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Abstract

We revisit Kemeny’s constant in the context of Web navigation, also known as “surf-
ing”. We generalize the constant, derive upper and lower bounds on it, and give it a novel
interpretation in terms of the number of links a random surfer will follow to reach his
final destination.

1 Introduction

A Markov chain [11, Chapter 4] represents a stochastic process whereby the transition from
one state to another depends only on the current state the process is in. The probabilities of a
Markov chain are described using a transition matrix, which is nonnegative and row stochastic
[5, Section 8.7]. Markov chains are used to model a wide number of physical phenomena [7,
Chapter 7] and have been widely studied in the statistical literature since their inception by
A.A. Markov in 1907. A Markov chain is finite ergodic if its transition matrix is finite, row
stochastic, and primitive [5, Definition 8.5.0].

Kemeny’s constant [7, Corollary 4.3.6] gives an interesting quantity for finite ergodic
Markov chains. Kemeny [4, Section 11.5, Exercise 19] offered a prize for the first person to
find an intuitive interpretation for his constant; as far as we know, to date no intuitive and
straightforward explanation has yet been found.

The aim of this paper is twofold. First, we derive a general formula for Kemeny’s constant
involving the eigenvalues of the transition matrix that allows us to derive upper and lower
bounds on the constant. Second, we give an intuitive and straightforward interpretation of
Kemeny’s constant in terms of user navigation through the World-Wide-Web.

We now briefly set the scene for our Markov chain model of the Web. One of the main
activities of users interacting with the Web is that of navigation (colloquially known as “surf-
ing”) whereby users follow links and browse the destination Web pages. During the process of
navigation users often experience disorientation and lose track of the context, causing them to
be unsure how to proceed to satisfy their original goal; this problem is known as the navigation
problem [9, 10]. Understanding user navigation patterns and their underlying distribution is
important since it can lead to better Web site design [1] with the intention of saving users’
effort by directly guiding them to the most relevant Web pages.

We view the Web as a finite irreducible Markov chain, where the probabilities attached
to transitions denote the expected utility the user attains from following the corresponding
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links. This view is naturally realized by considering the user’s home page as an artificial
starting point for all navigation sessions and assuming that there is a positive probability
(however small) of jumping to any other relevant Web page. During a navigation session the
user follows links according to the transition probabilities and may eventually return to his
home page. Thus a navigation session amounts to a random walk through the Markov chain
that is terminated once the user reaches his final destination, i.e., he has no further incentive
to continue surfing.

Imagine a random surfer who is following links according to the transition probabilities.
At some stage our random surfer is “lost” and does not know the state he is at and where
he is heading for. We show that in this context Kemeny’s constant can be interpreted as the
mean number of links the random surfer needs to follow before reaching his destination.

2 General Bounds on Kemeny’s Constant

Let A be an n×n real or complex matrix. Assume that λ is a nonzero eigenvalue of A with
algebraic multiplicity 1, and let λ2, λ3, . . . , λn denote the remaining eigenvalues of A including
algebraic multiplicities. Let x and yH , where yH denotes the conjugate transpose of y, be right
and left eigenvectors, respectively, corresponding to λ, so that Ax = λx and yHA = λyH .
These two eigenvectors, which are unique up to a scalar multiple, are nonorthogonal, and can
therefore be normalized so that yHx = 1 [5, Lemma 6.3.10].

We next consider the matrix A− λxyH , which has the same Jordan canonical form as A
except that its 1×1 block [λ] is replaced by the 1×1 block [0]. Moreover, the eigenvalues of
λI − (A− λxyH) are λ, λ− λ2, λ− λ3, . . . , λ− λn, so they are all nonzero. The fundamental
matrix associated with A and λ is

Z ≡
(
λI − (A− λxyH)

)−1
. (1)

The eigenvalues of Z are λ−1, (λ− λ2)−1, (λ− λ3)−1, . . . , (λ− λn)−1, so

trZ =
1
λ

+
n∑

i=2

1
λ− λi

. (2)

Since x is an eigenvector of Z−1, it is an eigenvector of Z, so

Zx =
1
λ

x and yHZx =
1
λ

yHx =
1
λ

. (3)

The number K(A, λ) ≡ trZ − yHZx is known as Kemeny’s constant [4, Section 11.5,
Exercise 19]. Thus from (2) and (3) it follows that

K(A, λ) =
n∑

i=2

1
λ− λi

. (4)
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From (4) it follows that

|K(A, λ) | ≤ n− 1
|λ− λ̂ |

, (5)

where λ̂ denotes an eigenvalue of A that is closest to λ.
If A and λ are both real, then the right-hand side of (4) is also real; it is positive if

λ > Reλj for all j = 2, 3, . . . , n. (This is the situation when λ is the Perron eigenvalue of an
irreducible nonnegative matrix A.)

If all the eigenvalues of A are real, then from (4)

(n− 1) min
{

1
λ− λ2

,
1

λ− λ3
, . . . ,

1
λ− λn

}
≤ K(A, λ). (6)

In order for A to possess a real spectrum, it is sufficient that there be a positive definite ma-
trix Q such that AH = QAQ−1. In this event, we have A ≡ Q1/2AQ−1/2 = Q−1/2AHQ1/2 =
AH , so A is Hermitian and similar to A. (We make use of this sufficient condition in the next
section but only for a positive diagonal Q.)

Suppose that A and λ are both real, and λ ≥| λj | for all j = 2, 3, . . . , n. Then, since
non-real eigenvalues occur in conjugate pairs, it follows from (4) that

0 <
n− 1
2λ

≤ (n− 1) min
2≤j≤n

λ−Reλj

|λ− λj |2
≤ K(A, λ). (7)

This bound is valid, for example, if A is irreducible and nonnegative, and λ is its Perron
eigenvalue. If all the eigenvalues of A are equimodulus, then the lower bound is attained.

If A is real, nonnegative, and irreducible, then its Perron eigenvalue [5, Theorem 8.4.4] λ
is positive and algebraically simple, and thus A and λ satisfy (4) and (7). Moreover, there are
positive left and right eigenvectors of A associated with λ. If, in addition, A is row stochastic,
then (4) and (7) hold with λ = 1, and an associated eigenvector is h, the vector all of whose
entries are 1.

3 Specific Bounds on Kemeny’s Constant

Let P be the n × n transition matrix of a finite irreducible Markov chain. Then λ = 1
is an algebraically simple eigenvalue of P , Ph = h, and P has a positive left eigenvector
π = (π1, π2, . . . , πn)T associated with λ, so that πT P = πT . If we normalize π by requiring
that πT h = 1, we obtain the (unique) stationary probability vector of P .

In [6, Theorem 1] the following result regarding a generalisation of the fundamental matrix
of a finite irreducible Markov chain was presented.

Theorem 3.1 Let β and g be any two vectors such that βT h and πT g are nonzero. Then
I − P + gβT is nonsingular.
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Proof: If x 6= 0 and (I−P +gβT )x = 0, i.e., I−P +gβT is singular, then (I−P )x = −(βT x)g,
which yields πT (I −P )x = 0 = −(βT x)πT g. Hence βT x = 0 and so (I −P )x = 0. Therefore,
x = γh (γ being a nonzero constant) whence βT h = 0, since βT x = 0. We could also show
that πT g = 0. 2

The matrix Z ≡ (I − P + gβT )−1 is an analogue of (1). For a finite irreducible Markov
chain, we may take βT = πT and g = h, in which case we have

Z ≡ (I − P + hπT )−1 (8)

with πT h = 1, Zh = h and πT Z = πT .
As a result of Theorem 3.1, (8) is only one of an infinite number of choices for Z, and a

form of it that does not involve π can be obtained. For example, let g = h and let βT be any
row vector such that βT h = 1. Then

Z ≡ (I − P + hβT )−1 (9)

with βT h = 1, Zh = h, and βT Z = πT .

Since βT and g can be shown to be left and right eigenvectors of P associated with the
algebraically simple eigenvalue λ = 1, it follows from (2) that all these Z’s are associated with
the same Kemeny constant, namely

K(P ) = K(P, 1) =
n∑

i=2

1
1− λi

, (10)

where λi is the ith eigenvalue of P .

A finite irreducible Markov chain is said to be reversible, if πiPij = πjPji for all i, j, that
is, P and the positive definite diagonal matrix Π = diag(π1, π2, . . . , πn) satisfy ΠP = P T Π,
so that P T = ΠPΠ−1. Since this condition ensures that all the eigenvalues of P are real, we
can order them so that

− 1 ≤ λn ≤ λn−1 ≤ · · · ≤ λ2 < λ = 1. (11)

If, additionally, the Markov chain is ergodic then −1 < λn as well. (See [3], for example,
for upper bounds on λ2.) Thus, when a finite irreducible Markov chain is reversible, (10) and
(11) yield

n− 1
2

≤ K(P ) ≤ n− 1
1− λ2

,

and the lower bound is strict if the chain is ergodic.

4 An Interpretation of Kemeny’s Constant

Let P be the transition matrix of a finite irreducible Markov chain. The expected number
of steps required to reach state sj , when starting a Markov chain from state si, is called the
mean first passage time from si to sj , and is denoted by mij ; by convention mii = 0. (Since
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P is irreducible πi 6= 0 for all i.) Let M = (mij) be the mean first passage matrix [4, p. 455]
for such a chain. Then, by [4, Theorem 11.16]

mij =
zjj − zij

πj
.

Since Zh = h and πT h = 1,

K(P ) = trZ − πT Zh =
n∑

j=1

zjj − 1

=
n∑

j=1

(
zjj − zij

πj

)
πj

=
n∑

j=1

πjmij . (See [4,p. 468].)

In order to give our interpretation of Kemeny’s constant involving a random surfer, we
can rewrite K(P ) as

K(P ) =
n∑

i=1

πi

n∑
j=1

πj mij ,

due to the fact that πT h = 1.
The term

∑
j πj mij gives the mean first passage time from state i when the destination

state is unknown; denote this term by Mi. It follows that Kemeny’s constant, given by∑
i πi Mi, can be interpreted as the mean first passage time from an unknown starting state

to an unknown destination state.
Imagine therefore a random surfer who is following links according to the transition prob-

abilities. At some stage our random surfer is “lost” and does not know the state he is at and
where he is heading for. In this context Kemeny’s constant can be interpreted as the mean
number of links the random surfer follows before reaching his destination. Thus the random
surfer is not “lost” anymore, he just has to follow K(P ) random links and he can expect to
arrive at his final destination. It is therefore in this context that the upper and lower bounds
for K(P ) in Sections 2 and 3 should be considered. For the Web, n is very large (greater than
109, see [2] or [8]) and therefore a random walk whose length is of the order of the bounds
that we present is not feasible. However, if we can restrict the Web graph in some manner
to an irreducible (or ergodic) subset (i.e, a Web subgraph that represents an irreducible (or
ergodic) Markov chain), for example, by selecting only the pages that satisfy a user query,
then the bounds we give may be useful.
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