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Abstract—Despite the recent emergence of research, creating 

an evolving fuzzy clustering method that intelligently copes with 

huge amount of data streams in the present high-speed networks 

involves a lot of difficulties. Several efforts have been devoted to 

enhance traditional clustering techniques into on-line evolving 

fuzzy able to learn and develop continuously. In line with these 

efforts, we propose kEFCM, kNN-based evolving fuzzy clustering 

method. kEFCM overcomes the problems of computational cost, 

dynamic fuzzy evolving, and clustering complexity of traditional 

kNN. It employs the least-squares method in determining the 

cluster center and influential area, as well as the Euclidean 

distance in identifying the membership degree. It enhances the 

traditional kNN algorithm by involving only cluster centers in 

making classification decisions and evolving on-line the clusters 

when a new data arrives. For evaluation purpose, the 

experimental results on a collection of benchmark datasets are 

compared against other well-known clustering methods. The 

evaluation results approve a good competitive level of kEFCM. 

Keywords—Evolving; Fuzzy Logic; Clustering; k-NN 

I. INTRODUCTION 

Clustering Analysis is broadly applied successfully in many 
research areas such as market research, pattern recognition, 
data analysis, image processing, and document categorization 
[1] [2] [3] [4]. Clustering aims at describing data by defining 
set of clusters, which are naturally circles, based on 
similarities. The approach of finding approximate centroids is 
commonly used to form the clusters. A cluster centroid is used 
to determine the cluster location, and later, the system will tell 
to which cluster a group of input vector belongs by measuring 
the similarity in predefined features. Forming the clusters also 
involves determining the influential area of the clusters, which 
is equal to the radius. 

In clustering, there are two crucial terms: fuzzy and 
evolving. The fuzzy term refers to the overlapping in clusters 
that is each element in a dataset belongs to one or more cluster 
in a degree. The cluster belongingness, called fuzzy 
membership (    ), is used to discover the relation between the 

data element and disclosed clusters. The Euclidean distance is 
employed commonly to obtain the fuzzy membership values of 
elements in different clusters, i.e. distance between data point 
and cluster center. Technically, the evolving term means ability 
of the system to dynamically updating the clusters, adjusting 
the clusters centers and/or radius, to accommodate new unseen 
data when presented. 

Beside their ability of analyzing data and making decisions 
based on acquired intelligence, the evolving clustering methods 
play an essential role in fuzzy rule-based systems (FRBS) and 
neuro-fuzzy systems (NFS) which are intelligent systems able 
to learn and develop continuously in order to enhance their 
performance. Over the last decade, the evolving clustering 
methods has boosted the emergence of these systems [5]. 

Designing an evolving fuzzy clustering algorithm involves 
a lot of difficulties. In the present high-speed networks, the 
huge amount of data streams, such as IP flows and network 
payloads, calls for on-line, fast, non-iterative evolving 
methods. Dealing efficiently with huge amount of multi-
dimensional data items can be problematic because of 
clustering complexity and computational cost. The algorithm 
has to perform an incremental learning paradigm that is carried 
out to update the knowledgebase whenever new data emerges. 
Moreover, it has to efficiently manage previously seen training 
data to accommodate new data, and that needs an efficient 
memory management mechanism. 

Unfortunately, most of the data clustering techniques such 
as K-means [6], Fuzzy C-means, Mountain clustering, and 
Subtractive clustering [7] lacks these capabilities. 

Recently, the issue of creating evolving fuzzy clustering 
approaches to obtain the best fit of a dataset has been the 
subject of several research efforts. The research trends may be 
broadly divided into two directions: (i) to invent new 
techniques; (ii) to enhance traditional clustering techniques. 

The k-Nearest Neighbors (kNN) clustering method [8] is 
among the clustering techniques in which development has 
seen attempts. kNN is one of the most simple machine learning 
methods. It can be used as a baseline for large developmental 
expansions. It has been selected as one of the top 10 data 
mining algorithms [9]. However, despite these pros, it has 
some cons: (i) it is computationally expensive; (ii) it requires 
large memory; (iii) it does not have ability to learn which data 
are most important. 

In line with the trends that seek to enhance traditional 
clustering techniques, we present an enhanced version of the 
kNN algorithm, kNN-based Evolving Fuzzy Clustering 
Method, kEFCM for short. It is worth mentioning that kEFCM 
is introduced as a preprocessor for the neural fuzzy inference 
model [10]. The problems of designing an evolving fuzzy 
clustering method are addressed through many enhancements 
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to the original kNN approach such as: reducing the complexity 
of computation, on-line clustering, and fuzzy evolving. To 
reduce the computational expense, kEFCM considers the 
cluster centers only in making classification decisions. The 
knowledgebase evolving is carried out simply by assigning the 
coordinates of a new coming example to a new cluster center, 
and the radius will be the arithmetic mean of all radiuses, in 
case the example does not belong to any cluster. Neither 
thresholds nor constraints have been used in the on-line phase. 

The rest of this paper is organized as follows. In Section II, 
we discuss related work, and in Section III, we review the kNN 
algorithm. The kEFCM approach is explained in Section IV, 
and we report experiments on real dataset in Section V. 
Finally, Section VI concludes and indicates the directions for 
future work. 

II. RELATED WORK 

Reviewing the literature yields a plenty of clustering 
approaches. Comprehensive surveys have been published on 
clustering such as Jiang et al. [11] Xu and Wunsch II [12], and 
Hruschka et al. [13]. Since they are the main subjects of this 
paper, we limited our revision to the approaches of evolving 
fuzzy clustering and to those approaches that are devoted to 
enhance the kNN clustering method. 

The First attempts of data fuzzy clustering could date back 
to the last century. However, it is still an open problem 
especially in the present, vast amounts of online information 
exchange. k-Means clustering [14] is based on finding data 
clusters such that an objective function of distance (Euclidean 
distance in most cases) measure is minimized. This algorithm 
in non-fuzziness and does not solve the overlapping issue. It 
gives either 1 when a data belongs to a cluster or 0 otherwise. 
The fuzzy c-means (FCM) is the most popular fuzzy clustering 
algorithm that also uses an objective function while clustering 
the data. A given data may belong to several clusters in 
different digress identified by membership value from 0-1. 
Since it has a number of drawbacks such as high time 
requirements, noise, and difficulty in identifying the initial 
clusters [15], some developments have been suggested. One of 
these developments is the Possibilistic FCM (PFCM) [16] 
which is an attempt to solve the noise sensitivity defect of the 
FCM [13]. The Multi-Kernel Fuzzy Clustering (MKFC) [17] is 
another attempt to develop the FCM which addresses the 
problem of limitation to spherical clusters. It incorporates 
multiple kernels and automatically adjusts the kernel weights 
to make the system immune to ineffectiveness kernels and 
irrelevant features. 

In 2002, Kasabov and Song [3] introduced the Evolving 
Fuzzy Clustering Method (ECM), which is considered as first 
evolving on-line clustering method [18]. ECM operates in two 
phases: off-line and on-line. In off-line phase, it estimates 
dynamically the number of clusters in a one-pass algorithm. 
The number of clusters depends on a threshold value, Dthr, 
which has to be tuned initially. The Dthr is used to control the 
maximum distance between a data and the cluster center. In the 
on-line phase, when ECM receives a data sample, based on its 
position in the dataset, ECM either creates a new cluster or 
updates some existing clusters. The value of Dthr is used to 

control updating cluster centers, if the radius equals to Dthr, the 
cluster will not be updated. 

Some sophisticated fuzzy clustering methods have emerged 
over the past few years. For example, the Fuzzy Rule-Based 
Classifier (FRBC) [13] inherently performs the unsupervised 
cluster analysis by employing a supervised classification 
approach. It explores the potential clusters and identifies them 
by using interpretable fuzzy rules. The actual boundaries are 
revealed through simultaneous classification of data with the 
fuzzy rules. The Evolving Local Means (ELM) [19] is another 
example. It is simple and has the desirable features of density 
based approached. It uses the concept of non-parametric 
gradient estimate of a density function. The evolving process is 
performed based when the density pattern changes. 

The research of deriving fuzzy clustering methods from the 
traditional kNN algorithm was initially motivated by its 
drawbacks. For example, the authors in [20] present a 
clustering ensemble algorithm based on kNN. To summarize 
the ensemble data, the algorithm generates the similarity matrix 
of data and then it uses hierarchical clustering to get the final 
clustering. Another example can be seen in [21]. It is a special 
cluster matching algorithm that establishes correspondence 
among fuzzy clusters by building a new combination model 
based on cluster matching and fuzzy majority vote. In [22], a 
new kNN-based clustering method, called kNNModel, is 
proposed. The model is similar to kNN, but the k value is 
automatically determined. A data model is built by extracting a 
set of representatives of the training data. The representatives 
whose size is far less than the whole training data are involved 
in making classification decision. The kNNModel is enhanced 
in [23] by developing a cluster-based training algorithm to 
learn the optimized set of representations. 

In some sense, the performance of the reviewed evolving 
fuzzy clustering methods is effective. However, we believe that 
an effective clustering method should possess the features: (1) 
fuzzy clustering, (2) dynamic evolving, (3) low computational 
cost, and (4) little efforts for prior tuning. The demand of such 
method has not been yet achieved. For example, although the 
ECM is on-line evolving fuzzy clustering, its performance 
relies on prior precise tuning of Dthr parameter. With respect 
to the methods that aim at developing kNN algorithm, 
unfortunately, the dynamic evolving is still a crucial demand. 
The kEFCM approach is concern about the dynamically 
evolving which distinguishes it from the above mentioned 
development of kNN. 

III. KNN: K-NEAREST NEIGHBORS ALGORITHM 

In this section, we briefly describe the kNN algorithm. 
kNN is an instance-based learning algorithm. Although it is 
most often used for classification, it also can be used in 
estimation and prediction. Given a set of training data, a new 
data may be classified simply by comparing it to the most 
similar data in the training dataset. The process of building 
kNN classifier involves identifying k value, the number of the 
most similar classes to be considered in the training dataset. 
The process involves also measuring the similarity based on 
defining the distance function. The most commonly used 
distance function in Euclidean distance: 
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Suppose that we are interested in classifying the type of 
network packet captured by a traffic collector system based on 
certain characteristics, such as the payload size and the 
destination port#. For a sample of 200 packets, Figure 1 shows 
a scatter plot of the packet size against the destination port#. 
The type of the points symbolizes a particular network packet 
class. Circle points indicate A class; diamond points indicate B 
class; square points indicate C class. 

 

Fig. 1. Scatter plot of payload size against destination port# 

Now suppose that there are two new network packets 
(indicated as stars in the Figure) without classification and 
would like to classify them based on other packets with similar 
attributes. New data 1 is composed of 18 bytes and directed to 
port# 700. Since the packet attributes place it into a section 
where six packets of the nearest packets belong to C class 
(square), we would thereby classify it as C easily. 

Regarding the new packet 2, which is 33 bytes directed to 
port# 200, suppose k=1 so that any new data would be 
classified according to whichever one point it closest to. In this 
case the packet would be classified into B class since that the 
closest packet on the scatter plot belongs to B class (diamond 
point). Suppose we now set k=2 so that the new packet 2 
would be classified according to the classification of 2 packets 
closest to it. One of these packets belongs to C class (square) 
and one belongs to B class (diamond). The kNN classifier 
cannot decide between these two classifications. The voting is 
helpless here since there is one vote for each of two classes. 
The voting will not help either for k=3 in case of the three 
nearest packets belong to three different classes. 

After determining which training data are most similar to 
the new unseen data, we need to establish a combination 

function for classification decision. A combination function 
could be unweighted voting (each neighbor has one vote) or 
weighted vote (closer neighbors have larger vote). In either 
case, this function is computationally expensive. 

The above example has shown that the number of nearest 
neighbors, k, is considered as one of the most influential 
factors in the accuracy of the classification. The value of k 
must be set carefully, small value may maximize the 
probability of misclassification, and large value may make the 
k nearest packets distant from the right class. The obvious best 
solution is to employ a cross-validation procedure which is 
done by trying various values of k with different randomly 
selected training datasets and determining precisely the k value 
that minimizes the classification error. 

IV. KEFCM: KNN-BASED EVOLVING FUZZY CLUSTERING 

METHOD 

The kEFCM runs in two phases: off-line and on-line phase. 
During the off-line phase, kEFCM partitions the input space 
into clusters, while in the on-line phase; kEFCM classifies new 
coming data and updates dynamically the clusters for the 
purpose of evolving. 

A. Off-line Clustering Phase 

In the off-line phase, kEFCM applies fast, optimized 
technique for clustering dataset points. Figure 2 presents a 
high-level overview of kEFCM in the off-line clustering 
process. 

 

Fig. 2. kEFCM Off-line Clustering Phase 

The process of off-line clustering starts by taking the first 
sample of the dataset (     )  and finds its k-nearest 
points (     ) using the Euclidean distance (eq. 1) where   
         . Then the least squares method (LMS) is used to 
find the equation of the circle that best fits the points (     ) by 
calculating the center and the radius.  A linearized model of the 
circle equation is needed to determine the values of center 
(   ) and radius ( ): 

(    )
  (    )

        ( ) 

The linearized model of this equation: 
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Equation (3) is now linear with three undetermined 
coefficients, A, B, and C. In this case, the matrices are used to 
solve the least squares problem: 

[
 
 
 
]  

[
 
 
 
 
 ∑  

 ∑    ∑  

∑    ∑  
 ∑  

∑  ∑     ]
 
 
 
 
 
  

[
 
 
 
 
 ∑  (  

    
 )

∑  (  
    

 )

∑  
    

 
]
 
 
 
 
 

    ( ) 

After having values for A, B, and C, the circle is simply 
determined by calculating its center (     ) and radius (r): 
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This process is repeated on the remaining data points. As 
this step may create unwanted overlapped clusters, the next 
step applies an optimization procedure that handles two 
constraints: (1) The number of clusters that contain small 
cluster(s) is equal to 0; (2) The number of clusters that include 
points less than k is equal to 0. These constraints are 
represented mathematically by two functions: probability of 
inclusion P(I) and probability of violation P(V) respectively: 

 Probability of inclusion P(I) 
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Where: 

 (     ) : the inclusion function:  

 (     )   {
         
         

 

      : any cluster, n: # of clusters 

 Probability of violation P(V) 
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Where:  

 (  ) : violation function, 

  (  )   {
               
            

      

  : any cluster, n: # of clusters, k: # of nearest neighbors 
    

B. Algorithm of kEFCM Off-line Phase 

The kEFCM off-line clustering algorithm is given below as 
pseudo code: 

INITIALIZATION:  

N: No of samples,  

Nn  : No of prototype samples,  

k: No of nearest neighbors. 

BEGIN  %Off-line phase 

Step 1: Take a data sample and find its k-nearest samples 

by using Euclidean distance. 

Step 2: By using equations (4), (5), (6), and (7), determine 

the cluster that fits the sample and its k-nearest samples. 

Step 3: Repeat steps 1 and 2 for remaining samples. 

Step 4: Find the probability of inclusion P(I) and 

probability of violation P(V) for the partitioning by 

using equations (8) and (9). 

Step 5: If P(I)=0 and P(V)=0 then STOP 

Step 6: Else, remove all inclusion: 
 1),(  ji CCf  

 Set Ci = Ci U Cj 

 And adjust the # of violated neighbors to  K  

Step 7: Go to Step4 

END  %Off-line phase 

Figures 3-5 explain graphically four cases that possibly 
happen during the off-line clustering phase, assuming that the 
total number of staring points is 19 and the optimum value of k 
is 3. 

 

Fig. 3. Case (A): this case is normal case. In cluster 3, the point received by 
kEFCM is “pnt” and its three neighbors (nieg1, nieg2, and nieg3) have formed 
a valid cluster. Two points (unlabeled points) will be included in the cluster as 
they are placed within the cluster influence range 

 

Fig. 4. Case (B): despite that cluster 1 overlaps cluster 3, no optimization is 
need as no cluster contains small clusters (P(I)=0) 
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Fig. 5. Case (C): this case represents inclusion violation, cluster 2 contains 
cluster 1 (P(I)>0) 

C. On-line Evolving Phase 

This phase of kEFCM classifies new coming data and 
evolves the clusters dynamically. Figure 6 presents a high-level 
overview of the on-line process. 

 

Fig. 6. kEFCM On-line Evolving Phase 

The process of evolving operates on the partitioning model 
that resulted from the off-line phase. Whenever a new data 
example x is presented to the system, kEFCM updates the 
clusters according to the position of x. To reduce the 
complexity inherited from the kNN method, kEFCM computes 
the distance of x to the cluster centers only instead of 
computing the distance to all points. If x lies inside the 
influential range of a cluster, then kEFCM attaches it to the 
cluster and outputs the cluster class. Otherwise, a new cluster is 
created by simply assigning the coordinates of x to the center 
whilst the radius will be the arithmetic mean of all radiuses. 
The output class in this case is decided based on weighted 
voting combination function by considering the 3-nearest 
centers rather than data points. 

Any new cluster created dynamically is updated if the 
number of its points reaches 3, and thereupon, center and 
radius of the circle that fits the 3 points are calculated by using 
LSM. 

D. Algorithm of kEFCM On-line Phase 

The following Algorithm summarizes the evolving process: 

INITIALIZATION: 

Take the partitioning resulted from off-line phase 

BEGIN %On-line phase 

Step 1: Take incoming sample x if available 

Step 2:  find the minimal distance (m) of x to the existing 

centers. Set the nearest cluster to Cm and its center to 

Cnm.  

Step 3: If m<=Rm, then link the x sample with Cm. output 

the class of Cm. 

a) If the # of samples in Cm =3 then update Cm 

Step 4: Else,  

a) Create a new cluster Ci+1 

b) Center of the cluster Cni+1 = x  

c) Calculate the mean of centers M, set Ri+1=M 

d) Output the class of the 3-nearest centers by using the 

weighted voting 

Step 5: Go to Step1 

END  %On-line phase 

V. EXPERIMENTS 

This section describes the kEFCM evaluation process. 
Three sets of experiments were conducted to examine 
clustering quality, performance, as well as complexity and 
computational cost. For each set of experiments, we describe 
the measuring metrics, benchmarking algorithms, and the 
results of comparison. Before going through these parts, the 
datasets involved in the evaluation process are described and 
the results of cross-validation technique used to get optimum 
value of k are presented. 

A. Dataset Used 

To assess the quality of clustering of kEFCM, 6 datasets are 
used in the experiments, 1 forecasting dataset, the gas-furnace 
[24] and 5 classification datasets selected from KEEL Dataset 
Repository [25] and UCI Machine Learning Repository [26]. 
Table 1 summarizes the features and classes of these datasets. 

As discussed in Section III, the choice of k is critical. To 
estimate the value of k accurately, the N-fold cross-validation 
technique is used. This technique involves setting aside some 
part of dataset elements for training and the rest for testing. The 
10-fold cross-validation has been adopted throughout the 
experiments. First, the dataset is split into 10 folds. Then, the 
kEFCM is trained with 9/10 of the dataset, while the reminder 
1/10, randomly selected one fold, is used for testing. Five 
values for k have been suggested: 3, 5, 7, 11, and 13. 

TABLE I.  DATASETS USED FOR THE KEFCM EVALUATION 

Dataset Features Classes Samples 

Gas-furnace 2 - 296 

Iris 4 3 150 

Glass 9 6 214 

Ecoli 7 8 336 

Balance Scale 4 3 625 

Pima Indian Diabetes (PID) 8 2 768 

Heberman Survival (HS) 3 2 306 

Relation Banana (RB) 2 2 5292 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 2, 2015 

10 | P a g e  

www.ijacsa.thesai.org 

Eventually, the k value that performed at the highest level 
of accuracy has been adopted. For the gas-furnace dataset, the 
k=13 is assigned manually as it has no classes. Table 2 
summarizes the results obtained for each value over the dataset 
used. 

TABLE II.  N-FOLDS CROSS-VALIDATION RESULTS (%) 

Dataset 
k-values 

3 5 7 11 13 

Iris 82.9 83.1 84.1 84.0 81.8 

Glass 88.1 88.1 87.9 88.2 88.5 

Ecoli 92.7 93.1 94.2 94.5 91.8 

Balance Scale 83.1 83.5 82.9 83.3 83.6 

PID 96.4 97.2 97.0 98.5 95.8 

HS 91.5 92.2 93.6 94.2 90.9 

RB 61.1 60.5 62.3 62.3 62.8 

B. Clustering Quality 

Two parameters were taken as criteria in the comparative 
analysis:  

 MaxD: the maximum distance between a point and its 
cluster center.  

 Cluster Purity:  The quality of cluster: 

        
∑

  
 

  
 
   

 
         (  ) 

 

Where C is total clusters,   
  is the number of members of 

the majority class in clusters i, and    is the total number of 
members in cluster i. 

The clustering results were compared with those resulted 
by ECM on-line and off-line. Three experiments were 
conducted to examine the quality of clustering. In the first 
experiment, by setting the k value to 13, the kEFCM was 
employed to cluster the gas-furnace dataset into 15 clusters,  

Figure 7 shows the clusters graphically. The results of the 
second experiment are show in Figure 8 which compares the 
MaxD values obtained by kEFCM and other clustering 
methods. In the third experiment, Figure 9, the kEFCM 
approach (k=7) was used to partition the Iris dataset.  By using 
(eq. 10), the cluster purity is computed for kEFCM and other 
clustering methods. 

 

Fig. 7. Clustering gas-furnace dataset into 15 clusters (k=13), ♦: input 
vector, ■: cluster center 

 

Fig. 8. Comparing the kEFCM against ECM in Terms of MaxD Over Gas-
furnace Dataset 

 

Fig. 9. Comparing the kEFCM against Fuzzy Clustering Methods in Terms 
of Clusters Purity Over Iris Dataset 
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TABLE III.  COMPARING THE KEFCM AGAINST FUZZY CLUSTERING METHODS IN TERMS OF NMI OVER MULTIPLE DATASETS 

Methods 
Datasets 

Average 
Glass (k=13) Ecoli (k=11) Balance Scale (k=13) PID (k=11) 

kEFCM 0.341 0.601 0.175 0.116 0.308 

k-Mean 0.320 0.570 0.121 0.102 0.278 

FCM 0.333 0.574 0.118 0.114 0.285 

MKFC 0.355 0.574 0.120 0.140 0.297 

TABLE IV.  COMPARING THE KEFCM AGAINST FUZZY CLUSTERING METHODS IN TERMS OF ARI OVER MULTIPLE DATASETS 

Methods 
Datasets 

Average 
Glass (k=13) Ecoli (k=11) Balance Scale (k=13) PID (k=11) 

kEFCM 0.177 0.384 0.139 0.140 0.210 

k-Mean 0.172 0.384 0.129 0.136 0.205 

FCM 0.181 0.387 0.138 0.143 0.212 

MKFC 0.179 0.383 0.135 0.116 0.203 

The following points can be concluded from the results: 

 Although the perfect value of MaxD was obtained by 
ECMs, kEFCM achieved very close value, 0.180.  

 We computed the standard deviation (stdev) of MaxD 
for all gas-furnace clusters to check the consistency in 
the size of clusters. The obtained value 0.3221 shows 
good consistency. 

 Despite the fact that kEFCM is a single distance-based 
method and may create large number of unstable-
mixed-class clusters [27], its ability to remove this kind 
of clusters is an advantage. kEFCM is equipped with 
optimization procedure that mainly works against 
unwanted clusters. It handles two constraints: P(I)=0 
and P(V)= 0. The cluster purity reflects this ability, in 
contrast with ELM and FRBC, kEFCM performed at a 
comparative value 90.20%, which means that kEFCM 
produces small rates of unstable-mixed-class clusters. 
Also, kEFCM outperformed both FCM and PCM 
clustering methods. 

C. kEFCM Performance 

We used two common performance metrics to examine the 
kEFCM in terms of overlapping: Normalized Mutual 
Information (NMI) and Adjusted Rand Index (ARI) [28]. 
These metrics compute the level of similarity between 
clustering system resulted by a method and compare it against 
the ground truth classes. A higher value means better 
clustering. There values ranged from 0-1, 1 means perfect 
match. 

Equation 11 is used to compute the NMI of two clustering: 
C1 clustering resulted and C2 ground truth clustering, of a 
dataset X of n objects: 

   (     )   
 (     )

√ (  ) (  )
    (  ) 

Where: 

 (     ) the mutual information between C1 and C2. 

H(C1) and H(C2) the entropy of  C1 and C2. 

Regarding the ARI, the following equation is used: 
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Where: 

a = # pairs of data that are in the same class in     and 

same cluster in    , 

b = # pairs of data that are in the same cluster in    , but 

not the same class in    , 
c = # pairs of data in the same class in     , but not the 

same cluster in    , and 

d = # pairs of data that are not in the same cluster in     

nor class in    . 
In Tables 3 and 4, we present the NMI and ARI values over 

multiple datasets for kEFCM and different methods. The last 
column (Average) of Table 3 displays the average of NMI 
value for each method over 4 datasets. kEFCM has the best 
average NMI over all methods. For each individual dataset, 
kEFCM outperforms all clustering methods in two datasets 
(Ecoli and Balance Scale), while in the other two datasets 
(Glass and PID), it is only outperformed by MKFC to be 
ranked as the second best method. Table 4 presents the results 
in terms of ARI. The results are slightly changed in contrast to 
NMI. The kEFCM is the second best in terms of average ARI. 
It is ranked first for only one dataset (Balance Scale) and 
ranked second for the remaining datasets. However, despite 
that, kEFCM, in overall results, has yielded a comparable 
stable performance. 

D. Computational Time & Clustering Complexity 

As discussed in Section IV, initially, kEFCM takes a data 
points and searches for a cluster that best fits the point with its 
k nearest data points. Then, it loops through the rest of the un-
clustered points, each iteration of the loop repeats the same 
process. To prevent the unwanted overlapping clusters, 
kEFCM applies equations 8 and 9. 

This set of experiments is devoted to examine the 
computational time along with complexity of the cluster 
resulting. For the purposes of comparing, we chose FRBC and 
FCM clustering methods. The results on Iris, Glass, and Ecoli 
datasets, which are appeared in related research papers, are  
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compared with those obtained by kEFCM in Table 5. Although 
the kEFCM consumes more computational time than FRBC 
and FCM, it is obvious that there is a few timing differences. 
Add to this, the computational time depends directly on the 
number of samples within the dataset. 

TABLE V.  COMPUTATIONAL TIME (SEC) OF KEFCM, FRBC, AND FCM 

Methods 

Datasets 

Iris 

(k=13) 

Glass 

(k=7) 

Ecoli 

(k=11) 

kEFCM 1.330 1.410 1.472 

FRBC 1.000 1.000 1.200 

FCM 0.170 0.100 0.100 

With respect to the clustering complexity, according to our 
view, the complexity of clustering means: 

1) Creation of a large number of clusters in off-line 

phase. 

2) Generation of clusters is increasing exponentially in 

on-line phase. 
It has been noted that the number of clusters highly 

depends on k value, the number of nearest neighbors, which 
means that the number of clusters is subject to control by the 
user. Any value of k gives a highly accurate result has to be 
adopted, since the accuracy is the most important criterion. 
However, in general, kEFCM shows adequate stability and 
constant evolution throughout the testing. Figure 10 illustrates 
two examples of cluster evolutions on different datasets. In the 
first example of the Heberman survival dataset (k=11), 6 
clusters were created off-line to accommodate 10 samples. In 
on-line phase, when new 90 samples were introduced, it 
created 14 new clusters to accommodate them. In the second 
example, the Relational Banana dataset (k=13), kEFCM 
created only 5 clusters off-line to accommodate 10 samples, 
and then it created 24 clusters on-line to accommodate new 90 
samples. Despite that kEFCM started in both examples with a 
big number of clusters, it created a very small number of 
clusters in on-line phase, which means, also, an effective way 
in clustering unseen samples dynamically. 

VI. CONCLUSION 

We have proposed in this paper kEFCM, kNN-based 
evolving fuzzy clustering method. It is an enhanced version of 
traditional kNN machine learning. kEFCM approach uses the 
least-squares method for determining the cluster center and 
radius. The Euclidean distance is used to reflect the 
membership of a data point in a cluster. The method performs 
an optimization procedure that handles two constraints, 
probability of inclusion P(I)=0 and probability of violation 
P(V)=0. In on-line phase, kEFCM is able to carry out the 
incremental learning, which is the core tool of evolving. It 
reduces the computational time that is inherited from kNN by 
involving the cluster centers in making classification decision. 

The clustering ability of kEFCM was examined by 
benchmarking a collection of real-world datasets. The results 
obtained were compared against several well-known clustering 
methods. The results showed that the kEFCM performs at a 
good competitive level. The possible future work will turn to 

deploying kEFCM onto real-world environment, where 
intuitively, it will perform at the same level of success. 

 
 

Fig. 10. Cluster Evolutions 
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