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Abstract

An economy consists of many markets, each of which is a duopoly. Firms must earn normal-profits
in the long-run if they have to survive. Normal-profits are interpreted as the long-run limit of average
profits in the whole economy. We adopt an aspiration based model of firm behaviour, linking it to
the economy with the requirement that in the long-run, the profit aspiration must be at least as great
as normal-profits. We assume that the joint-profits can be maximized with symmetric payoffs, and
with very few other assumptions are able to show that the (almost) global attractor is the cooperative
outcome. © 2000 Elsevier Science B.V. All rights reserved.

JEL classification:L13; D4; C7
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1. Introduction

“The best monopoly profit is a quiet life” Hicks (1935).
“This is the criterion by which the economic system selects survivors: those who

realize positive profits are the survivors; those who suffer losses disappear” Alchian
(1950, p. 213)
It has long been argued that firms must earn at least normal-profits to survive in the

long-run.1 Failure to achieve this will activate some market mechanism such as bankruptcy,
the possible replacement of managers by shareholders, or takeover. In general, we can think
of the mechanisms as reflecting the operation of the capital market in its widest sense.

∗ Tel.: +44-1-904-433788; fax:+44-1-904-433759.
E-mail address:hdd1@york.ac.uk (H.D. Dixon).

1 There are obvious exceptions here, such as non-profit organisations and owner-managed firms. We are consid-
ering the “typical” managerial public corporation.
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The capital market reflects the aggregate performance of the economy as represented by
average profitability. In this paper the level of normal-profits is taken to be the average level
of profits in the economy and explores the implications of this hypothesis in the context of
an economy consisting of many oligopolistic markets.Under fairly general assumptions
there are powerful long-run forces pushing the firms in each market towards collusion.
What differentiates the approach here is that the evolution of the economy is inherently
social, in that it is the level of average profits in the whole economy over time which drives
the behaviour of firms.

We model the behaviour of firms using an aspiration based model of bounded rationality.
Firms at any time adopt a pure-strategy. If they are achieving their aspiration level, then they
are likely to continue with the same strategy (Hick’s “quiet life” alluded to in the opening
quote). If however, they are below their aspiration level then they are likely to experiment
and try something new. This approach has been put forward both as a good model of
individual decision making in the mathematical psychology literature Lewin (1936) and
Siegel (1957) and as a model oforganizationaldecision making with relevance to the firm
Simon (1947,1981), Cyert and March (1963) and Kornai (1971). Furthermore, we adopt a
formulation which allows the aspiration level to be endogenous (as in Borgers and Sarin,
1997; Karandikar et al., 1998; Palomino and Vega-Redondo, 1999), reflecting the past and
the current profitability of the economy.

The key feature of this paper is to link together the aspirations of firms with the level
of normal-profit by requiring that in the long-run the aspiration level of all firms is to
have at least normal-profits. The structure of the economy envisaged is that of an economy
consisting of a large number of identical duopolies. Firms have a finite strategy set, and we
need assume very little about the structure of the payoff matrix of the constituent duopoly
game, except that the joint-payoff can be maximized by a payoff-symmetric outcome. We
need to make some assumptions about aspirations and experiments: if firms are achieving
their current aspiration level, then they do not experiment, whilst if they are below aspiration
they do. In the case that firms decide to experiment and try out a new strategy, we need
assume only that the probability of choosing any particular strategy is bounded away from
zero over time.

The main result of the paper is Theorem 1, which states that the collusive (joint-profit
maximizing) outcome is the (almost) global attractor for this economic system.What is
novel about this result is that cooperation is not only possible, but almost inevitable. In the
case of the Prisoner’s dilemma the dominant strategy of defection will disappear, and all
firms will end up cooperating.

The intuition behind this result is that if one or both firms is behaving competitively, then
one or both of the firms will earn relatively low profits and experiment. The only state of
rest is where both firms in an industry are earning at least average profits: in the long-run,
this can only happen if all firms in the economy are collusive. If a firm deviates from the
collusive outcome, there is a sense in which it will be “punished” as the other firm searches
for an acceptable outcome. Hence the profitability of short-term deviations from collusion
is not sufficient to undermine it in the long-run.

The policy implications of the model are quite strong, despite the abstract nature of
the model. In particular, collusive outcomes will tend to emerge from the market process
rather than competitive outcomes. This does not happen due to explicit or implicit collusion
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between firms in particular markets. Rather, it is the economy-wide social pressure of the
capital markets forcing firms to earn average profits in the long-run that enforces collusion.

In Section 2 of the paper, we outline the basic model in terms of payoffs and strategies.
In Section 3, we consider how the economy/population evolves over time, and state the
main results. Section 4 explores two examples: the PD and Cournot duopoly. In Section
5, I consider an example to explore the model when payoffs are not quite symmetric: if
we allow for aspirations to be a little below average, then collusion still has a large basin
of attraction (although other attractors will exist). In Section 6, I discuss the recent related
literature, and then conclude.

2. The model

Time is discrete and eternal, witht = 0, . . . , ∞. There areK pure-strategies,k =
{1, . . . , K}. Π is theK × K matrix of payoffsπij , whereπij is the payoff when strategy
i plays strategyj . We can define the set of pairs of strategies asL: whereL ≡ {(i, j) :
(i, j) ∈ {1, 2, . . . , K}2 andi ≤ j}, so thatL = #L = 1

2K(K + 1). Elements ofL(r, q ∈
L) may sometimes be referenced by the underlying pair (i, j). A is the set of subsetsA
of L : A ≡ {A : A ⊆ L}. In particular, the set ofpayoff-symmetric pairsis Sym≡ {q ∈
L : πij = πji }. The average payoff earned by a pairq is: π(q) ≡ 1

2(πij + πji ). Define (a)
Maxav= maxq∈Lπ(q), (b)2 ΠS = maxq∈Symπ(q), (c) S = arg maxq∈Symπ(q).

Assumption 1(A1). ΠS = Maxav.

Assumption 1 requires that the maximum joint-payoff can be attained at a payoff-symmetric
pair of strategies. For example, consider the standard Prisoner’s dilemma (PD) with

Π =
[

2 0
a 1

]

where 2 is the cooperative payoff, 1 the payoff when both defect, 0 the sucker’s payoff
and a > 2 the double-crosser’s payoff. A1 is satisfied ifa ≤ 4: that is the combined
defect/sucker payoff is less than the combined cooperative payoff. This is of course the
standard assumption in the PD. In fact, if we consider any symmetric payoff function
U(x, y), wherex andy belong to a compact strategy setX ⊂ R and generateΠ by taking
a finite subset ofX (e.g. constructing a grid), then A1 is satisfied ifU is strictly concave.

The economy consists of a continuum of marketsλ ∈ [0, 1], each consisting of a duopoly.
Jt (A, λ) is a characteristic function, such thatJt = 1 iff duopoly λ is playing some pair
q ∈ A at t , which defines the Borel measurePt : A→ [0, 1]

Pt(A) ≡
∫ 1

0
Jt (A, λ) dλ

Pt (A) gives the proportion of markets that have duopolies of typeq ∈ A at timet .

2 Note thatS ⊆ L and may contain more than one element.
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The average level of profits att in markets with pairq ∈ A is3

Π̄t (A) =
∑
q∈A

Pt (q)
π(q)

Pt (A)

The average level of profits in the economy att is Π̄t = Π̄t (L).

2.1. Aspirations and learning

In any one period, a firm plays a pure strategy. As in the Atkinson and Suppes (1958)
“finite Markov model” there is a probability that at timet + 1 the firm will switch from
the strategy it plays att : the key difference with the present paper is that we use an explicit
aspiration based model.

Each firm follows the following simple learning rule. It has an aspiration levelαt . If it is
earning less thanαt , then it decides to experiment with probability 1; if the firm is earning
at leastαt , then it will continue with the existing strategy. In this paper, we assume that all
firms share the same aspiration level, with the aspiration level satisfying the condition that
in the long-run it has to be no less than average profits. This seems a reasonable assumption
reflecting the role of capital markets in industrialized economies.

Assumption 2(A2). There exists{νt } such thatνt ≥ 0, νt → 0 ast → ∞ and

αt ∈ [Π̄t − νt , ΠS]

One possibility satisfying A2 is to haveαt = Π̄t (Dixon, 1995). The upper bound
is imposed because it ensures that aspirations are not overoptimistic: under A1 it is not
possible for all firms to earn overΠS. The results of this paper would not hold if firms had
aspirations which were in excess ofΠS in the long-run (e.g. if firms aspired to the highest
payoff achieved in the past by an individual firm, this might well exceedΠS). 4

Given that a firm decides to experiment, we can define itsconditional switching proba-
bilities: st (i, g) is the periodt probability that a firm switches from strategyi to strategyg,
conditional upon deciding to experiment. These probabilities will reflect the learning pro-
cess of the firms: it could be based upon imitation, best response or random noise or some
mixture. The only restriction we put on switching behaviour is that switching probabilities
are bounded away from 0.

Assumption 3(A3, Conditional switching probabilities). There existsγ > 0 such that for
all i, g ∈ {1, . . . , K}, t = 0, . . . , ∞, st (i, g) ≥ γ > 0.

The assumption that switching probabilities are bounded away from zero captures the
notion that there might be some noise in the switching process. Since this can be arbitrarily

3 For convenient shorthand, I representPt ({q}) as Pt (q), the proportion of markets adopting actions in the
singleton set{q} ∈ A.

4 In the case of PD, sincea > ΠS this would certainly be the case.
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small, we do not consider this to be a demanding assumption. Whilst we assume for sim-
plicity that all firms have the same aspiration level and conditional switching probabilities,
the results go through if we allow for firm specific attributes.5

Whilst we have interpreted switching behaviour as the same firm in two periods changing
behaviour, the formal model would be exactly the same if we think of a different firm in
each period. For example, a firm in a particular market might exit (due to bankruptcy or
death). In this case the switching probability would pertain to the “place” of the firm: the
probability that next period the firm taking the place of the existing firm would play a
particular strategy.

3. The evolution of the population

At any time t , we can divide the set of markets into two groups: (i) AAt the “above
aspiration” markets and (ii) BAt the “below aspiration” markets in which one or both firms
have profits strictly below aspiration. Since the payoffs of each firm are determined by the
pair of strategies played at its market, we can classify markets according to the pair of
strategies played at that market

AA t = {(i, j) ∈ L : πij ≥ αt andπji ≥ αt }, BA t = L− AA t

Sinceαt may vary with time, the set of pairs AAt ⊆ L will in general vary over time.
The two subsetsS and Sym are time invariant. Clearly, under A1 and A2,S ⊆ AA t for all
t . Furthermore, define BSymt ≡ BA t ∩ Sym.

The evolution of the population is captured by the proportion of markets that belong
to strategy pairs in these sets: in particular,Pt(S) is the proportion of industries which are
collusive at timet . Under A1 and A2 the sequencePt(S) satisfies some important properties.
First note that (a) there existsP ∗ ∈ [0, 1] such thatPt(S) → P ∗ and (b) ifPt(S) > 0 for
somet , thenPτ (S) > 0 for τ ≥ t andP ∗ > 0. These both stem from the fact thatPt(S)

is monotonic and bounded. Monotonicity follows since once an industry is colluding, its
profits must be at least equal to the economy average (A1) and hence they do not switch
strategy (A2).

We first prove that the proportion of industries with one or both firms below aspiration
Pt(BA t ) tends to zero fast enough.

Lemma 1 (based on A1–A3).
∑∞

t=0Pt(BA t ) is bounded.

Proof. First, we establish thatPt(BSymt ) → 0. Consider the change in the proportion of
firms in duopolies with strategy pairs inS, Pt(S) − Pt−1(S). This change is the result of

5 In a longer and more general version of the paper (CEPR Discussion Paper 1810, same title) I allowed for
firm-specific switching probabilities: in particular they are able to depend upon the history of the individual firm,
the current and past value of average profits and so on so long as A3 is satisfied. Similarly, aspirations can be firm
specific so long as they satisfy A2. I also allowed for the probability of experimenting if above aspiration to be
non-zero but to tend to zero with the infinite sum being bounded. Furthermore, the probability of experimenting if
below aspiration need not be 1, so long as it is bounded away from zero. All of these generalizations taken together
are consistent with Theorem 1.



228 H.D. Dixon / J. of Economic Behavior & Org. 43 (2000) 223–238

inflows: a lower bound on inflows isγ 2Pt−1(BSymt−1) (from A2 and A3 and the definition
of BSymt ). Hence

Pt(S) − Pt−1(S) ≥ γ 2Pt−1(BSymt−1), 1 ≥ P ∗ ≥ P0(S) + γ 2
∞∑
t=1

Pt−1(Bsymt−1)

Hence
∑

Pt(BSymt ) is bounded and soPt(BSymt ) → 0.
An analogous argument shows that ifPt(BSymt ) tends to zero, so mustPt(BA t ). Again,

finding a lower bound for inflows, and an upper bound for outflows into Sym

Pt(Sym) − Pt−1(Sym) ≥ γ 2Pt−1(BA t−1) − Pt−1(BSymt−1)

The lower bound for inflows comes from the fact that if at least one firm is belowαt , it
may experiment and choose the same strategy as its competitor (A3): if both experiments
they may choose a payoff symmetric pair with a probability of at leastγ 2. The upper bound
on outflowsPt−1(BSymt−1) is based on the assumption thatall industries in the subset
BSymt−1 leave Sym. Hence:

1 ≥ PT (Sym) = P0(Sym) +
T∑

t=1

[Pt(Sym) − Pt−1(Sym)]

1 − P0(Sym) ≥ γ 2
∞∑
t=0

Pt(BA t ) −
∞∑
t=0

Pt(BSymt )

Since
∑

Pt(BSymt ) is bounded andPt(BA t ) ≥ 0, it follows that[
1 − P0(S) +

∞∑
t=0

Pt(BSymt )

]
γ −2 ≥

∞∑
t=0

Pt(BA t ) ≥ 0

and hencePt(BA t ) → 0. �

Lemma 1 states that the proportion of markets where one or both firms are below least as-
piration tends to zero. The reasoning here is in two stages. First, consider payoff-symmetric
markets with both firms below aspiration: some of these will become collusive, and since
Pt(S) is bounded it follows that the proportion of payoff-symmetric pairs must go to zero.
The second step is to show that for the proportion of payoff-symmetric pairs to go to zero,
so mustPt(BA t ).

Theorem 1(based on A1–A3).If Pt(S) > 0 for some t, then ast → ∞:
1. Pt(S) tends to1,
2. Π̄t tends toΠS.

Proof. 6 From the definition for average profits, for allt :

Π̄t = Π̄t (L) = Pt(S)Π̄t (S) + Pt(AA t − S)Π̄t (AA t − S) + Pt(BA t )Π̄t (BA t ) (1)

6 Theorem 1 can also be proven using standard results in the Theory of Markov Processes (see, e.g. Futia, 1982,
p. 385).
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By definition,Π̄t (AA t − S) ≥ αt , and from A2αt ≥ Π̄t − ηt , so that whenPt(S) > 0
(1) becomes

Π̄t ≥ Pt(S)ΠS + Pt(AA t − S)ηt + Pt(BA t )Π̄t (BA t )

1 − Pt(AA t − S)
(2)

SincePt(S) + Pt(AA t − S) + Pt(BA t ) = 1, and the limit ofPt(S) is P ∗ > 0, and of
Pt(BA t ) is 0 (Lemma 1), the limit ofPt(AA t − S) = 1 − P ∗. Hence (2) implies

lim inf
t→∞Π̄t ≥ ΠS

Since lim supΠ̄t ≤ ΠS it follows that limΠ̄t exists and equalsΠS, with P ∗ = 1. �

The intuition behind Theorem 1 is fairly clear. The pair(s)S is anabsorbingstate in the
Markov process. From Lemma 1, the proportion of firms with one or more firms below
aspiration will tend to zero, so that all firms will be at or above average profits. The only
way that this is possible is to have all firms earningΠS. We requirePt(S) > 0 for somet
in order to avoid the process getting stuck at a position where all markets earn exactly the
average at a level belowΠS. In Section 4, we examine the Prisoner’s dilemma and Cournot
duopoly to illustrate each of these points in a concrete way.

Whilst the intuition is fairly clear, the exact evolution ofPt andΠ̄t is open to a wide variety
of possibilities under A1–A3. In particular, the path of both can be highly non-monotonic,
and Theorem 1 does little to tie down the nature of the path towards the long-run stationary
state. This would require the examination of specific models for the evolution of aspira-
tions and the switching probabilities.7 However, Theorem 1 does establish the long-run
properties of a very wide class of learning processes.

One interpretation of the result is a model ofgroup selection. However, it should be noted
that individual firms cannot choose whom they play against: they can only choose their own
behaviour. Groups are selected, but only indirectly by the market mechanism: in duopolies
that are too competitive, profits of one or both firms are eventually below aspiration, becom-
ing unsustainable. Thus the process outlined in this paper can be interpreted as one where
nature (the economy) selects the optimum degree of competitiveness (the cooperative solu-
tion). Note that Alchian’s original argument (1950) (quoted at the opening of this paper) was
conducted at the level of theindividualfirm: either the atomistic competitor or a monopoly.
However, in duopoly the individual firm’s profits depends upon thejoint-strategyof the
firms: hence it is the joint-strategy that is chosen. Whilst the motivation of our arguments
is similar in spirit, the conclusions reached in a strategic environment are very different.

4. Examples: the PD and Cournot duopoly

In this section we will illustrate how the process described in this model operates in two
concrete examples. First, the abstract but popular PD model. This is used in particular to

7 In Dixon and Lupi (1996), we simulate in detail several different switching rules (imitation, best response,
random switching) in the context of a homogeneous Cournot model.
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Fig. 1. The PD withΠPD and 2< a < 4.

show how the relaxation of any of A1–A3 means that the convergence to collusion might
be overturned. Second, we use the more concrete example of Cournot duopoly to illustrate
how the model works when there is random switching behaviour.

4.1. Prisoner’s dilemma

We consider two cases of the PD:

ΠPD =
[

2 0
a 1

]
, Π∗

PD =
[

2 −a

a 1

]

wherea > 2, k = {c, d}, L = {cc, cd, dd}, S = {cc}, ΠS = 2, K = 2, L = 3. With ΠPD,
A1 is satisfied ifa ≤ 4: with Π∗

PD for anya > 2.
The evolution of the population inΠPD can be represented on the unit simplex in Fig. 1,

where each point represents a three-vector of proportions of markets playing each strategy
pair. We represent the iso-average payoff loci on the simplex: these are linear and parallel
since the average payoff is a linear combination of the payoffs for each strategy pair, with
slope 1

2(a − 2). Π̄ = 1
2a is the dotted straight line passing through corner all-cd; Π̄ = 2

passes through all-cc, Π̄ = 1 passes through all-dd.
The dynamics of this system are straightforward. Average profits must lie in the interval

[1, 2]. Except in the case whereP(dd) = 1 andΠ̄t = 1, we thus have: AAt = {cc};
BSymt = {dd}; BA t − BSymt = {cd}. From any point except whereP(dd) = 1, all
trajectories will lead to the apex whereP(cc) = 1.

With Π∗
PD the sucker-payoff is−a, so thatπ(cd) = 0. This extends the possible range of

average profits to [0, 2]. The iso-profit loci are downward sloping as in Fig. 2: the minimum
is represented by the dotted line through the cd vertex, and the maximum by the dotted line
throughcc. The line passing throughdd is theΠ̄ = 1 line.

The dynamics here are different depending on whether the economy is in region A or B.
In region A,Π̄ > 1, so that AAt = {cc}, BSymt = {dd}, BAt − BSymt = {cd}. In region
B, Π̄ ≤ 1, so that AAt = {cc, dd}, BAt = {cd}. With the simple learning model, only firms
playingc at cd markets will experiment, so that the trajectories must be horizontal lines in
B. Hence we can see why we need to assume thatPt(cc) > 0 for somet in Theorem 1:
all-ddhas a basin of attraction along the southern edge of the simplex.
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Fig. 2. The PD withΠ∗
PD.

Fig. 3. Best response experimentation with no noise.

Theorem 1 givessufficientconditions for all-cc to be the attractor. We will now illustrate
how dropping some of the key assumptions will open the possibility that all-cc ceases to
be the attractor. We have already seen whyP(cc) > 0 is necessary to rule out all-dd in
Π∗

PD. Next consider a violation of A3: noiseless best-response experimentation, where firms
below aspiration switch to the best-response to their competitor. In bothΠ∗

PD andΠPD ,
the best response isd (the strictly dominant strategy). In this case the pairs divide into two
disconnected sets: there can be no flow into or out of{cc}, and{dd} is an absorbing state.
The only flows in this system are from{cd} to {dd}. The resultant dynamics are represented
in Fig. 3, where the attractor is the northeastern edge of the simplex, where there are no
{cd} markets. The paths to this are simply the horizontal lines: the economy starts off with
an initial proportion of{cc} markets, and eventually all the rest will become{dd}. However,
whilst the example of noiseless best-response experimentation is an interesting illustration
of what can happen when A3 is violated, it is not at all robust. Any level of switching
noise8 γ > 0, no matter how small, will lead to Theorem 1 becoming valid again, and{cc}
absorbing all markets, so long asPt(S) > 0 for somet .

Lastly, what happens when A1 is violated? For simplicity, let us consider theΠPD payoff
matrix, witha = 6 so that Maxav= 3 > ΠS = 2. The iso-payoff loci in Fig. 4 are vertical,
passing through all-cd(Π̄ = 3), all-cc(Π̄ = 2) and all-dd(Π̄ = 1). There are two different

8 By this I mean that there is a probablityγ that the non-best responsec is chosen (possibly by mistake), so that
A3 is now satisfied.
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Fig. 4. Violation of Al PD withΠPD anda = 6.

regions: in M1, Π̄ < 2, so that AAt = {cc}, BA = {dd, cd}; whilst in M2, AA t = ∅, whilst
BA t = {cc, dd, cd}. What exactly happens depends upon the exact switching technology.
With random switchingst (c, d) = st (d, c) = 1

2, the equilibrium is a point inM2 where
P ∗(cc) = 0.125,P ∗(dd) = 0.5, P ∗(cd) = 0.375 with Π̄ = 2.125. There is a perpetual
flow of markets between the three pairs of strategies.

4.2. Cournot duopoly

Perhaps the simplest economic application of our model is to Cournot duopoly with-
out costs, so that the two firms in any duopoly produce outputx andy, and the price is
P = max[0, 1−x−y], and the profits of the firms arexPandyP, respectively. In this case we
have the setSwith a unique element: it is the joint profit maximizing (JPM) pair where each
firm produces 0.25 (half of the monopoly output 0.5). Furthermore,ΠS = Maxav= 0.125,
so that A1 is satisfied. With the random switching rulest (i, j) = 1/K for all i, j , which
satisfies A3.

We9 allowed for 21 firm types. Choosing a grid of granularity 0.025 over the range10

0.1–0.6, perturbing it slightly by moving 0.325 to 0.333 (1
3), so that the Cournot–Nash

output was included. HenceK = 21 andL = 231. The simulations were initiated from the
initial position with a uniform distribution over all pairs. The results of the simulation are
depicted in Figs. 5a and b. In Fig. 5, we see the path of average profits over time: in Fig. 5a
the evolution of population proportions of the JPM market (0.125, 0.125) and the symmetric
Cournot market are depicted (note that the proportions are measured on a logarithmic scale).

From Fig. 5b, we see that the average profits converge to the symmetric joint profit
maximum of 0.125. However, the time path of profits is non-monotonic: at particular times
there appear large drops in profit. The reason for this is quite intuitive. As the average
profit level increases, it surpasses that of one or both firms, which start to experiment. The
profits of firms at those markets will then on average fall below the population average as

9 I would like to thank Paolo Lupi for implementing these simulations for me in Gauss.
10 We did not allow for a wider grid range (e.g. [0,1]), because the additional strategies are often ones with very
low or zero profits: they slow down the simulation without adding any extra insight.
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the firms disperse over some or all output pairs. The effect of this can be quite dramatic:
the discontinuity is particularly large when a symmetric market goes critical, since both
firms at each such market begin to experiment and spread across all possible output pairs.
However, whilst the time-series of profits is non-monotonic and “discontinuous”, there is a
clear upward trend and convergence to 0.125.

From Fig. 5a, the proportionP(S) is monotonic, but not smooth. Corresponding to the
discontinuous falls in population average profit, there are jumps in the proportion of firms
at the JPM market, corresponding to the jumps in average profit. The proportion of firms
at the Cournot pair(1

3, 1
2) is a highly non-monotonic time series. The first thing to note is

that in the initial stages of the simulation, the proportion of Cournot markets exceeds the
proportion of JPM markets. This can occur because during this period the Cournot pair is
also in the set AAt : until average profits reach19, the Cournot pair will “absorb” markets
from BAt . The fact that the Cournot pair attracts more than JPM is due to the fact that early
on more markets in BAt can reach the Cournot pair than JPM. However, after 50 iterations,
the Cournot pair has a smaller proportion than the JPM pair, and is in BA most of the time.
The time-series of the Cournot market type is not atypical: most pairs except JPM have a
similar time-series profile. The convergence of the proportion of markets towards type JPM
is steady but slow: this is because the probability of hitting JPM from other locations is
small throughout the simulation: from each market in which both firms experiment there
is a probability of 1

442 of moving to JPM. Convergence is in general quicker with fewer
strategies and non-random switching rules. We explore more specific rules in the Cournot
model using simulations in Dixon and Lupi (1996).

5. Asymmetric payoffs: an example

Whilst Theorem 1 holds for models where there are symmetric payoffs, in the sense that
the payoff for an individual depends only on the strategies played and not the identity of a
player. What if the payoffs are not symmetric? This has been analyzed for the case of an
economy consisting of asymmetric Cournot duopolies in Cabelka (1999). In this paper, I
will consider a simple example to illustrate some of the general issues raised. Consider a
perturbed PD in which the payoff of player B isε less than the other player A for any given
strategy pairing. For example, B might an inefficient firm. Denote the game as PD(ε)[

2, 2 − ε 0, 3 − ε

3, −ε 1, 1 − ε

]

In this case,{cc} will not be an attractor under the dynamics of A1–A3. To see why, note
that if all pairs were playing{cc}, then the average payoff would bēΠ = 2 − 1

2ε. The
inefficient firm would be earning below aspiration, hence under A2 it would experiment.
One way to restore the result is to assume that the inefficient firm has lower aspirations:
this is not at all unreasonable if one thinks of aspirations coming from within the firm.11

11 In fact, if we adopt the view the aspiration level reflects the external pressure from the capital market thenν

could reflect some kind of transaction cost or other imperfection. Whilst the example assumes that this applies
only to the inefficient firms, the model could be analyzed with common aspirationsΠ̄ − ν.
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Fig. 6. The PD with an inefficient firm:ε = ν = 0.5.

Let us amend A2 to allow for inefficient firms to have aspirations bounded away from the
average by someν > 0.

Assumption (A2′). Letν ≥ 0. For inefficient firms the aspiration level isα̂t = Π̄t − ν; for
efficient firmsαt = Π̄t .

This assumption reduces to A2 whenν = 0. An exhaustive formal analysis of this model
lies beyond the scope of this paper. However, I will consider a special case wherev = ε =
0.5 with random switching. The unit simplex representing the population distribution is
shown in Fig. 6.

The iso-average profit lines are the same as in Fig. 1 witha = 3, except shifted down
by 0.25 (1

2ε) to reflect the lower payoffs of inefficient firms. Let us consider each type of
industry pair:
• {c, c} This will be an absorbing state. Average profitsΠ̄ ≤ 1.75, so thatα̂ ≤ 1.25.

Inefficient firms will earn 1.5, which exceeds aspiration (efficient firms also earn above
aspiration of course).

• {c, d}. The cooperator will always be below aspiration and the defector always above as-
piration irrespective of whether they are inefficient or not. Hence, with random switching,
50 percent of{c, d} industries will become{d, d}.

• {d, d}. Both efficient and inefficient firms will be meeting their aspiration ifΠ̄ ≤ 1:
neither ifΠ̄ > 1. The inefficient firms earn 0.5, and̂α ≤ 0.5 iff Π̄ ≤ 1; efficient firms
earn 1 andα = Π̄ .
Hence for the shaded region in the bottom right corner of the simplex, whereΠ̄ ≤ 1

there is no flow out of{d, d} and only from{c, d} to {d, d}. Thus the northeast border of
the shaded area is an attractor for the shaded region, with the dynamic being horizontal,
since the limiting distribution isP ∗(cc) = P0(cc);P ∗(dd) = 1 − P0(cc). For Π̄ > 1 (the
unshaded region), both types of firm wish to experiment in{d, d} industries: hence there is
a flow from{d, d} of 25 percent to{c, c} and 50 percent to{c, d}, and a flow of 50 percent
from {c, d} to {d, d}. Hence all points in the unshaded area lead toP ∗(cc) = 1.
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The size of the shaded area is determined by the size ofv andε: in the case wherev = ε,
asε → 0 the attractor and its basin of attraction shrink to zero (as the iso-profit linesΠ̄ = 1
andΠ̄ = 1 − 1

2ε will converge). Hence if there is only a little asymmetry in payoffs, most
of the simplex will converge to collusion{c, c}.

This example illustrates the general point that the model can be adapted to allow for
asymmetric payoffs and maintain the result that collusion has a large basin of attraction.
The key point is that the assumption about aspirations needs to be altered to allow inefficient
firms to earn below average, but not too much. Allowing aspirations to remain too far below
average may well mean that a range of other attractors is introduced into the model.

6. Related literature

There are several recent papers related to ours.12 The closest is Palomino and Vega-
Redondo (1999). This paper considers a population of players who a randomly matched, and
play the Prisoner’s dilemma. The mean payoff is known in each period, and this determines
the aspiration level.13 If a player is earning below aspiration with its current strategy,
then it switches with a positive probability to the other strategy. They find that for certain
parameters, all paths converge to a situation with a strictly positive proportion of cooperators.
Our paper differs in that we do not have random matching, and that we consider a very
general class of games under A1 (of which the PD is one example).

Bendor et al. (1994) and Karandikar et al. (1998) both consider a two player game,
where individual behaviour is driven by a similar aspiration based model. In Bendor et
al. (1994) aspiration levels are constant over time, and they impose the condition that the
individual aspiration levels are equal to the long-run individual average payoff14 (consistent
aspirations); in Karandikar et al. (1998) aspirations can evolve, but are determined by
individual payoff histories. In both papers, there are multiple long-run equilibria, which
in general include cooperative outcomes. The key difference between our own paper and
these papers is the social dimension: here it is thepopulationaverage which ultimately
determines the aspiration level.15

The local interaction literature ((Ellison, 1993; Oliphant, 1994; Ellison and Fudenburg,
1995) is similar in that here firms only interact with their market competitors. However,
the key interactions in our paper are not only local, but also social via the population av-
erage payoff. Our results hold even if the individual firms ignore the existence of their
competitors, and consider themselves to be solving a non-strategic problem. This feature
also differentiates our paper from other learning models (e.g. Blume and Easley, 1992;
Marimom and Grattan, 1995). More similar to our approach are papers where there is
global interaction through the population average action ((Banerjee, 1992; Canning, 1992).

12 Chiappori (1984) also considers the issue of natural selection and optimisation. However, for him survival is
based on non-negative profits, not profits at or above average.
13 In fact, they assume a partial adjustment model, so that the aspiration level changes in accordance with the
difference between the current level and average profits.
14 “A minimal requirement for a model of endogenous aspirations is that in the long-run, aspirations should not
be out of line with the average payoffs accumulated from experience” ((Bendor et al., 1994, p. 9).
15 This also differentiates our paper from Borgers and Sarin (1997).
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Lastly, there is a theoretical and experimental literature on learning in oligopoly settings
(Kirman, 1995), which again focuses on isolated markets and does not have the social
dimension.

One paper which derives a very different result to ours is Vega-Redondo (1997), which
considers a single market and obtains the result that imitation of Cournotian competitors
leads to the Walrasian outcome. The reason for this result is that it considers only a single
market, so that the performance of a single firm is compared only to the performance of
its competitors. Since more aggressive behaviour (i.e. producing a lager output) earns
higher profits, firms will tend to increase output until the Walrasian equilibrium is achieved.
This does not happen here because of the social dimension: the move towards more
competition in one market would be prevented when profits fall below the average in the
economy.

7. Conclusion

In this paper we have formulated a simple model of social learning which is based on an
information structure and matching technology suggested by the economic application of
oligopoly, and with a learning model in which aspirations are linked in the long-run to the
population average payoff. The results of the paper are very simple and very powerful: the
model predicts perfect collusion (cooperation), even in the case where collusion implies
the use of a dominated strategy (as in the Prisoner’s dilemma). The model does not require
strong assumptions on the learning process or payoff matrix, and Theorem 1 will certainly
hold in symmetric versions of most economic models.

The results as derived depend on certain assumptions as sufficient conditions. Some of
these are more crucial than others. The assumption that there is a continuum of markets
and agents is not crucial: analogous result would hold if there were a finite number (see
Cabelka, 1999). The assumption that the economy consists of many identical duopolies is
more crucial. In Section 5, I considered an example with asymmetric payoffs: the results of
Theorem 1 held in a modified form only after changing the assumption about aspirations.
Whilst I would conjecture that the result is robust in a similar way to other generalizations, it
remains to carry out the formal analysis of the model under the assumption ofn-firm markets,
non-identical markets, and equilibrium under entry. Lastly, it would be very interesting to
model the process of the capital market itself more explicitly.
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