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KELLER'S CUBE-TILING CONJECTURE
IS FALSE IN HIGH DIMENSIONS

JEFFREY C. LAGARIAS AND PETER W. SHOR

Abstract. O. H. Keller conjectured in 1930 that in any tiling of R" by unit

«-cubes there exist two of them having a complete facet in common. O. Perron

proved this conjecture for « < 6 . We show that for all « > 10 there exists a

tiling of R" by unit /i-cubes such that no two «-cubes have a complete facet

in common.

1. Introduction

In 1907 Minkowski [5] conjectured that all the extremal lattices for the supre-

mum norm were of a certain simple form and observed that this conjecture had

a geometric interpretation: in any lattice tiling of R" with unit «-cubes there

must exist two cubes having a complete facet ((n - l)-face) in common. He

proved this for n = 2 and 3. In studying this question, Keller [4] generalized it

to conjecture that any tiling of R" by unit «-cubes contains two cubes having

a complete facet in common. In 1940 Perron [6] proved Keller's conjecture

for dimensions n < 6. Soon after, Hajós [2] proved that Minkowski's origi-
nal conjecture is true in all dimensions. Keller's stronger conjecture remained

open. Hajós [3] later gave a combinatorial problem concerning factorization of

abelian groups, which he proved was equivalent to Keller's conjecture. Stein [7]

gave a survey of these results and other related tiling problems.

More recently, Szabó [8] showed that if Keller's conjecture is false in R" ,

then there exists a counterexample tiling in some Rm (with m> n) having the

following extra properties: the centers of all cubes are in jZm , and the tiling

is periodic with period lattice containing 2Zm . Corrádi and Szabó [ 1 ] studied

a graph-theoretic version of this latter problem, showing directly that there are
no such counterexamples for m < 5 .

We explicitly construct a counterexample tiling of Szabó's type in R10.

Keller's conjecture is then false for all « > 10 because a counterexample tiling

in W gives one in R"+1 by "stacking" layers of this tiling with suitable trans-
lations made between adjacent layers.

2. Main result

We prove the following result.

Theorem A. For n = 10 and 12 there exists a tiling of R" by unit cubes such
that

(1) The centers of all cubes are in jL" ;

(2) The tiling is periodic with period lattice 2Z" ;
(3) No two cubes have a complete facet in common.
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Before giving the constructions, we describe Corrádi and Szabó's equivalent
graph-theoretic criterion for such a tiling to exist in R" .

Scale everything up by a factor of 2 to consider tilings of R" by translates
of the cube

C = {(x\, ... , x„) : -1 < x, < 1 for all /}

of side 2 centered at the origin, such that the centers of all cubes are in Z" , and

the tiling is periodic with period lattice 4Z" . There are 2" equivalence classes
of cubes m + C + 4Z" in such a tiling, and each equivalence class contains a
unique cube with center

(1) m= (mi, ... , mn) € Z",        0<m,<3.

The collection S? of these 2" vectors describes the tiling.

Now form two graphs G„ and G*, each of which has 4" vertices labeled by

the 4" vectors in Z" of form (1), as follows. Consider the conditions:

(a) m and m' have some |m*i — m'¡] = 2.

(b) m and m' differ in two coordinate directions.

G„ has an edge between vertices m and m' if (a) holds, while G* has an

edge between m and m' if (a) and (b) both hold. Condition (a) says that all

translates under 4Z" of cubes C centered at m and m' have disjoint interiors,

while (a) and (b) together say that all translates under 4Z" of such cubes also
do not have a complete facet in common.

A set S? of 2" vectors satisfying (1) yields a 4Z"-periodic cube tiling if and

only if S? forms a clique in Gn and it yields a 4Z"-periodic cube tiling with no

two cubes having a complete facet in common if and only if 5? forms a clique

in G*n . This gives the Corrádi-Szabó criterion that a Szabó-type counterexample
exists in W if and only if G*n contains a clique of size 2" .

The graph Gn is the complement of the product graph C4 ® C4 <g> • • • ® C4 of
n copies of the 4-cycle C4 . It has maximal clique size equal to the independent

set number of C4 <g> • • • <g> C4 , which is a(C4)n = 2" since C4 is a perfect graph

and a(C4) = 2. In fact, G„ has an enormous number of maximal cliques, and
the problem is whether or not any of them remain a clique in G*.

Note also that the graphs Gn and G*n have large groups of automorphisms.

On both graphs one can relabel the vertices m = (m\, ... , mn) by relabeling

the ith coordinate using the group generated by the cyclic permutations (0123)

and the 2-cycle (13), and one also can permute coordinates. This generates a
group of 8"« ! automorphisms.

Table 1. Clique ET in <73.

0 0 0
2 0 1
1 2 0
0 1 2
2 0' 3
3 2 0'
0' 3 2
2 2 2
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Proof of Theorem A. We give the easier 12-dimensional construction first. It

starts with the set 3~ of vectors given in Table 1, which (ignoring the primes
on some zeros) is a clique of size 8 in G3. It is very nearly a clique for G\ ,

in that it omits only three edges, namely, 201- 20'3, 120- 320' ,012- 0'32. If
somehow 0' were distinct from 0, while it was still the case that 2 - 0' = 2,

then this would be a 23-clique for G^ and would give a counterexample.

We use a block substitution construction that in effect accomplishes this in

R3fc for suitable k. Assign to each of 0, 0', 1, 2, 3 sets S0, S0, Si, S2, S3

of vectors in {0, 1,2, 3}* having the following properties:

(i) Each of So, S'0, Si, S2, S3 is a clique in G*k .
(ii) No two of the sets So, S'0, Si, S2, S3 have a common vector.

(iii) So U S2, S'0 U 52 , and Si U S3 are each a clique in Gk .

Assuming (i), (ii), the last condition (iii) says, e.g., for So US2 each element of

So differs from each element of S2 by 2 (mod 4) in some coordinate.

Call the vectors in the sets S, blocks. Form the set 5? of all vectors in

{0, 1,2, 3}3¿ that can be formed by taking any vector (mi, m2, m3) e &~ and

for each m¡ substituting any block in the corresponding Sm¡, independently

for each i.

Claim. 5^ is a clique in G\k .
To prove this, let v, v' be distinct elements of S? constructed from m =

(mi, m2, m3) and m' = (m[, m'2, m'3) in ¿7", respectively. If m = m' then

v, v' have some block w, w' e Sm¡ where they differ, and condition (i) forces an

edge between v and v' in G*ik . If m ^ m' then m and m' differ by 2 in some

coordinate (here 0' and 2 are considered to differ by 2), which carries over to

v and v' by condition (iii), and m and m' also differ in another coordinate,

where 0 is treated as distinct from 0', and this carries over to v and v' by

condition (ii), proving the claim.

If one can choose |Sn| = |S0| = a, \S\\ = b, \S2\ = c, and |S3| = d with

a + c = 2k , b + d = 2k , then \5"\ = a} + 3abc + 3acd + c3 = 23* will be a
clique in G*ik , thus giving a counterexample.

We achieve this with k = 4, a = b = 12, c = d = 4, with the sets
So, S0, Si, S2, S3 given in Table 2 below. The sets So, S0, S2 were obtained

Table 2. Blocks used in constructions.

So S0 S2 Si S[ S3
0000
0012
0213
0230
0332
1020
2100
2112
2220
2301
2322
3132

0303
1011
1113
1130
1323
1331
2211
3001
3022
3103
3223
3231

0211
1132
2303
3020

1000
1012
1213
1230
1332
2020
3100
3112
3220
3301
3322
0132

1303
2011
2113
2130
2323
2331
3211
0001
0022
0103
0223
0231

1211
2132
3303
0020
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from a 28-clique for G*5 given in [1, Table 2]. Examining the first column

of this 28-clique, one finds twelve vectors each having value 0 and 2 and four

having value 1. Deleting this column and grouping the resulting Z4-vectors as

So, S0, S2 , the G5-clique property guarantees that all the conditions (i), (ii),

(iii) that concern only So, S0, S2, automatically hold. Next we apply a suitable

automorphism of G\ to So, S2 to obtain Si, S3. For any automorphism con-

ditions (i) and (iii) will automatically hold for Si, S3 obtained this way. Thus

we need only to find an automorphism where (ii) holds. The automorphism

that cyclically permutes the labels of the first coordinate 0 -+ 1 —> 2 —> 3 —> 0

gives suitable Si, S3, as listed in Table 2.
The conditions (i), (ii), (iii) can be verified directly for So, S0, Si, S2, S3 by

hand calculation. Aside from the distinctness of all elements, the automorphism

sending (So, S2) to (Si, S3) means that one need only check properties for
So, S0, S2. The calculation can be further reduced by observing that there is

an automorphism of G^ that fixes S2 and sends So to S0 . This automorphism

cyclically permutes the labels of the first coordinate 0—>1—>2—>3—>0 and

the last coordinate 0-+3-+2—► 1 —> 0, and then exchanges these coordinates.

Thus one need only verify that So and S2 are G% -cliques and So U S2 is a
(74-clique.

The 10-dimensional construction is similar in nature and is based on the fact

that the set &~ = So U S2 from Table 2 is a clique of size 24 in (74, which is

very nearly a 24-clique for G*A . In G*A it omits only the four edges 0213-0211,

3132-1132,2301-2303, 1020-3020. Now regard S2 as being

0 2    1'    1
1 1'    3    2
2 3    0'    3
3 0'    2    0

where we want 0^0' and 1^1'. Assign to 0, 0', 1, 1', 2, 3 the sets of
blocks So, S0, Si, Sj, S2, S3 in Table 2, where S¡ is constructed from Si
similarly to S0 from So . These sets satisfy:

(i) Each of So, S0, Si, S{, S2, S3 is a clique in G|.
(ii) No two of these sets have a common vector.

(iii) S0 U S2, S0 U S2, Si U S3, and S{ U S3 are each a clique in G4 .

Apply the block substitution_construction to the second and third columns

only on &~ to obtain a set 5? of 210 10-vectors. This is a clique in G*0,

as required. Note that only the second and third columns need to be ex-

panded in blocks, because the primed elements in S2 above appear only in
these columns.   D

3. Discussion

The failure of Keller's Conjecture in high dimensions illustrates the general

phenomenon that Euclidean space allows more freedom of movement in high

dimensions than in low ones. It is interesting that the critical dimension where

Keller's Conjecture first fails, which is at least 7, is as high as it is.

It may be a difficult matter to determine exactly the critical dimension. Ex-

haustive search for Szabó-type counterexamples already seems infeasible for

Gj ; the maximum clique problem is a well-known NP-complete problem, which

is also computationally hard in practice. The authors ruled out the existence of
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any 27-clique in (7} that is invariant under a cyclic permutation of coordinates
by computer search. It is conceivable that there exist Szabó-type counterexam-

ples in dimension 7, 8, or 9, which are all so structureless that they will be hard

to find. In any case we have so far found no variant of the constructions of
Theorem A that work in these dimensions.

A natural extension of Keller's conjecture is to determine the largest inte-

ger Kn such that every tiling of R" by unit cubes contains two cubes that

have a common face of at least dimension K„ . For a Szabó-type tiling, two

cubes having coordinates (mi, ... , m„) and (m\, ... , m'n) in G* have a k-

dimensional face in common if |m, - m'¡\ = 0 or 2 for all i, and exactly k

values \m¡ - m'¡\ = 0.   The 10-dimensional and 12-dimensional cube tilings

5? and S? constructed in Theorem A each contain two cubes sharing a com-

mon face of codimension 2, so they imply only Kio < 8 and Ki2 < 10. We

have found a different 10-dimensional cube tiling (using a similar construction)

which shows that Kio < 7. We also can show that n - K„ —>oo as « —> oo ;

details will appear elsewhere.
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