create privacy concerns for

clients [89], [104], and the log servers themselves become new

central points of failure that must be audited [104].

To address these weaknesses we propose witness cosigning,

a proactive approach to transparency that can either replace or

complement existing approaches. When an authority publishes

a new signing key, to be bundled in a web browser’s set of

root certificates for example, the authority includes with it

the identities and public keys of a preferably large, diverse,

and decentralized group of independent witnesses. Whenever

the authority subsequently signs a new authoritative statement

such as a new timestamp, certificate, or log record, the

authority first sends the proposed statement to its witnesses

and collects cosignatures, which the authority attaches to the

statement together with its own signature. A client receiving

the statement (e.g., as a TLS certificate) verifies that it has

been signed not only by the authority itself but also by an

appropriate subset of the witnesses. The client’s signature

acceptance criteria may be a simple numeric threshold (e.g.,

50% of the witnesses) or a more complex predicate accounting

for trust weights, groupings of witnesses, or even contextual

information such as whether a signed software update is to be

installed automatically or by the user’s explicit request.

Witness cosigning offers clients direct cryptographic evi-

dence – which the client can check efficiently without commu-

nication – that many independent parties have had the oppor-

tunity to validate and publicly log any authoritative statement

before the client accepts it. Without witness cosigning, an

attacker who knows the authority’s secret key can use it in

man-in-the-middle (MITM) attacks against targeted victims,

anywhere in the world and without the knowledge of the

legitimate authority, to feed the victim faked authoritative

statements such as TLS certificates or software updates [114].

To attack a client who demands that statements be cosigned by

at least W witnesses, however, a MITM attacker must either

(a) control both the authority’s secret key and those of W



witnesses, which becomes implausible if W is sufficiently

large and diverse, or (b) submit the faked statement to one

or more honest witnesses for cosigning, thereby exposing the

faked statement to public scrutiny and risking detection.

We do not expect witnesses to detect all malicious state-

ments immediately: for example, only a CA itself may have the

information needed to verify the true correspondence between

a name and a public key. Witnesses can, however, sanity-check

the correctness and consistency of proposed statements before

cosigning: e.g., that authoritative timestamps are not wildly

different from the witnesses’ view of the present time, that

logging authorities sign records in sequence without revising

history or equivocating [80], or that only one authoritative

binary image exists for a given software version number. Even

if witnesses cannot immediately tell which of two conflicting

TLS certificates or binaries is “good,” they can ensure that

the existence of the conflicting signed statements promptly

becomes public knowledge. Witnesses can proactively check

that statements conform to known policies, such as certificate

issuance policies [126], raising alarms and withholding their

cosignature if not. Finally, witnesses can of course publish

logs of statements they cosigned to increase the likelihood of

rapid attack detection [76].

Even if witnesses perform little or no validation of the

authority’s statements, their proactive presence in statement

signing deters attackers both by increasing the threat to the

attacker of rapid misuse detection, and by reducing the effec-

tive value of an authority’s secret keys to attackers wishing to

operate in secret. Witness cosigning thus serves as a “Ulysses

pact” between the authority and its witnesses [48].

Authorities could implement witness cosigning simply by

collecting and concatenating individual signatures from wit-

nesses, exactly like PGP [28] or Bitcoin [102] can already

attach multiple signatures to a message or transaction. This is

practical with tens or perhaps even a few hundred witnesses,

but incurs substantial signature size and verification costs as

the witness group grows large. To make witness cosigning

scalable we introduce CoSi, a witness cosigning protocol

enabling authoritative statements to be validated and cosigned

by thousands of witnesses in a few seconds, to produce

collective signatures comparable in size to a single individual

signature (e.g., ≈ 100 bytes total) and nearly as quick and

easy for clients to verify.

As a scenario motivating CoSi’s scalability goal, we envi-

sion the DNSSEC [6] root zone might be witnessed by all

willing operators of the now over 1,000 top-level domains

(TLDs). Future TLS certificates might be witnessed by all

other willing CAs, of which there are hundreds [50], and

by other parties such as CT servers [76]. Public ledgers of

national cryptocurrencies [101], [123] might be collectively

witnessed by all willing banks in the country – of which the

US has thousands even after consolidation [129]. Threshold

signatures [12], [93] and consensus protocols [33], [128] can

split trust across a few nodes (typically 3–10), but do not scale,

as we confirm in Section VI. To our knowledge CoSi is the

first multisignature protocol that scales to thousands of signers.

CoSi’s scalability goal presents three key technical chal-

lenges: efficient cosignature collection, availability in the

face of slow or offline witnesses, and efficient cosignature

verification by clients. CoSi makes verification efficient by

adapting well-understood Schnorr multisignatures [106] to

combine many cosignatures into a single compact signature,

typically less than 100 bytes in size, which clients can check

in constant time. To collect and combine thousands of cosigna-

tures efficiently, CoSi adapts tree-based techniques, long used

in multicast [32], [42], [131], and aggregation protocols [30],

[135] to scalable multisignatures. To protect the authority’s

availability even when witnesses go offline, CoSi includes

metadata in its collective signatures to document “missing

witnesses” and enable verifiers to check the signature correctly

against an aggregate of the remaining witnesses’ public keys.

We have built a working CoSi prototype, deployed a small-

scale test configuration on the public Internet, and evaluated it

at larger scales of up to 33,000 cosigning witnesses on the

DeterLab [44] testbed. We find that CoSi can collect and

aggregate cosignatures from 8,000 witnesses, separated by

200ms round-trip network delays to simulate distribution, in

about 2 seconds total per signing round. CoSi’s performance

contrasts favorably with multisignatures produced via classic

verifiable secret sharing (VSS) [55], [125], whose signing

costs explode beyond about 16 participants, as well as with

straightforward collection of individual cosignatures, whose

costs become prohibitive beyond around 256 participants.

In addition, we have integrated CoSi into and evaluated it in

the context of two specific types of “authorities”: a secure time

and timestamping service [2], [63], [121], and the Certificate

Transparency log server [76]. The CoSi timestamping service

illustrates how some authorities can be made even more

scalable by building on CoSi’s communication trees, allowing

witnesses to serve timestamp requests and reduce load on

the main authority, thereby achieving aggregate throughput

of over 120,000 timestamp requests per second in a 4,000-

witness configuration. The CoSi extension to the CT log

server demonstrates the ease and simplicity with which witness

cosigning can be added to existing authority services, in this

case requiring only an 315-line change to the log server to

invoke CoSi when signing each new log entry.

In summary, this paper contributes: (a) a proactive approach

to transparency based on witness cosigning; (b) CoSi, the

first collective signing protocol that demonstrably scales to

thousands of participants; (c) an experimental implementation

of CoSi that demonstrates its practicality and how it can be

integrated into existing authority services.

Section II of this paper explores the background and moti-

vation for witness cosigning. Section III then presents CoSi,

a scalable collective signing protocol. Section IV outlines

variants of the CoSi design offering different tradeoffs. Sec-

tion V describes the details of our prototype implementation

of CoSi and its incorporation into timestamping and certificate

logging applications. Section VI experimentally evaluates this

prototype, and Section VII discusses CoSi’s applicability to



real-world applications and outlines future work. Section VIII

summarizes related work and Section IX concludes.

II. BACKGROUND AND MOTIVATION

This section briefly reviews several types of conventional

authorities, their weaknesses, and how witness cosigning can

help strengthen them. We revisit prototype implementations of

some of these applications later in Section V.

A. Certificate Authorities and Public-Key Infrastructure

Certificate Authorities (CAs) sign certificates attesting that

a public key represents a name such as google.com, to

authenticate SSL/TLS connections [45], [60]. Current web

browsers directly trust dozens of root CAs and indirectly trust

hundreds of intermediate CAs [50], any one of which can

issue fake certificates for any domain if compromised. Due

to this “weakest-link” security, hackers have stolen the “master

keys” of CAs such as DigiNotar [8], [22] and Comodo [21]

and abused certificate-issuance mechanisms [74], [75], [130]

to impersonate popular websites and attack their users.

As a stopgap, some browsers hard-code or pin public keys

for popular sites such as google.com [52] – but browsers

cannot hard-code public keys for the whole Web. Related ap-

proaches offer TOFU (“trust on first use”) security by pinning

the first public key a client sees for a particular site [39],

[88], [122], thereby protecting regular users but not new users.

Browsers can check server certificates against public logs [10],

[68], [76], [78], [113], [126], which independent monitors may

check for invalid certificates. Monitoring can unfortunately

detect misbehavior only retroactively, placing victims in a race

with the attacker. Browsers could check certificates against

such logs and/or via multiple Internet paths [4], [11], [87],

[134], but such checks delay the critical page-loading path,

at least on the first visit to a site. Further, these approaches

assume Web users can connect to independent logging, moni-

toring, or relaying services without interference, an assumption

that fails when the user’s own ISP is compromised. Such

scenarios are unfortunately all too realistic and have already

occurred, motivated by state-level repression [8], [22] or

commercial interests [54], [65].

A CA might arrange for a group of witnesses to cosign

certificates it issues: e.g., other willing CAs and/or independent

organizations. Witness cosigning might not only proactively

protect users and increase the CA’s perceived trustworthiness,

but also decrease the value of the CA’s secret keys to potential

attackers by ensuring that any key misuse is likely to be

detected quickly. In the longer term, CAs might witness cosign

OCSP staples [107], or entire key directory snapshots as in

CONIKS [89], enabling clients to check not only the validity

but also the freshness of certificates and address persistent

weaknesses in certificate revocation [82].

B. Tamper-Evident Logging Authorities

Many storage systems and other services rely on tamper-

evident logging [38], [81]. Logging services are vulnerable to

equivocation, however, where a malicious log server rewrites

history or presents different “views of history” to different

clients. Even if a logging authority itself is well-behaved, an

attacker who obtains the log server’s secret keys can present

false logs to targeted clients, effectively “equivocating in

secret” without the knowledge of the log’s legitimate operator.

For example, an attacker can defeat CT [76] and attack

clients this way by secretly stealing the keys of – or coercing

signatures from – any single CA plus any two CT log servers.

Solutions to equivocation attacks include weakening consis-

tency guarantees as in SUNDR [81], or adding trusted hard-

ware as in TrInc [80]. Equivocation is the fundamental reason

Byzantine agreement in general requires N = 3f + 1 total

nodes to tolerate f arbitrary failures [33]. Witness cosigning

does not change this basic situation, but can make it practical

for both N and f to be large: e.g., with N > 3000 participants

independently checking and cosigning each new log entry,

arbitrarily colluding groups up to 1000 participants cannot

successfully equivocate or rewrite history. As a proof-of-

concept, Section V-B later presents such a witness cosigning

extension for Certificate Transparency log servers.

C. Time and Timestamping Authorities

Time services such as NTP [95], [96] enable hosts to learn

the current time and synchronize their clocks against author-

itative sources such as NIST’s Internet Time Service [83].

Cryptographic authentication was a late addition to NTP [64]

and is still in limited use, leading to many vulnerabilities [86].

For example, an attacker impersonating a legitimate time

service might falsify the current time, to trick a client into

accepting an expired certificate or other stale credentials.

A timestamping authority [2], [63] enables a client to submit

a cryptographic hash or commitment to some document (e.g.,

a design to be patented), and replies with a signed statement

attesting that the document commitment was submitted at a

particular date and time. The client can later prove to a third-

party that the document existed at a historical date by opening

the cryptographic commitment and exhibiting the authority’s

timestamped signature on it. Virtual Notary [121] generalizes

timestamp services by offering users timestamped attestations

of automatically checkable online facts such as web page

contents, stock prices, exchange rates, etc. An attacker who

steals a timestamp service’s secret keys can forge pre-dated

timestamps on any document, however, and a notary’s secret

key similarly enables an attacker to create legitimate-looking

attestations of fake “facts.”

While witness cosigning incurs communication latencies

that likely preclude its use in fine-grained clock synchro-

nization, it can serve a complementary role of increasing

the security of coarse-grained timestamps, i.e., giving clients

greater certainty that a timestamp is not hours, days, or years

off. Section V-A later presents a prototype of such a service,

in which many witnesses efficiently sanity-check batches of

signed timestamps, ensuring that even an attacker who com-

promises the authority’s secret key cannot undetectably back-

date a timestamp beyond a limited time window.



D. Directory Authorities

The Domain Name System (DNS) [98], [99] offers a critical

directory service for locating Internet hosts by name. Like

NTP, DNS initially included no cryptographic security; even

now the deployment of DNSSEC [6] is limited and weaknesses

remain [7]. The fact that DNSSEC is completely dependent

on the security of its Root Zone [9], which is centrally

managed by one organization, is a concern despite measures

taken to secure the Root Zone’s signing keys [71]. If Root

Zone signatures were witnessed and cosigned by all willing

operators of subsidiary top-level domains (TLDs), ensuring

rapid discovery of any misuse of the Root Zone’s keys,

concerns about DNSSEC’s centralization might be alleviated.

As another example, clients of the Tor anonymity sys-

tem [127] rely on a directory authority [128] to obtain a

list of available anonymizing relays. A compromised Tor

directory authority could give clients a list containing only

attacker-controlled relays, however, thereby de-anonymizing

all clients. To mitigate this risk, Tor clients accept a list

only if it is signed by a majority of a small consensus

group, currently nine servers. Because these directory servers

and their private directory-signing keys represent high-value

targets for increasingly powerful state-level adversaries [62],

[67], it is questionable whether a small, relatively centralized

group offers adequate security. If Tor directory snapshots were

witness cosigned by a larger subset of the thousands of regular

Tor relays, the risk of semi-centralized directory servers being

silently compromised might be reduced.

E. Software Download and Update Authorities

App stores, community repositories, and automatic software

update services have become essential in patching security

vulnerabilities promptly. Update services themselves can be

attack vectors, however [13], [31], [105], [114]. Even when

updates are authenticated, code signing certificates are avail-

able on the black market [66], and software vendors have

even leaked their secret keys accidentally [97]. Governments

desiring backdoor access to personal devices [1], [24], as well

as resourceful criminals, might coerce or bribe vendors to sign

and send compromised updates to particular users. These risks

are exacerbated by the fact that automatic update requests can

amount to public announcements that the requesting host is un-

patched, and hence vulnerable [29]. By witness cosigning their

updates and checking cosignatures in auto-update mechanisms,

software vendors might alleviate such risks and ensure the

prompt detection of any improperly signed software update.

F. Public Randomness Authorities

Randomness authorities [103], [110] generate non-secret

random numbers or coin-flips, which are useful for many

purposes such as lotteries, sampling, or choosing elliptic

curve parameters [79]. NIST’s Randomness Beacon [103],

for example, produces a log of signed, timestamped random

values from a hardware source. If compromised, however, a

randomness authority could deliberately choose its “random”

values as to win a lottery, or could look into the future

1 record 2 record 3 record

Authority

Witness

Cosigners

each statement collectively

signed by both authority

and all or most witnesses

Authoritative statements: e.g. log records

Fig. 1. CoSi protocol architecture.

to predict a lottery’s outcome [133]. In the wake of the

DUAL-EC-DRBG debacle [34], the NIST beacon has been

skeptically labeled “the NSANIST Randomness Beacon” [124]

and “Project ‘Not a backdoor’” [111]. While witness cosigning

alone would not eliminate all possibility of bias [20], [79],

witnesses could preclude randomness beacons from revising

history – and by mixing entropy provided by witnesses into

the result, witnesses can ensure that even a compromised

beacon cannot predict or exercise unrestricted control over

future “random” outputs.

III. SCALABLE COLLECTIVE SIGNING

This section presents CoSi, the first collective signing pro-

tocol efficiently supporting large-scale groups. We first outline

CoSi’s high-level principles of operation, then detail its design,

covering a number of challenges such as unavailable witnesses,

cothority certificate size, denial-of-service (DoS) risks and

mitigations, and statement validation by witnesses.

A. Architecture and Principles of Operation

Figure 1 illustrates CoSi’s conceptual architecture, consist-

ing of an authority who regularly signs statements of any kind

(e.g., chained log records in the example shown), and a group

of witness cosigners who participate in the signing of each

record. We also refer to the group of witnesses as a witness

cothority: a “collective authority” whose purpose is to witness,

validate, and then cosign the authority’s statements.

The authority serves as the CoSi protocol’s leader, defining

and publishing the witness cothority’s composition, initiating

collective signing rounds, and proposing statements to be

signed such as timestamps, directories, or certificates. We

assume the witnesses to be reliable, independently-run servers

maintained by individuals or organizations who have agreed

to witness the leader’s authoritative statements. Realistic au-

thorities typically serve clients as well: e.g., users requesting

timestamps or certificates. In the basic CoSi architecture these

clients interact only with the authority (leader) so we will

ignore them for now, although Section V-A will illustrate how



some types of authorities can leverage CoSi to distribute client

servicing load across the many witnesses.

We assume that the authority’s group of witnesses is fixed or

changes slowly, and that all participants including cosignature

verifiers know both the authority’s and all witnesses’ public

keys. If the authority is a root CA that signs TLS certificates

to be verified by web browsers, for example, then the CA’s

root certificate shipped with the browser includes a list of the

public keys of the witnesses in addition to the CA’s own public

key. We assume the authority arranges for the witness list to

remain valid for a significant time period – e.g., three years

or more, comparable to root certificate lifetimes – and that

software updates can handle witness list evolution just as for

root certificates. If the size of the authority’s root certificate

and its witness list becomes an issue, it may be compressed

into a cryptographic hash of that roster, at a cost of increased

signature sizes as discussed later in Section III-G. For security

reasons discussed later in Section III-D we require that the

public keys of the authority and all witnesses be self-signed

to prove knowledge of the corresponding secret key.

B. Threat Model

We assume both the authority (leader) and some number

of the authority’s witnesses may be malicious and colluding

in attempts to sign malicious statements secretly that unsus-

pecting victims (verifiers) will accept, without these malicious

statements being detected by honest witnesses. The CoSi

protocol does not assume or specify any particular global

cosignature verification threshold, but from the perspective of a

client who demands at least f+1 cosignatures on a statement,

we assume the attacker controls at most f faulty witnesses.

We assume the authority (leader) is live and highly avail-

able: since it is the participant who wishes to produce wit-

nessed statements, CoSi makes no attempt to protect against

DoS by the leader. However, we assume that a threshold

number of witnesses may go offline at any time or even

engage in DoS attacks; this threshold is a policy parameter

defined by the leader. Witnesses may also maliciously produce

incorrect messages deviating from the protocol, e.g., in attempt

to trick the leader into misbehavior. While for now we assume

simple numeric thresholds, clients can impose more complex

verification predicates if desired (Section IV-A).

We assume the leader and all witnesses are generally able to

communicate with each other, apart from temporary communi-

cation outages. Unlike gossip-based transparency approaches,

however, we do not assume that clients verifying signatures

can communicate with any non-attacker-controlled parties.

C. Responsibilities of Cosigning Witnesses

The authority determines when to initiate a collective sign-

ing round, and broadcasts to all witnesses the statement to

be signed. Witnesses may, and ideally should, publish logs

of the statements they witness and cosign, thus serving a

transparency role similar to log servers in CT [76], [78]. If

the authority’s statements are already supposed to take the

form of a log as in the example in Figure 1, then each witness

might simply make available a public mirror of all or some

recent portion of the authority-generated log.

Witnesses may also, and ideally should, perform any readily

feasible syntactic and semantic correctness checks on the au-

thority’s proposed statements before “signing off” on them. If

the authority’s statements include a wall-clock timestamp, for

example, each witness may verify that the proposed timestamp

is not wildly different from the witness’s view of the current

time (e.g., is not minutes or hours off). If the authority’s

statements form a sequence-numbered, hash-chained log as in

Figure 1, each witness may verify that each of the authority’s

proposed log records contains a monotonically increasing

sequence number and the correct hash for the immediately

preceding log record, preventing a compromised authority

from reversing or rewriting history.1

Witnesses might check deeper application-specific invari-

ants as well, provided these checks are quick and automatic.

If the authority’s statements represent certificates, witnesses

may check them against any known issuance policies for

the relevant domain [126]. If the authority’s statements attest

certificate freshness [107] or represent directories of currently-

valid certificates as in CONIKS [89], witnesses may verify

that these certificates do not appear on cached certificate

revocation lists (CRLs) [82]. If the authority’s statements form

a blockchain [102], then witnesses may check its validity:

e.g., that each transaction is properly formed, properly au-

thorized, and spends only previously-unspent currency [70].

If the authority’s statements represent software binaries [116],

then witnesses might even attempt to reproduce the proposed

binaries from developer-signed sources [16], provided the

authority allows the witnesses the time required (possibly

hours) to perform such builds during signing process.

For simplicity, we initially assume that witnesses never fail

or become disconnected, but relax this unrealistic assumption

later in Section III-F. We also defer until later performance

concerns such as minimizing collective signing latency.

D. Schnorr Signatures and Multisignatures

While CoSi could in principle build on many digital sig-

nature schemes that support efficient public key and signa-

ture aggregation, we focus here on one of the simplest and

most well-understood schemes: Schnorr signatures [118] and

multisignatures [12], [93]. Many alternatives are possible:

e.g., Boneh-Lynn-Shacham (BLS) [19] requires pairing-based

curves, but offers even shorter signatures (a single elliptic

curve point), and a simpler protocol that may be more suitable

in extreme situations as discussed later in Section IV-E.

Schnorr signatures rely on a group G of prime order q in

which the discrete logarithm problem is believed to be hard;

in practice we use standard elliptic curves for G. Given a well-

known generator G of G, each user chooses a random secret

1 Even with these checks a faulty authority could still equivocate to
produce two or more divergent histories cosigned by disjoint subsets of honest
witnesses. Applying standard Byzantine consensus principles [33], however,
the above log consistency checks will preclude equivocation provided at most
f witnesses are faulty out of at least 3f+1 total, and provided verifiers check
that at least 2f + 1 witnesses have cosigned each statement.



key x < q, and computes her corresponding public key X =
Gx. We use multiplicative-group notation for consistency with

the literature on Schnorr signatures, although additive-group

notation may be more natural with elliptic curves.

Schnorr signing is conceptually a prover-verifier or Σ-

protocol [40], which we make non-interactive using the Fiat-

Shamir heuristic [56]. To sign a statement S, the prover picks

a random secret v < q, computes a commit, V = Gv , and

sends V to the verifier. The verifier responds with a random

challenge c < q, which in non-interactive operation is simply a

cryptographic hash c = H(V ‖ S). The prover finally produces

a response, r = v−cx, where x is the prover’s secret key. The

challenge-response pair (c, r) is the Schnorr signature, which

anyone may verify using the signer’s public key X = Gx, by

recomputing V ′ = GrXc and checking that c
?
= H(V ′ ‖ S).

With Schnorr multisignatures [106], there are N signers

with individual secret keys x1, . . . , xN and corresponding

public keys X1 = Gx1 , . . . , XN = GxN . We compute an

aggregate public key X from the individual public keys as

X =
∏

i Xi = G
∑

i
xi . The N signers collectively sign a

statement S as follows. Each signer i picks a random secret

vi < q, and computes a commit Vi = Gvi . One participant

(e.g., a leader) collects all N commits, aggregates them into

a collective commit V =
∏

i Vi, and uses a hash function to

compute a collective challenge c = H(V ‖ S). The leader

distributes c to the N signers, each of whom computes and

returns its response share ri = vi − cxi. Finally, the leader

aggregates the response shares into r =
∑

i ri, to form the

collective signature (c, r). Anyone can verify this constant-size

signature against the statement S and the aggregate public key

X via the normal Schnorr signature verification algorithm.

When forming an aggregate public key X from a roster

of individual public keys X1, . . . , XN , all participants must

validate each individual public key Xi by requiring its owner

i to prove knowledge of the corresponding secret key xi, e.g.,

with a zero-knowledge proof or a self-signed certificate. Other-

wise, a dishonest node i can perform a related-key attack [94]

against a victim node j by choosing Xi = GxiX−1
j , and

thereafter contribute to collective signatures apparently signed

by j without j’s actual participation.

While multisignatures are well-understood and formally

analyzed, to our knowledge they have so far been used or

considered practical only in small groups (e.g., N ≈ 10).

The next sections describe how we can make multisignatures

scale to thousands of participants, and address the availability

challenges that naturally arise in such contexts.

E. Tree-based Collective Signing

To make multisignatures scale to many participants, CoSi

distributes the communication and computation costs of mul-

tisignatures across a spanning tree analogous to those long

utilized in multicast protocols [32], [42], [131]. The leader

organizes the N witnesses into a spanning tree of depth

O(logN) rooted at the leader, distributing both communica-

tion and computation to incur at most logarithmic costs per

node. The spanning tree serves only to optimize performance:

the leader may reconfigure it at any time without affecting

security, e.g., to account for unavailable witnesses as detailed

later in Section III-F.
For simplicity, the tree may be a regular B-ary tree formed

deterministically from the well-known list of N witnesses,

thereby requiring no communication of the tree structure.

To minimize signing latency, the leader might alternatively

collect information on round-trip latencies between witnesses,

construct a shortest-path spanning tree, and specify this tree

explicitly when announcing a collective signing round.
A single round of the CoSi protocol consists of four

phases, illustrated in Figure 2, representing two communica-

tion “round-trips” through the leader-defined spanning tree:
1) Announcement: The leader multicasts an announcement

of the start of this round down through the spanning tree,

optionally including the statement S to be signed.

2) Commitment: Each node i picks a random secret vi and

computes its individual commit Vi = Gvi . In a bottom-up

process, each node i waits for an aggregate commit V̂j from

each immediate child j, if any. Node i then computes its

own aggregate commit V̂i = Vi

∏
j∈Ci

V̂j , where Ci is the

set of i’s immediate children. Finally, i passes V̂i up to its

parent, unless i is the leader (node 0).

3) Challenge: The leader computes a collective challenge c =
H(V̂0 ‖ S), then multicasts c down through the tree, along

with the statement S to be signed if it was not already

announced in phase 1.

4) Response: In a final bottom-up phase, each node i waits

to receive a partial aggregate response r̂j from each of

its immediate children j ∈ Ci. Node i now computes its

individual response ri = vi − cxi, and its partial aggregate

response r̂i = ri +
∑

j∈Cj
r̂j . Node i finally passes r̂i up

to its parent, unless i is the root.
The round announcement in phase 1 may, but need not

necessarily, include the statement S to be signed. Including S
in the announcement enables witnesses to start validating the

statement earlier and in parallel with communication over the

tree. This approach is likely preferable when witnesses may

need significant time to validate the statement S, such as when

reproducing software builds as an extreme example [16]. On

the other hand, proposing S later in phase 3 enables the leader

to “late-bind” its statement, perhaps incorporating information

gathered from witnesses in phase 2, as our timestamp service

does (Section V-A). Further, keeping phases 1–2 independent

of the statement to be signed in principle allows these phases

to be performed offline ahead of time, though we have not

implemented or evaluated this offline variation.
During phase 4, each node i’s partial aggregate response

r̂i, together with the collective challenge c, forms a valid

Schnorr multisignature on statement S, verifiable against i’s
partial aggregate commit V̂i and corresponding partial ag-

gregate public key X̂i. Anyone may compute X̂i simply

by multiplying the well-known public keys of i and all of

its descendants in the spanning tree. Thus, each node can

immediately check its descendants’ responses for correctness,

and immediately expose any participant producing an incorrect



0

1

3 4

2

5 6

0

1

3 4

2

5 6

0

1

3 4

2

5 6

0

1

3 4

2

5 6

S V̂0 c = H(V̂0 ‖ S) r̂0

Phase 1: Announcement
(send message-to-witness, optional)

Phase 2: Commitment
(collect aggregate commit)

Phase 3: Challenge
(send collective challenge)

Phase 4: Response
(collect aggregate response)

Leader

Witnesses

V3 = G v3 ,
V̂3 = V3

V4 = G v4 ,
V̂4 = V4

V1 = G v1 ,
V̂1 = V1V3V4

V0 = G v0 ,
V̂0 = V0 ...V6

r3 = v3−x3c ,
r̂3 = r3

r4 = v4−x4c ,
r̂4 = r4

r1 = v1 − x1c ,
r̂1 = r1+ r3+ r4

r0 = v0 − x0c ,
r̂0 = r0+· · ·+r6

Fig. 2. The CoSi protocol uses four communication phases for scalable construction of a Schnorr multisignature (c, r̂0) over a spanning tree.

response. While nothing prevents a malicious node i from

computing V̂i dishonestly in phase 2, i then will be unable

to produce a correct response in phase 4 unless it knows the

discrete logarithm vi such that V̂i = Gvi
∏

j∈Ci
V̂j .

The final collective signature is (c, r̂0), which any third-

party may then verify as a standard Schnorr signature by

recomputing V̂ ′

0 = Gr̂0X̂c
0 and checking that c

?
= H(V̂ ′

0 ‖ S).
The scheme’s correctness stems from the fact that V̂0 =

G
∑

i
vi , r̂0 =

∑
i vi − c

∑
i xi, and X̂0 = G

∑
i
xi . The

scheme’s unforgeability stems from the fact that the hash

function makes c unpredictable with respect to V̂0, and the col-

lective cannot produce the corresponding response r̂0 without

the (collective) knowledge of the secret key xi of every node

i whose public key is aggregated into X̂0. These properties

are direct implications of the structure of Schnorr signatures,

which have been formally analyzed in prior work [12], [93],

though we are not aware of prior systems that used these

properties in practice to build scalable signing trees.

F. Accounting for Unavailable Witnesses

Authorities are unlikely to deploy witness cosigning if

their own availability may be degraded, or even deliberately

DoS-attacked, by the unreliability of one or more witnesses.

We expect authorities to accept only witnesses operated by

reputable and competent organizations who can normally be

expected to keep their witness servers highly available, so we

expect the operational common case to be for all witnesses to

be present, and only rarely for one or a few to be missing.
Unlike secret-sharing protocols [55], [125], CoSi allows the

leader to proceed with any number of witnesses missing, and

merely documents these missing witnesses as exceptions as

part of the resulting collective signature. Signature verifiers

learn both how many and which witnesses were missing when

an authoritative statement was signed, and can independently

determine their acceptance thresholds via arbitrary predicates

(Section IV-A). The leader might set its own threshold as well:

e.g., if many or most witnesses are unreachable, this may

indicate the leader itself is disconnected from much of the

Internet, making it useless and perhaps counterproductive to

sign further statements until connectivity is restored.
We start with a simple approach to handling witness failures,

then subsequently explore variations and optimizations. In any

of the phases of the tree-based signing protocol described

above, if any participant i finds that one of its children j is

unreachable, i simply returns an error indicating the missing

witness, which propagates back up the tree to the leader.

The leader then reconfigures the tree to omit the missing

witness, announces the new tree, and restarts the signing

round from phase 1 over the new tree. The leader includes

in the resulting signature not only the challenge and aggregate

response (c, r̂0) but also an indication of which witnesses were

missing. Verifiers then check the resulting signature against a

modified aggregate public key X̂ computed by multiplying

only the public keys of witnesses that were actually present

in the signing tree (and hence contributed to the aggregate

commit in phase 2 and the aggregate response in phase 4).

An intermediate witness in the leader’s spanning tree could

maliciously pretend that one of its children is unavailable, or

a pair of witnesses might simply be unable to communicate

due to Internet routing failures. To address this risk, when a

witness is reported “missing” the leader can first try contacting

it directly and/or request that other witnesses attempt to contact

it. If successful, the leader can then reconnect the orphaned

witness at a different location in the new tree.

G. Representing Exceptions in Signatures

To minimize the size of collective signatures, CoSi permits

exceptions to be represented in three different ways: as a list

of witnesses absent, a list of witnesses present, or a bitmap

with one bit per witness. After completing a signing round,

the leader simply chooses whichever representation yields the

smallest signature. Listing witnesses absent yields the most

compact signature (less than 100 bytes using the Ed25519

curve [14]) in the hopefully common case when nearly all

witnesses cosign. Listing witnesses present is optimal at the

opposite extreme, while the bitmap approach is most efficient

in the region between those extremes. Worst-case signature

size is therefore about 2K +W/8 bytes, where K is the size

of a private key (e.g., 32 bytes for Ed25519) and W is the total

number of witnesses, plus a few encoding metadata bytes.

A more sophisticated alternative we explored is to repre-

sent the witness roll call as a Bloom filter [15], which can

sometimes increase compactness at the risk of introducing

false positives. The leader might tolerate this false positive

risk by removing the contributions of falsely-marked witnesses

from the aggregate signature, or salt the Bloom filter’s hash



functions and “mine” to find a Bloom filter yielding no false

positives. We simulated several such approaches, but did not

find the results to be worth the additional complexity.

H. Proactive, Retroactive, and Adaptive Validation

As discussed earlier in Section III-C, the primary responsi-

bility of witnesses is merely to ensure proactively that signed

authoritative statements are public – but witnesses can and

ideally should also check the syntactic and semantic validity

of statements when possible. Some such validation checks

may be feasible in principle but require additional network

communication or take unpredictable amounts of time.

As one example, a witness to the signing of a stapled OCSP

certificate status [107] or a CONIKS public key directory [89]

might wish to verify that the certificates in these statements are

indeed fresh, and are not listed in publicly available Certificate

Revocation Lists (CRLs) [82]. If the witness were to initiate

the fetching and downloading of CRLs on the “critical path”

of witnessing and cosigning, however, then the witness might

seriously delay the signing process, or cause the leader to

timeout and consider the witness to have failed (Section III-F).

To avoid such delays, instead of fetching CRLs on the critical

cosigning path, certificate witnesses might periodically down-

load and maintain cached copies of relevant CRLs, and merely

check proposed OCSP staples or key directories against their

most recently cached CRLs.

Validation may sometimes be quick but other times may

require significant amounts of time and/or computational re-

sources. A witness to a software update authority for an open

source package, for example (Section II-E), might wish to

verify the platform-specific binaries to be signed against a

reproducible build [108] of a corresponding source release

in a public repository. In this case, the witness may have to

perform an entire build of a large software tree before signing.

This delay may be acceptable in the special case of software

updates, which tend to be released on slow, latency-tolerant

timescales anyway, but such delays may not be acceptable in

many other witnessing scenarios.

As one way of handling long or unpredictable validation

delays, the leader might specify a maximum validation time.

Each witness launches its validation process in parallel but

monitors it dynamically to see whether it actually completes

in the required time. If not, the witness might just “cosign any-

way,” giving the leader the benefit of the doubt, but continue

the checking process and raise an alarm in the hopefully rare

event that validation eventually fails. This approach of course

weakens CoSi’s transparency model to be only “proactive

sometimes” and “retroactive sometimes.” To create a public

record of this distinction, leaders might obtain two collective

signatures in parallel from all witnesses: the first merely

attesting that the witness has seen the statement, and the

second attesting that the witness has validated it. Witnesses

then provide the former cosignature but withhold the latter if

they cannot complete their validation in the time available.

I. Limitations, Tradeoffs, and Future Work

The most important limitation of witness cosigning is that

it requires active communication – and perhaps global com-

munication if the witness group is highly distributed – on

the signing path. This is a basic cost of CoSi’s proactive

approach to transparency: by eliminating the need for the

clients receiving an authoritative statement to communicate

at verification time as gossip-based transparency approaches

do [76], [78], we incur the cost of communicating before the

authority’s statement is made available to clients.

Because of the communication cost incurred at signing time,

CoSi is more suitable for authoritative signing activities that

can be done only periodically or in periodic batches, and less

suited to signing activities that must be done individually in

high volumes or at low latencies. Fortunately, many authorita-

tive signing activities are already or can easily be performed

periodically in batches. For example, Section V-A presents a

timestamp authority that handles heavy client request loads

by signing batches of timestamps, and logging services such

as CT’s [76], as well as blockchains used in cryptocurren-

cies [70], [102], routinely aggregate many client-requested

transactions into large latency-insensitive batches.

A second limitation of CoSi’s approach is that an authority’s

witness group cannot be completely “open” for anyone to join,

without making the system vulnerable to Sybil attacks [49]

in which an adversary creates and joins a threshold number

of colluding, fake witnesses. One advantage of retroactive

gossip-based checking [104] is that “anyone can gossip” –

i.e., no entry barrier at all need be imposed on the group

of gossiping participants. Thus, CoSi may best be viewed as

complementary to rather than a replacement for retroactive

gossip-based consistency checking: CoSi provides proactive

security grounded in a potentially large and diverse but at least

somewhat selective witness group, whereas gossip provides

only retroactive protection dependent on active communication

but among a completely open group of participants.

IV. DESIGN VARIATIONS AND TRADEOFFS

While we expect the basic CoSi design described above to

be usable and suitable in many contexts, as the evaluation in

Section VI suggests, many improvements and design variations

are possible embodying different strengths and weaknesses.

We now briefly sketch some of this design space, focusing on

signature verification predicates, reducing the size of the cer-

tificates needed to verify collective signatures, and tolerating

unreliability in the network and/or witnesses.

A. Collective Signature Verification Predicates

Because CoSi signatures explicitly document which wit-

nesses did and did not participate in signing, signature ver-

ification need not be based on a simple threshold, but can in

principle be an arbitrary predicate on subsets of witnesses. For

example, if the authority has reason to trust some witnesses

more than others, then signature verification may be weighted

so that some witnesses count more than others toward the

threshold. To save signature space, the authority can treat itself



as a special “witness,” aggregating its own signature with all

the others, but imposing the rule that its own participation is

mandatory for the collective signature to be accepted.

Witnesses might be divided into multiple groups with hierar-

chical expressions defining their relationships. For example, a

global body of witnesses might be divided into geopolitical

regions (e.g., Five Eyes, Europe, etc.), each with different

witness group sizes and thresholds, such that a threshold

number of regions must in turn meet their respective internal

thresholds. Such a structure could protect the authority and

its users from compromise or denial-of-service even if some

regions contain many more witnesses than others and all

witnesses in any sub-threshold set of regions collude.

Finally, collective signature verification might use different

predicates depending on verification context. Consider a device

manufacturer desiring protection from possible government

coercion to produce secretly backdoored operating system

updates [48], [57]. The manufacturer may be averse to the

risk, however slight, that a sufficient number of its witnesses

might become unavailable or collude to prevent the manu-

facturer from signing legitimate updates. The manufacturer

could design its devices to mitigate this risk by demanding a

high cosigning threshold (e.g., half) when verifying updates

downloaded automatically or installed while the device is

locked, but allowing updates with few or no cosignatures if the

user manually initiates the update with the device unlocked.

This way, in the hopefully unlikely event the manufacturer

becomes unable to meet the normal cosigning threshold due to

massive witness failure or misbehavior, the manufacturer can

instruct users to install the next update manually, and revise

its witness group as part of that update. More importantly, the

knowledge that the manufacturer has this fallback available

should deter any deliberate misbehavior by witnesses, e.g.,

extortion attempts, which would present only a minor incon-

venience to the manufacturer’s users while likely yielding a

public scandal and lawsuits against the misbehaving witnesses.

B. Reducing Authority Certificate Size with Key Trees

The basic CoSi design keeps collective signatures compact,

but requires that the authority’s well-known certificate – which

verifiers need to check collective signatures – include not

just the authority’s own public key but also a complete list

of the authority’s witnesses and their public keys. This large

certificate size is acceptable if it is distributed as part of a much

larger package anyway, e.g., embedded in a web browser’s

built-in root certificate store. Large certificates might be a

problem in other contexts, however: e.g., if they must be

embedded in intermediate certificates, DNSSEC [6] resource

records, or other objects that are frequently transmitted.

In an alternate design yielding different tradeoffs, the au-

thority’s certificate includes only the authority’s own public

key, the product of all witnesses’ public keys X̂ =
∏

i Xi, and

a hash representing the root of a key tree: a Merkle tree [91]

whose leaf nodes contain the individual witnesses’ public

keys. The key tree hash in the authority’s certificate represents

a universally-verifiable commitment to all witnesses’ public

keys, without the certificate actually containing them all.

During subsequent signing rounds, the CoSi leader includes

in each signature a list of the public keys of all missing or

present witnesses, whichever is shorter, along with Merkle

inclusion proofs for each proving their presence in the author-

ity’s key tree. To check a signature containing a list of present

witnesses, the verifier simply multiplies the listed public keys

(after verifying their inclusion proofs). To check a signature

containing a list of missing witnesses, the verifier multiplies

the aggregate X̂ of all witnesses’ public keys with the inverses

of the missing witnesses’ public keys: X̂ ′ = X̂
∏

j∈L X−1
j .

In the hopefully common case in which all witnesses are

present during signing, the signature is at minimum size,

containing only (c, r̂0) and an empty list of missing witnesses.

As more witnesses go missing, however, the size of the

signature including witness public keys and inclusion proofs

may grow to O(N) size, or potentially even O(N logN) if

each missing witness’s inclusion proof is stored separately

without sharing the storage of internal key tree nodes.

C. Gracefully Tolerating Network Unreliability

While we expect authorities adopting CoSi to choose re-

liable witness servers run by reputable organizations, neither

the authority nor its witnesses can control the Internet connec-

tions between them. CoSi allows the authority to rebuild its

communication trees at any time to route around link failures,

but if network churn is too frequent or severe, a tree might

become unusable before it can be used even once.

One attractive solution to this problem is to adopt the

binomial swap forest technique of San Fermı́n [30], which is

readily applicable to CoSi. We first assign all witnesses b-bit

binary labels. We then implement each of CoSi’s aggregation

rounds – i.e., its Commit and Response phases – with a

single run of San Fermı́n’s dynamic aggregation protocol.

To aggregate commits or responses, each node communicates

with b other nodes in succession, building up its own aggregate

while simultaneously helping other nodes build theirs, such

that every participant ends up obtaining a complete aggregate.

At each swap step i from 0 to b − 1, each witness j
communicates with another witness k whose label differs at

bit i but is identical in all more-significant bits. At step 0, each

even-numbered node swaps with its immediate odd-numbered

neighbor. During subsequent steps, however, each witness has

a choice of witnesses to swap with: e.g., in step 1 a node

labeled xx00 may swap with either xx10 or xx11. In these

swaps each witness combines the other witness’s aggregate

value from prior steps into its own aggregate, enabling both

communication partners to double the “coverage” of their

respective aggregates in each step, until every witness has

a complete aggregate. The authority may then pick up this

complete aggregate – i.e., the collective commit or response

in the case of CoSi – from any witness server.

Because each witness can dynamically choose its com-

munication partners in steps i > 0, witnesses can adapt

immediately to intermittent link failures without restarting the



overall aggregation process, provided the witnesses themselves

do not fail. Tolerating high churn in the witnesses as well as

the network requires other techniques explored below.

D. Avoiding Signing Restarts on Witness Unreachability

A second-order availability risk in the basic CoSi design

is that multiple witnesses might become unavailable during

a single signing round – perhaps even intentionally as part

of a DoS attack by malicious witnesses – thereby forcing the

leader to restart the signing round multiple times in succession

without making progress. To address this risk we may prefer

if the leader could always complete each signing round, and

never have to restart, regardless of the witnesses’ behavior.

If during CoSi’s Commit phase some witness i finds one

of its immediate children j ∈ Ci unresponsive, i can adjust

its aggregate commit V̂i to include only its own individual

commit Vi and the aggregate commits of its children who

are reachable, and pass the adjusted V̂i to i’s parent along

with a list of unreachable witness(es). The signing round can

thus immediately take the missing witnesses into account and

continue without restarting. If a missing witness j is an interior

node in the spanning tree, then its parent i (or the leader) can

attempt to “bridge the gap” by contacting j’s children directly

to collect their portions of the aggregate commitment (and

their corresponding portions of the aggregate response later in

phase 4). Thus, the loss of an interior node in the spanning

tree need not entail the loss of its descendants’ cosignatures.

A more subtle challenge occurs when some witness j
participates in the Commit phase but goes offline before

the subsequent Response phase. In this case, the missing

witness’s individual Schnorr commit Vj has been included

in the aggregate commit V̂0 and used to form the collective

challenge c = H(V̂0 ‖ S) with which all witnesses must

compute their collective responses. Thus, it is now too late

to change c, but without witness j the remaining witnesses

will be unable to produce an aggregate response r̂0 matching

the aggregate commit V̂0 that included j’s commit. Further,

breaking the dependency of c on V̂0 – allowing the latter to

change in the Response phase without recomputing c – would

make the collective signature trivially forgeable.

We can resolve this dilemma by making the collective

challenge c depend not on just a single aggregate commit

V̂0 of individual commits V̂i but on all possible aggregate

commits V̂W representing any subset of the witnesses W that

participated in the Commit phase. During the Commit phase,

these witnesses no longer merely aggregate their individual

Schnorr commits, but also include them in a Merkle tree

summarizing all individual commits. Each interior witness i
obtains from each of its children j ∈ Ci both j’s aggregate

commit V̂j and the hash Hj representing a partial Merkle tree

summarizing all the individual commits of j’s descendants.

Then i computes its aggregate as before, V̂i = Vi

∏
j∈Ci

V̂j ,

but also produces a larger Merkle commit tree whose hash

Hi contains both Vi as a direct leaf and all of i’s childrens’

Merkle commit trees Hj∈Ci
as subtrees. The leader in this way

obtains a root hash H0 summarizing all witnesses’ individual

commitments, and computes the collective challenge to depend

on the root of this commit tree, c = H(V̂0 ‖ H0 ‖ S).
Now, in the hopefully common case that all witnesses

present in the Commit phase remain online through the Re-

sponse phase, the witnesses produce an aggregate response

r̂0 as before, which matches the complete aggregate commit

V̂0 appearing directly in the challenge. If witnesses disappear

after the Commit phase, however, the leader includes in its

signature the individual commits of the missing witnesses,

together with Merkle inclusion proofs demonstrating that those

individual commits were fixed before the collective challenge

c was computed. The verifier then multiplies the aggregate

commit V̂0 with the inverses of the individual commits of the

missing witnesses, to produce an adjusted aggregate commit

V̂ ′

0 and corresponding aggregate response r̂′0.

E. Extreme Witness Churn and Asynchronous Networks

Schnorr signatures are well-established and compatible with

current best practices for standard digital signatures, but

their Σ-protocol nature (commit, challenge, response) has

the drawback of requiring two communication round-trips

through a distributed structure – whether a simple tree or a

binomial swap forest – to aggregate a collective signature.

This requirement could be limiting in highly unstable or

asynchronous situations where any distributed structure built in

the first round-trip might become unusable before the second.

BLS signatures [19] may offer an appealing alternative

cryptographic foundation for CoSi, requiring pairing-based

elliptic curves but avoiding the need for two communication

round-trips. In short, a BLS public key is Gx as usual, but

a BLS signature is simply H(M)x, where H(M) is a hash

function mapping the message M to a pseudorandom point on

the appropriate curve. Signature verification uses the pairing

operation to check that the same private key x was used

in the public key and the signature. BLS extends readily to

multisignatures, since an aggregate signature H(M)x1+...+xn

is simply the product of individual signatures
∏n

i=1
H(M)xi

and is verifiable against an aggregate public key Gx1+...+xn

computed in the same fashion as
∏n

i=1
Gxi .

Using BLS instead of Schnorr signatures, an authority can

produce a collective signature in a single round-trip through

a tree or binomial swap forest (Section IV-C), eliminating the

risk of a witness participating in the commit phase but dis-

appearing before the response phase (Section IV-D). Further,

BLS signatures may make CoSi usable in protocols designed

for asynchronous networks [25], [26], [109] by allowing

participants to aggregate signatures incrementally and make

use of them as soon as an appropriate threshold is reached:

e.g., typically f + 1 or 2f + 1 in asynchronous Byzantine

consensus protocols tolerating up to f faulty participants.

One key challenge in fully asynchronous aggregation, where

participants must dynamically adapt to arbitrary delay patterns,

is that nodes must be able to combine potentially overlapping

aggregates without imposing regular structures as used in San

Fermı́n. For example, nodes A and B may communicate to

form aggregate AB, nodes B and C then form aggregate BC,



and finally nodes A and C must combine aggregates AB with

BC. Aggregating BLS signatures as usual here will yield a

collective signature H(M)xA+2xB+xC in which B’s signature

is effectively aggregated twice. There is no readily apparent

way to avoid such duplication, apart from just keeping the

individual signatures separate and giving up the efficiency

benefits of incremental aggregation.

Such duplication may be tracked and compensated for,

however, by maintaining with each aggregate a vector of

coefficients indicating the number of “copies” of each node’s

signature (possibly 0) represented in a given aggregate. Thus,

the aggregate AB2C from the above example would be repre-

sented by the curve point H(M)xA+2xB+xC and the coefficient

vector v = [1, 2, 1]. The number of participants represented in

a given aggregate is simply the number of nonzero elements

in the coefficient vector. Signature verification uses the coef-

ficient vector to compute the corresponding aggregate public

key against which to verify the signature, as
∏n

i=1
(Gxi)vi .

This approach has the downside of requiring O(N) commu-

nication cost per aggregation step due to the need to transmit

the vector, and O(N) computation cost to compute the correct

aggregate public key in signature verification. Partly mitigating

these costs, however, the vector’s elements are small (e.g.,

one or two bytes) compared to full elliptic curve points

representing individual signatures, and group exponentiation

(scalar multiplication of curve points) with small non-secret

values can be made relatively inexpensive computationally.

V. PROTOTYPE IMPLEMENTATION

We have built and evaluated a working prototype witness

cosigning cothority, implementing the basic CoSi protocol

described in Section III. The prototype also demonstrates

CoSi’s integration into two different authority applications: a

timestamp service, and a backward-compatible witness cosign-

ing extension to the Certificate Transparency log server.

The CoSi prototype is written in Go [61]; its primary imple-

mentation consists of 7600 lines of server code as measured by

CLOC [41]. The server also depends on a custom 21,000-line

Go library of advanced crypto primitives such as pluggable

elliptic curves, zero-knowledge proofs, and verifiable secret

sharing; our CoSi prototype relies heavily on this library but

does not use all its facilities. Both the CoSi prototype and the

crypto library are open source and available on GitHub:

https://github.com/dedis/cothority

The cothority prototype currently implements tree-based

collective signing as described above in Section III including

the signing exception protocol for handling witness failures.

We evaluated the cothority implementation with Schnorr

signatures implemented on the Ed25519 curve [14], although

the implementation also works and has been tested with other

curves such as the NIST P-256 curve [5].

A. Witness Cosigned Time and Timestamp Service

As one application of witness cosigning, we built a digital

timestamping service [2], [63], [121], which also doubles as

a coarse-grained secure time service. The primary timestamp

server, serving as the CoSi leader, initiates a new signing round

periodically – currently once every 10 seconds – to timestamp

a batch of documents or nonces submitted by clients. While

the timestamp server could initiate a fresh witness cosigning

round to service each client timestamping request, this mode of

operation would be unlikely to scale to serve large timestamp

request transaction rates, due to the global communication

CoSi imposes on each signing round (see Section III-I).

1) Timestamp Request Processing: A client wishing to

timestamp a document opens a connection to the timestamp

server and submits a hash of the document to stamp. Many

clients can have outstanding timestamp requests at once, and

a single client can concurrently submit timestamp requests for

multiple documents at once; the timestamp server enqueues

these requests but does not answer them until the next signing

round has completed. At the beginning of each signing round,

the timestamp server collects all of the hashes submitted since

the previous round into a Merkle tree [91], and prepares a

timestamp record to sign consisting of the current time and

the root of this round’s timestamp tree. The timestamp server

does not actually log these timestamp records, but the records

are hash-chained together in case witnesses wish to do so. The

timestamp server uses CoSi to distribute the new timestamp

record to all available witnesses and produce a collective

signature on the timestamp record.

Finally, the timestamp server replies to the outstanding

client requests, giving each client a copy of the timestamp

record and a standalone inclusion proof relating the client’s

submitted hash to the Merkle tree root contained in the time-

stamp record. To verify that a document was indeed included,

the verifier of a document timestamp uses the document’s hash,

the timestamp server’s certificate (including the public keys of

all witnesses), the timestamp record, and the Merkle inclusion

proof, to verify that the document was indeed timestamped in

that round and that a threshold number of witnesses validated

the timestamp record.

The timestamp server never records or transmits the full

Merkle tree itself, and forgets the Merkle tree after the round

concludes. The server transmits only individual inclusion

proofs to satisfy client requests. Thus, the timestamp server

leaves to clients the responsibility of remembering timestamp

records and cryptographic evidence that a particular document

was timestamped. The primary security property is bound into

the timestamp record’s collective signature, which attests that

the witnesses verified that the record was formed and signed

at approximately the time indicated in the timestamp record.

2) Coarse-grained Time Checking: Since the timeserver

does not care whether a value submitted for timestamping is

actually a hash of documents or merely a random number,

clients can submit a random nonce to timestamp a “challenge”

and obtain a witness cosigned attestation of the current time.

Timestamping a challenge in this way ensures that attackers

cannot replay valid but old signed timestamp records to trick

clients into thinking the time is in the past: the client can verify

directly that the timestamp record is fresh, and can trust the

https://github.com/dedis/cothority


timestamp it contains on the assumption that a threshold of

the timestamp server’s witnesses are honest.

Such a coarse-grained time-check may be useful as a sanity-

check for the client’s NTP sources [95], [96], enabling the

client to protect itself against both compromised NTP servers

and other time-related vulnerabilities [86]. Due to the coordi-

nation required for collective signing, CoSi’s coarse-grained

time checking will not substitute for fine-grained NTP-based

clock synchronization. CoSi’s coarse-grained sanity checking

is instead complementary to NTP, increasing security and

ensuring that clients cannot be tricked into believing that the

time is far removed from reality in either direction.

3) Scalable Timestamping: To illustrate how applications

can further leverage CoSi’s architecture in application-specific

ways, we enhanced the timestamp server prototype to enable

the witnesses, in addition to the leader, to serve timestamp

requests submitted by clients. Thus, all witnesses effectively

become timestamp servers and can distribute the task of

handling heavy client timestamp loads. In this use of CoSi, the

leader defers formation of the timestamp record to be signed

until the beginning of the Challenge phase (Section III-E).

During the Commitment phase, each witness collects all

timestamp requests clients submitted since the last round into

a local Merkle timestamp tree, including the timestamp tree

roots generated by child witnesses, then passes the aggregated

Merkle timestamp tree up to the witness’s parent. The leader

thus forms a global timestamp tree that transitively includes

all witnesses’ local timestamp trees.

During the Challenge phase, the leader passes down to each

witness an inclusion proof relating the root timestamp record

to the root of the witness’s local timestamp tree. Once the CoSi

signing round concludes, forming the collective signature, each

witness can compose its inclusion proof with the inclusion

proof for each client request within its local timestamp tree,

to give each client a complete inclusion proof relating that

client’s submitted hash with the signed timestamp record.

B. Witness Cosigned Certificate Logging Service

As a second application and test-case building on an exist-

ing service, we incorporated CoSi as a backward-compatible

extension to Google’s existing Certificate Transparency log

server [76], [78]. CT’s log server periodically constructs a

Merkle tree of records for recently timestamped and logged

certificates, and creates a Signed Tree Head (STH) represent-

ing the root of each epoch’s tree of timestamp records. With

our extension, the log server attaches a collective witness

signature to each STH alongside the log server’s existing

individual signature. Since the collective signature is carried

in an extension field, legacy CT clients can simply ignore it,

while new CT clients that are aware the log server supports

witness cosigning can verify the witness signature extension.

CT normally relies on a gossip protocol [104] to enable

other auditor servers to check retroactively that a log server

is behaving correctly, and not revising or forking its history

for example. Our extension effectively makes this auditing

function proactive, enabling the log server’s witnesses to check

the log server’s behavior before each record is signed and

withhold their cosignature on the STH if not.

The protection this extension offers CT clients in practice

depends of course on client behavior. Current CT clients

typically check only individually-signed log server timestamp

records attached to logged certificates, and thus would not di-

rectly benefit from collective signatures on STHs. A log server

could in principle witness cosign each timestamp record, but

the communication cost could become prohibitive for log

servers that timestamp a high volume of certificates.

However, independent of our witness cosigning extension,

CT is currently being enhanced so that clients can obtain from

web servers not only the appropriate timestamp record but

the STH representing the epoch in which it was logged, and

an inclusion proof demonstrating that the timestamp record

was included in the STH for the relevant epoch. Thus, CT

clients supporting both this STH inclusion proof extension and

our STH cosigning extension can obtain proactive protection

from secret attacks by powerful adversaries who might have

compromised both a CA’s key and a few log servers’ keys, and

who might be able to block the client’s active communication

with uncompromised log servers.

VI. EVALUATION

The primary questions we wish to evaluate are whether

CoSi’s witness cothority architecture is practical and scalable

to large numbers, e.g., thousands of witnesses, in realistic sce-

narios. Important secondary questions are what the important

costs are, such as signing latencies and computation costs.

While this paper’s primary focus is on the basic CoSi proto-

col and not on particular applications or types of cothorities,

we also evaluated the CoSi prototype in the context of the

timestamping and log server applications discussed above.

A. Experimental Setup

We evaluated the prototype on DeterLab [44], using up

to 32 physical machines configured in a star-shaped virtual

topology. To simulate larger numbers of CoSi participants than

available testbed machines, we run up to 1,058 CoSi witness

processes on each machine to perform experiments with up

to 33,825 witnesses total, corresponding to a fully populated

tree of depth 3 and a branching factor of 32. A corresponding

set of CoSi client processes on each machine generate load by

issuing regular timestamp requests to the server processes.

To mimic a conservatively slow, realistic wide-area envi-

ronment in which the witness cothority’s servers might be

distributed around the world, the virtual network topology

imposes a round-trip latency of 200 milliseconds between any

two witnesses. The witnesses aggregate timestamp statements

from their clients and request every second the batch of state-

ments to be signed collectively as part of a single aggregate

Merkle tree per round. These testbed-imposed delays are likely

pessimistic; global deployments could probably achieve lower

latencies using approximate shortest-path spanning trees.
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Fig. 3. Collective signing latency versus number of participating witnesses.

B. Scalability to Large Witness Cothorities

Our first experiment evaluates the scalability of the CoSi

protocol while performing simple collective signing rounds

across up to 33,825 witnesses. We compare CoSi’s perfor-

mance against three different baselines. The first baseline is

“Naive” scheme in which the leader simply collects N stan-

dard individual signatures via direct communication with N
witnesses. Second, an “NTree” scheme still uses N individual

signatures, but the N witnesses are arranged in a communica-

tion tree and each node verifies all signatures produced within

its subtree. Finally, a “JVSS” scheme implements Schnorr

signing using joint verifiable secret sharing [55], [125].

Figure 3 shows the results of this scalability experiment.

The lines represent averages measured over ten experimental

runs, while the shaded areas behind the lines represent the

minimum and maximum observed latencies over all ten runs.

CoSi’s signing latency increases with the number of hosts

as we would expect, scaling gracefully with total number of

witnesses up to around 8,192 witnesses, where the perfor-

mance impacts of testbed oversubscription begin to dominate

as explored later in Section VI-F. Per-round collective signing

latencies average slightly over 2 seconds with 8,192 cosigning

witnesses. The maximum latency we observed in that situation

was under 3 seconds over many runs. Given that many

authority protocols are or can be made fairly latency-tolerant,

often operating periodically at timescales of minutes or hours,

these results suggest that witness cosigning should be practical

to enhance the security of many such authorities.

The Naive scheme is naturally simpler and as a result

faster for small witness groups, but becomes impractical

beyond around 256 witnesses due to the costs of computing,

transmitting, and verifying N individual signatures.

The even poorer performance of the NTree scheme can be

traced back to the increasing computational load each node

must handle the further up it resides in the communication

tree. As with the Naive scheme, NTree becomes impractical

beyond around 256 witnesses.
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Fig. 4. Per-node, per-round computation cost versus number of participating
witnesses.

The JVSS approach proves to be the least scalable variant,

becoming impractical beyond about 32 witnesses. This poor

scalability results from the fact that JVSS requires each of

the N witnesses to serve in a “dealer” role, each producing

an N -share secret polynomial whose shares are encrypted and

sent to the other N nodes. Every node must then combine

the N public polynomials and the N encrypted shares it

receives to form shares of a joint master polynomial. In

threshold Schnorr signing using JVSS, this O(N2) dealing

cost is incurred both during initial key-pair setup and during

each signing round, because it is required to produce a fresh

shared Schnorr commit V̂0 each round whose private value

is not known to any individual or sub-threshold group of

participants. Using a pairing-based signature scheme such as

BLS [19] in place of Schnorr could eliminate the need to deal

a fresh commit per signing round and thus reduce the per-

round cost of JVSS signing, but the O(N2) joint dealing cost

would still be required at key generation time.

C. Computation Costs

The next experiment focuses on the protocol’s per-node

computation costs for signing and signature verification.

The CoSi leader periodically initiates new collective signing

rounds, and we measure the total CPU time per round imposed

on the most heavily-loaded participant. Since all CoSi partici-

pants check the (partial) signatures submitted by their children

in the process of producing the full aggregate signature, this

computation cost includes the cost of signature checking.

Figure 4 shows how measured System and User time on

the most heavily-loaded signing node (typically the root)

varies depending on the number of cosigning witnesses. The

figure also shows the computation costs of comparable Naive

and NTree cosigning approaches using individual signatures,

as well as using joint verifiable secret sharing (JVSS). As

expected, the computational cost of the CoSi protocol stays

relatively flat regardless of scale, whereas the computation
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costs of the competing schemes begin to explode with groups

beyond a few tens of witnesses.

The measured computation time is often greater than the

wall-clock signing latency because computation is done in

parallel and the graph represents the sum of the CPU time

spent by all threads running on a given witness server.

D. Network Traffic

The next experiment measures the total network traffic

produced by CoSi in comparison with the Naive, NTree, and

JVSS baselines. Figure 5 shows these results. Due to CoSi’s

aggregation mechanism, network traffic at the root node rises

much more slowly than in the the baseline schemes, which

all lack the benefit of aggregation, as the number of witnesses

grows. JVSS puts a particularly high burden on the network

due to its O(N2) communication complexity.

E. Effects of Spanning Tree Configuration

Our next experiment explores the tradeoffs in organizing

the spanning tree with which CoSi aggregates signatures:

in particular the tradeoffs between wide, shallow trees and

narrower, deeper trees. This experiment is parameterized by

the tree’s branching factor, or maximum number of children

per interior node, where 2 represents a binary tree.

Figure 6 shows the relationship between per-round signing

latency and branching factor in spanning trees containing

2,048, 4,096, and 8,192 witnesses total, respectively. Low

branching factors increase tree depth, increasing root to leaf

round-trip latency by about 200 milliseconds per unit of depth

added. On the other hand, low branching factors also decrease

both the CPU time spent per node and the communication

costs each node incurs coordinating with its children.

Empirically, we find that the higher the branching factor

the lower the signing latency. For example, in the case of

2,048 witnesses and a branching factor of 16, we get a tree

depth of 3 and a collective signing latency of below 2 seconds.

For trees of depth 3 or less we find that computation time

dominates, while for depths 5 or more network latencies begin

to dominate. The current CoSi prototype makes no attempt to

optimize its computations, however; further optimization of

the computations might make small depths more attractive.

F. Effects of Testbed Oversubscription

Since we did not have thousands of dedicated physical hosts

on which to evaluate CoSi, we had to “oversubscribe” the

testbed by running multiple CoSi witness processes on each

physical testbed machine. The spanning trees are laid out such

that no two adjacent nodes in the tree run on the same physical

host, ensuring that the 200ms round-trip delays imposed by

DeterLab apply to all pairs of communicating witnesses in

the tree. However, oversubscription can introduce experimen-

tation artifacts resulting from compute load on each physical

machine and different CoSi witness processes’ contention for

other system resources; we would like to measure the potential

severity of these effects.

Figure 7 shows the signing round latencies we measured for

experiments using a given number of witnesses on the x-axis,

but with these witness processes spread across 8, 16, or 32

physical machines to compare different levels of oversubscrip-

tion. Unsurprisingly, the latencies become noticeably worse at

higher levels of oversubscription (fewer physical machines),

and this effect naturally increases as total number of witnesses

and hence total load per machine increases. Nevertheless,

even with these oversubscription effects the measured latencies

remain “in the same ballpark” for groups up to 4,096 witnesses

(512× oversubscription on 8 machines). The performance

decrease observable in Figure 3 for more than 8,192 CoSi-

witnesses can be also attributed to oversubscription and thus

to the increased computational load the 32 physical machines

have to handle. Thus, since experimental oversubscription

works against CoSi’s performance and scalability, we can treat

these experimental results as conservative bounds on signing

time per round; a deployed witness cothority using dedicated
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(or at least less-overloaded) witness servers may well perform

significantly better than in our experiments.

G. Timestamping Application Scalability

As discussed in Section V-A, our timestamping applica-

tion uses CoSi periodically to sign timestamp records that

can aggregate many clients’ timestamp requests each round.

In addition, further leveraging CoSi’s scalable structure, the

timestamp service allows not only the leader but also the

witness servers to handle timestamp requests from clients, each

server forming a local Merkle tree of timestamps per round

and then aggregating these local trees into one global tree

during the Commit phase of the CoSi protocol.

To evaluate the scalability of this timestamping service, as

opposed to the “bare” performance of CoSi signing, we ran an

experiment in which for each CoSi server a separate process on

the same physical machine acted as a client sending timestamp

requests at a constant rate. We tested the system under a variety

of client load rates, from one request every 5 seconds to one

request every 13ms – the last case amounting to 80 requests

per second on each timestamp server. Client loads within

this range did not significantly affect the collective signing

latencies we observed, however, so we omit these graphs.

At large-scale experiments with 4,096 timestamp/witness

servers spread across 16 physical testbed machines (256

servers per machine), each physical machine effectively han-

dled an aggregate client load of about 20,000 timestamp

requests per second, or 320,000 timestamp requests per second

across the 4096-server collective. Further, the current CoSi

implementation and timestamp server code is largely unopti-

mized and completely unparallelized within each server: with

more powerful, unshared machines, we expect that each server

could readily handle much larger timestamping service loads.

H. Difficulty of Retrofitting Existing Authorities

Finally, to provide an informal sense for the software im-

plementation costs of retrofitting existing authority systems to

support witness cosigning, we relate our experience adapting

the CT log server. In this case, the log server is written in a

different language (C++), and we did not attempt to combine

the log server and CoSi implementation in a single program.

Instead, when our modified CT log server is configured to

attach collective signatures to its Signed Tree Heads (STHs),

the log server first prepares the STH internally, then uses

inter-process communication to request that a separate process

implementing the CoSi leader initiate a signing round. The CT

log server’s STH signing process then waits for the CoSi round

to complete, and incorporates the CoSi-generated collective

signature into an extension field in the STH. The verification

is done in a separate program that requests the STH from

the log server and verifies the signature against the aggregate

public key of the CoSi-tree.

With this two-process approach to integrating CoSi, the

necessary changes to the CT log server amounted to only

about 315 lines as counted by CLOC [41], or 385 “raw”

source code lines. Further, this integration took less than one

person-week of effort. While a production deployment would

of course involve significantly more effort than merely writing

the code, nevertheless our experience suggests that it may be

quite practical to strengthen existing authorities by retrofitting

them to add witness cosigning support.

VII. DISCUSSION AND FUTURE WORK

This paper’s primary technical focus has been on the basic

CoSi protocol for collective witnessing and signing; we make

no pretense to have addressed all the important issues rele-

vant to applying CoSi in any particular cothority application

context. However, we briefly revisit some of the motivating

applications introduced in Section II in light of the above

implementation and evaluation results.

a) Logging and Timestamping Authorities: While the

current CoSi prototype is basic, it nevertheless already imple-

ments the essential functionality of classic tamper-evident log-

ging and timestamping authorities [2], [63], [121]. As neither

the leader nor any signer can produce a collective signature

without the participation of a quorum of the potentially large

collective, such a timestamp cothority can offer much stronger

protection against the equivocation, history-rewriting, or log-

entry back-dating attacks that a centralized timestamp service

can mount if compromised. When integrated into a direc-

tory [89] or software update service [116], this timestamping

architecture can offer strong proofs of freshness, by enabling

clients to submit random challenges and verify that their

challenges are included in the service’s next signed update.

b) Certificate Authorities: Adding proactive transparency

and protecting clients against stolen CA-related keys (in-

cluding CT log server keys) may be the most compelling

and immediately urgent use-case for CoSi. While adding

witness cosigning to CT’s log server as we explored above

represents one fairly simple and potentially worthwhile step,

more substantial modifications to the current CA system may

be needed to address other major issues such as certificate

freshness and revocation [82].



We envision that in a witness cothority architecture in which

not just one CA but many of them inspect and collectively sign

certificates, stolen CA keys such as those of DigiNotar [8],

[22] and Comodo [21] would not by themselves be usable to

sign certificates that a web browser would accept. Not just CAs

but browser vendors and security companies could incorporate

monitoring servers into the certificate cothority as signers, to

watch for and perhaps proactively impose a temporary “veto”

on the signing of unauthorized certificates, such as certificates

proposed by a CA that is not recorded as having contractual

authority over a given domain. Giving other CAs serving as

witnesses even temporary veto power over a CA’s certificate

issuance processes creates DoS concerns, but such concerns

might be alleviated provided administrative communication

channels between CAs and witnesses are effective.

Deploying a more general certificate cothority would of

course require addressing many additional issues beyond the

basic collective signing mechanism covered here, not just

technical but also organizational and political. One important

technical challenge is backward compatibility and incremental

deployment. We anticipate that current root CAs might grad-

ually transition their root signing keys into witness cothority

keys, with their current sets of delegated CAs (and any other

cooperating root CAs) serving as witnesses. Each root CA

could transition independently at its own pace, driven by

pressure from users and browser vendors to increase security.

Web browsers would need to be upgraded gradually to support

aggregation-compatible signature schemes such as Schnorr in

addition to the currently common RSA, DSA, and ECDSA

schemes. During their transition period root CAs could retain

traditional root CA certificates for use in older web browsers

while embedding root cothority certificates instead into suit-

ably upgraded browsers. However, we leave to future work a

detailed exploration and analysis of the “right” way to integrate

witness cosigning into the CA system.

c) Public Randomness Authorities: While not our present

focus, the current CoSi prototype also effectively implements

a simple collective public randomness service that could

improve the trustworthiness of public randomness authori-

ties [103], [110]. Notice that in phase 2 of the signing protocol

(Section III-E) each server i commits to a fresh random secret

vi, contributing to a collective random secret
∑

i vi that no

participant will know unless all signers are compromised or

the discrete-log hardness assumption fails. The final response

produced in phase 4 depends unpredictably and 1-to-1 on this

random secret and the collective challenge c. Thus, we can use

the final aggregate response r̂0 as a per-round public random

value that was collectively committed in phase 2 but will be

unpredictable and uncontrollable by any participant unless all

signers are colluding.

While these random outputs will be unpredictable and un-

controllable, our current prototype cannot guarantee that they

are fully unbiased, due to its reliance on the signing exception

mechanism for availability. In particular, if a malicious leader

colludes with f other signers, then the leader can control

whether these colluders appear online or offline to produce up

to 2f different possible final aggregate responses with different

exception-sets, and choose the one whose response is “most

advantageous” to the leader, just before completing phase 4

of the protocol. Alternative approaches to handling witness

failures, through the judicious use of verifiable secret sharing

(VSS) techniques for example [55], [125], might be able to

address this bias issue, by ensuring that every node’s secret

is unconditionally incorporated in the final response, unless a

catastrophic failure makes some server’s secret unrecoverable

even via secret-sharing.

With these changes, a future version of CoSi might be

able to offer bias-resistant randomness in a conventional

but scalable threshold-security model, contrasting with more

exotic approaches recently proposed using new cryptographic

primitives and hardness assumptions [79] or the Bitcoin

blockchain [20] for example. We again leave exploration of

this opportunity to future work.

d) Other Types of Authorities: Integrating witness

cosigning into blockchain systems such as Bitcoin [102]

present interesting opportunities to improve blockchain se-

curity and performance [70]. The tree-based scaling tech-

niques explored here may also be applicable to decentral-

izing other cryptographic primitives such as public-key en-

cryption/decryption. A large-scale cothority might collectively

decrypt ElGamal [51] ciphertexts at particular future dates

or on other checkable conditions, to implement time-lock

vaults [100], [112], key escrows [43], or fair-exchange pro-

tocols [58].

VIII. RELATED WORK

The theoretical foundations for CoSi and witness cothorities

already exist in the form of threshold signatures [17], [120],

aggregate signatures [18], [84], [85], and multisignatures [12],

[93]. Threshold signatures allow some subset of authorized

signers to produce a signature, however, often making it

impossible for the verifier to find out which signers were

actually involved. In aggregate signatures, a generalization of

multisignatures, signers produce a short signature by com-

bining their signatures on individual statements through an

often serial process. On the other hand, multisignatures closely

fit the requirements of CoSi for security, efficiency and the

simplicity of generation across many signers. However, to our

knowledge these primitives have been deployed only in small

groups (e.g., ≈ 10 nodes) in practice, and we are aware of no

prior work experimentally evaluating the practical scalability

of threshold crypto or multisignature schemes.

Merkle signatures [23], [90], [92] employ Merkle trees for a

different purpose, enabling a single signer to produce multiple

one-time signatures verifiable under the same public key.

Online timestamping services [2], [63] and notaries [121]

enable clients to prove the existence of some data (e.g., con-

tracts, research results, copyrightable work) before a certain

point in time by including it in a timestamped log entry.

Typically, a trusted third party acts as a timestamping author-

ity [46], [59], [115] and has a unilateral power to include,

exclude or change the log of timestamped data.



Many distributed systems rely on tamper-evident log-

ging [38], [81]. Logging services are vulnerable to equiv-

ocation, however, where a malicious server rewrites history

or presents different “views of history” to different clients.

Solutions include weakening consistency guarantees as in

SUNDR [81], adding trusted hardware as in TrInc [80] or

relying on a trusted party [117]. Certificate Transparency or

CT [76], [78] and NIST’s Randomness Beacon [103] are ex-

amples of application-specific logging services that exemplify

issues related to a trusted-party design paradigm.

Directory services such as Namecoin [132], and Key-

base [37] use blockchains such as Bitcoin [102] as a decentral-

ized timestamping authority [69]. With this approach, history

rewriting or equivocation attacks become difficult once a

transaction is deeply embedded in the blockchain – but clients

unfortunately have no efficient decentralized way to verify that

a timestamp transaction is in the blockchain, other than by

downloading and tracking the blockchain themselves or by

trusting the say-so of centralized “full nodes.” Blockchains

with collectively signed transactions [70] might address this

verification weakness in the blockchain approach.

There are many proposals to address PKI weaknesses [36].

Browsers such as Chrome and Firefox hard-code or pin public

keys for particular sites such as google.com [52], [72] or

particular CAs for each site – but browsers cannot ship with

hard-coded certificates or CAs for each domain for the whole

Web. Alternatively, browsers pin the first certificate a client

sees [122] protecting a site’s regular users but not new users.

TACK [88], another approach to pinning, offers site owners

the ability to authorize TLS keys for their domain using a

long-term TACK key they control. Since the client’s browser

must witness a pin on two different occasions, TACK protects

users from opportunistic attackers but it does not prevent an

attacker with a long-term access to the victim’s network from

tricking him to accept incorrect pins.

More recent mitigations for CA weaknesses rely on log-

ging and monitoring certificates as proposed in systems like

AKI [68], ARPKI [10], PoliCert [126], and CT [76], [78]. Now

deployed in the Chrome browser, CT requires CAs to insert

newly-signed certificates into public logs, which independent

auditors and monitors check for consistency and invalid certifi-

cates. Even with CT, an attacker can unfortunately still create

a fake EV certificate that the Chrome browser will accept

by stealing the secret keys of, or secretly coercing signatures

from, only three servers: any single CA and any two CT log

servers [77]. If the attacker also blocks the targeted device

from gossiping with public CT servers after accepting this fake

certificate, the attacker can hide this attack indefinitely [57].

CT’s reliance on clients being able to gossip with monitors

and auditors also raises latency and privacy concerns.

COCA [136] distributes the operation of a CA across

multiple servers, and Secure Distributed DNS [27] similarly

distributes a DNSSEC [6] name service. These systems repre-

sent precedents for CoSi’s collective witnessing approach, but

distribute trust across only a small group: at most four servers

in COCA’s experiments and seven in Secure Distributed DNS.

Some of these trust-splitting protocols have used threshold

signatures as a primitive [25], [26], [109], as CoSi does.

The NIST Randomness Beacon [103] logs random values it

produces by signing them using its own secret key and chain-

ing them with previously produced values. While a dishonest

beacon cannot selectively change individual entries, it could

rewrite history from a chosen point and present different views

of the history to different clients. Additionally, there is no

guarantee of freshness of the published randomness. While

the quality of the output is likely not affected if the beacon

precomputes the randomness, the beacon gets to see these

values beforehand, leaving it vulnerable to insider attacks.

TUF [116] and Diplomat [73] address software download

and update vulnerabilities [13], [31], [105], in a framework

that supports threshold signing by creating and checking mul-

tiple independent signatures. Application Transparency [53]

adapts CT to software downloads and updates. CoSi com-

plements both TUF and Application Transparency by greatly

increasing the number of independent servers an attacker must

compromise in order to keep the compromise secret.

IX. CONCLUSION

This paper has demonstrated how using theoretically estab-

lished and well-understood cryptographic techniques, we can

add efficient, scalable witness cosigning to new or existing

authority services. Witness cosigning offers proactive rather

than merely retroactive transparency, by ensuring that an

attacker who compromises the authority’s secret keys cannot

individually sign a statement clients will accept without also

submitting that statement to many witnesses for cosigning,

creating a high probability of immediate detection. By making

authority keys relatively useless “in secret,” witness cosigning

also reduces the value of an authority’s keys to attackers

wishing to operate in secret, disincentivizing attacks against

the authority’s keys in the first place. The encouraging scala-

bility and performance results we have observed with our CoSi

prototype lead us to believe that large-scale witness cothorities

are practical. If this is the case, we feel that there may be

little remaining technical reason to settle for the centralized,

weakest-link security offered by current designs for today’s

common types of critical authorities. We can and should

demand stronger, more decentralized security and transparency

from the Internet’s critical authorities.
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