
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

5 | P a g e

www.ijacsa.thesai.org

kEFCM: kNN-Based Dynamic Evolving Fuzzy

Clustering Method

Shubair Abdulla

Depart. of Instructional & Learning Technologies

Education Colloege

Sultan Qaboos University

Muscat, Oman

Amer Al-Nassiri

IT College

Ajman University of Science and Technology

Fujairah - Campus

United Arab Emirates, Fujairah

Abstract—Despite the recent emergence of research, creating

an evolving fuzzy clustering method that intelligently copes with

huge amount of data streams in the present high-speed networks

involves a lot of difficulties. Several efforts have been devoted to

enhance traditional clustering techniques into on-line evolving

fuzzy able to learn and develop continuously. In line with these

efforts, we propose kEFCM, kNN-based evolving fuzzy clustering

method. kEFCM overcomes the problems of computational cost,

dynamic fuzzy evolving, and clustering complexity of traditional

kNN. It employs the least-squares method in determining the

cluster center and influential area, as well as the Euclidean

distance in identifying the membership degree. It enhances the

traditional kNN algorithm by involving only cluster centers in

making classification decisions and evolving on-line the clusters

when a new data arrives. For evaluation purpose, the

experimental results on a collection of benchmark datasets are

compared against other well-known clustering methods. The

evaluation results approve a good competitive level of kEFCM.

Keywords—Evolving; Fuzzy Logic; Clustering; k-NN

I. INTRODUCTION

Clustering Analysis is broadly applied successfully in many
research areas such as market research, pattern recognition,
data analysis, image processing, and document categorization
[1] [2] [3] [4]. Clustering aims at describing data by defining
set of clusters, which are naturally circles, based on
similarities. The approach of finding approximate centroids is
commonly used to form the clusters. A cluster centroid is used
to determine the cluster location, and later, the system will tell
to which cluster a group of input vector belongs by measuring
the similarity in predefined features. Forming the clusters also
involves determining the influential area of the clusters, which
is equal to the radius.

In clustering, there are two crucial terms: fuzzy and
evolving. The fuzzy term refers to the overlapping in clusters
that is each element in a dataset belongs to one or more cluster
in a degree. The cluster belongingness, called fuzzy
membership (), is used to discover the relation between the

data element and disclosed clusters. The Euclidean distance is
employed commonly to obtain the fuzzy membership values of
elements in different clusters, i.e. distance between data point
and cluster center. Technically, the evolving term means ability
of the system to dynamically updating the clusters, adjusting
the clusters centers and/or radius, to accommodate new unseen
data when presented.

Beside their ability of analyzing data and making decisions
based on acquired intelligence, the evolving clustering methods
play an essential role in fuzzy rule-based systems (FRBS) and
neuro-fuzzy systems (NFS) which are intelligent systems able
to learn and develop continuously in order to enhance their
performance. Over the last decade, the evolving clustering
methods has boosted the emergence of these systems [5].

Designing an evolving fuzzy clustering algorithm involves
a lot of difficulties. In the present high-speed networks, the
huge amount of data streams, such as IP flows and network
payloads, calls for on-line, fast, non-iterative evolving
methods. Dealing efficiently with huge amount of multi-
dimensional data items can be problematic because of
clustering complexity and computational cost. The algorithm
has to perform an incremental learning paradigm that is carried
out to update the knowledgebase whenever new data emerges.
Moreover, it has to efficiently manage previously seen training
data to accommodate new data, and that needs an efficient
memory management mechanism.

Unfortunately, most of the data clustering techniques such
as K-means [6], Fuzzy C-means, Mountain clustering, and
Subtractive clustering [7] lacks these capabilities.

Recently, the issue of creating evolving fuzzy clustering
approaches to obtain the best fit of a dataset has been the
subject of several research efforts. The research trends may be
broadly divided into two directions: (i) to invent new
techniques; (ii) to enhance traditional clustering techniques.

The k-Nearest Neighbors (kNN) clustering method [8] is
among the clustering techniques in which development has
seen attempts. kNN is one of the most simple machine learning
methods. It can be used as a baseline for large developmental
expansions. It has been selected as one of the top 10 data
mining algorithms [9]. However, despite these pros, it has
some cons: (i) it is computationally expensive; (ii) it requires
large memory; (iii) it does not have ability to learn which data
are most important.

In line with the trends that seek to enhance traditional
clustering techniques, we present an enhanced version of the
kNN algorithm, kNN-based Evolving Fuzzy Clustering
Method, kEFCM for short. It is worth mentioning that kEFCM
is introduced as a preprocessor for the neural fuzzy inference
model [10]. The problems of designing an evolving fuzzy
clustering method are addressed through many enhancements

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

6 | P a g e

www.ijacsa.thesai.org

to the original kNN approach such as: reducing the complexity
of computation, on-line clustering, and fuzzy evolving. To
reduce the computational expense, kEFCM considers the
cluster centers only in making classification decisions. The
knowledgebase evolving is carried out simply by assigning the
coordinates of a new coming example to a new cluster center,
and the radius will be the arithmetic mean of all radiuses, in
case the example does not belong to any cluster. Neither
thresholds nor constraints have been used in the on-line phase.

The rest of this paper is organized as follows. In Section II,
we discuss related work, and in Section III, we review the kNN
algorithm. The kEFCM approach is explained in Section IV,
and we report experiments on real dataset in Section V.
Finally, Section VI concludes and indicates the directions for
future work.

II. RELATED WORK

Reviewing the literature yields a plenty of clustering
approaches. Comprehensive surveys have been published on
clustering such as Jiang et al. [11] Xu and Wunsch II [12], and
Hruschka et al. [13]. Since they are the main subjects of this
paper, we limited our revision to the approaches of evolving
fuzzy clustering and to those approaches that are devoted to
enhance the kNN clustering method.

The First attempts of data fuzzy clustering could date back
to the last century. However, it is still an open problem
especially in the present, vast amounts of online information
exchange. k-Means clustering [14] is based on finding data
clusters such that an objective function of distance (Euclidean
distance in most cases) measure is minimized. This algorithm
in non-fuzziness and does not solve the overlapping issue. It
gives either 1 when a data belongs to a cluster or 0 otherwise.
The fuzzy c-means (FCM) is the most popular fuzzy clustering
algorithm that also uses an objective function while clustering
the data. A given data may belong to several clusters in
different digress identified by membership value from 0-1.
Since it has a number of drawbacks such as high time
requirements, noise, and difficulty in identifying the initial
clusters [15], some developments have been suggested. One of
these developments is the Possibilistic FCM (PFCM) [16]
which is an attempt to solve the noise sensitivity defect of the
FCM [13]. The Multi-Kernel Fuzzy Clustering (MKFC) [17] is
another attempt to develop the FCM which addresses the
problem of limitation to spherical clusters. It incorporates
multiple kernels and automatically adjusts the kernel weights
to make the system immune to ineffectiveness kernels and
irrelevant features.

In 2002, Kasabov and Song [3] introduced the Evolving
Fuzzy Clustering Method (ECM), which is considered as first
evolving on-line clustering method [18]. ECM operates in two
phases: off-line and on-line. In off-line phase, it estimates
dynamically the number of clusters in a one-pass algorithm.
The number of clusters depends on a threshold value, Dthr,
which has to be tuned initially. The Dthr is used to control the
maximum distance between a data and the cluster center. In the
on-line phase, when ECM receives a data sample, based on its
position in the dataset, ECM either creates a new cluster or
updates some existing clusters. The value of Dthr is used to

control updating cluster centers, if the radius equals to Dthr, the
cluster will not be updated.

Some sophisticated fuzzy clustering methods have emerged
over the past few years. For example, the Fuzzy Rule-Based
Classifier (FRBC) [13] inherently performs the unsupervised
cluster analysis by employing a supervised classification
approach. It explores the potential clusters and identifies them
by using interpretable fuzzy rules. The actual boundaries are
revealed through simultaneous classification of data with the
fuzzy rules. The Evolving Local Means (ELM) [19] is another
example. It is simple and has the desirable features of density
based approached. It uses the concept of non-parametric
gradient estimate of a density function. The evolving process is
performed based when the density pattern changes.

The research of deriving fuzzy clustering methods from the
traditional kNN algorithm was initially motivated by its
drawbacks. For example, the authors in [20] present a
clustering ensemble algorithm based on kNN. To summarize
the ensemble data, the algorithm generates the similarity matrix
of data and then it uses hierarchical clustering to get the final
clustering. Another example can be seen in [21]. It is a special
cluster matching algorithm that establishes correspondence
among fuzzy clusters by building a new combination model
based on cluster matching and fuzzy majority vote. In [22], a
new kNN-based clustering method, called kNNModel, is
proposed. The model is similar to kNN, but the k value is
automatically determined. A data model is built by extracting a
set of representatives of the training data. The representatives
whose size is far less than the whole training data are involved
in making classification decision. The kNNModel is enhanced
in [23] by developing a cluster-based training algorithm to
learn the optimized set of representations.

In some sense, the performance of the reviewed evolving
fuzzy clustering methods is effective. However, we believe that
an effective clustering method should possess the features: (1)
fuzzy clustering, (2) dynamic evolving, (3) low computational
cost, and (4) little efforts for prior tuning. The demand of such
method has not been yet achieved. For example, although the
ECM is on-line evolving fuzzy clustering, its performance
relies on prior precise tuning of Dthr parameter. With respect
to the methods that aim at developing kNN algorithm,
unfortunately, the dynamic evolving is still a crucial demand.
The kEFCM approach is concern about the dynamically
evolving which distinguishes it from the above mentioned
development of kNN.

III. KNN: K-NEAREST NEIGHBORS ALGORITHM

In this section, we briefly describe the kNN algorithm.
kNN is an instance-based learning algorithm. Although it is
most often used for classification, it also can be used in
estimation and prediction. Given a set of training data, a new
data may be classified simply by comparing it to the most
similar data in the training dataset. The process of building
kNN classifier involves identifying k value, the number of the
most similar classes to be considered in the training dataset.
The process involves also measuring the similarity based on
defining the distance function. The most commonly used
distance function in Euclidean distance:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

7 | P a g e

www.ijacsa.thesai.org

 () √∑()

 ()

Suppose that we are interested in classifying the type of
network packet captured by a traffic collector system based on
certain characteristics, such as the payload size and the
destination port#. For a sample of 200 packets, Figure 1 shows
a scatter plot of the packet size against the destination port#.
The type of the points symbolizes a particular network packet
class. Circle points indicate A class; diamond points indicate B
class; square points indicate C class.

Fig. 1. Scatter plot of payload size against destination port#

Now suppose that there are two new network packets
(indicated as stars in the Figure) without classification and
would like to classify them based on other packets with similar
attributes. New data 1 is composed of 18 bytes and directed to
port# 700. Since the packet attributes place it into a section
where six packets of the nearest packets belong to C class
(square), we would thereby classify it as C easily.

Regarding the new packet 2, which is 33 bytes directed to
port# 200, suppose k=1 so that any new data would be
classified according to whichever one point it closest to. In this
case the packet would be classified into B class since that the
closest packet on the scatter plot belongs to B class (diamond
point). Suppose we now set k=2 so that the new packet 2
would be classified according to the classification of 2 packets
closest to it. One of these packets belongs to C class (square)
and one belongs to B class (diamond). The kNN classifier
cannot decide between these two classifications. The voting is
helpless here since there is one vote for each of two classes.
The voting will not help either for k=3 in case of the three
nearest packets belong to three different classes.

After determining which training data are most similar to
the new unseen data, we need to establish a combination

function for classification decision. A combination function
could be unweighted voting (each neighbor has one vote) or
weighted vote (closer neighbors have larger vote). In either
case, this function is computationally expensive.

The above example has shown that the number of nearest
neighbors, k, is considered as one of the most influential
factors in the accuracy of the classification. The value of k
must be set carefully, small value may maximize the
probability of misclassification, and large value may make the
k nearest packets distant from the right class. The obvious best
solution is to employ a cross-validation procedure which is
done by trying various values of k with different randomly
selected training datasets and determining precisely the k value
that minimizes the classification error.

IV. KEFCM: KNN-BASED EVOLVING FUZZY CLUSTERING

METHOD

The kEFCM runs in two phases: off-line and on-line phase.
During the off-line phase, kEFCM partitions the input space
into clusters, while in the on-line phase; kEFCM classifies new
coming data and updates dynamically the clusters for the
purpose of evolving.

A. Off-line Clustering Phase

In the off-line phase, kEFCM applies fast, optimized
technique for clustering dataset points. Figure 2 presents a
high-level overview of kEFCM in the off-line clustering
process.

Fig. 2. kEFCM Off-line Clustering Phase

The process of off-line clustering starts by taking the first
sample of the dataset () and finds its k-nearest
points () using the Euclidean distance (eq. 1) where
 . Then the least squares method (LMS) is used to
find the equation of the circle that best fits the points () by
calculating the center and the radius. A linearized model of the
circle equation is needed to determine the values of center
() and radius ():

()
 ()

 ()

The linearized model of this equation:

-10 0 10 20 30 40 50 60

0

100

200

300

400

500

600

700

800

900

1000

d
e

s
ti
n

a
ti
o

n
 p

o
rt

#

payload size

New Data 1

New Data 2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

8 | P a g e

www.ijacsa.thesai.org

 ()

Equation (3) is now linear with three undetermined
coefficients, A, B, and C. In this case, the matrices are used to
solve the least squares problem:

[

]

[

 ∑

 ∑ ∑

∑ ∑
 ∑

∑ ∑]

[

 ∑ (

)

∑ (

)

∑

]

 ()

After having values for A, B, and C, the circle is simply
determined by calculating its center () and radius (r):

 ()

 ()

(√)

 ()

This process is repeated on the remaining data points. As
this step may create unwanted overlapped clusters, the next
step applies an optimization procedure that handles two
constraints: (1) The number of clusters that contain small
cluster(s) is equal to 0; (2) The number of clusters that include
points less than k is equal to 0. These constraints are
represented mathematically by two functions: probability of
inclusion P(I) and probability of violation P(V) respectively:

 Probability of inclusion P(I)

 ()
∑ ∑ ()

 () ⁄
 ()

Where:

 () : the inclusion function:

 () {

 : any cluster, n: # of clusters

 Probability of violation P(V)

 ()
∑ ()

 ()

Where:

 () : violation function,

 () {

 : any cluster, n: # of clusters, k: # of nearest neighbors

B. Algorithm of kEFCM Off-line Phase

The kEFCM off-line clustering algorithm is given below as
pseudo code:

INITIALIZATION:

N: No of samples,

Nn : No of prototype samples,

k: No of nearest neighbors.

BEGIN %Off-line phase

Step 1: Take a data sample and find its k-nearest samples

by using Euclidean distance.

Step 2: By using equations (4), (5), (6), and (7), determine

the cluster that fits the sample and its k-nearest samples.

Step 3: Repeat steps 1 and 2 for remaining samples.

Step 4: Find the probability of inclusion P(I) and

probability of violation P(V) for the partitioning by

using equations (8) and (9).

Step 5: If P(I)=0 and P(V)=0 then STOP

Step 6: Else, remove all inclusion:
 1),(ji CCf

 Set Ci = Ci U Cj

 And adjust the # of violated neighbors to K

Step 7: Go to Step4

END %Off-line phase

Figures 3-5 explain graphically four cases that possibly
happen during the off-line clustering phase, assuming that the
total number of staring points is 19 and the optimum value of k
is 3.

Fig. 3. Case (A): this case is normal case. In cluster 3, the point received by
kEFCM is “pnt” and its three neighbors (nieg1, nieg2, and nieg3) have formed
a valid cluster. Two points (unlabeled points) will be included in the cluster as
they are placed within the cluster influence range

Fig. 4. Case (B): despite that cluster 1 overlaps cluster 3, no optimization is
need as no cluster contains small clusters (P(I)=0)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

9 | P a g e

www.ijacsa.thesai.org

Fig. 5. Case (C): this case represents inclusion violation, cluster 2 contains
cluster 1 (P(I)>0)

C. On-line Evolving Phase

This phase of kEFCM classifies new coming data and
evolves the clusters dynamically. Figure 6 presents a high-level
overview of the on-line process.

Fig. 6. kEFCM On-line Evolving Phase

The process of evolving operates on the partitioning model
that resulted from the off-line phase. Whenever a new data
example x is presented to the system, kEFCM updates the
clusters according to the position of x. To reduce the
complexity inherited from the kNN method, kEFCM computes
the distance of x to the cluster centers only instead of
computing the distance to all points. If x lies inside the
influential range of a cluster, then kEFCM attaches it to the
cluster and outputs the cluster class. Otherwise, a new cluster is
created by simply assigning the coordinates of x to the center
whilst the radius will be the arithmetic mean of all radiuses.
The output class in this case is decided based on weighted
voting combination function by considering the 3-nearest
centers rather than data points.

Any new cluster created dynamically is updated if the
number of its points reaches 3, and thereupon, center and
radius of the circle that fits the 3 points are calculated by using
LSM.

D. Algorithm of kEFCM On-line Phase

The following Algorithm summarizes the evolving process:

INITIALIZATION:

Take the partitioning resulted from off-line phase

BEGIN %On-line phase

Step 1: Take incoming sample x if available

Step 2: find the minimal distance (m) of x to the existing

centers. Set the nearest cluster to Cm and its center to

Cnm.

Step 3: If m<=Rm, then link the x sample with Cm. output

the class of Cm.

a) If the # of samples in Cm =3 then update Cm

Step 4: Else,

a) Create a new cluster Ci+1

b) Center of the cluster Cni+1 = x

c) Calculate the mean of centers M, set Ri+1=M

d) Output the class of the 3-nearest centers by using the

weighted voting

Step 5: Go to Step1

END %On-line phase

V. EXPERIMENTS

This section describes the kEFCM evaluation process.
Three sets of experiments were conducted to examine
clustering quality, performance, as well as complexity and
computational cost. For each set of experiments, we describe
the measuring metrics, benchmarking algorithms, and the
results of comparison. Before going through these parts, the
datasets involved in the evaluation process are described and
the results of cross-validation technique used to get optimum
value of k are presented.

A. Dataset Used

To assess the quality of clustering of kEFCM, 6 datasets are
used in the experiments, 1 forecasting dataset, the gas-furnace
[24] and 5 classification datasets selected from KEEL Dataset
Repository [25] and UCI Machine Learning Repository [26].
Table 1 summarizes the features and classes of these datasets.

As discussed in Section III, the choice of k is critical. To
estimate the value of k accurately, the N-fold cross-validation
technique is used. This technique involves setting aside some
part of dataset elements for training and the rest for testing. The
10-fold cross-validation has been adopted throughout the
experiments. First, the dataset is split into 10 folds. Then, the
kEFCM is trained with 9/10 of the dataset, while the reminder
1/10, randomly selected one fold, is used for testing. Five
values for k have been suggested: 3, 5, 7, 11, and 13.

TABLE I. DATASETS USED FOR THE KEFCM EVALUATION

Dataset Features Classes Samples

Gas-furnace 2 - 296

Iris 4 3 150

Glass 9 6 214

Ecoli 7 8 336

Balance Scale 4 3 625

Pima Indian Diabetes (PID) 8 2 768

Heberman Survival (HS) 3 2 306

Relation Banana (RB) 2 2 5292

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

10 | P a g e

www.ijacsa.thesai.org

Eventually, the k value that performed at the highest level
of accuracy has been adopted. For the gas-furnace dataset, the
k=13 is assigned manually as it has no classes. Table 2
summarizes the results obtained for each value over the dataset
used.

TABLE II. N-FOLDS CROSS-VALIDATION RESULTS (%)

Dataset
k-values

3 5 7 11 13

Iris 82.9 83.1 84.1 84.0 81.8

Glass 88.1 88.1 87.9 88.2 88.5

Ecoli 92.7 93.1 94.2 94.5 91.8

Balance Scale 83.1 83.5 82.9 83.3 83.6

PID 96.4 97.2 97.0 98.5 95.8

HS 91.5 92.2 93.6 94.2 90.9

RB 61.1 60.5 62.3 62.3 62.8

B. Clustering Quality

Two parameters were taken as criteria in the comparative
analysis:

 MaxD: the maximum distance between a point and its
cluster center.

 Cluster Purity: The quality of cluster:

∑

 ()

Where C is total clusters,
 is the number of members of

the majority class in clusters i, and is the total number of
members in cluster i.

The clustering results were compared with those resulted
by ECM on-line and off-line. Three experiments were
conducted to examine the quality of clustering. In the first
experiment, by setting the k value to 13, the kEFCM was
employed to cluster the gas-furnace dataset into 15 clusters,

Figure 7 shows the clusters graphically. The results of the
second experiment are show in Figure 8 which compares the
MaxD values obtained by kEFCM and other clustering
methods. In the third experiment, Figure 9, the kEFCM
approach (k=7) was used to partition the Iris dataset. By using
(eq. 10), the cluster purity is computed for kEFCM and other
clustering methods.

Fig. 7. Clustering gas-furnace dataset into 15 clusters (k=13), ♦: input
vector, ■: cluster center

Fig. 8. Comparing the kEFCM against ECM in Terms of MaxD Over Gas-
furnace Dataset

Fig. 9. Comparing the kEFCM against Fuzzy Clustering Methods in Terms
of Clusters Purity Over Iris Dataset

0.18

0.10 0.10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

kEFCM ECM (on-line) ECM (off-line)

90.20%

91.90% 91.54%

89.93%

80.80%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

kEFCM ELM FRBC FCM PCM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

11 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARING THE KEFCM AGAINST FUZZY CLUSTERING METHODS IN TERMS OF NMI OVER MULTIPLE DATASETS

Methods
Datasets

Average
Glass (k=13) Ecoli (k=11) Balance Scale (k=13) PID (k=11)

kEFCM 0.341 0.601 0.175 0.116 0.308

k-Mean 0.320 0.570 0.121 0.102 0.278

FCM 0.333 0.574 0.118 0.114 0.285

MKFC 0.355 0.574 0.120 0.140 0.297

TABLE IV. COMPARING THE KEFCM AGAINST FUZZY CLUSTERING METHODS IN TERMS OF ARI OVER MULTIPLE DATASETS

Methods
Datasets

Average
Glass (k=13) Ecoli (k=11) Balance Scale (k=13) PID (k=11)

kEFCM 0.177 0.384 0.139 0.140 0.210

k-Mean 0.172 0.384 0.129 0.136 0.205

FCM 0.181 0.387 0.138 0.143 0.212

MKFC 0.179 0.383 0.135 0.116 0.203

The following points can be concluded from the results:

 Although the perfect value of MaxD was obtained by
ECMs, kEFCM achieved very close value, 0.180.

 We computed the standard deviation (stdev) of MaxD
for all gas-furnace clusters to check the consistency in
the size of clusters. The obtained value 0.3221 shows
good consistency.

 Despite the fact that kEFCM is a single distance-based
method and may create large number of unstable-
mixed-class clusters [27], its ability to remove this kind
of clusters is an advantage. kEFCM is equipped with
optimization procedure that mainly works against
unwanted clusters. It handles two constraints: P(I)=0
and P(V)= 0. The cluster purity reflects this ability, in
contrast with ELM and FRBC, kEFCM performed at a
comparative value 90.20%, which means that kEFCM
produces small rates of unstable-mixed-class clusters.
Also, kEFCM outperformed both FCM and PCM
clustering methods.

C. kEFCM Performance

We used two common performance metrics to examine the
kEFCM in terms of overlapping: Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI) [28].
These metrics compute the level of similarity between
clustering system resulted by a method and compare it against
the ground truth classes. A higher value means better
clustering. There values ranged from 0-1, 1 means perfect
match.

Equation 11 is used to compute the NMI of two clustering:
C1 clustering resulted and C2 ground truth clustering, of a
dataset X of n objects:

 ()
 ()

√ () ()
 ()

Where:

 () the mutual information between C1 and C2.

H(C1) and H(C2) the entropy of C1 and C2.

Regarding the ARI, the following equation is used:

()()

() ()

()()

 ()

Where:

a = # pairs of data that are in the same class in and

same cluster in ,

b = # pairs of data that are in the same cluster in , but

not the same class in ,
c = # pairs of data in the same class in , but not the

same cluster in , and

d = # pairs of data that are not in the same cluster in

nor class in .
In Tables 3 and 4, we present the NMI and ARI values over

multiple datasets for kEFCM and different methods. The last
column (Average) of Table 3 displays the average of NMI
value for each method over 4 datasets. kEFCM has the best
average NMI over all methods. For each individual dataset,
kEFCM outperforms all clustering methods in two datasets
(Ecoli and Balance Scale), while in the other two datasets
(Glass and PID), it is only outperformed by MKFC to be
ranked as the second best method. Table 4 presents the results
in terms of ARI. The results are slightly changed in contrast to
NMI. The kEFCM is the second best in terms of average ARI.
It is ranked first for only one dataset (Balance Scale) and
ranked second for the remaining datasets. However, despite
that, kEFCM, in overall results, has yielded a comparable
stable performance.

D. Computational Time & Clustering Complexity

As discussed in Section IV, initially, kEFCM takes a data
points and searches for a cluster that best fits the point with its
k nearest data points. Then, it loops through the rest of the un-
clustered points, each iteration of the loop repeats the same
process. To prevent the unwanted overlapping clusters,
kEFCM applies equations 8 and 9.

This set of experiments is devoted to examine the
computational time along with complexity of the cluster
resulting. For the purposes of comparing, we chose FRBC and
FCM clustering methods. The results on Iris, Glass, and Ecoli
datasets, which are appeared in related research papers, are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

12 | P a g e

www.ijacsa.thesai.org

compared with those obtained by kEFCM in Table 5. Although
the kEFCM consumes more computational time than FRBC
and FCM, it is obvious that there is a few timing differences.
Add to this, the computational time depends directly on the
number of samples within the dataset.

TABLE V. COMPUTATIONAL TIME (SEC) OF KEFCM, FRBC, AND FCM

Methods

Datasets

Iris

(k=13)

Glass

(k=7)

Ecoli

(k=11)

kEFCM 1.330 1.410 1.472

FRBC 1.000 1.000 1.200

FCM 0.170 0.100 0.100

With respect to the clustering complexity, according to our
view, the complexity of clustering means:

1) Creation of a large number of clusters in off-line

phase.

2) Generation of clusters is increasing exponentially in

on-line phase.
It has been noted that the number of clusters highly

depends on k value, the number of nearest neighbors, which
means that the number of clusters is subject to control by the
user. Any value of k gives a highly accurate result has to be
adopted, since the accuracy is the most important criterion.
However, in general, kEFCM shows adequate stability and
constant evolution throughout the testing. Figure 10 illustrates
two examples of cluster evolutions on different datasets. In the
first example of the Heberman survival dataset (k=11), 6
clusters were created off-line to accommodate 10 samples. In
on-line phase, when new 90 samples were introduced, it
created 14 new clusters to accommodate them. In the second
example, the Relational Banana dataset (k=13), kEFCM
created only 5 clusters off-line to accommodate 10 samples,
and then it created 24 clusters on-line to accommodate new 90
samples. Despite that kEFCM started in both examples with a
big number of clusters, it created a very small number of
clusters in on-line phase, which means, also, an effective way
in clustering unseen samples dynamically.

VI. CONCLUSION

We have proposed in this paper kEFCM, kNN-based
evolving fuzzy clustering method. It is an enhanced version of
traditional kNN machine learning. kEFCM approach uses the
least-squares method for determining the cluster center and
radius. The Euclidean distance is used to reflect the
membership of a data point in a cluster. The method performs
an optimization procedure that handles two constraints,
probability of inclusion P(I)=0 and probability of violation
P(V)=0. In on-line phase, kEFCM is able to carry out the
incremental learning, which is the core tool of evolving. It
reduces the computational time that is inherited from kNN by
involving the cluster centers in making classification decision.

The clustering ability of kEFCM was examined by
benchmarking a collection of real-world datasets. The results
obtained were compared against several well-known clustering
methods. The results showed that the kEFCM performs at a
good competitive level. The possible future work will turn to

deploying kEFCM onto real-world environment, where
intuitively, it will perform at the same level of success.

Fig. 10. Cluster Evolutions

REFERENCES

[1] F. Nie and P. Zhang, "Fuzzy Partition and Correlation for Image
Segmentation with Differential Evolution," IAENG International Journal
of Computer Science, vol. 40, pp. 164-172, 2013.

[2] R. C. D. A. K. Jain, Algorithms for Clustering Data: Prentice Hall, 1988.

[3] G. Mecca, S. Raunich, and A. Pappalardo, "A new algorithm for
clustering search results," Data & Knowledge Engineering, vol. 62, pp.
504-522, 2007.

[4] A. K. Abd-Elaal, H. A. Hefny, and A. H. Abd-Elwahab, "Forecasting of
Egypt Wheat Imports Using Multivariate Fuzzy Time Series Model
Based on Fuzzy Clustering," IAENG International Journal of Computer
Science, vol. 40, pp. 230-237, 2013.

[5] N. K. Kasabov and Q. Song, "DENFIS: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction," Fuzzy
Systems, IEEE Transactions on, vol. 10, pp. 144-154, 2002.

[6] J. M. Keller, M. R. Gray, and J. A. Givens, "A fuzzy k-nearest neighbor
algorithm," Systems, Man and Cybernetics, IEEE Transactions on, pp.
580-585, 1985.

[7] P. K. J. a. S. Chattopadhyay, "Comparative Study of Fuzzy k-Nearest
Neighbor and Fuzzy C-means Algorithms," International Journal of
Computer Applications, vol. 57, p. 10, November 2012.

[8] D. W. Aha, "Editorial," Artificial Intelligence Review, vol. 11, pp. 7-10,
1997.

[9] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, and S. Y. Philip, "Top 10 algorithms in data
mining," Knowledge and Information Systems, vol. 14, pp. 1-37, 2008.

[10] A. Shubair, S. Ramadass, and A. A. Altyeb, "kENFIS: kNN-based
evolving neuro-fuzzy inference system for computer worms detection,"
Journal of Intelligent and Fuzzy Systems.

[11] D. Jiang, C. Tang, and A. Zhang, "Cluster analysis for gene expression
data: A survey," Knowledge and Data Engineering, IEEE Transactions
on, vol. 16, pp. 1370-1386, 2004.

[12] R. Xu and D. Wunsch, "Survey of clustering algorithms," Neural
Networks, IEEE Transactions on, vol. 16, pp. 645-678, 2005.

[13] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. P. L. F. De
Carvalho, "A survey of evolutionary algorithms for clustering," Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 39, pp. 133-155, 2009.

[14] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-means
clustering algorithm," Journal of the Royal Statistical Society. Series C
(Applied Statistics), vol. 28, pp. 100-108, 1979.

[15] E. G. Mansoori, "FRBC: A fuzzy rule-based clustering algorithm,"
Fuzzy Systems, IEEE Transactions on, vol. 19, pp. 960-971, 2011.

0

5

10

15

20

25

30

35

10 30 50 70 90

C
lu
st
e
rs

Samples

RB HS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

13 | P a g e

www.ijacsa.thesai.org

[16] N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, "A possibilistic fuzzy
c-means clustering algorithm," Fuzzy Systems, IEEE Transactions on,
vol. 13, pp. 517-530, 2005.

[17] H.-C. Huang, Y.-Y. Chuang, and C.-S. Chen, "Multiple kernel fuzzy
clustering," Fuzzy Systems, IEEE Transactions on, vol. 20, pp. 120-134,
2012.

[18] V. Ravi, E. Srinivas, and N. Kasabov, "On-line evolving fuzzy
clustering," in Conference on Computational Intelligence and
Multimedia Applications, 2007. International Conference on, 2007, pp.
347-351.

[19] R. Dutta Baruah and P. Angelov, "Evolving local means method for
clustering of streaming data," in Fuzzy Systems (FUZZ-IEEE), 2012
IEEE International Conference on, 2012, pp. 1-8.

[20] F. Weng, Q. Jiang, L. Chen, and Z. Hong, "Clustering ensemble based
on the fuzzy KNN algorithm," in Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2007.
SNPD 2007. Eighth ACIS International Conference on, 2007, pp. 1001-
1006.

[21] C. sheng Li, Y. nan Wang, and H. dong Yang, "Combining Fuzzy
partitions Using Fuzzy Majority Vote and KNN," Journal of Computers,
vol. 5, pp. 791-798, 2010.

[22] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, "KNN model-based
approach in classification," in On The Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE, ed: Springer, 2003, pp.
986-996.

[23] L. Chen, G. Guo, and S. Wang, "Nearest neighbor classification by
partially fuzzy clustering," in Advanced Information Networking and
Applications Workshops (WAINA), 2012 26th International Conference
on, 2012, pp. 789-794.

[24] J. D. Farmer and J. J. Sidorowich, "Predicting chaotic time series,"
Physical review letters, vol. 59, p. 845, 1987.

[25] J. Alcalá, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, and
F. Herrera, "KEEL data-mining software tool: Data set repository,
integration of algorithms and experimental analysis framework," Journal
of Multiple-Valued Logic and Soft Computing, 2010.

[26] A. Asuncion and D. J. Newman, "UCI machine learning repository," ed,
2007.

[27] E. Lughofer, Evolving fuzzy systems-Methodologies, advanced
concepts and applications: Springer, 2011.

[28] J. V. de Oliveira and W. Pedrycz, Advances in fuzzy clustering and its
applications: Wiley Online Library, 2007.

