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Abstract. High-dimensional data models abound in genomics studies, where often inad-
equately small sample sizes create impasses for incorporation of standard statistical tools.
Conventional assumptions of linearity of regression, homoscedasticity and (multi-) normal-
ity of errors may not be tenable in many such interdisciplinary setups. In this study,
Kendall’s tau-type rank statistics are employed for statistical inference, avoiding most of
parametric assumptions to a greater extent. The proposed procedures are compared with
Kendall’s tau statistic based ones. Applications in microarray data models are stressed.
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1. Introduction

In genomic studies as well as in many other interdisciplinary research, high-

dimensional low sample size (HDLSS) data models arise with a variety of complexi-

ties due to many extraneous factors. For example, in genomics, there may be a huge

number of genes not necessarily statistically (as well as biologically) independent,

and there may be only a few arrays constituting such HDLSS models. In view of

possible gene-environment interaction and the importance of disease gene mapping,

there is a genuine need to develop suitable statistical inference procedures based on

biologically consistent, plausible assumptions. Gene expression levels across vari-

ous experiments (or treatments) setups have complex structures, often, marred by

inequality, order or other constraints, for which standard procedures, such as muliti-

variate analysis of variance (MANOVA) may not work out well. The gene expression

levels for different genes, in addition to being possibly dependent, exhibit consider-

able heterogeneity, thus invalidating the classical MANOVA tools in such HDLSS

setups. Therefore, some robust, nonstandard procedures need to be incorporated in

such studies.
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Recently, Sen [17] has formulated some procedures based on the Kendall [11] tau

statistic, albeit in a HDLSS setup, bypassing the heterogeneity and linearity of the

regression assumption to a greater extent. This procedure is insensitive to outliers,

although it incorporates inter-gene dependence by a tactful use of the Chen-Stein [5],

[6] theorem, extended to a discrete time parameter Poisson process approximation.

Rank statistics incorporate the relative order of the observations better than the

Kendall’s tau statistic. Therefore, it is more appealing to use such linear rank statis-

tics in HDLSS models. However, there is some underlying emphasis on linear re-

gression models which are not likely to be tenable in genomic studies. Therefore, we

have considered a hybrid of linear rank statistics and Kendall’s tau, which have the

advantage of providing more appropriate statistical tools in genomic studies.

Section 2 deals with a typical microarray data setup where the proposed statistics

are appropriate. Section 3 is devoted to the formulation of these statistics and the

study of their properties too. Section 4 deals with multiple hypotheses testing (MHT)

problem arising in this context. In Section 5, an extension of the Chen-Stein theorem,

as formulated in Sen [17], is incorporated in the formulation of statistical inference

tools. The last section is devoted to general discussion along with an illustration of

the Lobenhofer et al. [12] study.

2. Preliminaries

Consider a DNA microarray data model with a large number (K) of genes, each

having (gene) expression levels on n (small) arrays. Thus the dataset can be repre-

sented as an n × K matrix X = ((Xik)), where Xik stands for the gene expression

level of the kth gene in the ith array, i = 1, . . . , n; k = 1, . . . , K. Typically, K ≫ n,

and often, n is small. We write X = (X1, . . . ,Xn); Xi = (Xi1, . . . , XiK)′, 1 6 i 6 n.

In some cases, the K-vectors X1, . . . ,Xn can be taken to be stochastically indepen-

dent. However, the K coordinate variables in each Xi may be neither independent

nor (marginally) identically distributed. Guided by this feature, we denote the K-

variate distribution function of Xi by Fi(x), x ∈ R
K , for i = 1, . . . , n. Further, the

marginal distribution of Xik is denoted by Fik(x), x ∈ R, k = 1, . . . , K. Often, the

arrays relate to possibly different biological or experimental (environmental) setups.

Hence, we can conceive of some design variable ti, i = 1, . . . , n, which, for example,

may relate to disease severity. Without loss of generality, we assume that

(2.1) t1 6 t2 6 . . . 6 tn

with at least one strict inequality. However, apart from this weak ordering, we do

not impose any linear or nonlinear ordering on ti.
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Let us look into the n arrays for the kth gene, thus comprising the set (X1k, . . . ,

XnK) of responses for k = 1, . . . , K. If the gene k is associated with an experimental

variation (such as severity of disease) then the expression level Xik should have

a stochastic ordering across the levels t1, t2, . . . , tn, i.e.,

(2.2) F1k(x) > F2k(x) > . . . > Fnk(x), ∀x ∈ R.

This stochastic ordering is weaker than the ordered mean or isotonic regression se-

tups. Since the domain of x is typically the interval [0, 1] (or [0, 100]) in terms of

luminosity of the gene expression levels, shift in location or scale parameters may

not be ideal in this setup.

For the same reason, a regression model like Fik(x) = F0k(x − βti), 1 6 i 6 n;

k = 1, . . . , K, may not be appropriate. Thus, in our setup, we would like to develop

robust statistics taking into account a plausible stochastic ordering as an alternative

to the null distribution of homogeneity of Fik (1 6 i 6 n).

It is also very complex to frame such a stochastic ordering on the K variate

vector Xi, 1 6 i 6 n. Hence, as in Sen et al. [18] and Sen [17], we will adopt

a pseudo-marginal approach as follows. Let H0k : F1k ≡ . . . ≡ Fnk, 1 6 k 6 K and

let H1k : F1k > . . . > Fnk, 1 6 k 6 K, for k = 1, . . . , K. Let then

(2.3) H0 =

K
⋂

k=1

H0k vs H1 =

K
⋃

k=1

H1k.

In this setup, we consider a suitable test statistic Tnk for testing H0k vs H1k,

1 6 k 6 K, and then incorporate the Roy [13] union-intersection principle (UIP) to

formulate overall test procedures. Further, in testing H0k vs H1k, we would like to

use a nonparametric statistics having some nice features:

(i) Its distribution under H0k does not depend on the common F0k,

(ii) it is insensitive to heterogeneity of the F0k for different k, and

(iii) it is robust and efficient.

Sen [17] used Kendall’s [11] tau-statistics for testing H0k vs H1k, k = 1, . . . , K.

This can be written as

(2.4) Tnk =
∑

16i<i′6n

sign(ti′ − ti) sign(Xi′k − Xik)

for k = 1, . . . , K. Note that sign(ti′ − ti) is invariant under any strictly monotone

transformation on ti. Similarly, sign(Xi′k − Xik) is invariant under any strictly

monotone transformation on Xik. Thus, Tnk is doubly-invariant with respect to ti
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as well as Xik, thus providing a robust procedure. On the other hand, a linear rank

statistic for testing H0k vs H1k may be defined as

(2.5) Lnk =

n
∑

i=1

(ti − t̄n)a(Rik), 1 6 k 6 K,

where Rik = rank of Xik among X1k, . . . , Xnk for i = 1, . . . , n; t̄n = n−1
n
∑

i=1

ti,

an(1) 6 . . . 6 an(n) are suitable scores and ān = n−1
n
∑

i=1

an(i). Whereas the

ranks Rik are invariant under any strictly monotone transformation on Xik in Lnk,

the assigned values of ti have a non-invariant property. In this sense, Lnk is per-

ceived as somewhat less robust than the Kendall’s tau statistics. However, through

appropriate choice of an(i), a gain in efficiency is possible, if the assumed ti values

are correct (up to a location/scale perturbation location). For some details, we refer

to Kang [10].

We intend to propose some linear rank statistics which are of the Kendall’s tau-

type, i.e., invariant to any strictly monotone transformation on the ti, while keeping

the scores an(i) and ranks Rik unchanged. This way, it would compromise robustness

and efficiency in a more conceivable manner, in such a nonstandard setup.

3. Proposed statistics

We may rewrite Lnk as equivalent to

(3.1)
∑

16i<i′6n

(ti′ − ti)(a(Ri′k) − a(Rik)),

so that the dependence on the assigned values of ti becomes clear. In conformity

with the Kendall’s tau, we consider the statistics

(3.2) Tnk =
∑

16i<i′6n

sign(ti′ − ti)(a(Ri′k) − a(Rik))

for k = 1, . . . , K. These are all rank statistics but not linear ones in the conventional

sense. Given (2.1), we set S = {(i, i′) : ti < ti′ ; 1 6 i < i′ 6 n} and let N =

cardinality of S (so that (n − 1) 6 N 6
(

n
2

)

). Then we have

(3.3) Tnk =
∑

S

(a(Ri′k) − a(Rik)), k = 1, . . . , K.
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If instead of (3.2) we would have taken

(3.4)
∑

16i<i′6n

sign(ti′ − ti) sign(a(Ri′k) − a(Rik))

then for strictly monotone scores an(·), such as the Wilcoxon score (an(i) =

i/(n + 1)), we would have

(3.5) sign[a(Ri′k) − a(Rik)] = sign[Ri′k − Rik] = sign(Xi′k − Xik)

so that by (3.5), (3.4) would reduce to the Kendall’s tau statistic in (2.4). This

explains motivation for the Tnk in (3.2), combining more information on the scores

(through ranks) and invariance on the ti, 1 6 i 6 n.

From (3.3) we conclude that underH0k, (R1k, . . . , Rnk) taking all possible (n!) per-

mutations of (1, . . . , n) with equal probabilty 1/n! leads to an exact distribution-free

statistic, i.e, under H0k, the distribution of Tnk does not depend on the underlying

(common) F0k. Further, this marginal (null) distribution remains the same for all k

(= 1, . . . , K), as the set S remains the same for all k. As such,

(3.6) E0(Tnk) =
∑

S

E0(an(Ri′k)−an(Rik)) =
∑

S

1

n(n − 1)

n
∑

j 6=l=1

[an(j)−an(l)] = 0.

Further, if we let S1 = {((i, j), (i′, j′)) : ti < tj and ti′ < tj′ ; 1 6 i < j 6 n, 1 6

i′ < j′ 6 n, ((i = i′ and j 6= j′) or (j = j′ and i 6= i′))}, S2 = {((i, j), (i′, j′)) : ti <

tj and ti′ < tj′ ; 1 6 i < j 6 n, 1 6 i′ < j′ 6 n, ((j = i′ and i 6= j′) or (i =

j′ and j 6= i′))}, S3 = {((i, j), (i′, j′)) : ti < tj and ti′ < tj′ ; 1 6 i < j 6 n and 1 6

i′ < j′ 6 n, (i 6= i′ and j 6= j′)} with cardinalities N1, N2 and N3, respectively, then

V0(Tnk) = E0

[

∑

S

(a(Ri′k) − a(Rik))

]2

(3.7)

= E0

[

∑

S

(a(Ri′k) − a(Rik))2
]

+ E0

[

∑

S1

(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))

]

+ E0

[

∑

S2

(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))

]

+ E0

[

∑

S3

(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))

]

= A + B + C + D = (2N + N1 − N2) × A2
n = ω2

n

211



where

(3.8) A2
n =

1

n − 1

n
∑

i=1

[an(i) − ān]2.

The proof is relegated to the Appendix.

4. Multiple hypotheses testing and UIP

We intend to test for H0 vs H1 in (2.2) along with the provision of multiple

hypotheses testing. In line with the UIP, we have Tnk, 1 6 k 6 K, for the compo-

nent hypotheses testing problem which we want to incorporate in an overall testing

scheme, allowing multiple hypotheses testing. Though, under H0, the Tnk have all

a common distribution, symmetric about 0 and independent of the underlying F0k,

the behaviour of Tnk under alternatives would depend on the stochastic ordering as

well as the possible heterogeneity of the Fik for different k. Under the stochastic

ordering in (2.2), it is easy to show that

(4.1) ξnk = E[Tnk|H1k] > 0, ∀ k = 1, . . . , K,

although the ξnk may differ from one k to another. This motivates us to use tests

based on the right-hand side p-values for the individual Tnk. As in the case of

Kendall’s tau statistics, for small n, Tnk has a discrete distribution, and hence,

for the p-values, the distribution (though known) will not be uniform on (0,1) but

a discrete one on [0,1]. For large n, the standardized form of Tnk (i.e, Tnk/ωn)

under H0k has closely standard normal distribution, and hence, the p-values have

closely the uniform [0,1] distribution.

The UIP leads us to consider the UI-test statistic

(4.2) T ∗
n = max{Tnk : 1 6 k 6 K}.

If Tnk were independent, then we would have

(4.3) P0{T
∗
n 6 x} = [P0{Tn1 6 x}]K ,

so that the marginal distribution of Tn1 could be used to compute the significance

level for T ∗
n . If Tnk are nonnegatively associated then in (4.3), the “=” sign can

be replaced by“ >” sign, so that the same critical level can be used, albeit giving

a somewhat conservative test. For large K, if n = O(log K) (or larger), then the

Bonferroni bound (Sen [17]) provides good approximation.
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Figure 1. Comparison of the null distribution with the alternative distribution: This picture
relates only to Kendall’s tau statistics considered in Sen [17]. For general Tnk,
the range will not be (−N, N), but ±Cn, where Cn = max

i,i′

∑

S

[an(i
′)− an(i)].

Let t∗n,α be the critical level computed from (4.3). Then the following MHT proce-

dure can be adopted. If all Tnk 6 t∗n,α, accept H0. If T
∗
n > t∗n,α, reject H0. Further,

in the case of rejection of H0, at least one Tnk will be larger than t∗n,α. Thus, reject

those H0k in favor of H1k for which Tnk > t∗n,α.

Based on the perspectives in genomic studies relating to False discovery rate (FDR)

and other measures, the above MHT may not be powerful. Therefore, we proceed to

consider an alternative way of incorporating the p-value.
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5. Chen-Stein theorem and MHT

First, let us present an extended version of the Chen-Stein theorem, considered in

detail in Sen [17]; the proof is omitted.

Consider a set of (discrete) mass points {τ1 < . . . < τM}, the possible realization

of Tn1, and let ηn1, . . . , ηnM be their respective probability masses under H0; M ,

typically, depends on n and t1, . . . , tn (or N). Also, let

(5.1) νnj =
∑

i6j

ηM−i+1 for j = 1, . . . , M.

Let

(5.2) Ykj = I(Tn1 > τM−j+1), 1 6 k 6 K, 1 6 j 6 M.

Thus, Ykj are increasing in j and E0(Ykj) = νnj , 1 6 j 6 M . For each k ∈ K =

{1, . . . , K}, let Jk be the dependence set of k and let JC
k be the complementary

independence set.

Let then

lj1 =
K

∑

k=1

∑

q∈Jk

E(Ykj)E(Yqj),(5.3)

lj2 =

K
∑

k=1

∑

q∈Jk

E(YkjYqj),(5.4)

lj3 =

K
∑

k=1

E|{E(Ykj − EYkj)|Yqj , ∀ q 6= k ∈ Jk}|(5.5)

for j = 1, . . . , M . Let WKj =
K
∑

k=1

Ykj , j > 1 and denote

(5.6) m = max
j6M

{(lj1 + lj2 + lj3)ν
−1
nj (1 − e−Kνnj )K−1} → 0

as k → ∞. Let WK = (Wk1, . . . , Wkm) and ZK = (Zk1, . . . , Zkm), where ZK is

a discrete time parameter Poisson process with EZKj = EWKj = Kνnj, j > 1.

Then

(5.7) ‖L(WK) − L(ZK)‖ → 0 as K → ∞.

(If M → ∞ (with n → ∞)), then the discrete time parameter processes can be

replaced by continuous time parameter processes.)
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Corresponding to WK , let r1 6 . . . 6 rm be a set of nonnegative integers such

that, by (5.7),

(5.8) P0{WKj > rj for some j 6 m} ∼ α

for some specified α : 0 < α < 1. Then we consider the following MHT procedure:

Consider the WKj , j 6 1. If WKj 6 rj , ∀ j > 1, then accept H0, i.e., there is no

disease gene. If, on the other hand, WKj > rj for at least one j, then reject the null

hypothesis and proceed to detect those genes as disease gene for which Ykj = 1 for

some j.

In particular, a two-stage Poisson approximation considered in Kang [10] has bet-

ter power and FDR prospects than a single stage procedure.

6. Discussion

High dimensional data such as microarray experiments raise large multiplicity

problems in which thousands of hypotheses are simultaneously tested. For this mul-

tiple hypotheses testing issue, consider the proportion of falsely rejected hypotheses

among the number of rejections.

This is introduced as follows.

Number not rejected Number rejected Total

Non-differentially expressed (NDG) U V m0

Differentially expressed (DG) T S K − m0

K − R R K

Table 1. Number of errors committed when testing K tested genes.

In Tab. 1, V represents the number of rejected genes among non-differentially ex-

pressed genes and R (= V +S) represents the number of rejected genes. The focus lies

in the proportion of false positives V with respect to the number of rejected hypothe-

ses R. In the microarray setting, there is a null hypothesis Hi for each gene i and the

rejection of Hi corresponds to declaring that the gene i is differentially expressed.

In general, we would like to minimize the number V corresponding to Type I error

and the number T corresponding to Type II error. Benjamini and Hochberg [4]

introduced the concept of the false discovery rate (FDR). Let the unobserved ran-

dom variable be Q = V/(V + S), Q = 0 when V + S = 0. We define the FDR as

E(Q) = E
{

V/(V + S) | V + S > 0
}

× V + S > 0 = E
{

V/R | R > 0
}

× P (R > 0).

Storey [19] suggested an updated version of FDR called pFDR, E
{

V/R | R > 0
}

,
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which is defined as the conditional FDR given that there is at least one rejection.

The expected value of the proportion, False Discovery Rate (FDR), is a useful al-

ternative to the familywise error rate (FWER) which is unduly conservative when

there are many tests (or genes). However, current FDR controlling procedures fail

to incorporate plausible complex dependence structures among tested genes in an

appropriate manner.

It is possible to categorize tested genes into two groups: non-differentially ex-

pressed genes (NDG) and differentially expressed genes (DG). In general, the NDG

have smaller gene expression levels based on the intensity, whereas the DG have

bigger gene expression levels. This aspect enables us to conceive of some milder

regularity conditions, namely that the correlations between the DG and the NDG is

negligible and the correlations between the NDGs are very small as well. As a matter

of fact, it is hard to find out some regularity conditions that (classical) central limit

theorems may work out. Under the milder conditions discussed above, it may be

more captivating to apply the Chen-Sten theorem which is one of the Poisson-limit

theorems to allow more general dependence structures among tested genes in Ar-

ratia et al. [1]. Utilizing this theorem, it may become more feasible to apply the

FDR method to dependent tested genes. For more details, we refer to Sen [17].

For illustration purpose, consider the data in Lobenhofer et al. [12]. This data

consists of 1900 genes in rows, and each row (or gene) has 48 observations measured

at 6 time points with 8 observations. We can approximate the normal distribution to

the null and distribution of Tnk (or Pk), since we have sufficiently large sample size. In

this dataset, we evaluate the performance of Kendall’s tau rank statistics over that of

Kendall’s tau statistics considered in Sen [17]. We use a single-stage FDR procedure

in Kang [10]. Under the null hypothesis, Kendall’s tau statistics T
(1)
nk has E0(T

(1)
nk ) =

0 and V0(T
(1)
nk ) = (N + 1

3 (N1 − N2))/N
2 = 0.002256944, whereas Kendall’s tau-type

rank statistics has the same expectation E0(Tnk) = 0 but V0(Tnk) = (2 ∗ N + N1 −

N2) ∗ A2
n = 705.3061. The computations of N1 and N2 are given in Appendix.

It is quite feasible to compute the p-value (Pk) for each row (each gene) based on

the asymptotic normal distribution of Tnk, the assumption of uniform distribution

of the p-values under the null being tenable for n = 48. One of the concerns is that

p-values are not stochastically independent even though each p-value has the same

marginal null distribution. The FDR method based on the Chen-Stein method plays

a key role in this context.

As explained earlier, under the stochastic ordering (NDG vs DG) we have

E[T
(1)
nk |H1k] > 0; E[Tnk|H1k] > 0, k = 1, . . . , K.

For small sample size, the permutation distribution based on exact permutation

theory can be extensively used. It is plausible to construct a suitable test based on
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the right-hand side of the critical region of the permutation distribution of each Tnk

(or T
(1)
nk ).

This distribution is the same for every gene. Though it is not continuous, the

distribution of Pk, under H0, is discrete over (0,1) and the mass points depend on

the scores an(i), so that ties among the Tnk may not be negligible with probability

one. Moreover, the Tnk, and hence the Pk may not be independent across all genes

tested; the Chen-Stein method may be used to apply the FDR method.

For such a relatively large n (= 48), we have the following asymptotic distributions

for each statistics:

T
(1)
nk /

√

V0(T
(1)
nk ) → N (0, 1); Tnk/

√

V0(Tnk) → N (0, 1).

In Tab. 2, the FDR and Storey’s FDR in Storey [19] for Kendall’s tau statistics and

Kendalls’ tau-type rank statistics are presented. We have 1864 genes in Lobenhofer

et al. dataset, but we removed every gene having missing gene expression levels.

The total number of tested genes is 1818. Using Storey’s method, we estimate π0

(the proportion of non-differentially expressed genes) as 0.83 for p-values generated

by Kendall’s tau, whereas π0 as 0.86 for p-values generated by Kendall’s tau-type

rank statistics. We vary the number of rejected genes r as 4, 8, 12 and 16. Now,

controlling the FDR at α = 0.05, Poisson distributional approximation leads to

finding an appropriate cut-off point, that is,

(6.1) P0(W > r) = α = e−λ
∑

k>r

(λ)k

k!
,

where λ = (Kp∗) represents the expectation of the number of events (declared to be

a differentially expressed gene) andK is the number of genes tested. Each threshold c

is determined by λ/K. FDR controlling procedure must be controlled at preassigned

level α = 0.05. Poisson cumulative probability table shows how to determine λ for

given r and α. Recently, discrete p-value problem has been a focal issue in multiple

testing procedure. Kendall’s tau and Kendall’s tau-type rank statitics generate dis-

crete p-values, though we use normal approximation. The proposed FDR procedure

utilizing the Chen-Stein method accounts for discrete p-values problems well.

The number of rejections (r) λ c FDR(T) FDR(R) Storey (T) Storey (R)

4 1.99 0.001 0.0106 0.0104 0.0071 0.0089

8 4.5 0.002 0.0208 0.0202 0.0136 0.0173

12 7.5 0.004 0.0316 0.0313 0.0214 0.0283

16 11 0.006 0.0428 0.0409 0.0294 0.0378

Table 2. Comparison of Kendall’s tau statistics (T) with Kendall’s tau-type rank statis-
tics (R).
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For each threshold c, all the FDR procedures should be controlled at 0.05. In

Tab. 2, Kendall’s tau-type rank statistics has smaller FDR than Kendall’s tau. How-

ever, Storey’s FDR has the opposite result to proposed FDR, since this does not take

into account the fact that we have discrete p-values. We now turn to other p-values

based on classical ANOVA framework under the conventional assumption of Gaus-

sian distribution of gene expression levels. The same number of genes and cut-off

points are used as in Tab. 2. A summary of these results of using normal theory un-

der consideration is provided in Tab. 3. In contrast to the result given in Tab. 2, each

FDR procedure has slightly larger values. It can be shown that the proposed FDR

still has smaller values than the Storey FDR.

The number of rejections (r) λ c Proposed FDR Storey FDR

4 1.99 0.001 0.0127 0.0141

8 4.5 0.002 0.0235 0.0233

12 7.5 0.004 0.0314 0.0322

16 11 0.006 0.0409 0.0421

Table 3. Comparison of proposed FDR with Storey FDR using ANOVA.

The Chen-Stein method was utilized to produce an appropriate FDR procedure

under fairly milder regularity conditions, which adjust for discrete p-values. Utilizing

both concepts of Kendall’s tau and linear rank statistics, we suggest a better multiple

testing procedure based on more effective test statistics to analyze dependent genes

with heterogeneity, even in a small sample. Two-stage FDR procedures considered

in Kang [10] provide a multiple testing procedure under less stringent regularity

conditions. Finally, we have concluded that Kendall’s tau-type rank statistics has

better performance over other conventional approaches in HDLSS data.

Appendix

Derivation of V0(Tnk). We have

A = E0

[

∑

S

(a(Ri′k) − a(Rik))

]2

= N × E0[(a(Ri′k) − a(Rik))2]

=
N

n(n − 1)

∑

16i6=i′6n

(a(i′) − a(i))2

=
2N

n − 1

n
∑

i=1

(a(i′) − ān)2

= 2N × A2
n,
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B = E0

[

∑

S1

(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))

]

=
∑

S1

E0[(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))]

= N1 × E0[(a(Rjk) − a(Rik))(a(Rjk) − a(Ri′k)), 1 6 i 6= i′ 6= j 6 n

= N1 ×
1

n(n − 1)(n − 2)

∑

16i6=j 6=k6n

(a(i) − a(j))(a(i) − a(k))

= N1 ×
1

n(n − 1)(n − 2)

∑

16i6=j 6=k6n

(a2(i) − a(i)a(j) − a(i)a(k) + a(j)a(k))

= N1 ×
1

n(n − 1)(n − 2)

∑

16i6=j 6=k6n

(a2(i) − a(i)a(j) − a(i)a(k) + a(j)a(k))

= N1 ×

[

1

n

n
∑

i=1

a2(i) −
2

n(n − 1)

n
∑

16i6=j6n

a(i)a(j)

+
1

n(n − 1)

∑

16j 6=k6n

a(j)a(k)

]

= N1 ×

[

1

n

n
∑

i=1

a2(i) −
1

n(n − 1)

[

∑

16i6=j6n

a(i)a(j)

]]

= N1 ×

[

1

n

n
∑

i=1

a2(i) −
1

n(n − 1)

( n
∑

i=1

a(i)

)2

+
1

n(n − 1)

n
∑

i=1

a2(i)

]

= N1 ×

[

1

n

(

1 +
1

n − 1

)

n
∑

i=1

a2(i) −
1

n(n − 1)

( n
∑

i=1

a(i)

)2]

= N1 ×
1

n − 1

[

∑

i=1

a(i) − ān]2
]

= N1 × A2
n.

Using the above result, we obtain

C = E0

[

∑

S2

(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))

]

=
∑

S2

E0[(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))]

= N2 × E0[(a(Rjk) − a(Rik))(a(Ri′k) − a(Rjk))], 1 6 i 6= i′ 6= j 6 n

= −N2 × E0[(a(Rjk) − a(Rik))(a(Rjk) − a(Ri′k))]

= −N2 × A2
n,
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D = E0

[

∑

S3

(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))

]

=
∑

S3

E0[(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))]

= N3 × E0[(a(Rjk) − a(Rik))(a(Rj′k) − a(Ri′k))], 1 6 i 6= i′ 6= j 6= j′ 6 n

= N3 ×

[

1

n(n − 1)(n − 2)(n − 3)

×
∑

16i6=i′ 6=j 6=j′6n

[a(j)a(j′) − a(j)a(i′) − a(i)a(j′) + a(i)a(i′)]

]

= N3 ×
1

n(n − 1)

[

∑

16j 6=j′6n

a(j)a(j′) −
∑

16j 6=i′6n

a(j)a(i′)

−
∑

16i6=j′6n

a(i)a(j′) +
∑

16i6=i′6n

a(i)a(i′)

]

= 0.

Next we consider the computation of N1 and N2.

Suppose we have a multisample of DNA microarray data in which there areG (> 2)

groups. Each group g with sample size ng has a common design variate t0g, where
G
∑

g=1
ng = n. Now consider the subset of S1, which is S1s = {((i, j), (i′, j′)) : ti < tj

and ti′ < tj′ ; 1 6 i < j 6 n, 1 6 i′ < j′ 6 n (i = i′ and j 6= j′)}. Note that

t0i = ti = ti′ , tj = t0j and tj′ = t0j′ , where 1 6 i, j, j′ 6 n. The cardinality of S1, N1

should be twice the cardinality of this subset N11, since S1 consists of two disjoint

subsets with the same cardinality. We can rewrite this subset as

{((i, j), (i, j′)) : t0i < t0j 6= t0j′ ; 1 6 i < j 6= j′ 6 n}.

In Lobenhofer et al. dataset, we have 6 groups measured at 6 time points with each

one having 8 observations:

N11 =

5
∑

k=1

8 ×

{(

6 − k

1

)

×

(

8

2

)

+

(

6 − k

2

)

× 82

}

= 13, 600 = N12.

Hence, the cardinality of S1 is 27, 200 (= N11 + N12).

Likewise, consider the subset of S2, which is S2s = {((i, j), (i′, j′)) : t0i < t0i′ <

t0j′ ; 1 6 i < i′ = j < j′ 6 n}, with the corresponding cardinality N21

N21 =

5
∑

k=2

8 ×

{(

k − 1

1

)

× 8

(

6 − k

1

)

× 8

}

= 83 × 20 = 10, 240 = N22.

Hence, the cardinality of S2 is 20, 480 (= N21 + N22).
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The result is the same as in the case that the ti have a monotone nonincreasing

pattern.
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