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Summary. A Kelvin—Holmholtz instability, formed from the differential
rotation in the narrow region between the core and envelope, is proposed as a
promising mechanism responsible for the excitation of pulsations in B-type
variables (53 Per variables and §§ Cep stars), in which the unstable inertia wave
resulting from this instability resonates with an eigenmode of the non-radial
oscillation of the whole star. The degeneracy of the two frequencies is found
to be expected at any evolutionary stage of a star. The equations for a
Kelvin—Helmholtz instability have been formulated for the stellar case, and in
the cylindrical configuration limit, the necessary condition for instability and
characteristics of the instability have been discussed. It is shown that
prograde modes with large |m | for a given [ are excited in almost all cases;
which seems to agree with observations. The back reaction of the excited
modes on the differential rotation is discussed in these stars, and it is pointed
out that the differential rotation can be significantly affected by this effect in
a short time.

1 Introduction

In early B-type stars, there are two small groups of oscillating variables called 8 Cepheid stars
and 53 Persei variables. §Cep stars are restricted to between B0.5 and B2 and between
luminosity classes III and IV. Lesh & Aizenman (1973) pointed out that these stars lie near
the end of the core hydrogen burning stage with masses of 10—20M,. Osaki (1971) showed
that the beat phenomenon and line profile variation in some §Cep stars are most naturally
explained by non-radial oscillations of a rotating star. Smith and his colleagues (Smith
1978; 1980a, 1981; Smith & McCall 1978; Smith & Buta 1979) found that 53 Per variables
(53 Per, 10 Lac, ¢Her, 22 Ori, v Ori) exist around 8 Cep stars in the HR diagram, and show
large line profile variations and comparatively small radial velocity and light variations.
Smith (1980c¢) noted that all 53 Per variables are wholly non-radially pulsating stars.
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The physical mechanism of excitation of oscillations has been investigated but still
remains unsolved. Davey (1973) has examined the pulsational instability for the stellar
models corresponding to the evolutionary stage of B Cep stars by using linear non-adiabatic
analysis, but he did not find any pulsational instability. However, Smith (19800, ¢) recently
claimed that all B Cep stars have a radial mode as an active mode. Re-examination of the
stellar opacity in the relevant condition is worth studying. Also instability towards non-
radial pulsations has been investigated for § Cep models by Osaki (1976), but he did not find
any instability.

On the other hand, in BCep stars a wave travelling around the equator in the same
direction as the rotation with the negative azimuthal index m (i.e. m < 0) is, as pointed out
by Osaki (1971), preferably excited. Hansen, Cox & Carroll (1978) have claimed that the
opacity-driven mechanism has a tendency for the negative m-modes in a rotating star to be
the least stable ones against pulsation. However, their physical reason was not given.
Therefore, it is suggested that the excitation mechanism may be closely related to the
rotation or some similar effect.

Osaki (1974) proposed a new physical mechanism of resonant excitation of non-radial
oscillations by oscillatory convection in the stellar core, and showed that if a star has a
rapidly spinning core at the zero-age main sequence (ZAMS), the degeneracy of the
oscillatory convective mode and the non-radial f-mode is possible only in the late stage of
the main sequence band, since the f-mode is found to have a significant amplitude only in
the convective core and near the surface. On the other hand, higher harmonic g-modes
(radial index k~10-20) which are prograde ones (though only in 22 Ori have retrograde
modes been identified by Smith 1980a) are found in 53 Per variables.

In this paper we investigate the possibility of a Kelvin—Helmholtz instability as another
alternative mechanism, which is expected in the differentially rotating region. In Section 2
we will formulate the equations of Kelvin—Helmholtz instabilities in stars and derive their
characteristics. The realization of this instability including its possible resonant excitation
with non-radial oscillations will be discussed in Section 3, and Section 4 contains a
discussion.

2 Kelvin—Helmholtz instability in stars

Kelvin—Helmholtz instabilities have been studied, mainly in applied mathematics and
geophysical fluid dynamics, as instabilities of plane parallel flow (see the excellent review
article of Drazin & Howard 1966). This is overstability of inertia waves and was explained by
Gill (1965) to be formed as a result of an unstable distribution of vorticity in the flow. We
may therefore expect the possibility of this instability in a star where there is vorticity
distribution (i.e. shear flow).

Throughout the lifetime of a star, it can, more or less, have differential rotation. As
Kippenhahn, Meyer-Hofmeister & Thomas (1970) have discussed under certain assumptions,
a rapidly spinning core in a star may be developed due to core contraction during its
evolution. In addition to this fact, Bodenheimer & Ostriker (1970) suggested that even in the
ZAMS stage a central core may rotate rapidly. Thus it is expected that generally there is a
shear flow due to differential rotation in the narrow region between core and envelope. If a
Kelvin—Helmholtz instability in this narrow region results in the occurrence of inertia waves
and if the frequencies of these waves happen to coincide with those of non-radial
oscillations of the whole star, the non-radial modes can be excited. As these modes have a
significant amplitude at the surface (even for g-modes: see Unno et al. 1979), they may be
observed at the stellar surface; this is a mechanism we propose here. We will now derive the
basic equations for Kelvin—Helmholtz instabilities.
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2.1 BASIC EQUATIONS

Here we are interested in the characteristics of Kelvin—Helmholtz instabilities and in their
back reaction on the differential rotation (mean flow). We therefore assume, for simplicity,
adiabatic motion throughout the region considered here, though this assumption is not
always valid. We neglect the effect of molecular viscosity, because it is so small that it takes
more than the lifetime of a star to transport the angular momentum and to smear out the
stellar differential rotation. The basic equations are given by

)
pa—u+p(U-V)u=—Vp—de>, (1
t
)
%+ V.(pu)=0, @)
ot
ap op
cz[—+u-V:|=—+u-V 3
o Pl =7, p (3)
and
V2d =47Gp, 4)

where ¢? =yp/p, and the other symbols have the usual meanings. We assume the angular
velocity €2 is axially symmetric, and that all perturbed quantities behave as exp {i(ot + m¢)},
where ¢ is the azimuthal coordinate.

The governing equations of mean flow (i.e. differential rotation) can be obtained by
averaging equations (1)—(4) along the azimuthal direction, and are

@) + ! Vi -(p&5Vvy)=0 (5
p —_ . U = s
or o PV
POXQXT) == Vip—p %, ©)
ap
—_—= 0’ 7
5 (7)
op Op
c?—=— 8
or ot ®)
and
Vid =47Gp, 9

where @, V, Uy, and V; are cylindrical polar radius, poloidal component, azimuthal
component of perturbed velocity, and poloidal component of the differential operator v,
respectively, and other physical quantities represent those of the mean flow, and a bar above
quantities means the average along the azimuthal direction. Among non-linear terms,
turbulent mass transport or conduction p'v is very small, and has been dropped from the
basic equations. The turbulent Reynolds stress V- (powv) is retained in equation (5), but can
be neglected in equation (6) governing hydrostatic equilibrium, since its effect on the mean
structure may be considered to be negligibly small.

By subtracting equations (5)—(8) for the mean flow from the basic equations (1)—(3), we
can get the equations for the perturbed motion. After some manipulations, we get the
following equations

0 %)
P [(5;+ Qzﬁ)vi] & +2Qxv+(Vv-VQ)wey,=—Vp' —p'Vd+pf (10)

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z uo 1sonb AQ G00/86/6€ | L/7/.6 L/2101HE/SEIUW/ WO dNO DIWSpEoE//:SA)Y WOl PPEOjUMOQ


http://adsabs.harvard.edu/abs/1981MNRAS.197.1139A

FTOBIVNRAS. 197 T130A!

1142 H Ando
a 017 ,
[(_—);H)g;]p + V.(pv)=0 an
and
2 [(_a_+Q_E)_)p'+v.vp]=(—a—+Qi)p'+v-Vp, (12)
ot 29 or  0¢

where quantities denoted by a prime are the Eulerian perturbations, and v, ey, and f "are
perturbed velocity, unit vector of azimuthal direction, and turbulent Reynolds stress (non-
linear term), respectively. It should be noted that the centrifugal potential of rotation
appearing in equation (6) is already involved in the expression ® in equation (10). We have
also adopted the Cowling approximation (@' =0) for simplicity, which is good
approximation for almost all cases.

It is worthwhile to be reminded that equation (5) is the general equation describing the
angular momentum transport for any periodic motion along the azimuthal direction. The set
of equations (10)—(12) describe the motion due to Kelvin—Helmholtz instabilities, and its
expression has already been given by Papaloizou & Pringle (1978) in terms of the orthogonal
coordinates (Y, x, ¢), where { is the distance of equipotential surface from the centre along
the rotation axis, and ¢ is the azimuthal coordinate.

Next we derive the energy equation to see the energy balance of this instability and the
back reaction of this instability on the differential rotation, whose actual effect will be later
discussed. From equation (5) we get

o1 .
- —pazﬂz] +QV1-(p'G§VU¢)=O, (13)
orL2

and by further integrating this equation over the whole volume with the condition v =0 at
the boundary surface, we obtain

3,

— +M=0, (14)
ot

where

Ey= [#hoe?Q?av (15)
and

M=- fpvad,-v Qdv (16)

are the total rotation energy and the total energy supply from rotation to the motion
induced by Kelvin—Helmholtz instability through Reynolds stress, respectively. Following
a similar derivation to that of Unno et al. (1979), who gave energy equation for non-radial
oscillations of non-rotating star, we can give the energy equation for a rotating star from
equations (10)—(12), that is

) a]
—+Q —|(peg)+ V-F=v:[pf —pmuvs V2], 17
[at 5 (pex) [of' —p3vy V1Q] (17)
where
1 Vo) p' p'\? '\ 2
el ()
2 A \vyw p pc
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with the Brunt—Viisila frequency

A=Vd.V In(p"p)

and (19)
F=p'v.
After integration of this equation over the whole volume, we obtain
oF.
at
where
E, = fpeK dv (21)
and
N==[pv-£'av (22)

are the total wave energy and the dissipative energy by turbulent viscosity, respectively. It is
interesting that equations (14) and (20) lead to the following physical progression of the
Kelvin—Helmholtz instability through the energy flow. If this instability takes place under
proper differential rotation, the wave energy of the inertia wave induced by this instability
grows through energy supply accompanying angular momentum transport from the mean
flow (differential rotation) according to equation (20). This instability continues to grow
until the non-linear effect (turbulent viscosity) becomes significant and balances Reynolds
stress from the mean flow, and after that the steady state is realized. On the other hand,
mean flow, that is differential rotation, is significantly modified according to equation (14).
This modification time-scale is usually long compared with the growth time of this
instability, and thus we can estimate how long this instability is sustained. This problem is
very important in the realization of this instability in stars, which will be discussed later.

2.2 KELVIN—-HELMHOLTZ INSTABILITY IN STARS

For the sake of theoretical clarification, we assume here the applicability of the Bousinesq
approximation, in which density variation is only taken into account in the buoyancy term,
and the pressure perturbation P’ in equation (12) is neglected. This approximation is valid
for the inertia wave considered in the narrow region, where the differential rotation is
usually confined, as noted before. Keeping in mind that all perturbed quantities behave as
exp {i(ot + m¢)}, the equation for the Kelvin—Helmholtz instability from equations (10)—
(12)is

m[ Vh V-V — Vi(V- VR)]

V(&% V,-V)+ m%V =0, 3
(@ V- V) - (23)
where
A
l———— 0
(U+m9.) (24)
A = ’
0 1
h=w2Q,

and also turbulent viscosity has been neglected in order to investigate linear stability.
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It is difficult to discuss this problem using equations (23) in a general way, since these
equations are second-order partial differential equations of motion. No one has so far
attacked this problem directly, except by using the general properties, like the energy and
vorticity integral. Papaloizou & Pringle (1978) reduced these equations to the ordinary
differential equation for the ‘r-mode’ with the assumption of v, =p' =0. However, this
mode is a toroidal mode, and thus scarcely propagates along the y-direction. Therefore,
we cannot apply the equation of motion for the ‘r-mode’ to discuss the characteristics of
the Kelvin—Helmholtz instability propagating along the y-direction. For this purpose, we
should use equation (23) directly, which is very difficult for the reason mentioned above.
We reduce equation (23) to an ordinary differential equation valid near the equatorial region
(i.e. x ~ 90°). The resultant equation is quite similar to that for the cylindrical configuration,
and thus the characteristics obtained may be, as shown later, applied to those for the
cylindrical one (see Howard & Gupta 1962). This approximation is valid only for the higher
tesseral harmonic waves and/or for the waves trapped in the equatorial region, which is
realized for g-modes in a rapidly rotating star (see Papaloizou & Pringle 1978). However, the
results obtained from our following discussion can be considered not to be completely
inapplicable to the general discussion, since the cylindrical configuration is sometimes a
good approximation in the general one (ellipsoidal body). After some manipulation the
corresponding equation becomes

A +mrzD(Dh/r‘") k2D (h?) ]
(0+mQ)? 1Y(c+mQ) [*(0+mQ)*rd

where D =d/dr, and we replace the coordinates (¥, x, ¢) with the spherical ones (7, 8, ¢),
and k is a wavenumber for the 0-direction, and /2 = m? + k2. We also assume 2 depends only
upon .

Let us derive the characteristics of Kelvin—Helmholtz instability. We consider that the
motion is unstable if equation (25) possesses a non-trivial solution with boundary condition
vp(r1) = v(r;) =0 and Im o < 0. Supposing we have an unstable case, set v, = H(o + mQ)"?,
some definite branch being selected. In terms of H, equation (25) becomes

D?*(r*v,) —1? [l — v, =0, (25)

1 ( Q 1
D[(c +mQ)D(r*H)] —1*(c + mQ) [1 +— 2mr2D(7) +5mr2D29}

120 +mQ) |
21 (4 02 (26)
1 1 L, kDR )

Multiplying this equation by r2H* and integrating over range (r,, r,), we get

Lp) 7, Q 1
f (c+mQQ)[IDE*H) > +1%r? |H|*  dr + f [2mr2D(—) + 5 m2r2D2Q]r2 |H|*dr
¥y r

ry

20 (r4 (27
The imaginary part of this equation gives
frz (ID(r*H) 1> +1%r*|H P dr =— frz [I2A +k2L:Qz) ! m’rz(DQ)z]
r " r 4 28)

r?|H|?
X——'———2 r.
lo+m|
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Equation (28) gives as a sufficient condition for stability
J=1/4  everywhere, (29)
where
124 +E2D(r*Q*)/r3
oy (30)
m*r-(DS)

Therefore, the effect of stratification through 4 usually stabilizes the motion. Using the
rotation scale height Hq, = (dr/d 1In £2), we now discuss the necessary condition for instability
which violates condition (29). This condition is obviously given by

J<1/4  somewhere, (31)
where
1’4 k*\ (Ha\? k? (Hq
J=( +4—)(—) +2v(——). 32
m:Q*  m?/\ r m2\ r 32
From equation (31), we obtain
H
a<—2 <, (33)
’
where
O<fB<—a.

As shown later in equation (49), o~ |m |, and in B-type stars discussed here the (4/0?)
values for the evolved stage and for the near ZAMS stage are usually 100 and 1, respectively
(see Unno et al. 1979). So if we assume [ =2, m =1, the strengths of differential rotation
necessary for instability for each case are

|Hol 1
—— < — for the evolved stage
r 20
and (34)
|Hol 1
< —  for the near ZAMS stage.
r

This implies that instability usually requires the rotation scale height Hg to be smaller
compared with the radius at the relevant region, and that stronger differential rotation is
demanded for instability with an increase in the effect of stratification.

Here we should give one comment on the k2-term in equation (30) to avoid confusion.
This term is the so called ‘Rayleigh criterion’ for stability, when the condition D(r22)> 0
is satisfied. Some people have confused this condition with a necessary and sufficient
condition for stability, which is, as pointed out with physical argument by Kippenhahn &
Thomas (1981), not true. In fact even if this Rayleigh condition D(r2£) > 0 contributes to
stabilizing, instability can be, as indicated by equation (33), conceivable as far as the
differential rotation is strong enough. In equation (30), the m?-term in the denominator is
thus so large that the J-value may become smaller than 1/4. In any case, to understand
Kelvin—Helmholtz instabilities more, it is necessary to discuss them from the viewpoint
of interactions between rotation and waves than to do so with each term in equation (30).
This discussion will be given elsewhere.

Equation (31) can bound on the ratio m/l possible for unstable waves, that is

S<(T)2 <1, (35)
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where
A+DF*Q>)/r3
S= 'n[ 2 2 402 3]‘
%r*(DQ)* +D(r*Q%)/r

Equation (28) may also give a limitation on eigenvalues o =g, +i0; possible for any
instability and it gives

v, 2,2 92 12 2 H2 v,
f [;a+mm2_~’"—i9—)—(1—1)] l—rl—ldr=—f \DC2H)Pdr<0.  (37)

1? 4 o+mQ? ,

(36)

r, 1

Therefore, we find

m*r?(DQ)? (1 )
min[lo+mQ|*)] < max | ——— |- —J)| =R3,
P 4
ie.
(0, + mQ*)? + o7 < R?, (38)

where Q7 is a proper value of £ at a certain point, and chosen for each eigenvalue in such a
way that [0 +mQ* | =min[|o + mQ|]. Equation (38) is similar to the ‘semicircle theorem’
for plane parallel flow derived by Howard (1961). Equation (38) gives

-mQ*—R<o0o,<—mQ" +R. (39)

This leads to the important conclusion that since g, > 0, unstable waves are prograde modes
for the majority of cases, but in some preferable conditions retrograde unstable modes are
also possible. Equation (38) also indicates that the growth rate of instability is of the same
order of magnitude as the rotational one.

While the several properties above have been obtained from the simplified equation valid
for the equatorial region, they are also valid for a cylindrical rotating body, as shown by
Howard & Gupta (1962). As supposed from equation (23), we can also expect a bound on
possible I- values for unstable waves.

As mentioned before, the strong differential rotation may usually exist in the narrow
region between core and envelope, which is also a preferable situaton for instability. This
sometimes allows us to assume that (r, —7;), while small compared with 7, is large
compared with the scale of variation of £. In this case, we can take over as examples any
solutions to the stability problem for unbounded parallel stratified flow with gravity, which
has been discussed in detail by Drazin & Howard (1966). In fact, we get

d* [_( A, +m(d2&20/dy2)+k2(d93/dy)]

— -1’1

o =0 (40)

w+mQ)? H(w+mQy) 1w + mp)? v
where we have adopted non-dimensional values according to
Wr=0(ry/ VD), y=rfry, U=/ V)2,

Qo =Q/(VP/r )2, and Ay =A4/(VP/ry).

In this approximation, general characteristics obtained previously, of course, result. How-
ever, relation (38) is given in a more strict way. We set v = G(w + m ;). In terms of G,
equation (40) becomes

(41)

2 2 2
124 +k (on/dy)] Geo. @)

d (w+ Q)dG] (e + 9)2[1
— (wwTm — | — wTm —
dy[ " dy 0 12(co + mQ)?
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We multiply equation (42) by G * and integrate over (— oo, %), which gives

2 2

o dG o aQ
J (w+mS20)2[—y +l2|G|2]dy=f [12A+k2d—;]|Gl2dy. (43)

Supposing [124 + k*(dQ3/dy)] > 0, and setting w = w, + iw; gives

m 2 m?
[+ @)+t @oor (44)

where @ = max (£2¢) and b = min (2¢). Equation (44) is called ‘semicircle theorem’ which
was discovered by Howard (1961). This relation allows only prograde modes for unstable
waves, in which the pattern of an unstable wave travels with rotation rate at a certain point.
Therefore, generally speaking, retrograde modes can be scarcely excited in a real star.

We will give a solution of equation (40) as an example for the following rotation profile

(Ql (y<0),
Q= 1 (221> 82,>0) 45)

Q (>0

With boundary condition v(—°) =v()=0, and the continuity of pressure and normal
velocity of fluid at y =0, we can get the eigenvalue relation and eigenfunction for the case
of small 4

_m(Q + Q) . VO -21%4 ;

o= (46)
2 21

and
(w+mQy)exp(vy) (¥<0)

v= 47
(w +m8,) exp(—py) (¥>0),

where

0 ="m*(Q; —Q,)? +2lkH Q2 - Q%) >0,

=/l ————1,
Y l 2(w +m Ql)z] (48)

e

The above results indicate that the eigenvalues satisfy the semicircle theorem and that
gravity has a stabilizing effect. Also, the amplitude of perturbation is shown to concentrate
on the differential rotation region and to die out rapidly in the outside. In this example, the
travelling speed of the wave pattern does not depend on the wavenumbers. However, in
general, it depends on wavenumbers, as shown by Drazin & Howard (1966).

Finally we will summarize several characteristics of Kelvin—Helmholtz instability in stars
as follows.

(1) In almost all cases, the wave pattern of the unstable mode travels around the rotation
axis with the rotation speed at a certain point within the differentially rotating region,
whose position depends on the wavenumbers, that is:

Op~—m Q(ro)- (49)
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Thus prograde modes can usually be excited. However, there still remains the possibility of
excitation of retrograde modes in some circumstances.

(2) For a given total wavenumber /, the modes with larger azimuthal wavenumber [m |
can be preferably excited.

(3) In general, gravity has a stabilizing effect on this instability.

(4) The growth rate of the unstable wave is equal in order of magnitude to rotation rate.

(5) The amplitude of the eigenfunction for the unstable wave concentrates on the
differentially rotating region and dies out quickly in the outside.

2.3 BACK REACTION OF KELVIN-HELMHOLTZ INSTABILITIES ON DIFFERENTIAL
ROTATION

On the basis of energy equations obtained in Section 2.1, we will estimate the time-scale of

modification of the differential radiation. From equation (5), the time-scale 7 of angular

momentum transport becomes

ri\? 1
;= ( 1 1) . (50)
u, 916
where € stands for measure of orthogonality of Reynolds stress Vv, defined by
IVugl = eu?. (51)

The value of € indicates the degree of the progressive nature of the unstable waves along the
r- and/or #-direction (i.e. energy transport efficiency). Using equation (25), we obtain
0; AQ

e~ — = —, 52
lol  § (52)

where AS) is a representative difference of rotation rate throughout the stellar layers. Thus
the time-scale 7 becomes

rlﬂl 2 1
. L (53)
u, AQ

3 Possible excitation of non-radial oscillations by Kelvin—Helmbholtz instabilities

In this section we will restrict the problem to the excitation of non-radial oscillations in B-
type variables (53 Per variables and §Cep stars), while Smith (1980b,c) claimed that all
B Cep stars have a radial mode as an active mode.

Obviously from the results obtained in Section 2 we cannot observe the unstable inertia
waves at the surface. Therefore, it is important to examine the possibility of resonant
excitation of non-radial oscillations, which are, even if they are g-modes, observed at the
surface. As mentioned before, a rapidly spinning core may be developed with the stellar
evolution, whether or not a star has uniform rotation at the ZAMS stage. In the early-type
stars (massive star), the differential rotation can be, as Kippenhahn et al. (1970) has shown,
expected in the narrow region between convective core and envelope, which corresponds to
the u-gradient zone, Therefore, in these stars Kelvin—Helmholtz instabilities are possible in
the u-gradient zone if the condition (34) obtained before is satisfied. In such a case the
frequencies of unstable waves are, as shown in the previous section, roughly equal to
rotational ones. On the other hand, in the early-type stars, the rotation rate usually ranges
from 1075 to 10™s™, which corresponds to that of f- and g-modes (cf. Unno et al. 1979),
and also in the u-gradient zone these modes can propagate and thus have significant

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z uo 1sonb AQ G00/86/6€ | L/7/.6 L/2101E/SEIUW/ WO dNO DIWSpEoE//:SA)Y WO} POPEOjUMOQ


http://adsabs.harvard.edu/abs/1981MNRAS.197.1139A

FTOBIVNRAS. 197 T130A!

Kelvin—Helmholtz instabilities in B-type variables 1149

amplitudes. Accordingly, if the frequency of the unstable wave driven by differential
rotation happens to coincide with one of the f- and g-modes, non-radial oscillations may be
excited, which is observable at the stellar surface since even g-modes have a significant
amplitude at the surface (see Unno et al. 1979). The kinetic energy in f- and/or g-modes
is usually much greater than that in unstable inertia waves excited in the narrow region.
Therefore, in order to realize the resonant excitation of non-radial oscillations by unstable
inertia waves, it is necessary that the damping time of non-radial oscillations is longer than
the growth time of unstable inertia waves, at least in the case of small amplitude oscillations,
and the higher degeneracy in the frequency is also required to transport enough energy to
the motion of non-radial oscillations. In fact, the damping time of f~ and g-modes in these
stars is about 102 yr; on the other hand, the growth time of unstable inertia waves is about
the revolution time of a star. We can thus expect this resonant excitation of non-radial
oscillations in these stars if higher phase coherency is fulfilled. It should be noted that
though the resultant amplitude of the non-radial oscillation may be determined by a non-
linear effect, its amplitude in the coupling region cannot be larger than that of the unstable
inertia wave. In this case the results obtained in the previous section about the unstable
inertia waves can explain the following observational facts in 53 Per variables and 8 Cep stars.

(i) Prograde modes have been identified in the majority of cases, though for the case of
22 Ori (one of 53 Per variables) a retrograde mode has been observed.

(if) The observed non-radial modes prefer to sectorial modes (|m|=1) or modes with
larger |m |.

(iii) There often exist multiple periods, some of which show commensurable relations
between them.

If Kelvin—Helmholtz instabilities are responsible for the variability of these stars, we can
guess the angular velocity of the stellar core £, for an active mode of these stars, since the
pattern phase velocity of non-radial oscillations g/m is roughly equal to .. We have given
these values in Table 1 with other quantities for 53 Per variables and § Cep stars, where we
have adopted mean quantities for § Cep stars from Table 7.1 of Unno et al. (1979), and data
for 53 Per variables are based on the recent works by Smith (1978,1979,1980a, 1981). From
this table, we notice that the values of €. for 53 Per variables are roughly equal to mean
angular velocity at the surface for early B-type main sequence stars, and on the other hand
that the surface angular velocity £2.’s are less by about a factor of 10 than .’s, except
for 53 Per. Further for §Cep stars, .’s are larger roughly by a factor of 10 than £.’s,
and s may be equal to the value expected from angular momentum evolution
(Kippenhahn’s « evolution) if the core has a mean angular velocity for an early B-type
main sequence star at the ZAMS stage. In any case, we should postulate that in these stars
(53 Per variables and §Cep stars) the core rotates at the rate expected from the mean

Table 1. Data for 53 Per variables and 8 Cep stars.

Spectral M/Mo R/Ro Ve ot Period m Qe Qe Vosc
type (kms™") (hr) (G s (kms™")
53 Per B4.5V 7 4.0 20 41.7 -3 7.1x107¢ 1.4%x10°° 12
220ri B3IV 10 4.0 >11 22.9 -3 >3.9x10°° 2.5x107° 4-8
v Ori (0°AY 20 72  >20 12.0 -2 >4.0x107° 7.3x10°° 4-5
10Lac 09V 22 7.5 25 4.9 -3 4.8x107 1.2x107* 4-10
tHer B3V 8 4.0 8 9.9 -2 2.9x107° 8.8X107°° 3-6
BCep B0.5S —
stars B2 10 8.0 50 4.5 -2 1.0x10°° 2.0x107* 10
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rotation velocity at the surface of early B-type stars, while the envelope does at a slower rate
(by about a factor of 10), and is a slow rotator. However, differential rotation for a massive
star at the ZAMS, may not be inconceivable as Bodenheimer & Ostriker (1970) discussed.

Next we shall investigate the durability of this instability. To do so, it is necessary to
estimate the time-scale of the angular momentum transport by a non-axisymmetric wave
using equation (53). We can now modify the expression (r; £,/u;) into the following
convenient form

r 2 ro$2 Q
) ).
Uy Uosc, 0 Qo/\ uy

where the quantities with suffix (0) correspond to those at the surface, and vyee and 7y are
the amplitude of a non-radial mode and the relative displacement (6£,/r) of a non-radial
mode at the surface with a corresponding value at the core as unity, respectively. Since
(70 20/Vosc,0) ~ 5, (821/€2)~10, AQ~5%x107° from Table 1 and y~5 for 10M, star
model from Unno et al. (1979), we get from equation (53)

Vosc\ *
T~40(—) yr. (55)
U

The value of (voge/te;) is not certain, since no non-linear coupling calculation exists, but it
is reasonable to assume that u; ~ vy, as mentioned before. Therefore, the time-scale of
angular momentum transport becomes 40 yr at the differential rotation region of B-type
stars. This means that the differential rotation profile at that region can be significantly
affected in a short time, and thus that the instability cannot continue for the lifetime of
the main sequence stage. However, we should notice that the back reaction may contribute
to stopping the instability, but that this cannot lead to the complete uniform rotation in a
short time, since it was pointed out by Gill (1965) that for plane parallel flow the instability
is significantly affected even if the mean flow is modified infinitesimally. We can expect that
the non-radial oscillations excited by this mechanism may be maintained not continuously,
but intermittently.

How about the angular momentum transport by non-axisymmetric non-radial mode itself
(i.e. f- and/or g-modes)? In this case, from equation (52) we can take € ~ 0;/, (107°—107%)
and thus 7~ 4 x 107—10° (yr). This effect is therefore inefficient during the lifetime in the
main sequence stage of a massive star. We conclude that if a star has a core with the same
rotation rate as the mean rotation one in B-type main sequence stars at the ZAMS stage,
inertia waves can be excited by Kelvin—Helmholtz instabilities in the narrow region between
core and envelope and a resonance between unstable inertia waves and non-radial modes of a
whole star is possible.

Finally, a Kelvin—Helmbholtz instability is very sensitive to the second derivative of £ with
r (see Gill 1965). We therefore expect that unstable behaviour in the period and amplitude
and mode switching on a short time-scale observed in 53 Per variables, could arise from
the above fact.

4 Discussion

We have proposed a mechanism which could be responsible for non-radial oscillations of
53 Per variables and B Cep stars, in which the non-radial oscillations resonate with the inertia
waves driven by a Kelvin—Helmholtz instability in the u-gradient zone. If these stars have a
core with the same rotation rate as the mean rotation one in B-type main sequence stars at
the ZAMS stage (while the envelope rotates at the slower rate by about a factor of 10 than
that of the core), inertia waves can be excited by Kelvin—Helmholtz instabilities and these
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waves may resonate in the u-gradient zone with f~ and/or g-modes, even higher g-modes. It is
necessary for this instability that the differential rotation scale height Hg, is smaller than the
radius at the relevant region. It is shown that the differential rotation can be affected in a
short time by the back reaction. The characteristics of unstable inertia waves may explain
the main aspects of the observations in these stars.

So far we have mentioned the favourable side of this mechanism, but there exist several
difficulties in it. The first one concerns the excitation of the radial mode in §Cep stars,
which was claimed by Smith (1980b,c) to be an active mode in these stars. Smith (1980b)
also proposed a possible resonant excitation of radial mode by axisymmetric non-radial
mode (m = 0). However, the theory of Kelvin—Helmholtz instabilities in the differential rota-
tion predicts zero frequency (o, = 0) for axisymmetric modes, which is easily derived from
equation (28). It we are to get the non-zero frequency for this mode, the poloidal current
should be postulated in these stars. We suppose the meridional circulation as a reasonable
candidate. But the derived frequencies are quite long compared with observational ones,
since the frequency of axisymmetric modes in this case is equal in order of magnitude to the
circulation time-scale (Helmholtz—Kelvin time-scale: 10°—107 yr). Therefore it is very
difficult to excite a radial mode in these stars by this mechanism.

The second one relates to the existence of several closer periodicities, which are usually
interpreted by rotation splitting. They cannot be excited directly by this mechanism, and we
may investigate mode interaction as one of many possibilities.

The third one concerns the angular momentum transport from the core to the envelope.
We have pointed out a possibility that a Kelvin—Helmholtz instability can take place inter-
mittently with the evolution of a star and mentioned that this instability does not always
mean the effective transport of angular momentum from the core to the envelope. However,
there remains a possibility of the effective transport of the angular momentum by this
instability. We cannot give an exact answer at present, since this is a non-linear problem
related to the stellar evolution. We would also like to point out that there remains a problem
about the origin of a slowly rotating envelope in these stars, which is beyond the scope of
this paper.

We should note two main differences between the mechanism proposed by Osaki (1974)
and ours. First, the former requires a spinning convective core, while the latter a differential
rotation. Second, the former prefers f“modes and at most lower g-modes, but the latter
may select any f-and/or g-modes as long as the degeneracy is fulfilled. Therefore, Kelvin—
Helmholtz instabilities can be expected for a larger number of cases. In fact Papaloizou &
Pringle (1978) applied this mechanism to dwarf novae. Here we apply it to the solar
160-min oscillation (see Brookes, Isaak & van der Raay 1976; Severny, Kotov & Tsap 1976)
as a possible example. If we assume this oscillaton to be one of the g-modes and to be
excited by this mechanism, the solar core rotation rate becomes (6.5 x 10™/m)s™!, where m
is the azimuthal wavenumber. This value is larger than that estimated by Dicke (1970)
(~ 6 x 1075 s™1) from his observations of solar oblateness, though the value m is not specified.
However, the above discussion is interesting as one of several lines of attack in this problem.

Despite several difficulties involved in this mechanism, it still seems promising for 53 Per
variables and B Cep stars, and the applicability of this mechanism to many problems is
attractive and will stimulate further investigation.
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