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Keeping ribosomal DNA intact: a repeating challenge
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Abstract More than half of the human genome consists
of repetitive sequences, with the ribosomal DNA
(rDNA) representing two of the largest repeats. Repeti-
tive rDNA sequences may form a threat to genomic
integrity and cellular homeostasis due to the challenging
aspects of their transcription, replication, and repair.
Predisposition to cancer, premature aging, and neuro-
logical impairment in ataxia-telangiectasia and Bloom
syndrome, for instance, coincide with increased cellular
rDNA repeat instability. However, the mechanisms by
which rDNA instability contributes to these hereditary
syndromes and tumorigenesis remain unknown. Here,
we review how cells govern rDNA stability and how
rDNA break repair influences expansion and contrac-
tion of repeat length, a process likely associated with
human disease. Recent advancements in CRISPR-based
genome engineering may help to explain how cells keep
their rDNA intact in the near future.
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Fob1 Fork blocking protein 1
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PolI RNA polymerase I
HR Homologous recombination
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NuRD Nucleosome remodeling deacetylase
NoRC Nucleolar chromatin remodeling complex
ATM Ataxia-telangiectasia mutated
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γH2AX Phosphorylated histone H2AX
NHEJ Non-homologous end-joining
DSBR Double-stranded break repair
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MMEJ Micro homology-mediated end-joining
ALT Alternative lengthening of telomeres
TALEN Transcription activator-like effector nuclease
FISH Fluorescent in situ hybridization

Introduction

Two aspects of the ribosomal DNA (rDNA) are very
remarkable: first, it contains hundreds of repeated genes,
and secondly, it forms the most heavily transcribed
region in the human genome. The ribosomal RNA
(rRNA) transcribed from the approximately 600 rDNA
repeats forms the most abundant fraction of RNA found
in eukaryotic cells (McStay 2016). Together with about
~ 80 proteins, representing 10% of cellular protein
levels, the rRNAs are built into ribosomes, the macro-
molecular machines through which messenger RNAs
(mRNAs) are guided during protein synthesis
(Boisvert et al. 2007).

Ribosome biogenesis, the process of ribosome as-
sembly, involves the coordinated function of more than
200 proteins and occurs both in the cytoplasm and in the
nucleolus (Thomson et al. 2013). This is also a major
energy consuming process which is tightly controlled by
the availability of nutrients and growth factors (Boulon
et al. 2010). During favorable conditions for cellular
growth and division, rRNA production is high, while
in response to stress, such as nutrient starvation or DNA
damage, rDNA transcription is efficiently repressed
(Boulon et al. 2010). Thus, cells have evolved an intri-
cate feedback network to balance rDNA production to
their cellular environment and changing growth
conditions.

Repetitive regions of DNA, by their very nature, are
prone to DNA recombination events (Stankiewicz and
Lupski 2002). Recombination events can result in a
reduction of the repeat copy numbers or in DNA muta-
tions (Carvalho and Lupski 2016). To prevent these,
multiple advanced DNA repair mechanisms are in place
to maintain rDNA repeat integrity (Larsen and Stucki
2016; van Sluis and McStay 2017). The importance of
such mechanisms is underscored by the diseases asso-
ciated with deficiencies in DNA caretaker genes like
CSA and CSB (Cockayne syndrome), BLM (Bloom
syndrome), WRN (Werner syndrome), and ATM (atax-
ia-telangiectasia). Cells derived from patients suffering
from these conditions also display features of increased

rDNA instability, accompanied by poor ribosome bio-
genesis and, potentially, defective protein synthesis
(Killen et al. 2009; Stults et al. 2008). This suggests that
rDNA instability may contribute to some of the clinical
presentations of these diseases (Killen et al. 2009;
Christians and Hanawalt 1994). In this review, we will
focus on the role of rDNA instability in human disease
and discuss the mechanisms involved in maintaining
rDNA repeat integrity. We draw special attention to the
pathways involved in the repair of DNA double-
stranded breaks (DSBs) in the highly repetitive rDNA,
as these breaks form an immediate threat to the tran-
scription and stability of rDNA and therefore can attri-
bute to human diseases including neurodegeneration
and cancer.

Ribosomal DNA repeats

The rDNA repeats reside in the nucleolus, a membrane-
less sub-nuclear compartment which assembles around
chromosomal nucleolar organizing regions consisting of
clusters of rRNA gene repeats (McStay 2016). Nucleoli
are formed through liquid-liquid phase separation,
which keeps them interlinked with the rest of the nucle-
us and enables them to rapidly disassemble and reas-
semble as cellular conditions change (Feric et al. 2016;
Hult et al. 2017; Falahati and Wieschaus 2017; Mitrea
and Kriwacki 2016; Tang 2017). Heterochromatic
rDNA is found in close proximity to the nucleolus while
transcriptional active rDNA resides within, at the
boundary of the fibrillar centers and the dense fibrillar
compartments (Pontvianne et al. 2013; Zentner et al.
2011; Nemeth et al. 2008).

The human rDNA encompasses several genomic loci
and is mostly organized in head-to-tail tandem repeats
(Worton et al. 1988). The 5S rDNA region on chromo-
some 1 encodes the 5S rRNA gene repeats and contains
structural intergenic spacer regions. The genes encoding
the 18S, 5.8S, and 28S (47S) rRNAs are distributed over
chromosomes 13, 14, 15, 21, and 22 (Fig. 1) and are also
characterized by intergenic spacer regions (Gibbons
et al. 2014). While the copy numbers of rDNA can vary
both across and within species, the 5S and 47S loci each
contains approximately 300 repeats in human cells.
Interestingly, the number of repeats of the 5S and 47S
loci evolved in a correlated fashion. Although it is
unclear how its numbers are conserved (Gibbons et al.
2015), this indicates the existence of robust cellular
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mechanisms controlling rDNA repeat integrity and un-
derscores the importance of maintaining repeat stability
for cellular homeostasis.

Ribosomal DNA repeat instability in human disease

In general, DNA repeat instability can cause hu-
man disease as illustrated by the observation of
pathogenic repeat expansions in many neurological
disorders like amyotrophic lateral sclerosis (ALS),
frontotemporal dementia (FTD), and Huntington’s
disease (Hannan 2018). Considering their suscepti-
bility for genomic instability, it is not surprising
that also rDNA repeats are associated with human
disorders. Persistent rDNA damage signaling and
structural rearrangements following erroneous re-
pair, as well as consequential transcriptional alter-
ations and ribosome dysfunction, may trigger dis-
ease (Diesch et al. 2014). Disruption of genes that
function directly in ribosome biogenesis, so-called
ribosomopathies, is associated with bone marrow
failure and skeletal malformations as seen in
Diamond-Blackfan Anemia , Schwachman-
Diamond Syndrome, and Dyskeratosis Congenita
(Narla and Ebert 2010). In addition, several DNA
caretaker genes, traditionally associated with can-
cer predisposition and premature aging syndromes,
have been implicated in maintaining ribosome
function. Loss of functional BLM, WRN, and
ATM leads to rDNA repeat instability. Moreover,

TCOF1, which is mutated in Treacher Collins syn-
drome and operates in close association with DNA
damage response protein NBS1 (mutated in Nijme-
gen breakage syndrome), is involved in the regu-
lation of rDNA transcription (Killen et al. 2009,
Caburet et al. 2005, Ciccia et al. 2014, Hannan
et al. 2013a, b). Cohesinopathies, including Corne-
lia de Lange and Roberts Syndrome, are also as-
sociated with nucleolar alterations (Xu et al. 2014;
Gard et al. 2009). Altogether, defects in genomic
caretakers correlate with lower expression levels of
rRNA and/or nucleolar dysfunction which may
impact ribosome assembly (Diesch et al. 2014).
However, it remains an important question whether
clinical outcomes are a direct consequence of
rDNA instability and altered ribosome biogenesis,
or are associated predominantly with deficiencies
in overall genomic DNA maintenance.

Neurodegeneration

A hexanucleotide repeat expansion in the C9orf72 gene
causes ALS and FTD (Haeusler et al. 2014). The repeat
extension results in (i) DNA-RNA hybrid structures that
are known as R-loops, composed of a displaced single-
stranded DNA hybridized with the nascent transcript
(Santos-Pereira and Aguilera 2015), (ii) harmfully high
levels of repetitive C9orf72 RNA, and (iii) toxic dipep-
tide repeat proteins (Balendra and Isaacs 2018). These
three implications clearly link repeat alterations to neu-
rodegenerative diseases. Cells of patients with ataxia-

Chr1 Chr13 Chr14 Chr15 Chr21 Chr22

5S

47S (28S, 5.8S and 18S)

Fig. 1 Graphical illustration of
the chromosome locations of the
47S and 5S rDNA repeats. The
47S repeats are distributed over
five different chromosomes,
whereas the 5S repeats are all
located on chromosome 1
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telangiectasia and Bloom syndrome contain up to 100
more rDNA repeats than normal cells and are character-
ized not only by defective DNA repair but also by
neurological impairments (Killen et al. 2009; Stults
et al. 2008; Hallgren et al. 2014; Toro et al. 2018;
McKinnon 2009). Conversely, altered rDNA repeat
numbers have been identified in cells derived from
patients diagnosed with these and other neurological
disorders (Hallgren et al. 2014; Chestkov et al. 2018).
Combined, these observations suggest that repair-
dependent rDNA repeat alterations may contribute to
the observed neurological disease symptoms in ataxia-
telangiectasia and Bloom patients (Hallgren et al. 2014).
Several observations indicate how repeat instability may
contribute to neurodegeneration. Neurodegeneration is
induced by cellular stress, caused by DNA damage and/
or toxic levels of RNA and misfolded proteins. Potential
factors that could influence rDNA-mediated neurode-
generation are as follows: (i) increased rDNA transcrip-
tion, leading to rDNA damage and/or toxic levels of
rRNA transcripts, (ii) changes in ribosome biogenesis
leading to altered protein production, either through
toxic high levels or reduced levels that lead to protein
deficiency or insoluble aggregates (Slomnicki et al.
2016; Hetman and Slomnicki 2018), and (iii) increased
genome instability due to rDNA recombination-
mediated structural chromosomal rearrangements.
These threats are not necessarily mutually exclusive so
rDNA repeat instability might lead to neurodegenera-
tion through cumulative mechanisms.

Cancer

Analysis of a subset of human lung and colon cancers
indicated that half of these solid tumors contain rDNA
rearrangements, with one-third of these cancers reveal-
ing repeat expansions (Stults et al. 2009). As indicated
above, alterations in rDNA copy numbers influence the
biology of ribosome formation and homeostasis
(Orsolic et al. 2016), thereby affecting protein synthesis
rates, quality control, and protein homeostasis. Tumors
often appear addicted to high levels of ribosome activity
because of their reliance on increased protein production
(White and Vijg 2016). Nevertheless, it remains unclear
whether rDNA instability itself may act as a driver of
oncogenic transformation, although some studies sug-
gest this (Tsoi et al. 2017). A better understanding of the
contractile behavior of ribosomal DNA repeats in nor-
mal and cancer cells is needed to clarify the processes

that contribute to enhanced ribosome activity and there-
by provide a mechanism-based rationale for the use of
therapeutic drugs that inhibit ribosome biogenesis, ei-
ther in the prevention or treatment of cancer cells.

Maintaining ribosomal DNA repeats and RNA
transcripts

In eukaryotes, the copy number of rDNA repeats is
higher than required to maintain rRNA synthesis.
Many copies of rDNA genes are transcriptionally
silenced via histone modification and/or methylation
(Birch and Zomerdijk 2008). The reason for this
wide-spread redundancy is unclear; however, it is
possible that certain specific cell types or develop-
mental stages require increased levels of protein
synthesis (Russell and Zomerdijk 2005). The inac-
tive fraction of rDNA is organized into a tightly
packed, heterochromatic state that may be crucial
for the structure of the nucleolus and regulation of
rDNA transcription (Tsekrekou et al. 2017). Impor-
tantly, the packed state of rDNA heterochromatin
could actually determine genomic instability as it
is, on the one hand, less accessible to damaging
metabolic by-products and, on the other hand, to
proteins involved in recombination pathways. More-
over, it has been suggested that rDNA heterochro-
matin has a DNA damage signaling role: deletion of
inactive rDNA copies may trigger a DNA damage
response (DDR) followed by apoptosis or senes-
cence (Kobayashi 2008; Paredes and Maggert
2009). The loss of rDNA repeats, even if they are
not actively transcribed (i.e., the redundant copies),
has also been shown to sensitize cells to mutagen-
induced DNA damage (Xu et al. 2017a, b). Recent
evidence also suggests that reduction of ribosomal
DNA repeats is a trait of human aging (Ganley and
Kobayashi 2014; Tiku and Antebi 2018). On the
other hand, the contraction of rDNA copies has been
proposed as a mechanism that overcomes replication
stress conditions, acting as an adaptive cellular re-
sponse, making it easier for cells with reduced
rDNA repeats to complete DNA replication and
continue cell cycle progression. Combined, these
observations indicate that maintaining appropriate
activity and numbers of rDNA repeats is highly
controlled as loss of rDNA stability can be
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detrimental to cells and that replication and tran-
scription are key aspects in the regulation of rDNA.

Replication of ribosomal DNA

Interestingly, not all rDNA repeats are replicated at the
same time during S-phase. Actively transcribed repeats
are replicated right after the initiation of DNA replica-
tion, whereas the silent repeats are replicated from mid
to late S-phase (Dimitrova 2011; Schlesinger et al.
2009). In rDNA that is associated with the nucleolus,
actively transcribed rDNA relocates transiently to the
periphery of the nucleolar body for replication, possibly
to avoid collisions between replication and transcription
machineries (Kobayashi 2008). In yeast, the non-
transcribed spacer region of a rDNA repeat serves as a
binding domain for the Fork blocking protein 1 (Fob1)
and a localized increase of this protein is associated with
a stronger replication block, to prevent clashes between
rDNA transcription and the DNA replication machinery
(Kobayashi 2003; Castan et al. 2017). Notably, Fob1
oligomerization has been documented to bring rDNA
spacer regions together in a process called
Bchromosome kissing,^ which may increase recombi-
nation events (Choudhury et al. 2015; Labib and
Hodgson 2007). Surprisingly, an integral protein of the
RNA-interference pathway, Dcr1, was shown to be
essential for transcription termination at sites of rDNA
replication stress in fission yeast, thereby actually
preventing recombination events (Sinkkonen et al.
2010; Gadaleta and Noguchi 2017; Castel et al. 2014).

Most eukaryotic cells have evolved a gene amplifi-
cation system that serves to maintain high rDNA repeat
copy numbers and to compensate for any loss in repeats.
When repetitive rDNA is reduced in yeast, replication in
the rDNA is stalled at the replication fork blocking
(RFB) site. Uncoupling of the stalled replication forks
results into DSBs that enhance recombination and sub-
sequent repeat expansion (Kobayashi et al. 1998;
Akamatsu and Kobayashi 2015). The histone
deacetylase Sir2 negatively regulates the RFB and there-
by limits excessive recombination in order to maintain a
balanced number of rDNA repeats (Kobayashi et al.
2004; Gadaleta and Noguchi 2017). In mammalian
cells, an RFB downstream of the 47S pre-rRNA gene
is imposed by the RNA Polymerase I (PolI) transcrip-
tion terminator complex involving transcription termi-
nation factor 1 and the replisome protein TIMELESS
(Akamatsu and Kobayashi 2015). Regulation of

protein-mediated RFBs therefore seems to be crucial in
forcing rDNA repeat extensions (Beuzer et al. 2014).
Accordingly, it has been suggested that loss of rDNA
repeats is a sign of previous events of replication stress
(Salim et al. 2017). The histone chaperone Asf1 is
known to prevent rDNA repeat expansions in yeast
(Houseley and Tollervey 2011), but it remains unclear
which counteracting mechanisms control the number of
repeats in human cells. Loss of SMC5, BRCA1, and
BRCA2 and a number of other genes important in
maintaining genome integrity after DNA damage result
in rDNA repeat instability (Caburet et al. 2005;
Warmerdam et al. 2016; Killen et al. 2009; Thompson
and Schild 2002). This implies that also in human cells,
rDNA copy numbers are controlled through DNA rep-
lication and recombination-associated mechanisms.
Maintaining a stable number of repeats is however not
the only way in which cells can adjust the appropriate
production of rRNA and thereby maintain proficient
ribosome synthesis to support translation capacity. Tran-
scription of the rDNA can also be increased by epige-
netically reactivating silenced repeats or through in-
creased PolI activity as discussed in the following
paragraph.

Transcription of ribosomal DNA

The rDNA is one of the most actively transcribed re-
gions in the genome. In mammalian cells, initiation of
rDNA transcription is controlled by the cell cycle, show-
ing the highest levels of rDNA expression during S and
G2-phases, followed by silencing during mitosis, and a
gradual re-activation in G1 phase (Huang et al. 2016).
During interphase, nucleoli form around the rDNA re-
peats encompassing the 47S loci, which are then tran-
scribed by PolI (McStay and Grummt 2008). The 47S
polycistronic pre-rRNA is spliced into the 28S, 5.8S,
and 18S transcripts. The 5S repeat, however, is tran-
scribed outside of the nucleolus by RNA Polymerase III,
producing the 5S transcript. Combined, these four tran-
scripts are part of the 60S (28S, 5.8S, and 5S) and 40S
(18S) ribosomal subunits.

High rates of rDNA transcription increase the likeli-
hood of R-loop formation (Santos-Pereira and Aguilera
2015). Although these structures have also been implied
in supporting rDNA integrity, by facilitating homolo-
gous recombination (HR) (Hall et al. 2017), the process-
ing of R-loops may form obstacles for the DNA repli-
cation machinery and result in rDNA breaks. The notion
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that R-loops comprise an endogenous source of genome
instability (Amon and Koshland 2016) is supported by
the evolution of protective mechanisms which limit,
prevent, or resolve R-loops. These include roles for
RNAse enzymes that degrade the RNA strand, helicases
which unwind the DNA-RNA hybrids or prevent their
formation, and topoisomerases mediating dissolution of
blocked DNA during replication and transcription
(Aguilera and Gomez-Gonzalez 2008; Hamperl and
Cimprich 2014). In human disease, R-loop-mediated
rDNA damage has been linked to Borjeson-Forssman-
Lehmann syndrome (PHF6), Friedreich ataxia (FXN),
amyotrophic lateral sclerosis type 4 (SETX), and Fragile
X syndrome (FMR1), among others. Also in cancer,
mutations in genes involved in suppression of R-loops
have been identified, including BRCA1, PHF6, FIP1L1,
BREI, and SRSF1 (Santos-Pereira and Aguilera 2015).
While it remains unclear whether oncogenic transfor-
mation can solely be attributed to R-loop accumulation,
the idea that R-loops are a significant source of DNA
damage in cancer cells and other disorders has solid
support (Lindstrom et al. 2018).

Interestingly, plant homeodomain finger protein 6
(PHF6) was shown to suppress R-loops and subse-
quent breaks in the rDNA (Wang et al. 2013), iden-
tifying it as a negative regulator of rDNA transcrip-
tion. PHF6 is a highly conserved gene in verte-
brates, likely to be essential for development, al-
though no knockout mice have been reported
(Crawford et al. 2006). PHF6 contains two PHD
domains that are normally associated with chromatin
regulation and gene expression. It also interacts with
the nucleosome remodeling deacetylase (NuRD)
complex, which mediates chromatin assembly.
Thereby NuRD supports transcription, cell cycle
progression, and genome stability (Todd and
Picketts 2012). PHF6 localizes both inside the nu-
cleus and nucleolus (Todd et al. 2016). PHF6 con-
tains putative DDR-dependent phosphorylation sites
that suggest that it is regulated in response to
genotoxic stress (Todd et al. 2015; Matsuoka et al.
2007). Although we do not yet understand the cel-
lular roles of PHF6, these data suggest an important
function for PHF6 in the regulation of rDNA tran-
scriptional output. Mutations in PHF6 are associated
with Borjeson-Forssman-Lehmann syndrome and
are also implicated in the development of cancer
(Van Vlierberghe et al. 2010; Lower et al. 2002),
supporting the notion that deregulation of rDNA

transcription and rDNA R-loop resolution can result
in disease.

Approximately one-third of the rDNA repeats are
epigenetically silenced by the nucleolar chromatin re-
modeling complex (NoRC), comprising Tip5 and
Snf2H. NoRC loss impairs rDNA silencing, resulting
in an upregulation of rDNA transcription (Guetg et al.
2010). Maintaining appropriate levels of rDNA tran-
scription is crucial for cellular homeostasis since its
deregulation can lead to either cell death or oncogenic
transformation (Russell and Zomerdijk 2005; Diesch
et al. 2014). Indeed, apart from cancer, upregulation of
rDNA transcription is also associated with cardiovascu-
lar disease (Hariharan and Sussman 2014) and down-
regulation of rDNA expression is a common cellular
feature of premature aging syndromes and age-related
neurological disease such as Parkinson’s disease
(Diesch et al. 2014). Taken together, these observations
show the importance of transcription and replication in
the regulation and maintenance of rDNA repeat integri-
ty. DNA damage can perturb these regulatory mecha-
nisms and their interplay, thereby contributing to rDNA
instability.

Ribosomal DNA damage response

In response to DNA damage, cells halt cell cycle pro-
gression to allow for DNA repair. To avoid propagation
of mutations, the DDR determines whether or not a cell
continues to divide (Jackson and Bartek 2009). Differ-
ent forms of DNA damage can be found but DSBs are
among the most harmful and difficult lesions to repair
(Hoeijmakers 2009). In response to DSBs, the two
master regulators of the DDR, ataxia-telangiectasia mu-
tated (ATM) and ataxia-telangiectasia and Rad3-related
(ATR), become activated. ATM activation follows the
accumulation of DNA ends, whereas ATR is recruited
and subsequently activated after 5′–3′ resection of DSBs
(Warmerdam and Kanaar 2010). ATM and ATR are
kinases which phosphorylate many substrates, including
histone H2AX (γH2AX), and play a pivotal role in the
recruitment of numerous DDR-associated proteins to
damaged sites. Perturbed transcription of rDNA has
recently been shown to increase γH2AX levels, causing
activation of p53, and correlating with neurological and
developmental defects (Calo et al. 2018). In certain
circumstances, the resolution of DSBs or intermediate
DNA repair structures may remain unresolved, resulting

62 D. O. Warmerdam, R. M. F. Wolthuis



in a persistent DDR, which is observed in senescent
cells and aging organisms (Flach et al. 2014; Rodier
et al. 2009; Kobayashi 2014; Noda et al. 2012).
Unrepaired lesions may lead to error-prone repair
resulting in mutations and chromosomal rearrangements
(Noda et al. 2012). Notably, persistent breaks are fre-
quently found to be associated with repetitive DNA
sequences, like telomeres (Fumagalli et al. 2012) and
may thus also be frequent in rDNA (Warmerdam et al.
2016). Altogether, the prevention, identification, and
efficient resolution of DSBs, especially in repetitive
DNA sequences, are of paramount importance for the
maintenance of a cell’s genomic integrity and physio-
logical function.

Pathways involved in the repair of ribosomal DNA
repeats

DSBs are predominantly repaired through direct ligation
of the broken DNA ends by non-homologous end join-
ing (NHEJ) or through HR (Kanaar et al. 2008; Ciccia
and Elledge 2010). Because HR requires a homologous
repair template, which is normally only present on the
sister chromatid in S/G2 phase, the choice of DNA
repair mechanism is regulated in the cell cycle
(Shrivastav et al. 2008). Breaks in G1 are mainly
repaired through NHEJ. In response to damage in the
rDNA, rDNA transcription is shut down by the ATM-
dependent inhibition of PolI (Harding et al. 2015). Next,
rDNA DSBs relocate to the periphery of the nucleolus
and form nucleolar caps (Harding et al. 2015; van Sluis
and McStay 2015). To study repair of breaks in the 47S
repeat, several labs have recently delivered I-PpoI into
cells. I-PpoI is a sequence-specific endonuclease that
cuts ~ 30 different locations in the human genome,
including the 47S repeat (Warmerdam et al. 2016;
Harding et al. 2015; van Sluis and McStay 2015). Har-
ding et al. showed that breaks in rDNA repeats are
predominately repaired through NHEJ (Harding et al.
2015). However, utilizing I-PpoI and CRISPR/Cas9
gene editing to induce DSBs specifically in rDNA, van
Sluis & McStay concluded that rDNA breaks can also
be repaired by HR, even in G1 cells (van Sluis and
McStay 2015). They observed that HR-associated pro-
teins also localize to rDNA break-induced nucleolar
caps in G1 and that these repair structures show un-
scheduled DNA synthesis, a measure for ongoing repair.
Importantly, the nucleolar caps contain both damaged
and undamaged rDNA repeats, making templates

available for HR regardless of the cell cycle. This inter-
esting observation could have serious implications for
human disease, and therefore, it will be important to
investigate the role of HR-mediated repair of rDNA
breaks in non-dividing cells in vivo, too.

In contrast, Warmerdam et al. showed that repair of
rDNA breaks becamemore efficient after the loss of HR
and that rDNA instability was dependent on homology-
directed repair, indicating that recombination-mediated
repair of breaks in the rDNA can result in a loss of repeat
integrity (Warmerdam et al. 2016). Using CRISPR/Cas9
to investigate breaks in both the 5S and 47S repeats
revealed that breaks in the 47S rDNA locus were more
persistent and induced a stronger G2 checkpoint arrest
than breaks in the 5S rDNA. The latter suggests that 47S
breaks are more difficult to repair, maybe because the
47S rDNA is distributed over multiple chromosomes,
unlike the 5S repeat, thereby creating more problems for
homology-directed repair pathways. However, it is also
important to note that the 47S rDNA is associated with
the nucleoli, while 5S rDNA is not. This may indicate
that spatial distribution of rDNA sites and pathways
involved also influence repair of damaged rDNA
repeats.

Warmerdam et al. have previously proposed that the
observed HR-mediated loss of repeats after breaks in the
rDNA occurs in trans, through recombination between
sister chromatids or rDNA repeats on different chromo-
somes (Warmerdam et al. 2016). Unlike in S/G2,
homology-dependent repair in G1/G0 might be more
prone to occur in cis, by using unrepaired repeats on the
same tandem array (van Sluis and McStay 2017). In
addition, different homology-dependent repair mecha-
nisms might be activated in either G1 and S/G2 cells
(Renkawitz et al. 2014). Homology-dependent repair is
subdivided in a number of pathways, which can mediate
either cis or trans-dependent repair. Double-stranded
break repair (DSBR) is the classical recombination path-
way leading to chromosome crossovers (gene conver-
sion) (Haber 2018). Synthesis-dependent strand anneal-
ing (SDSA) on the other hand suppresses crossovers and
thereby prevents loss of heterozygosity (Verma and
Greenberg 2016). As SDSA is mediated by BLM, the
gene affected in Bloom syndrome, and loss of BLM
results in rDNA instability, one can speculate that rDNA
breaks are preferably repaired through this pathway, also
to prevent loss of rDNA repeats.

Single-strand annealing (SSA) preferentially
operates on short repetitive DNA sequence like CAG
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repeats. However, it is important to notice that compar-
ing the repair of rDNA repeats to short repeats like
telomeres and CAG repeats is troublesome as the rDNA
is made up of very long repetitive sequences and there-
fore can result in different outcomes. SSA uses the
homologous repetitive sequence adjacent to the dam-
aged repeat for repair, and therefore does not result in
crossovers. As such, repair through SSA is mutagenic
and results in repeat contractions. Microhomology-
mediated end joining (MMEJ), a process operating as
an alternative to end joining, makes use of homology by
using the bases directly adjacent to the breaks site as a
repair template. This pathway is highlymutagenic and is
involved in the alternative lengthening of telomeres
(ALT) in cancer cell lines (Dilley and Greenberg
2015). SDSA, SSA, and MMEJ are expected to act in
cis and therefore can result in intra-chromosomal repeat
contractions (Fig. 2). Repair through DSBR works in
trans, which could result in inter-chromosomal repeat
expansions and contractions, but may also lead to struc-
tural chromosomal rearrangements (Fig. 2). However, it
remains unclear whether dedicated homology-directed
repair mechanisms operate on breaks in the rDNA and
what the exact consequences of such repair mechanisms
are for rDNA repeat integrity and genome stability.

Processing of ribosomal DNA breaks and repair
intermediates

DSB repair pathways often require processing of DNA
ends and resolution of complex intermediates to gener-
ate suitable substrates for repair. BLM is a structure-
specific helicase that plays a role in resolving rDNA
structures (Killen et al. 2009). BLM is a highly con-
served member of the RecQ family of helicases, impor-
tant during recombination by promoting branch migra-
tion and resolving Holiday junctions (Karow et al. 2000;
Cheok et al. 2005). However, BLM also suppresses
recombination by disrupting Rad51 filament formation,
a key process in HR, and promotes non-crossover re-
combination through SDSA (West et al. 2015). As such,
BLM limits error-prone recombination between chro-
mosomes (Wechsler et al. 2011). The WRN helicase,
mutated in Werner Syndrome, is another RecQ helicase
that promotes repair (Croteau et al. 2014). BLM and
WRN both localize within the nucleolus and were
shown to be involved in the regulation of PolI transcrip-
tion (Tangeman et al. 2016; Shiratori et al. 2002;
Grierson et al. 2012). WRN was also shown to be

involved in maintaining rDNA stability (Caburet et al.
2005). However, loss of BLM leads to a more severe
increase in rDNA instability compared to WRN loss
(Killen et al. 2009), indicating that rDNA break repair
is preferentially dependent on BLM.

The SMC5/6 complex, a highly conserved cohesion-
like complex that is also responsible for sister chromatid
interaction during HR, recruits BLM to resolve rDNA
repair intermediates, but could also act as a platform for
the recruitment of other structure-specific helicases and
nucleases, possibly through SLX4 (Bermudez-Lopez
and Aragon 2017). Repair of rDNA in yeast is mediated
by SLX4, which functions as a scaffold for the recruit-
ment of various nucleases (Coulon et al. 2006). In
human cells, SLX4 is involved in the recruitment of
nucleases including ERCC1, Mus81, and SLX1 to sites
of damage (Munoz et al. 2009). It remains unclear
whether structure-specific nucleases also play a role in
the processing of rDNA repair intermediates in human
cells. Mass-spectrometry of the nucleolar proteome also
indicates the presence of the flap endonuclease FEN1
(Andersen et al. 2002). However, nucleases could also
be recruited to nucleolar caps in response to rDNA
breaks. It seems reasonable that repair-dependent
helicases and nucleases will eventually need to access
unresolved rDNA repair intermediates in order to pre-
vent persistent breaks. Future investigations will un-
doubtedly show whether processing of rDNA during
repair is important for the maintenance of rDNA integ-
rity in human cells.

Maintaining ribosomal DNA repeat integrity
during repair

Cohesin is a highly conserved protein complex that
mediates the cohesion between sister chromatids upon
their replication and regulates their timely separation
during mitosis (Peters et al. 2008; Peters and
Nishiyama 2012). Sister chromatid cohesion facilitates
rRNA synthesis by an unknown mechanism. It has been
suggested that cohesin stabilizes a looping structure that
facilitates reloading of PolI, or that it promotes replica-
tion fork speed (Lu et al. 2014). Yeast cells containing
reduced numbers of rDNA repeats show enhanced
rDNA transcription on the remaining repeats. Interest-
ingly, a presumed inability of cohesin to bind to tran-
scriptionally active repeats is associated with improper
sister chromatid alignments, error-prone recombination,
and rDNA instability (Ide et al. 2010). This observation
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also implies that both silent and active repeats are re-
quired to regulate recombination and maintain rDNA
integrity.

In yeast, the SMC5/6 protein complex, a highly
conserved cohesion-like complex that is also responsi-
ble for sister chromatid interaction during HR, contrib-
utes to rDNA stability (Torres-Rosell et al. 2007; Bose
et al. 2012; Lu et al. 2014). Mutants of this complex
show increased formation of X-shaped DNA structures
also known as Holliday junctions in the rDNA. These
are alleviated by co-repression of the recombination-
associated protein Rad51, indicating that rDNA insta-
bility in these mutants is caused by inappropriate HR. It
has been proposed that SMC5/6 is highly concentrated
within the nucleolus where it locates to DSBs in the
rDNA and prevents the formation of Rad51, thus sup-
pressing HR (Eckert-Boulet and Lisby 2009; Torres-
Rosell et al. 2007). In response to rDNA breaks,
SMC5/6 also acts as a platform for the SUMOylation
of target proteins like the SSA-promoting enzyme
Rad52, although the molecular mechanisms and inter-
actions influenced by this post-translational modifica-
tion are unclear (Potts 2009). In addition, the SMC5/6
complex recruits the DNA helicase BLM to resolve
intermediate DNA structures during rDNA break repair,
possibly through SDSA (Killen et al. 2009).

According to one proposed mechanism, SMC5/6 and
factors recruited in response to rDNA DSBs serve to
decrease recombination events between different rDNA
repeats and thereby prevent instability when the rDNA
is in the nucleolus. Damaged rDNA is thenmoved to the
periphery of the nucleolus, locating to nuclear caps
together with HR factors, where SMC5/6 is off-loaded
and recombination allowed to proceed (Eckert-Boulet
and Lisby 2009). This model also highlights the impor-
tance of spatial regulation of repair proteins in response
to damaged rDNA repeats. Although SMC5 has recent-
ly been implicated in the repair of rDNA breaks in
human cells (Warmerdam et al. 2016), most of what
we know about the regulation of rDNA stability comes
from other model organisms. Further studies using hu-
man cells should indicate whether the identified mech-
anisms and proposed models are conserved.

Human disease and the mechanisms that maintain
rDNA integrity

Taken together, maintenance of rDNA stability and
control of transcriptional output of rRNA are highly
regulated processes that we are just beginning to under-
stand. It is also becoming clear that cells have evolved
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Fig. 2 Repair of repeats can result in repeat expansions, contractions, and structural chromosomal aberrations. Configurations between
chromosomes with repeats that can cause structural chromosomal rearrangements
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multiple intertwined processes to regulate ribosome bio-
genesis, also to adapt to changing conditions. By ac-
commodating alterations in rDNA repeat length and
transcriptional output, cells would be able to quickly
adjust protein synthesis rates. For example, the regula-
tion of repair pathway choice after breaks in the rDNA
repeats through processing and cohesion-dependent
structural alignment will enable cells to influence the
stability of the rDNA as well as its transcription. We
expect that the spatial distribution of the nucleolus and
factors that maintain rDNA integrity, which we did not
discuss in detail here, could also play an important role
in controlling rDNA stability. These systems can how-
ever also be subject to mistakes, and deregulation can
lead to hereditary disorders and human diseases that
possibly involve neurodegeneration and tumorigenesis.

Whereas we have learned a lot about the DDR in
recent years, it remains to be discovered how discrete
breaks in repetitive sequences are dealt with. Repair of
repetitive DNA, including the rDNA repeats, is differ-
ently regulated compared to non-repetitive DNA se-
quences. Understanding this process and its potential
impact on genome stability and disease requires dedi-
cated studies of, for instance, the DNA sequence in
which such breaks occur. The development of
CRISPR/Cas and other new methods will enable these
investigations.

Methodological advancements

In order to uncover new layers of genome maintenance
that are relevant for human disease, we will need to
overcome some of the difficulties in studying rDNA
repeats. Investigating repeat copy numbers using se-
quencing approaches is problematic as the number of
repetitive DNA sequences is not well annotated and
repeat amplification by PCR can be biased. The quanti-
fication of rDNA copy numbers using digital droplet
PCR forms an alternative approach to overcome this
hurdle (Salim et al. 2017; Xu et al. 2017a, b). Using
transcription activator-like effector nuclease (TALEN),
it was possible to visualize rDNA repeats in individual
cells. By analyzing rDNA copy numbers using fluores-
cence intensity in single cells, researchers observed a
reduction of rDNA repeats during aging (Ren et al.
2017). Similar to fluorescent in situ hybridization
(FISH), visualization using a fluorescently labeled ver-
sion of inactive Cas9 (dCas9) will enable the

quantification of repeats in individual cells and possibly
per chromosome. Since, unlike FISH, CRISPR/dCas9
fluorescent labeling of genes is compatible with living
cells, this approach would allow the study of the behav-
ior of rDNA repeats after breaks. The dCas9 system can
also be used to modulate rDNA transcription by using a
dCas9 coupled to either the transcriptional inhibitor
KRAB or activator VP64. Additionally, epigenetic reg-
ulators like histone (de)acetyl transferases could be used
to study the effects of re-activing silenced repeats or
repressing them. Interestingly, epigenome editing using
CRISPR/dCas9 was recently used to silence microsatel-
lite repeats involved in tumorigenesis (Boulay et al.
2018), showing that repetitive DNA can be a tumor-
specific vulnerability that might be exploitable in cancer
therapy. Moreover, various CRISPR-mediated ap-
proaches can be combined by applying different ver-
sions of Cas9 that recognize a range of different PAM
sequences (Cong and Zhang 2015), increasing the pos-
sibilities to generate gene-specific markers. CRISPR-
approaches have already been successfully used to edit
deleterious CAG repeat extensions and similar ap-
proaches might be possible to target cells with altered
rDNA repeats (Massey and Jones 2018; Dabrowska
et al. 2018; Cinesi et al. 2016) (Fig. 3).

Clinical advancements

Interestingly, alterations in rDNA copy numbers may
predict therapy responses (Wang and Lemos 2017; Xu
et al. 2017a, b). This phenomenon might be further
exploited in cancer therapy, for instance by using spe-
cific inhibitors of ribosome biogenesis, as recently been
shown in ATRX-mutated ALT-positive cancers
(Udugama et al. 2018). Selective PolI inhibitors block
rDNA transcription, disrupt nucleolar function, and
were shown to selectively kill tumor cells in vivo while
sparing normal cells, presumably as a result of impaired
ribosome biogenesis (Hannan et al. 2013a, b; Hein et al.
2013). Increased ribosome activity in cancer might form
anAchilles’ heel, permitting selective targeting of tumor
cells by PolI inhibitors (Sluis and McStay 2014). Al-
though we are beginning to understand more about
connections between ribosome biogenesis and tumori-
genesis, there are no biomarkers available yet to predict
which types of tumors would be susceptible to rDNA
transcription or other forms of interference with ribo-
some biogenesis. Several chemical compounds have
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shown to inhibit PolI activity: Actinomycin D is a
naturally occurring polypeptide antibiotic that interca-
lates at GC-rich regions in the DNA and thereby inhibits
PolI, but it also inhibits the activity of the other two
RNA polymerases (II and III) and is highly toxic. Two
recently described drugs, CX-5461 and BMH-21, are
reported to inhibit PolI activity more specifically, with
promising therapeutic potential in the treatment of can-
cer. CX-5461 was found to inhibit PolI transcription by
disrupting pre-initiation complex formation at the rDNA
promoter (Bywater et al. 2012). This induced a p53-
dependent and p53-independent signaling response
without inducing DNA damage, leading to selective cell
death in cancer cells while normal cells were largely
unaffected (Quin et al. 2014). However, it was also
reported recently that CX-5461 stabilizes G-
quadruplexes (Xu et al. 2017a, b). In this study, expo-
sure to CX-5461 blocked replication forks and resulted
in DNA damage. Recombination-deficient cancer cells
were highly sensitive to CX-5461, since DNA repair
was required to deal with CX-5461-induced damages.
An alternative explanation for these results is that repair-
deficient cells already accumulate G4 structures in the
rDNA during replication, which block rDNA transcrip-
tion, leading to R-loops and eventually DSBs. Com-
bined, these results imply that CX-5461 might affect
cancer cells through different mechanisms. BMH-21
inhibits PolI activity by promoting the degradation of
the PolI catalytic subunit RPA194 (Peltonen et al.
2014b), resulting in checkpoint activation and cell death
without the occurrence of a strong DNA damage re-
sponse (Colis et al. 2014; Peltonen et al. 2014a). Inter-
estingly, Oxaliplatin, a crosslinking agent and widely
used chemotherapeutic, has recently been reported to

sensitize tumor cells by inhibiting ribosome biogenesis,
too (Bruno et al. 2017). Although dependent on further
development of specific inhibitors, clearly, inhibition of
ribosome biogenesis is emerging as a potential target in
cancer therapy.

Oncogenic transformation is often linked to altered PolI
activity. The MYC family of transcription factors belongs
to the most pervasive oncogenes and activation of MYC
correlates with poor prognosis (Dang 2012). MYC recog-
nizes target gene promoters by direct DNA binding, but
can also be recruited through indirect protein–protein in-
teractions with other transcription factors. Oncogenic
MYC has shown to enhance PolI transcription, leading to
enhanced ribosome biogenesis (Devlin et al. 2016;
Poortinga et al. 2015; Drygin et al. 2011; Quin et al.
2014; Hein et al. 2013). The addiction of MYC-driven
cancers to enhanced ribosome activity has emerged as a
vulnerability which might be exploited in cancer therapy
(Sluis and McStay 2014; Ruggero 2012). Another link to
cancer relates to the PI3K pathway which is frequently
activated, e.g., by loss of the tumor suppressor PTEN.
PI3K supports rDNA transcription by enabling PolI asso-
ciation to the rDNA promoter (Zhang et al. 2005; Kusnadi
et al. 2015). Recently, a strictly nucleolar PTEN isoform
(PTENβ) was identified as the negative regulator of rDNA
transcription (Liang et al. 2017). This suggests a mecha-
nism bywhich PTENβ deficient tumors increase ribosome
biogenesis and cellular proliferation, which may also con-
tribute to ribosome addiction in such tumors (Dillon and
Miller 2014). Altogether, a better understanding of the
connection between the regulation of rDNA through copy
number and transcription and ribosome biogenesis in can-
cer may lead to the identification of additional biomarkers
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Fig. 3 Reversing repeat instability through CRISPR/Cas9. Can a reduction in the number of rDNA repeats in BLM deficient cells by
CRISPR/Cas9-induced breaks rescue clinically relevant features including neurodegeneration, cancer, and aging?
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to predict sensitivity towards PolI inhibitors or other ways
to interfere with aberrant ribosome biogenesis.

Perspective

It is becoming evident that rDNA repeat stability plays an
important role in human disease. Cells are especially
vulnerable to damage in the rDNA, due to intrinsic risks
for error-prone repair, leading to rDNA copy number
alterations or structural chromosomal aberrations. To fur-
ther elucidate the role of rDNA integrity in genome
stability and disease, we will need to answer the follow-
ing key questions: (i) how do human cells regulate the
integrity of rDNA repeats, (ii) can break-induced rDNA
repeat alterations instigate genomic instability, and (iii) is
altered repeat instability is a significant inducer of ribo-
some biogenesis, and thereby a druggable cancer vulner-
ability? A better understanding of the molecular path-
ways that involved rDNA repeat maintenance is needed
to clarify these matters. As a first step, identification of
proteins protecting repeat stability in the presence of
DNA damage could reveal the molecular connections
between rDNA repeats, genome integrity, and ribosome
biogenesis. This will help to predict the importance of
rDNA stability in preventing disease and may point to-
wards targeted strategies for therapeutic intervention.
Furthermore, we expect that CRISPR/Cas-related tools
will aid in following dynamic alterations in rDNA repeat
lengths, and create tools to interfere with rDNA integrity
to test its role in ribosome biogenesis and disease-related
alterations in protein synthesis. These will help to uncov-
er the molecular mechanisms governing rDNA repeat
stability, supporting the identification of novel disease
biomarkers and provide new strategies towards the de-
velopment of tailored treatment options.
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