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ABSTRACT

We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit
signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using
a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and
statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M⊙, a radius of 1.1 R⊙, an
effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of
approximately 3.5, 7.6, and 14.9 days. The innermost planet “b” is a “super-Earth” with a mass of 6.9 ± 3.4 M⊕,
a radius of 2.00 ± 0.10 R⊕, and a mean density of 4.9 ± 2.4 g cm3. The two outer planets “c” and “d” are both
low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M⊕, a radius of 5.49 ± 0.26 R⊕, and a
mean density of 0.59 ± 0.07 g cm3, while Kepler-18d has a mass of 16.4 ± 1.4 M⊕, a radius of 6.98 ± 0.33 R⊕
and a mean density of 0.27 ± 0.03 g cm3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion
resonance, leading to large and readily detected TTVs.

Key words: planetary systems – stars: individual (Kepler-18, KIC 8644288, 2MASS J19521906+4444467) –
techniques: photometric – techniques: spectroscopic

Online-only material: color figures

∗ Based in part on observations obtained at the W. M. Keck Observatory,
which is operated by the University of California and the California Institute of
Technology.

1. INTRODUCTION

Kepler is a NASA mission designed to detect the transits of
exoplanets across the disks of their stars. The mission’s ultimate
goal is to detect the transits of potentially habitable Earth-size
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planets. To achieve this goal requires a telescope in a very
stable space environment with a large (0.95 m) effective aperture
monitoring the brightness of about 150,000 stars simultaneously
and continuously for over three years. The Kepler Mission
design and performance are summarized by Borucki et al.
(2010a) and by Koch et al. (2010a), and a discussion of the
commissioning and first quarter data are given by Borucki et al.
(2011a). Borucki et al. (2011b) reported 1235 planet candidates
that were discovered during the first four months of the mission.
Batalha et al. (2010a) discuss the selection and characteristics
of the Kepler target stars.

The first five planets discovered by the Kepler mission
(Kepler 4–8) were reported in 2010 January (Borucki et al.
2010b; Koch et al. 2010b; Dunham et al. 2010; Latham et al.
2010; Jenkins et al. 2010a). Kepler has detected an abundance
of multi-planet systems. Borucki et al. (2011b) reported a total
of 170 candidate multi-planet systems among the 997 planet
candidate host stars from the 2011 February data release.
Steffen et al. (2010) presented five of these systems in detail.
The Kepler-9b and c system (Holman et al. 2010) was the
first transiting multi-planet system confirmed by transit-timing
variations (TTVs). Kepler-10 (Batalha et al. 2011) was the first
rocky planet found by Kepler. Kepler-11 (Lissauer et al. 2011a)
is a transiting system of six planets.

Not all Kepler planets can be directly confirmed by supporting
reflex radial velocity (RV) measurements of the parent star, or by
detection and modeling of TTVs. Instead, some planets must be
validated by analyzing all possible astrophysical false-positive
scenarios and comparing their a priori likelihood to that of a
planet. The Kepler project has been able to utilize the BLENDER
technique developed by Torres et al. (2004) to validate a third
planet in the Kepler-9 system (Torres et al. 2011), a second
planet in the Kepler-10 system (Fressin et al. 2011), and the
outer planet in the Kepler-11 system (Lissauer et al. 2011a).

Here, we present the Kepler-18 system, containing two
Neptune-mass transiting planets near a 2:1 mean-motion res-
onance, which show significant gravitational interactions that
are observed via measurements of TTVs, as well as a small, in-
ner super-Earth-size transiting planet. This system is remarkably
similar to the Kepler-9 system in its overall architecture.

2. Kepler PHOTOMETRY

The Kepler spacecraft carries a photometer with a wide-
field (∼115 deg2) Schmidt camera of 0.95 m effective aperture.
The spacecraft was launched in 2009 March, and is now in an
Earth-trailing heliocentric orbit which allows nearly continuous
photometric coverage of its field of view in Cygnus and
Lyra. Caldwell et al. (2010) discuss the early instrumental
performance of the Kepler photometer system. The primary
data for detection of transiting planets are the Long Cadence
(LC) “Pre-search Data Conditioned” (PDC) time series data,
in which 270 consecutive CCD readouts are binned, giving an
effective sampling interval of 29.4244 minutes (Jenkins et al.
2010b). A small selected subset of Kepler targets is sampled
at the Short Cadence (SC) rate of nine consecutive reads for a
sampling interval of 58.85 s (Gilliland et al. 2010). Thus, one
LC sample is the sum of 30 SC samples. The data from the
spacecraft are processed through the Kepler Science Operations
Center pipeline (Jenkins et al. 2010c) to perform standard CCD
processing and to remove instrumental artifacts. The LC PDC
time series data are searched for possible planetary transits using
a wavelet-based adaptive matched filter (Jenkins et al. 2010d).
Possible planetary transit events with amplitude greater than

7.1σ are flagged and are then subjected to intensive validation
efforts using the Kepler data (Batalha et al. 2010b; Wu et al.
2010). Objects that pass this level of vetting are designated as a
“Kepler Object of Interest” (KOI) and are sent to the Follow-up
Observing Program (FOP) for further study.

2.1. Light Curves and Data Validation

One of the objects identified with possible transiting planets
is the Kp 13.549 mag (where Kp is the magnitude in the Kepler
passband) star KIC 8644288 (2MASS J19521906+4444467,
K00137). After a possible transiting planet has been detected,
the Kepler data are subjected to a set of statistical tests to search
for possible astrophysical false-positive origin of the observed
signal. These data validation tests for the first five Kepler planet
discoveries are described by Batalha et al. (2010b). Additional
tests, including measurement of the image centroid motion
during a transit (Wu et al. 2010) all gave a high probability that
the signals seen were real. The application of these techniques
to Kepler-10b is described in detail by Batalha et al. (2011).

Two separate transiting objects were immediately obvious in
the LC data. K00137.01 has a transit ephemeris of T0[BJD] =
(2455167.0883±0.0023)+N ∗ (7.64159±0.00003) days and a
transit depth of 2287±9 ppm. (All transit times and ephemerides
in this paper are based on UTC.) K00137.02 has an ephemeris
of T0[BJD] = (2455169.1776 ± 0.0013) + N ∗ (14.85888 ±
0.00004) days and a transit depth of 3265 ± 12 ppm. It was
noted that the orbits of these two objects were very near a period
ratio of 2:1. After filtering these transits of K00137.01 and
K00137.02 from the light curve, we searched again for transiting
objects and found a third planet candidate in the system,
K00137.03, which has a shorter orbital period than the other
two transiting planets. K00137.03 has the ephemeris T0[BJD] =
(2454966.5068 ± 0.0021) + N ∗ (3.504725 ± 0.000028) days,
and a transit depth of only 254 ± 8 ppm. The light curve for
K00137 is shown in Figure 1. The upper panel shows the raw
uncorrected “photometric analysis” (PA) light curves that come
out of the data processing pipeline, and the lower panel shows
the corrected PDC light curves. The two transit events that look
significantly deeper than the others, near BJD 2454976.0 and
BJD 2455243.5 are simultaneous transits of K00137.01 and
K00137.02.

The folded light curves for each of the three candidate planets
are shown in Figure 2. This figure shows the light curves folded
on the ephemeris given above for each KOI. The significant
width of the ingress and egress for Kepler-18c and Kepler-18d
is a result of the transit time variations discussed in Section 6.

3. FOLLOW-UP OBSERVATIONS

After the possible transiting planets were found, and the
KOIs passed the Data Validation tests for false-positive signals,
K00137 was sent on to the Kepler FOP for ground-based
telescopic observations designed either to find any additional
indication that these KOIs might be an astrophysical false-
positive signal, or to verify the planetary nature of the transit
events.

3.1. Reconnaissance Spectroscopy

The first FOP step is to obtain high spectral resolution, low
signal-to-noise ratio (S/N) spectroscopy in order to verify the
Kepler Input Catalog (KIC) stellar classification, and to search
for evidence of stellar multiplicity in the spectrum. Spectra from
the Hamilton echelle spectrograph on the Lick Observatory 3 m
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Figure 1. Kepler light curves for K00137. The upper panel shows the normalized
raw PA light curves for quarters 0 through 6. The various discontinuities are
due to effects such as spacecraft safe-mode events or loss of fine pointing. Each
quarter put the star on a different detector, which accounts for the change in
overall sensitivity. The long-term drifts in each quarter are temperature related.
The lower panel shows the normalized corrected PDC light curve. Most of the
spacecraft-related variability of the PA light curve has been removed.

(A color version of this figure is available in the online journal.)

Shane Telescope were obtained on the nights of 2009 August 8
and 9, and on 2009 September 1 UT. These spectra showed no
convincing evidence for RV variability at the 0.5 km s−1 level,
and no hints of any contaminating spectra. These spectra were

cross-correlated against a library of synthetic stellar spectra as
described by Batalha et al. (2011), in order to derive basic
stellar parameters to compare with the KIC values. These
spectra yielded Teff = 5250 ± 125 K, log g = 4.0 ± 0.25,
and V sin i = 2 ± 2 km s−1. The height of the cross-correlation
peaks ranged from 0.82 to 0.89, indicating a very good match
with the library spectra.

3.2. High Spatial Resolution Imaging

High-resolution imaging of the surroundings of a KOI is
an important step to identify possible sources of false-positive
signals. We need to ensure that the detected transit signal is
indeed originating on the selected target star, and not on a
background star that was unresolved in the original KIC imaging
of the Kepler field.

A seeing limited image was obtained at Lick Observatory’s
1 m Nickel telescope using the Direct Imaging Camera. This
image was a single one-minute exposure taken in the I band,
with seeing of approximately 1.′′5. The only nearby star is a
faint object (approximately 5 mag fainter than K00137) about
5.′′5 to the north. A J-band image of the 1′ × 1′ field of view
around K00137 was taken as part of a complete J-band survey
of the Kepler field of view using the wide-field camera on
the United Kingdom Infrared Telescope. These images have
a typical spatial resolution of 0.′′8–0.′′9 and an image depth of
J = 19.6 (Vega system). This image also shows only a faint
source about 5.′′5 to the north.

We perform speckle observations at the WIYN 3.5 m tele-
scope, using the Differential Speckle Survey Instrument (DSSI;
Horch et al. 2011; Howell et al. 2011). DSSI provides simulta-
neous observations in two filters by employing a dichroic beam

Figure 2. Folded light curves for K00137. The top row is Kepler-18b (K00137.03), the middle row is Kepler-18c (K00137.01), and the bottom row is Kepler-18d
(K00137.02). The light curves are folded on the mean period listed in Table 4.
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Figure 3. High spatial resolution A/O image of K00137 taken with the Palomar Observatory 5 m adaptive optics system. The nearest contaminating source is about
5.′′5 to the north.

(A color version of this figure is available in the online journal.)

splitter and two identical EMCCDs as the imagers. We generally
observe simultaneously in V and R bandpasses, where V has a
central wavelength of 5620 Å, and R has a central wavelength
of 6920 Å, and each filter has an FWHM of 400 Å. The speckle
observations of K00137 were obtained on 2010 June 22 UT and
consisted of three sets of 1000, 80 ms individual speckle images.
Along with a nearly identical V-band reconstructed image, the
speckle results reveal no companion star near K00137 within
the annulus from 0.′′05 to 1.′′8 to a limit (5σ ) of 4.2 mag fainter
in both V and R than the Kp 13.549 target star.

Near-infrared adaptive optics (AO) imaging of K00137 was
obtained on the night of 2009 September 8 UT with the
Palomar Hale 5 m telescope and the Palomar High Angular
Resolution Observer (PHARO) near-infrared camera (Hayward
et al. 2001) behind the Palomar AO system (Troy et al. 2000).
PHARO, a 1024 × 20124 HgCdTe infrared array, was utilized
in 25.1 mas pixel−1 mode, yielding a field of view of 25′′.
Observations were performed in the J filter. The data were
collected in a standard five-point quincunx dither pattern of 5′′

steps interlaced with an off-source (60′′ east) sky dither pattern.
Data were taken with integration times per frame of 30 s with a
total on-source integration time of 7.5 minutes. The AO system
guided on the primary target itself and produced a central core
width of FWHM = 0.′′075. Figure 3 shows this Palomar image
of K00137. There are two additional sources within 15′′ of the
primary target. The first source, located 5.′′6 to the north of
K00137, is 4 mag fainter at J; the second, located 15.′′0 to the

southeast, is 5.8 mag fainter. To produce the observed transit
depths in the blended Kepler photometry, the δJ = 4 mag star
would need to have eclipses that are 0.09 and 0.5 mag deep, and
the δJ = 5.8 mag star would need to have eclipses that are 0.15
and 1.3 mag deep. Such deep eclipses from stars separated by
more than 4′′ (>1 Kepler pixel) would easily be detected in the
centroid motion analysis, but no centroid motion was detected
between in and out of transit, indicating that these two stars
were not responsible for the observed events. Six additional
sources were detected at J within 15′′ of the primary target.
But all of these sources are δJ > 8 mag fainter than K00137
and could not produce the observed transit events (i.e., even if
the stars dimmed by 100%, the resulting transit in the blended
photometry would not be deep enough to match the observed
transit depths).

Source detection completeness was evaluated by randomly
inserted fake sources of various magnitudes in steps of 0.5 mag
and at varying distances in steps of 1.0 FWHM from the
primary target. Identification of sources was performed both
automatically with the IDL version of DAOPhot and by eye.
Magnitude detection limits were set when a source was not
detected by the automated FIND routine or was not detected by
eye. Within a distance of 1–2 FWHM, the automated finding
routine often failed even though the eye could discern two
sources, but beyond that distance the two methods agreed well.
A summary of the detection efficiency as a function of distance
from the primary star is given in Table 1.
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Table 1
Palomar AO Source Sensitivity as a Function of Distance from the Primary

Target at J

Distance Distance ∆J J

(FWHM) (′′) (mag) (mag)

1 0.075 1.5 13.7
2 0.150 2.5 14.7
3 0.225 3.5 15.7
4 0.300 4.0 16.2
5 0.375 4.5 16.7
6 0.450 5.0 17.2
7 0.525 6.0 18.2
8 0.600 7.0 19.2
9 0.675 7.5 19.7

40 3.000 8.5 20.7

Table 2
Mean Pixel Response Function Fit Source Offsets

Planet Distance σ

(′′)

Kepler-18b 0.536 ± 0.245 2.19
Kepler-18c 0.070 ± 0.107 0.66
Kepler-18d 0.067 ± 0.103 0.65

A major source of false-positive planet indication in the
Kepler data is background eclipsing binary stars within the
photometric aperture of Kepler-18, which, when diluted by
Kepler-18 itself, can produce a planetary-size transit signal. We
perform a direct measurement of the source location via dif-
ference images. Difference image analysis takes the difference
between average in-transit pixel images and average out-of-
transit images. Barring pixel-level systematics, the pixels with
the highest flux in the difference image will form a star image
at the location of the transiting object, with an amplitude equal
to the depth of the transit. Performing a fit of the Kepler pixel
response function (PRF; Bryson et al. 2010) to both the differ-
ence and out-of-transit images quantifies the offset of the transit
source from Kepler-18. Difference image analysis is vulnerable
to various systematics due to crowding and PRF errors which
will bias the result (Bryson et al. 2010). These types of biases
will vary from quarter to quarter. We ameliorate these biases
by computing the uncertainty-weighted robust average of the
source locations over available quarters. Table 2 gives the off-
sets of the transit signal source from Kepler-18 averaged over
quarters 1 through 8 for all three-planet candidates. We see that
the average offsets are within 1σ of Kepler-18, with Kepler-18b
being just over 2σ . From all of these lines of evidence, we con-
clude that there are no other objects within 4 mag near K00137
from 0.′′05 out to 15′′.

3.3. Precise Doppler Measurements of Kepler-18

After completion of the reconnaissance spectroscopy and
high-resolution imaging, K00137 showed no evidence that
might refute the planetary nature of the transit event in the Kepler
light curve and the target was approved for high precision RV
observations. We obtained 14 relative velocities with the Keck I
High Resolution Echelle Spectrometer (HIRES; Vogt et al.
1994) between 2009 September 1 and 2010 August 28 UT. We
used the same spectrograph configuration as is normally used
for precise Doppler measurements of solar-type stars (cf. Marcy
et al. 2008; Cochran et al. 2002). Decker B5 (0.′′87 × 3.′′5) was
used for the first five RV observations taken in 2009, and decker

Table 3
Keck HIRES Relative Radial Velocity Measurements of K00137

BJD RV σ

(m s−1) (m s−1)

2455076.008719 4.67 5.02
2455076.927037 4.24 4.99
2455081.024475 5.43 8.10
2455082.007257 1.09 4.70
2455084.983537 −8.83 5.61
2455318.066020 1.65 5.36
2455322.029214 −11.97 4.64
2455373.003937 10.85 4.52
2455403.018946 21.47 5.85
2455405.909151 −12.24 4.73
2455406.881186 −0.53 4.39
2455413.010870 −10.44 5.24
2455432.969613 1.21 4.45
2455436.781954 −8.54 4.45

C2 (0.′′87 × 14′′) was used for all of the later spectra. Exposures
taken with the B5 decker entrance to the HIRES spectrometer
suffer RV errors of up to ±15 m s−1 when the moon is full
and the relative Doppler shift of the star and solar spectrum is
less than 10 km s−1 (i.e., within a line width). This 15 m s−1

error was determined from 10 stars for which observations
were taken with and without moonlight subtraction. The first
five RV measurements of Kepler-18 were made with the B5
decker and hence suffer from such errors. Decker C2 is long
enough to permit us to do accurate subtraction of any moonlit
sky spectrum. Sky subtraction was not possible with the spectra
taken with decker B5. The iodine absorption cell was used as the
velocity metric. This HIRES configuration can give a velocity
precision as good as 1.0 m s−1, depending on the stellar spectral
type, the stellar rotation velocity V sin i, and on the S/N of the
observation. The exposure times for the K00137 spectra ranged
from 2300 to 2700 s, and the final S/Ns ranged from 63 to 80
pixel−1, or 127 to 162 per 4.1 pixel resolution element. The
Doppler RV analysis algorithm (Butler et al. 1996; Johnson
et al. 2009) computes an uncertainty in each data point from the
variance about the mean of the individual spectral chunks into
which the spectrum is divided. Main-sequence stars having Teff
near 5400 K have been measured for precise RVs for roughly
100 stars using the same HIRES instrument. Such stars typically
show an additional noise of 2 m s−1, caused by surface velocity
fields and instrumental effects. We have modeled this additional
intrinsic short-term stellar variability by adding that 2.0 m s−1

“jitter” in quadrature to the uncertainties of each RV data
point computed by the RV code. The measured HIRES relative
velocities are given in Table 3. These velocity measurements are
shown as the black points in Figure 4. The solid blue line in this
figure is the model fit from the joint Markov Chain Monte Carlo
(MCMC) solution of the RV data and the light curve, presented
in Section 4. The rms scatter of the RV observations around this
model fit is 4.3 m s−1, whereas the rms scatter of the raw RVs
is 9.6 m s−1. The inferred planetary masses from this solution
are given in the first row of Table 8. Also shown as the dashed
red line in Figure 4 is a two-planet RV solution that includes
only Kepler-18c (K00137.01) and Kepler-18d (K00137.02). The
black line in Figure 4 shows the velocities from the full multi-
body dynamical solution discussed in Section 6. The masses
from this dynamical solution are adopted in Section 6 as our
best determination of the planet masses.

5
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Figure 4. Observed precise relative radial velocity measurements from the
Keck HIRES spectrograph. The solid black line gives the relative radial velocity
variations of Kepler-18 computed from the full multi-body dynamical model
discussed in Section 6. The dotted (blue) line is the model fit from the combined
MCMC solution to the Kepler light curve and these velocity data presented in
Section 4. A Keplerian fit from the radial velocity data alone, without the light
curve constraints, is indistinguishable from this curve. The dashed (red) line is a
two-planet Keplerian fit to the RV data accounting for Kepler-18c (K00137.01)
and Kepler-18d (K00137.02) only.

(A color version of this figure is available in the online journal.)

3.4. Spectroscopic Analysis

We determined stellar parameters using the local thermo-
dynamic equilibrium line analysis and spectral synthesis code
MOOG27 (Sneden 1973), together with a grid of Kurucz28

ATLAS9 model atmospheres. The method used is virtually
identical to that described in Brugamyer et al. (2011). We
analyzed a spectrum of Kepler-18 obtained with the Keck I
HIRES spectrograph on 2010 August 27 UT. We first mea-
sured the equivalent widths of a carefully selected list of 53
neutral iron lines and 13 singly ionized iron lines in a spec-
trum of the Jovian satellite Ganymede, taken using the same
instrumental setup and configuration as that used for Kepler-18.
MOOG force-fits abundances to match these measured equiv-
alent widths, using declared atomic line parameters. By as-
suming excitation equilibrium, we constrained the stellar tem-
perature by eliminating any trends with excitation potential;
assuming ionization equilibrium, we constrained the stellar sur-
face gravity by forcing the derived iron abundance using neutral
lines to match that of singly ionized lines. The microturbulent
velocity ξ was constrained by eliminating any trend with re-
duced equivalent width (Wλ/λ). Our derived stellar parameters
for the Sun (using our Ganymede spectrum) are as follows:
Teff = 5785 ± 70 K, log g = 4.54 ± 0.09 dex, microtur-
bulent velocity ξ = 1.17 ± 0.06 km s−1, and Fe abundance
log(ǫ) = 7.54 ± 0.05 dex.

We repeated the process described above for the spectrum of
Kepler-18. We then took the difference, on a line-by-line basis,
of the derived iron abundance from each line. Our resulting iron

27 Available at http://www.as.utexas.edu/∼chris/moog.html.
28 http://kurucz.harvard.edu/grids.html

abundance is therefore differential with respect to the Sun. To
estimate the rotational velocity of Kepler-18, we synthesized
three 5 Å wide spectral regions in the range 5640–5690 Å
and adjusted the Gaussian and rotational broadening parameters
until the best fit (by eye) was found to the observed spectrum.
The results of our analysis yield the following stellar parameters
for Kepler-18: Teff = 5345 ± 100 K, log g = 4.31 ± 0.12,
ξ = 1.09 ± 0.08 km s−1, [Fe/H] = +0.19 ± 0.06, and
V sin i < 4 km s−1. The sky-projected rotational velocity of the
star is very small. For such small V sin i values, disentangling
line-broadening effects due to the instrument, macroturbulence,
and rotation is difficult, at best, and requires higher signal to
noise and resolution than our spectrum offers. In our MOOG
analysis, we have therefore chosen to quote an upper limit for
V sin i, which we estimate by assuming that all broadening is
due to stellar rotation.

A completely independent analysis of the same spectrum was
done using the stellar spectral synthesis package SME (Valenti
& Piskunov 1996; Valenti & Fischer 2005). This analysis of
Kepler-18 gives Teff = 5383 ± 44 K, log g = 4.41 ± 0.10,
[Fe/H] = +0.20 ± 0.04, and V sin i = 0.4 ± 0.5 km s−1. The
agreement between the MOOG and the SME analyses of this star
is excellent. We have arbitrarily selected the MOOG parameters
as our adopted values.

4. LIGHT CURVE AND RADIAL VELOCITY SOLUTION

We performed a joint solution of the photometric light curve
and the RV data in order to derive the orbital parameters as
well as the physical characteristics of the planet candidates, in
the same manner as described in detail by Batalha et al. (2011)
for Kepler-10b. The transit light curves were modeled using the
analytic formulation of Mandel & Agol (2002), and the radial
velocities were fit with a Keplerian orbit. We model the mean
density of the star, and for each of the three-planet candidates
we model the planetary radius, the orbital period, T0, the impact
parameter, b, and the RV amplitude, K. The eccentricity was
fixed to 0.0. Model parameters were determined by minimiz-
ing the χ2 statistic using a Levenberg–Marquardt technique. To
determine the best-fit model parameter distributions, we used a
MCMC method that has been optimized for highly correlated
parameters (Gregory 2011). Stellar parameters were determined
in a separate MCMC analysis using the Yonsei–Yale isochrones
(Yi et al. 2001, et seq.) with Teff , [Fe/H], and fitted value of the
mean-stellar density as constraints. Figure 5 shows the param-
eter distribution functions resulting from the MCMC analysis.
Table 4 lists the adopted system parameters. In most cases,
these parameters came from the MCMC analysis. As discussed
in Section 6, significant TTVs were detected in Kepler-18c and
Kepler-18d. These TTVs would have been absorbed into the
MCMC periods and epochs and their uncertainties. Therefore,
we have adopted the periods and epochs from the TTV anal-
ysis, and these are reported in Table 4. The uncertainty in the
epoch is the median absolute deviation of the transit times from
this ephemeris, and the uncertainty in the period is this quan-
tity divided by the number of orbits between the first and last
observed transits. Similarly, the dynamical system model pre-
sented in Section 6 derives our best and most reliable masses
for the three planets. These masses from the dynamical model
are reported in Table 4. The masses from the MCMC model
are listed in Table 8. The TTV dynamical model places tight
upper limits on the orbital eccentricity of planets “c” and “d,”
as shown in Table 7. These eccentricities are small enough that
they would not significantly change the parameters in Table 4.
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Figure 5. Markov Chain Monte Carlo model probability distribution functions for parameters of the Kepler-18 system. The left column gives the two stellar parameters
of the stellar density and the relative radial velocity zero point. For the other five columns, the top row gives the planet parameters of transit epoch, orbital period,
square of the impact parameter, ratio of the planetary to stellar radius, and the orbital velocity amplitude K for Kepler-18b. The second and third rows give the same
parameters for Kepler-18c and Kepler-18d, respectively.

(A color version of this figure is available in the online journal.)

For example, the zero eccentricity solution gives a stellar den-
sity of 1.01±0.12 g cm−3. Inclusion of the eccentricity from the
TTV solution would change this by 0.03 g cm−3, or 0.25σ . For
each parameter adopted from the MCMC model, we adopt the
median value of the distribution, and the error bar represents the
68.3% confidence level—roughly equivalent to a 1σ confidence
level.

It is interesting and informative to compare the initial values
for the transiting planet parameters presented in the tabulation of
candidates by Borucki et al. (2011b) with those we have finally
settled on in Table 4. The parameters of the parent star given by
Borucki et al. (2011b) K00137 are simply taken from the KIC.
The overall accuracy of the KIC photometric stellar parameters
is actually quite good, as was shown by Brown et al. (2011).
The other important planetary system parameters reported by
Borucki et al. (2011b) are the orbital periods and transit depths
of each of the three KOIs in the system. Our adopted orbital
periods agree with the preliminary Borucki et al. (2011b) values
to within 1σ for K00137.01 and K00137.03, and within 4σ
for K00137.02. We note that Borucki et al. (2011b) assumed
no transit time variations, and fit the best mean period to the
data. The transit depths agree to within 2σ for K00137.02

and K00137.03, but differ by 7.5σ for K00137.02. This slight
disagreement for K00137.02 probably results from Borucki et al.
(2011b) fitting an impact parameter of 0.03, whereas our best
value is 0.593 ± 0.050.

The RV variations of the parent star Kepler-18 resulting from
this three-planet MCMC model is shown as the solid blue line
in Figure 4. This solution is very similar to the three-body
RV solution one would get from the RV data alone, holding
the period and T0 of each planet fixed at the values from the
photometric light curve solution and assuming zero eccentricity.
A two-body solution to the RV data considering only K00137.01
and K00137.02 is shown as the dashed red line in Figure 4.
The full three-planet solution gives a significantly better fit to the
observed radial velocities than does the two-body solution. The
rms of the full MCMC three-body fit is 4.3 m s−1, while the rms
of the two-body Keplerian solution is 5.5 m s−1. We computed
an f-test based on the residuals of a two-planet and three-
planet RV fit. The periods where fixed based on transit data.
We find f = 4.97, which means there is a 0.68% probability
that variance of the residuals is similar. Thus, this reduction
in the rms supports the interpretation of K00137.03 as a third
planetary companion to K00137. However, the RV observations
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Table 4
Adopted System Parameters

Parameter Value

M⋆ (M⊙)a 0.972 ± 0.042
R⋆ (R⊙)a 1.108 ± 0.051
log L⋆ (L⊙)a −0.031 ± 0.035
Age (Gyr)a 10.0 ± 2.3
log g⋆

b 4.31 ± 0.12
ρ⋆ (g cm−3)c 1.01 ± 0.12

Kepler-18b = K00137.03

T0
c 2454966.5068 ± 0.0021

P (days)c 3.504725 ± 0.000028
Transit depth (ppm)c 254.0 ± 7.8
b (impact parameter)c 0.771 ± 0.025
Rp/R⋆

c 0.01656 ± 0.00032
Mp (M⊕)d 6.9 ± 3.4
Rp (R⊕)c 2.00 ± 0.10
i (deg)e 84.92 ± 0.26
a/R⋆

e 8.58 ± 0.37
ρ̄p (g cm−3)3,4 4.9 ± 2.4
a (AU)e 0.0447 ± 0.0006
K (m s−1)c 5.2 ± 2.4
T14 (hr)e 2.076 ± 0.036
T12 (hr)e 0.0818 ± 0.0082

Kepler-18c = K00137.01

T0
d 2455167.0883 ± 0.0023

P (days)d 7.64159 ± 0.00003
Transit depth (ppm)c 2286.6 ± 8.6
b impact parameter)c 0.593 ± 0.050
Rp/R⋆

c 0.04549 ± 0.00055
Mp (M⊕)d 17.3 ± 1.9
Rp (R⊕)c 5.49 ± 0.26
i (deg)e 87.68 ± 0.22
a/R⋆

e 14.43 ± 0.61
ρ̄p (g cm−3)3,4 0.59 ± 0.07
a (AU)e 0.0752 ± 0.0011
K (m s−1)c 5.1 ± 1.9
T14 (hr)e 3.488 ± 0.020
T12 (hr)e 0.229 ± 0.022

Kepler-18d = K00137.02

T0
d 2455169.1776 ± 0.0013

P (days)d 14.85888 ± 0.00004
Transit depth (ppm)c 3265. ± 12.

b (impact parameter)c 0.767 ± 0.024
Rp/R⋆

c 0.05782 ± 0.00069
Mp (M⊕)d 16.4 ± 1.4
Rp (R⊕)c 6.98 ± 0.33
i (deg)e 88.07 ± 0.10
a/R⋆

e 22.48 ± 0.96
ρ̄p (g cm−3)3,4 0.27 ± 0.03
a (AU)e 0.1172 ± 0.0017
K (m s−1)c 7.3 ± 2.1
T14 (hr)e 3.679 ± 0.036
T12 (hr)e 0.459 ± 0.045

Notes.
a Based on isochrone fits using ρ⋆, from the MCMC model and Teff and [Fe/H]
from spectroscopy.
b From the MOOG analysis.
c From the MCMC model.
d From the TTV model.
e Derived from other parameters.

are not sufficiently dense to consider this to be a confirmation
of this KOI as a planet.

5. WARM-SPITZER OBSERVATIONS OF
K00137.01 AND K00137.02

Observation of the transits of the planets around Kepler-18 at
multiple, widely spaced wavelengths is a valuable tool for con-
firming the planetary nature of the events. The depth of a plan-
etary transit should be nearly independent of wavelength, aside
from minor effects due to the possible finite brightness of the
planet as a function of wavelength. In order to test for wavelength
independence of the transit depths, K00137.01 and K00137.02
were observed during two transits with Warm-Spitzer/IRAC
(Werner et al. 2004; Fazio et al. 2004) at 4.5 μm (program ID
60028). The observations occurred on UT 2010 July 19 and UT
2010 August 13. Both visits lasted approximately 9 hr. The data
were gathered in full-frame mode (256 × 256 pixels) with an
exposure time of 12 s per image, which yielded 2418 and 2575
images per respective visit.

The method we used to produce photometric time series from
the images is described by Désert et al. (2009). It consists of
finding the centroid position of the stellar point-spread function
(PSF) and performing aperture photometry using a circular
aperture.

The images used are the Basic Calibrated Data delivered
by the Spitzer archive. These files are corrected for dark
current, flat-fielding, detector nonlinearity and converted into
flux units. We convert the pixel intensities to electrons using
the information given in the detector gain and exposure time
provided in the FITS headers. This facilitates the evaluation of
the photometric errors. We extract the UTC-based Julian date
for each image from the FITS header (keyword DATE_OBS)
and correct to mid-exposure. We convert to UTC-based BJD
following the procedure developed by Eastman et al. (2010).
We use the JPL Horizons ephemeris to estimate the position
of the Spitzer Space Telescope during the observations. We
correct for transient pixels in each individual image using a
20 point sliding median filter of the pixel intensity versus time.
For this step, we compare each pixel’s intensity to the median
of the 10 preceding and 10 following exposures at the same
pixel position and we replace outliers greater than 4σ with their
median value. The fraction of pixels we correct is lower than
0.16% for both transits. The centroid position of the stellar PSF
is determined using DAOPHOT-type Photometry Procedures,
GCNTRD, from the IDL Astronomy Library.29 We use the APER

routine to perform aperture photometry with a circular aperture
of variable radius, using radii of 1.5–8 pixels, in 0.5 pixel
steps. The propagated uncertainties are derived as a function
of the aperture radius; we adopt the one which provides the
smallest errors. We find that the transit depths and errors vary
only weakly with the aperture radius for all the light curves
analyzed in this project. The optimal aperture is found to be at
3.0 pixels. We estimate the background by fitting a Gaussian
to the central region of the histogram of counts from the full
array. The center of the Gaussian fit is adopted as the residual
background intensity. As already seen in previous Warm-Spitzer
observations (Deming et al. 2011; Beerer et al. 2011), we find
that the background varies by 20% between three distinct levels
from image to image, and displays a ramp-like behavior as a
function of time. The contribution of the background to the total
flux from the star is low for both observations, from 0.15% to
0.9% depending on the images. Therefore, photometric errors
are not dominated by fluctuations in the background. We used
a sliding median filter to select and trim outliers in flux and

29 http://idlastro.gsfc.nasa.gov/homepage.html
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Figure 6. Spitzer transit light curves of K00137.01 (top) and K00137.02 (bottom) observed in the IRAC bandpass at 4.5 μm. Top panels: raw (unbinned) transit light
curves. The red solid lines correspond to the best-fit models which include the time and position instrumental decorrelations as well as the model for the planetary
transit (see details in Section 5). Lower panels: transit light curve corrected, normalized, and binned by 36 minutes. The best-fit Spitzer transit curves are plotted in
red, and the transit shapes expected from the Kepler observations are overplotted in dashed green lines.

(A color version of this figure is available in the online journal.)

position greater than 5σ , which corresponds to 0.9% and 2.0%
of the data, for the first and second visit, respectively. We also
discarded the first half-hour of observations, which are affected
by a significant telescope jitter before stabilization. The final
number of photometric measurements used is 2246 and 2369.
The raw time series are presented in the top panels of Figure 6.
We find the typical S/N to be 140 per image, which corresponds
to 80% of the theoretical signal to noise. Therefore, the noise is
dominated by Poisson photon noise.

5.1. Analysis of the Warm-Spitzer Light Curves

We used a transit light curve model multiplied by instrumental
decorrelation functions to measure the transit parameters and

their uncertainties from the Spitzer data as described in Désert
et al. (2011b). We compute the transit light curves with the IDL
transit routine OCCULTSMALL from Mandel & Agol (2002). In
the present case, this function depends on one parameter: the
planet-to-star radius ratio Rp/R⋆. The orbital semimajor axis to
stellar radius ratio (system scale) a/R⋆, the impact parameter
b, and the time of mid-transit T0 are fixed to the values derived
from the Kepler light curves. The limb-darkening coefficients
are set to zero since these Spitzer light curves do not have enough
photometric precision to detect the curvature in the transit light
curve that would be produced by limb darkening.

The Spitzer/IRAC photometry is known to be systemati-
cally affected by the so-called pixel-phase effect (see, e.g.,
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Charbonneau et al. 2005; Knutson et al. 2008). This effect is
seen as oscillations in the measured fluxes with a period of
approximately 70 minutes (period of the telescope pointing jit-
ter) and an amplitude of approximately 2% peak to peak. We
decorrelated our signal in each channel using a linear function
of time for the baseline (two parameters) and a quadratic func-
tion of the PSF position (four parameters) to correct the data for
each channel. We checked that adding parameters to the correc-
tion function of the PSF position (as in Désert et al. 2009) does
not improve the fit significantly. We performed a simultane-
ous Levenberg–Marquardt least-squares fit (Markwardt 2009)
to the data to determine the transit and instrumental model pa-
rameters (seven in total). The errors on each photometric point
were assumed to be identical and were set to the rms of the
residuals of the initial best fit obtained. To obtain an estimate
of the correlated and systematic errors (Pont et al. 2006) in our
measurements, we use the residual permutation bootstrap, or
“Prayer Bead,” method as described in Désert et al. (2009). In
this method, the residuals of the initial fit are shifted system-
atically and sequentially by one frame, and then added to the
transit light curve model before fitting again. We allow asym-
metric error bars spanning 34% of the points above and below
the median of the distributions to derive the 1σ uncertainties for
each parameter as described in Désert et al. (2011a).

We measured the transit depths at 4.5 μm of 1521+277
−245 ppm

for Kepler-18c and 4083+298
−285 for Kepler-18d. The values we

measure for the transit depths in the Spitzer bandpass are in
agreement at the 2σ level compared to the Kepler bandpass.
This indicates that the transit depths of Kepler-18c and Kepler-
18d are only weakly dependent on wavelength, if at all. This
is in agreement with expectations for a dark planetary object,
and indicates that there is no significant contamination from
any nearby unresolved star of significantly different color. As
discussed in Section 7, this is important evidence that the transit
signals arise from planets and not from eclipsing stars blended
with additional light.

These Spitzer observations provide a useful constraint on
the kinds of false positives (blends) that may be mimicking
the transit signal, such as eclipsing binaries blended with the
target. If Kepler-18 were blended with an unresolved eclipsing
binary of later spectral type that manages to reproduce the transit
depth in the Kepler passband, the predicted depth at 4.5 μm
would be expected to be larger because of the higher flux of
the contaminant at longer wavelengths compared to Kepler-
18. Since the transit depth we measure in the near-infrared is
about the same as in the optical, this argues against blends
composed of stars of much later spectral type. Based on model
isochrones, the properties of the target star, and the transit depths
measured with Spitzer at the 3σ level, we determine a lower limit
to the blend masses of 0.86 and 0.79 M⊙ for Kepler-18c and
Kepler-18d, respectively.

6. TRANSIT TIMING VARIATIONS ANALYSIS

6.1. Transit Times and Errors

Kepler-18 was observed at the 29.4244 minute LC rate for
the first three observing periods Q0–Q2. After the transits
of K00137.01 and K00137.02 were detected, Kepler-18 was
observed at the 58.85 s SC in order to facilitate the measurement
of possible TTVs. These SC data were used for Q3 through Q7.
Transit times and their errors for each member of the Kepler-18
system were determined through an iterative procedure; a single
step of this procedure is described as follows.

First, the detrended photometric data within four transit
durations at each epoch were shifted by the current best-fit
mid-transit times, and the light curves were folded on these
transit times to form a transit template. This template was then
fit with a transit light curve model (Mandel & Agol 2002). Next,
at each individual epoch, this light curve template was shifted
in time and compared to the data by computing the standard
χ2 statistic. This statistic was computed for a dense, uniform
sample of mid-transit times centered on the current best-fit time
and spanning approximately five current best-fit timing errors.
The time t0, corresponding to the minimum χ2, was recorded
as the new best-fit mid-transit time. The χ2 data were then fit
with a quadratic function of time, χ2(t) = C(t − t0)2 + χ2

0 .
By choosing this functional form, we are assuming that the
posterior likelihood is well described by a Gaussian function of
the mid-transit time. The fidelity of the quadratic approximation
was verified visually at each epoch. The timing error, σt , was
found by solving for the time, t = t0 +σt , at which the quadratic
model indicated a ∆χ2 = 1. This corresponds to σt = C−1/2.

This iterative procedure of template generation followed by
timing estimate generally converged to the final values in two to
three steps. The measured transit times for each observed transit
of Kepler-18c are given in Table 5, and the measured transit
times for Kepler-18d are given in Table 6.

A drift in the orbital inclination was measured for each
planet by augmenting the nominal transit model with an epoch-
dependent linear inclination (viz., i(E) = i(0) + (∆i/∆E) × E),
and then fitting for the linear coefficient. In this fit, transit times
were fixed to their best-fit values while the remaining transit
parameters were allowed to vary. The best-fitting solution was
found by minimizing the standard χ2 metric. The uncertainty
was estimated by fitting a multivariate Gaussian to a sampling
of the posterior parameter distribution. The drifts (∆i/∆E) were
found to be [10 ± 9, 4 ± 22, −3 ± 10] ×10−4 degrees per epoch
for planets b, c, and d, respectively. Thus, we detect no secular
inclination drift.

6.2. Transit Time Variation Analysis

To model the transit times and radial velocities, we applied the
numerical routines that were previously used for Kepler-9 and
-11 (Fabrycky 2010; Holman et al. 2010; Lissauer et al. 2011a).
That is, a Levenberg–Marquardt χ2-minimization routine drove
three-planet dynamical integrations, which calculated the transit
times resulting from given orbital parameters. As in Lissauer
et al. (2011a), we chose the parameters (mp, P, T0, e cos ω,
e sin ω) for each planet: mass, orbital period, transit phase,
and eccentricity vector components. These parameters are
osculating Jacobian orbital elements at the epoch 2455168.0
[BJD]. As in Holman et al. (2010), we also used the integrations
to calculate radial velocities of the star at each of the observed
times. We assumed M⋆ = 0.95 M⊙, assumed the orbits are
edge-on and coplanar, and neglected light-travel time effects in
these numerical calculations.

The main data constraining the orbital model are the transit
times of Table 5 (75 data points) and Table 6 (37 data points). In
some of the calculations reported below, we allow K00137.03
to interact dynamically, but we include only its first and
last observed transits, at t = 2454955.99237 ± 0.00823 and
2455530.77178±0.00174 (two data points), as a way of keeping
its period and phase fixed at observed values. We have measured
all of its transit times, but we do not report or analyze them here:
their individual signal to noise is low, they are not apparently
constant, and we have not found a consistent dynamical solution

10



The Astrophysical Journal Supplement Series, 197:7 (19pp), 2011 November Cochran et al.

Table 5
Transit Times for Kepler-18c = K00137.01

Cyclea BJD-2455000.0 O − C σ

−27.0 −39.23132 + 0.00343 0.00141
−26.0 −31.59238 + 0.00077 0.00128
−25.0 −23.94944 + 0.00212 0.00134
−24.0 −16.30829 + 0.00168 0.00125
−23.0 −8.66703 + 0.00134 0.00202
−21.0 6.61139 −0.00342 0.00161
−20.0 14.25400 −0.00241 0.00155
−19.0 21.89543 −0.00257 0.00149
−18.0 29.53633 −0.00327 0.00135
−17.0 37.17764 −0.00355 0.00131
−16.0 44.82280 + 0.00002 0.00146
−15.0 52.46001 −0.00436 0.00107
−14.0 60.10428 −0.00169 0.00115
−13.0 67.74533 −0.00223 0.00108
−12.0 75.39019 + 0.00103 0.00145
−11.0 83.02837 −0.00238 0.00144
−10.0 90.67043 −0.00191 0.00140
−9.0 98.31334 −0.00059 0.00102
−8.0 105.95509 −0.00044 0.00105
−7.0 113.59742 + 0.00030 0.00148
−6.0 121.23989 + 0.00117 0.00098
−5.0 128.88188 + 0.00157 0.00108
−4.0 136.52252 + 0.00062 0.00102
−3.0 144.16670 + 0.00320 0.00088
−2.0 151.80782 + 0.00273 0.00137
−1.0 159.44986 + 0.00318 0.00113

0.0 167.09286 + 0.00459 0.00096
1.0 174.73457 + 0.00470 0.00097
2.0 182.37715 + 0.00568 0.00131
3.0 190.01671 + 0.00365 0.00106
4.0 197.65742 + 0.00277 0.00109
5.0 205.30025 + 0.00400 0.00117
6.0 212.94064 + 0.00281 0.00101
7.0 220.57949 + 0.00006 0.00111
8.0 228.22281 + 0.00178 0.00101
9.0 235.86365 + 0.00103 0.00106

10.0 243.50537 + 0.00116 0.00107
11.0 251.14597 + 0.00017 0.00097
12.0 258.78515 −0.00224 0.00092
13.0 266.42783 −0.00116 0.00115
14.0 274.06799 −0.00259 0.00118
15.0 281.70882 −0.00335 0.00110
16.0 289.35100 −0.00277 0.00079
17.0 296.99249 −0.00288 0.00088
18.0 304.63304 −0.00392 0.00083
19.0 312.27505 −0.00350 0.00093
20.0 319.91502 −0.00512 0.00090
21.0 327.56008 −0.00165 0.00089
22.0 335.19905 −0.00427 0.00093
23.0 342.84138 −0.00355 0.00084
24.0 350.48436 −0.00215 0.00103
25.0 358.12585 −0.00226 0.00097
26.0 365.76604 −0.00367 0.00086
27.0 373.41078 −0.00052 0.00095
28.0 381.05287 −0.00001 0.00101
29.0 388.69546 + 0.00098 0.00089
30.0 396.33836 + 0.00228 0.00090
31.0 403.97897 + 0.00130 0.00096
32.0 411.62239 + 0.00313 0.00104
33.0 419.26374 + 0.00288 0.00090
34.0 426.90502 + 0.00256 0.00100
35.0 434.54873 + 0.00468 0.00112
36.0 442.18944 + 0.00381 0.00091
37.0 449.82907 + 0.00184 0.00106
38.0 457.46935 + 0.00052 0.00097

Table 5
(Continued)

Cyclea BJD-2455000.0 O − C σ

39.0 465.11288 + 0.00246 0.00092
40.0 472.75469 + 0.00268 0.00103
41.0 480.39522 + 0.00161 0.00117
42.0 488.03539 + 0.00020 0.00101
43.0 495.67681 + 0.00002 0.00100
44.0 503.31876 + 0.00037 0.00092
45.0 510.95872 −0.00125 0.00091
46.0 518.60144 −0.00014 0.00088
47.0 526.24067 −0.00249 0.00114
48.0 533.88235 −0.00241 0.00112

Note. a P = 7.64159 days, T0 = 2455167.08828.

Table 6
Transit Times for Kepler-18d = K00137.02

Cyclea BJD-2455000.0 O − C σ

−14.0 −38.84989 −0.00318 0.00101
−13.0 −23.98927 −0.00144 0.00090
−12.0 −9.12888 + 0.00008 0.00081
−11.0 5.73040 + 0.00048 0.00086
−10.0 20.59242 + 0.00362 0.00115
−9.0 35.44894 + 0.00126 0.00074
−8.0 50.30774 + 0.00119 0.00091
−7.0 65.16644 + 0.00101 0.00078
−6.0 80.02557 + 0.00126 0.00121
−5.0 94.88445 + 0.00127 0.00068
−4.0 109.74201 −0.00005 0.00065
−3.0 124.59986 −0.00107 0.00080
−2.0 139.45743 −0.00238 0.00065
−1.0 154.31562 −0.00307 0.00067

0.0 169.17495 −0.00261 0.00070
2.0 198.89361 −0.00170 0.00081
3.0 213.75079 −0.00341 0.00085
4.0 228.61267 −0.00040 0.00079
5.0 243.47039 −0.00155 0.00081
6.0 258.33093 + 0.00011 0.00068
7.0 273.19074 + 0.00104 0.00071
8.0 288.05139 + 0.00282 0.00069
9.0 302.91049 + 0.00304 0.00061

10.0 317.77010 + 0.00377 0.00065
11.0 332.62850 + 0.00330 0.00061
12.0 347.48637 + 0.00229 0.00069
13.0 362.34423 + 0.00127 0.00072
14.0 377.20286 + 0.00103 0.00070
15.0 392.06096 + 0.00025 0.00063
16.0 406.91891 −0.00068 0.00061
17.0 421.77755 −0.00091 0.00061
18.0 436.63489 −0.00245 0.00063
19.0 451.49447 −0.00175 0.00067
20.0 466.35351 −0.00158 0.00063
21.0 481.21293 −0.00104 0.00066
22.0 496.07232 −0.00052 0.00067
23.0 510.93180 + 0.00008 0.00061

Note. a P = 14.85888 days, T0 = 2455169.17756.

to date. Perhaps future work will show a fourth (non-transiting)
planet is required to fit the transit times of Kepler-18b. In the
meantime we proceed with fitting the three transiting planets
with a focus on the transit timing constraints for Kepler-18c and
Kepler-18d.

By fitting only the transit times, allowing P and T0 for each
of the three planets to vary (six free parameters), and setting
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Figure 7. Observed minus calculated (based on a linear ephemeris) values of transit times, for Kepler-18c (left) and Kepler-18d (right). The solid line shows the transit
times calculated using a dynamical model. The lower panels show the residuals of the measurements from the model.

dynamical interactions to zero, we find χ2 = 750.6 for 114
transit time measurements. This is clearly an unacceptable fit,
and the obvious timing patterns call for a dynamical model. The
observed (“O”) residuals to this calculated (“C”) ephemeris are
called the O − C values and are plotted in Figure 7 along with
the preferred dynamical model described below. As in the case
of Kepler-11b/c, we clearly see that the source of the variations
of transit times for Kepler-18c and Kepler-18d is their nearly
2:1 resonance. The expected variation occurs on a timescale:

PTTV = 1/(2/Pd − 1/Pc) = 268 days, (1)

the time it takes the line of conjunctions to sweep around inertial
space, through both the line of sight and the apsidal lines of these
planets (on the approximation that precession can be ignored on
this timescale); see Agol et al. (2005). In Figure 8, we plot the
periodogram of the O − C values for Kepler-18c and Kepler-
18d. The peaks occur at 1/(260.4 ± 3.3 days) and 1/(265.1 ±
4.7 days) for Kepler-18c and Kepler-18d, respectively, very
close to the simple expectation given above, which uniquely
identifies the dynamical mechanism for TTVs.

Before moving on to a full solution, we tried fitting the radial
velocities (14 data points, Table 3) with the above-determined
periods and phases, with circular orbits, allowing only the
planetary masses to vary. The solution, listed in the second row
of Table 8, was [mb,mc,md ] = [12±5, 15±5, 28±7] M⊕; the
χ2 = 9.7 for 10 degrees of freedom (14 RV data points, minus
3 K-amplitudes, minus a constant RV offset). These masses are
well within the 1σ error bars of the MCMC solution to the light
curve and RVs presented in Section 4. Therefore, this model
is sufficient to explain the radial velocities, and each planet is
detected, but only marginally so for planet b. In particular, if
we hold the mass of b at zero, the masses of the others become
[mc, md] = [18±5, 24±7] M⊕ and the χ2 = 15.6 for 10 degrees
of freedom. These values are within about 0.5σ of the masses
determined from the joint MCMC and RV solution presented
earlier in Section 4.

We may also attempt to constrain the masses and orbital
elements using only the transit times. Naturally, this requires

Figure 8. Periodograms (fractional χ2 reduction as a function of frequency;
Zechmeister & Kürster 2009) of the O − C values shown in Figure 7. The
dashed line shows the expected timescale from Equation (1), showing excellent
agreement. The large tick marks show the Nyquist frequency 1/(2Porbital)
beyond which the periodogram holds no additional information.

full dynamical integrations, in which the planets cannot remain
on circular orbits. However, for planet b we assumed a circular
orbit at the dynamical epoch, since we are not attempting to fit
its transit time variations. All of the other orbital parameters and
masses were free to vary. The resulting χ2 is 88.5 for 101 degrees
of freedom (114 transit times, minus 5 parameters for planets c
and d, minus 3 for K00137.03), which is quite acceptable. To
be compared with the RV solution, the solved-for masses were
[mb,mc,md ] = [18 ± 9, 17.3 ± 1.7, 15.8 ± 1.3] M⊕, shown
in the third row of Table 8. These solutions had extremely low
eccentricities (e < 0.003) for Kepler-18c and Kepler-18d. As
above, the innermost planet is only very marginally detected.
In contrast to the RV solution, however, the masses of the
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Table 7
Osculating Jacobian Elements, at Epoch 2455168.0 [BJD], for the Three-planet TTV Dynamical Solution

Planet Period T0 e cos ω e sin ω

(days) (days)

b 3.504674 ± 0.000054 266.276996 ± 0.005453 0 0
c 7.641039 ± 0.000087 267.092502 ± 0.000262 0.000291 ± 0.000079 0.000173 ± 0.000233
d 14.860509 ± 0.000148 269.174850 ± 0.000253 −0.000076 ± 0.000019 0.000516 ± 0.000450

Table 8
Masses and Densities of the Planets in the Kepler-18 System

Method Kepler-18b Kepler-18c Kepler-18d
(K00137.03) (K00137.01) (K00137.02)

MCMC (light curve + RV) solution (M⊕) 13.4 ± 5.8 16.9 ± 6.1 29.9 ± 8.8
RV + transit time P and T0 (M⊕) 12 ± 5 15 ± 5 28 ± 7
TTV dynamical model (M⊕) 18 ± 9 17.3 ± 1.7 15.8 ± 1.3
TTV + RV dynamical model (adopted values) (M⊕) 6.9 ± 3.4 17.3 ± 1.9 16.4 ± 1.4

Density from adopted mass (g cm−3) 4.9 ± 2.4 0.59 ± 0.07 0.27 ± 0.03

interacting planets are very precisely pinned down by the large
variations seen in Figure 7.

Finally, we generated a joint solution to the transit times and
radial velocities. Graphically, this solution is given by Figure 7.
A χ2 = 103.4 for 114 degrees of freedom is achieved, an
excellent fit to the data. The orbital parameters and their formal
errors (the output of the Levenberg–Marquardt algorithm) are
given in Table 7, and the planetary masses are given in the fourth
row of Table 8.

In the previous subsection we found no drift in the inclinations
of the three planets. We can use the 3σ upper limits on |∆i/∆E|
of [37, 70, 33] × 10−4 degrees per epoch for Kepler-18b, c, and
d to place limits on their mutual inclination (Miralda-Escudé
2002). To do this, we measure the value of |∆i/∆E| seen in
numerical simulation, which depends nearly linearly on the dif-
ference in nodal angle on the sky of two planets (Ballard et al.
2010). Taking the masses and orbits from the best-fit TTV/RV
solution above, we simulated Kepler-18c and d with 1◦ (and
10◦) of mutual inclination, we find |∆i/∆E|c = 1.8 × 10−4 de-
gree per epoch (16 × 10−4 degree per epoch) and |∆i/∆E|d =
2.9 × 10−4 degree per epoch (26 × 10−4 degree per epoch).
The interaction between Kepler-18b and c is also potentially
observable; simulating their orbits with 1◦ (10◦) of mutual in-
clination, we find |∆i/∆E|b = 1.3(11) × 10−4 degree per epoch
and |∆i/∆E|c = 0.82(7.4) × 10−4 degree per epoch. The inter-
action between Kepler-18b and d is considerably weaker, with
a drift of ∼2 × 10−4 degree per epoch even for 10◦ mutual in-
clination; therefore we ignore it when setting mutual inclination
limits. To find the 3σ upper limit to the nodal difference of c
and d, we compare the 10◦ calculated value of |∆i/∆E|d to its
observational 3σ upper limit, so we find |Ωc − Ωd | < 13◦. The
inclination difference in the complementary direction is only
id − ic = 0.◦40±0.◦24, so the limit on the true mutual inclination
is icd < 13◦. The nodal difference of b and c is more poorly
constrained, as the calculated value of |∆i/∆E| for both planets
in the 10◦ mutual inclination simulation is small compared to its
observational 3σ upper limit. Thus, a moderate (∼20◦) mutual
inclination is permissible, which would be large enough to affect
the timing fits. In that case, the model should self-consistently
fit the radial velocities, transit times, and transit durations. How-
ever, we defer dynamical interpretation of the mutual inclination
of the inner planet to the others until more data are gathered,
which should tighten the limit.

7. BLENDER ANALYSIS OF K00137.03

The lack of a clear dynamical confirmation of the nature
of K00137.03 requires us to examine the wide variety of
astrophysical false positives (blends) that might mimic the
photometric transit, and to assess their a priori likelihood
compared to that of a true planet. For this we apply the BLENDER
technique described by Torres et al. (2004, 2011) with further
developments as reported by Fressin et al. (2011). BLENDER uses
the detailed shape of the transit light curve to weed out scenarios
that lead to the wrong shape for a transit. The kinds of false
positives we are concerned with here include background or
foreground eclipsing binaries blended with the target, as well as
physically associated eclipsing binaries, which generally cannot
be resolved in high angular resolution imaging. In each case
the pair of eclipsing objects can also be a star transited by a
larger planet. Briefly, BLENDER simulates a very large number
of light curves resulting from these blend scenarios with a range
of stellar (or planetary) parameters, and compares them to the
Kepler photometry in a χ2 sense. Blends providing poor fits
are considered to be ruled out, enabling us to place constraints
on the kinds of objects composing the eclipsing pair that yield
viable blends, including their sizes or masses, as well as other
properties of the blend such as the overall brightness and color,
and even the eccentricities (e) of the orbits. We refer the reader
to the above references for details. Following the nomenclature
in those sources, the objects in the eclipsing pair are designated
as the “secondary” and “tertiary,” and the target itself is the
“primary.” Stellar properties are drawn from model isochrones.

Simulations with BLENDER indicate that background eclipsing
binaries with two stellar components can only produce viable
false positives if they are restricted to a narrow range of masses
for the secondaries (approximately 0.8 � M2/M⊙ � 1.3), as
well as a limited interval in brightness (Kp magnitude) relative
to the target (4 � ∆Kp � 7). This is illustrated in Figure 9, in
which we show the χ2 landscape from BLENDER for all blend
fits of this kind. Regions outside the 3σ contour correspond to
scenarios with transit shapes that do not provide acceptable fits
to the Kepler photometry, i.e., fits that are much worse than a
true planet fit. These configurations are therefore excluded.

For blends involving a background/foreground star transited
by a larger planet, there is in principle a wide range of allowed
masses (spectral types) for the secondary stars, as shown in
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Figure 9. Map of the Kepler-18b (K00137.03) χ2 surface (goodness of fit)
for blends involving background eclipsing binaries with stellar tertiaries and
arbitrary orbital eccentricities. The vertical axis represents the linear separation
between the background binary and the primary, cast for convenience in terms
of the difference in the distance modulus. Only blends within the solid white
contour match the Kepler light curve within acceptable limits (3σ , where σ is
the significance level of the χ2 difference compared to a transiting planet model;
see Fressin et al. 2011). Other concentric colored areas represent increasingly
worse fits (4σ , 5σ , etc.), and correspond to blends we consider to be ruled out.
Dashed green lines are labeled with the magnitude difference ∆Kp between the
blended binary and the primary, and encompass the brightness range allowed by
BLENDER (4 � ∆Kp � 7). Blends with eclipsing binaries bright enough to be
detected spectroscopically (∆Kp � 1 mag) are indicated with the hatched region
below the solid green line, but are already ruled out by BLENDER. Similarly with
the blue hatched areas that mark blends that are either too red or too blue
compared to the measured color (see the text and Figure 10). When further
constraining these blends to have realistic eccentricities (e � 0.1; see the text),
we find that all of them are excluded by BLENDER.

(A color version of this figure is available in the online journal.)

Figure 10. However, other constraints available for Kepler-18
strongly limit the number of these false positives. In particular,
by comparing the predicted r − Ks color of each blend against
the measured color of the star from the KIC (r − Ks =
1.723 ± 0.031; Brown et al. 2011), we find that many of the
smaller-mass secondaries are ruled out because the blends would
be much too red compared to the known color index of Kepler-18
(by more than 3σ ). Others are excluded because the secondary
star would be very bright (within 1 mag of the target, or in
some cases even brighter than the target), and would have been
noticed spectroscopically if unresolved in our AO or speckle
imaging. This removes many but not all blends of this kind.

For eclipsing binaries that are physically associated with
the target (in a hierarchical triple star configuration), we find
that the blend light curves invariably have the wrong shape
to mimic a true transiting planet signal, for any combination
of stellar parameters for the secondary and tertiary. Either the
depth, duration, or steepness of the ingress/egress phases of
the transits provide a poor match to the Kepler photometry.
These scenarios are therefore all excluded. On the other hand, if
we allow the tertiaries to be planets, then we do find a variety of
secondary masses that can produce viable blends when transited
by a planet of the appropriate size. The χ2 map for this general
case appears in Figure 11, and shows the range of radii permitted
for the tertiaries, as well as the interval of secondary masses that
yield suitable blends.

Allowed region

Figure 10. Similar to Figure 9 (and with the same color scheme) for Kepler-18b
(K00137.03) blends involving background or foreground stars transited by a
larger planet. The blue hatched regions correspond to blends that are too red
(left) or too blue (right) compared to the measured r −Ks color of Kepler-18, and
are thus ruled out. When blends are restricted to realistic orbital eccentricities
(e � 0.3), many of the later-type secondaries are excluded (dashed 3σ contour)
The combination of the brightness (green hatched area) and color constraints
leaves only a reduced area of parameter space (“allowed region”) where blends
are a suitable alternative to a transiting planet model. All of these scenarios have
∆Kp < 7.0 (dashed green line).

(A color version of this figure is available in the online journal.)

Allowed region

Figure 11. Similar to Figure 9 for Kepler-18b (K00137.03) for the case of
hierarchical triple systems in which the secondary is transited by a planet. After
taking into account the constraints on the r −Ks color and brightness (blue and
green hatched regions, respectively), only secondary stars with M2 � 0.5 M⊙
lead to blend light curves that match the observations. Further restriction to
realistic orbital eccentricities (e � 0.3; see the text) leads to a slightly smaller
3σ contour (dashed).

(A color version of this figure is available in the online journal.)

The duration of a transit is set by the length of the chord
traversed by the tertiary and the tangential velocity of the tertiary
during the event. The chord length, in turn, depends on the
size of the secondary and the impact parameter. Therefore, the
measured duration of a transit provides a strong constraint on
the allowed sizes for the secondary stars (or equivalently, their
masses or spectral types). In the above BLENDER simulations,
we have placed no restriction on the orbital eccentricities of
the star+star or star+planet pairs that can be blended with
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Table 9
Blend Frequency Estimate for K00137.03

Blends Involving Planetary Tertiaries

Kp Range ∆Kp Stellar Stellar Density ρmax Stars Transiting Planets
Mass Range 0.32–1.96 RJup, fplanet = 0.24%

(mag) (mag) (M⊙) (per deg2) (′′) (×10−6) (×10−6)
(1) (2) (3) (4) (5) (6) (7)

13.5–14.0 0.5 . . . . . . . . . . . . . . .

14.0–14.5 1.0 . . . . . . . . . . . . . . .

14.5–15.0 1.5 0.87–1.40 862 0.08 1.34 0.003
15.0–15.5 2.0 0.82–1.40 1377 0.11 4.04 0.010
15.5–16.0 2.5 0.78–1.40 2094 0.13 8.58 0.021
16.0–16.5 3.0 0.72–1.40 3053 0.16 18.9 0.045
16.5–17.0 3.5 0.43–1.40 4341 0.20 42.1 0.101
17.0–17.5 4.0 0.43–1.40 5873 0.24 82.0 0.197
17.5–18.0 4.5 0.43–1.32 7599 0.32 189 0.454
18.0–18.5 5.0 0.43–1.25 9399 0.40 365 0.876
18.5–19.0 5.5 0.43–1.09 10819 0.56 822 1.973
19.0–19.5 6.0 0.43–1.01 11988 0.64 1190 2.856
19.5–20.0 6.5 0.43–0.92 12585 0.80 1952 4.685
20.0–20.5 7.0 0.43–0.61 3373 0.88 633 1.519
20.5–21.0 7.5 . . . . . . . . . . . . . . .

21.0–21.5 8.0 . . . . . . . . . . . . . . .

Totals 5308 12.7

Blend frequency from hierarchical triples (see the text) = 4.4 × 10−6

Total frequency (BF) = (12.7 + 4.4) × 10−6 = 17.1 × 10−6

Note. Magnitude bins with no entries correspond to brightness ranges in which BLENDER excludes all blends.

the target. When the orbits are permitted to be eccentric,
the tangential velocity of the tertiary during transit can be
significantly different from the circular case, and this allows
a much larger range of secondary sizes than would otherwise be
possible. In particular, chance alignments with later-type stars
transited by a planet near apoastron become viable as blends,
and represent a good fraction of the false positives shown in
Figures 10 and 11. Some blends involving larger secondaries
transited at periastron can also provide acceptable fits.

We note, however, that the period of K00137.03 is relatively
short (3.5 days), and very large eccentricities, such as some
of our simulated blends have, are unlikely as they would be
expected to be damped by tidal forces (see Mazeh 2008). In-
deed, among binaries with main-sequence primary stars that
are similar to Kepler-18 (solar-type or later), all systems under
3.5 days have essentially circular orbits (see, e.g., Halbwachs
et al. 2003; Raghavan et al. 2010). We may take e = 0.1 as a
conservative upper limit. Similarly, among the known transiting
planets with periods of 3.5 days or shorter and host stars of any
spectral type, none are found to have eccentricities as large as
e = 0.3. When constraining the false positives for K00137.03
to be within these eccentricity limits, we find that all back-
ground eclipsing binaries (stellar tertiaries) are easily excluded
as they all require fairly eccentric orbits in order to match the ob-
served duration. Additionally, the numbers of blends involving
star+planet pairs in the foreground/background or in hierarchi-
cal triple systems are considerably reduced when restricting the
eccentricities, although many remain that we cannot rule out. In
the following we assess their frequency, and compare it with the
expected frequency of transiting planets.

7.1. Validating K00137.03

The a priori frequency of stars in the background or fore-
ground of the target that are orbited by a transiting planet and are

capable of mimicking the K00137.03 signal may be estimated
from the number density of stars in the vicinity of Kepler-18,
the area around the target in which such stars would go un-
detected in our high-resolution imaging, and the frequency of
transiting planets with the appropriate characteristics. To ob-
tain the number density (stars per square degree) we make use
of the Galactic structure models of Robin et al. (2003), and
we perform this calculation in half-magnitude bins, as shown
in Table 9. For each bin we further restrict the star counts us-
ing the constraints on the mass of the secondaries supplied by
BLENDER (see Figure 10), and the eccentricity limit for tran-
siting planets discussed above (e � 0.3). These mass ranges
are listed in Column 3, and the resulting densities appear in
Column 4. Bins with no entries correspond to brightness ranges
excluded by BLENDER. The maximum angular separation (ρmax)
at which stars of each brightness would escape detection in our
AO/speckle imaging is shown in Column 5 (see Table 1 and
Section 3.2). The result for the number of stars in each magni-
tude bin is given in Column 6, in units of 10−6.

To estimate the frequency of transiting planets that might be
expected to orbit these stars (and lead to a false positive), we rely
on the results from Borucki et al. (2011b), who reported a total
of 1235 planet candidates among the 156,453 Kepler targets
observed during the first four months of the mission. These
signals have not yet been confirmed to be caused by planets,
and therefore remain candidates until they can be thoroughly
followed up. However, the rate of false positives in this sample
is expected to be quite small (∼10% or less; see Morton &
Johnson 2011), so our results will not be significantly affected
by the assumption that all of the candidates are planets. We
further assume that the census of Borucki et al. (2011b) is
largely complete. After accounting for the additional BLENDER
constraint on the range of planet sizes for blends of this kind
(tertiaries of 0.32–1.96 RJup), we find that the transiting planet
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frequency is fplanet = 374/156,453 = 0.0024. Multiplying this
frequency by the star counts in Column 6 of Table 9, we arrive
at the blend frequencies listed in Column 7, which are added up
in the “Totals” line of the table (12.7 × 10−6).

Next we address the frequency of hierarchical triples, that is,
physically associated companions to the target that are orbited
by a larger transiting planet able to mimic the signal. The rate
of occurrence of this kind of false positive may be estimated by
considering the overall frequency of binary stars (34% according
to Raghavan et al. 2010) along with constraints on the mass
range of such companions and how often they would be orbited
by a transiting planet of the right size (0.43–0.53 RJup; see
Figure 11). The mass constraints include not only those coming
directly from BLENDER, but also take into consideration the
color and brightness limits mentioned earlier. We performed
this calculation in a Monte Carlo fashion, drawing the secondary
stars from the mass ratio distribution reported by Raghavan et al.
(2010), and the transiting planet eccentricities from the actual
distribution of known transiting planets (http://exoplanet.eu/),
with repetition. Planet frequencies in the appropriate radius
range were taken as before from Borucki et al. (2011b). The
result is a frequency of hierarchical triples of 4.4 × 10−6, which
we list at the bottom of Table 9.

Combining this estimate with that of background/foreground
star+planet pairs described previously, we arrive at a total blend
frequency of BF = (12.7 + 4.4) × 10−6 ≈ 1.7 × 10−5, which
represents the a priori likelihood of a false positive. From a
Bayesian point of view analogous to that adopted to validate
previous Kepler candidates, our confidence in the planetary na-
ture of K00137.03 will depend on how this likelihood compares
to the a priori likelihood of a true transiting planet, addressed
below.

The BF of 1.7 × 10−5 corresponds to false-positive scenarios
giving fits to the Kepler photometry that are within 3σ of
the best planet fit. We use a similar criterion to estimate
the a priori transiting planet frequency by counting the KOIs
in the Borucki et al. (2011b) sample that have radii within
3σ of the value determined from the best fit to K00137.03
(Rp = 2.00 ± 0.10 R⊕). We find 284 that are within this range,
giving a planet frequency PF = 284/156,453 = 1.8 × 10−3.

This estimate does not account for the fact that the geometric
transit probability of a planet is significantly increased by the
presence of additional planets in the system (Kepler-18c and
Kepler-18d in this case), given that mutual inclination angles
in systems with multiple transiting planets have been found
be relatively small (typically 1◦–4◦; Lissauer et al. 2011b).
Furthermore, a planet with the period of K00137.03 would be
interior to the other two, further boosting the chances that it
would transit. To incorporate this coplanarity effect, we have
developed a Monte Carlo approach, described fully in the
Appendix, in which we simulate randomly distributed reference
planes and inclination dispersions around this plane, from which
a weighted distribution of the inclination with respect to the line
of sight for a third planet is calculated. Inclination angles relative
to the random reference plane are assumed to follow a Rayleigh
distribution (see Lissauer et al. 2011b). Although the known
planets carry some information on the inclination dispersion,
the probability of transit still depends somewhat on the allowed
range of dispersion widths. When the assumed prior for the
inclination dispersion is uniform up to 4◦, following Lissauer
et al. (2011b), we find that the flatness of the system results in a
very significant increase in the transit probability for K00137.03
from 11.7% to 97%. To be conservative, we adopt a larger range

of possible inclination dispersions from 0◦ to 10◦, motivated by
the upper limit from the similar Kepler-9 system (Holman et al.
2010). With this prior, the transit probability for K00137.03
becomes 84%, or an increase by a factor of ∼7 over the case of
a single transiting planet.

Thus, the likelihood of a planet is more than 700 times greater
(PF/BF = 0.013/1.7×10−5 ≈ 700) than that of a false positive,
which we consider sufficient to validate K00137.03 as a true
planet with a high degree of confidence. We designate this
planet Kepler-18b. We note that our PF calculation assumes
that the 1235 candidates cataloged by Borucki et al. (2011b)
are all true planets. If we were to suppose conservatively that as
many as 50% are false positives (an unlikely proposition that is
also inconsistent with other evidence; see Borucki et al. 2011b;
Howard et al. 2010), the planet likelihood would still be ∼350
times greater than the likelihood of a blend, implying a false
alarm rate sufficiently small to validate the candidate.

8. PHYSICAL PROPERTIES OF THE PLANETS

The Kepler-18 system consists of two low-density Neptune-
mass planets near a 2:1 mean-motion resonance and an inner
super-Earth size planet. Its architecture bears a strong resem-
blance to Kepler-9, except that the Kepler-18 system is less
compact and its planets are less dense. The use of the observed
transit times as well as the RV data in the dynamical model of
the Kepler-18 system places tight limits on the allowed plane-
tary masses. We adopt these values as our best determination of
the masses of the transiting planets in the Kepler-18 system. The
last line in Table 8 gives the planet densities, computed from
the final adopted planet masses. The TTV measurements to-
gether with the radial velocities restrict the masses of Kepler-18c
(17.3 ± 1.9 M⊕) and Kepler-18d (16.4 ± 1.4 M⊕) to be similar
to each other. Both are slightly lower than the mass of Neptune.
Their radii, however, are 40% and 80% larger than Neptune, re-
spectively, giving them bulk densities of 0.59±0.07 g cm−3 and
0.27 ± 0.03 g cm−3, which are only 0.36 and 0.16 that of Nep-
tune. The mass of Kepler-18b from the joint dynamical solution
to the transit times and the RV measurements is 6.9 ± 3.4 M⊕.
With its super-Earth-size radius of 2.00 ± 0.10 R⊕, the density
of this inner planet in the system is 4.9 ± 2.4 g cm−3.

Using the methods described in Miller et al. (2009) and Miller
& Fortney (2011), we have modeled the thermal evolution and
interior structure of the two “Neptune-class” planets, Kepler-
18c and Kepler-18d. Both planets have inflated radii compared
to Uranus and Neptune, which points to two effects. The first is
that the high incident flux slows their contraction. The second
is that the mass fraction of heavy element within these two
planets is lower than that of Uranus and Neptune, meaning the
mass fraction of H–He gas is larger. Uranus and Neptune are
∼ 80%–90% heavy elements (e.g., water and rock) by mass
(Fortney & Nettelmann 2010), while below we show that the
heavy element mass fractions of Kepler-18c and Kepler-18d are
somewhat lower than these values.

Thermal evolution/contraction models are constrained such
that the radius of each planet must be reproduced at the system’s
estimated age. As in Miller & Fortney (2011), all relevant
uncertainties are accounted for. These include uncertainties in
the age of the system, the semimajor axes, masses, and radii of
the planets, and the distribution of the heavy elements within
each planet. We do not include an internal heating contribution
due to eccentricity damping in either planet, as this power source
is expected to fall off as a−15/2 (Jackson et al. 2008) and,
furthermore, the eccentricities suggested by the TTV solutions
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Figure 12. Mass–radius diagram for transiting exoplanets (circles) and solar system planets (stars). Left panel: known transiting exoplanets (open circles) and
Kepler-18b, c, and d (filled circles), with curves of theoretical relations for cold pure hydrogen, water, rock (silicate), and iron (after Seager et al. 2007; Fortney
et al. 2007). Two detailed models with mixtures and surface temperatures appropriate for Kepler-18b and Kepler-18c are also shown (Miller & Fortney 2011). Right
panel: zoom on the smaller planets, with curves of constant mean density and curves of detailed interior models of constant composition. The theoretical models
are (from top to bottom): “Neptune-class” models with hydrogen/helium envelopes and 50–50 ice-rock (by mass) cores from thermal evolution calculations (Miller
& Fortney 2011)—the labeled H/He fractions are averages; if all metals are in a core, these fractions will be 31% and 16%, respectively; if mixed partially, they
become 38% and 23%, respectively, for the curves shown; the “50% water” models have compositions of 44% silicate mantle and 6% iron core, and the nominal
“Earth-like” composition with terrestrial iron/silicon ratio and no volatiles are by Valencia et al. (2006) and Zeng & Sasselov (2011). The maximum mantle stripping
limit (maximum iron fraction, minimum radius) was computed by Marcus et al. (2010). All these model curves of constant composition are for illustration purposes,
as the degeneracy between composition mixtures and mean density is significant in this part of the mass–radius diagram. The data for the exoplanets were taken from
Queloz et al. (2009); Charbonneau et al. (2009); Hartman et al. (2011); Batalha et al. (2011); Lissauer et al. (2011a); and Winn et al. (2011). We note that new analysis
of CoRoT-7b (Hatzes et al. 2011) places it at a similar mass to Kepler-18b, and similar high-density composition to Kepler-10b. The three unmarked exoplanets
surrounding Kepler-18b in the diagram are (in increasing mass) CoRoT-7 b, GJ 1214 b, and 55 Cnc e.

(A color version of this figure is available in the online journal.)

are quite small. A 50–50 by mass ice-rock equation of state
is used for the heavy elements. We find a heavy element mass
of 13.5 ± 1.8 M⊕ in Kepler-18c (∼80% of the planet’s mass)
and 10.1 ± 1.4 M⊕ in Kepler-18d (∼60% of the planet’s mass).
Kepler-18c is clearly more “metal-rich” than Kepler-18d. Both
planets are consistent with a core-accretion formation scenario
in which ∼10 M⊕ of heavy elements gravitationally captures an
envelope of H–He gas. This envelope itself may be enhanced in
heavy elements, as is inferred for Uranus and Neptune.

Planet Kepler-18d, with a large radius of nearly 7 R⊕, may
point to a population of Neptune-mass exoplanets having rela-
tively low heavy element mass fractions and radii approaching
that of the gas giant regime. They appear very similar to HAT-P-
26b, a 4.2 day planet orbiting a cooler K1-dwarf. The formation
and evolution of such lower-density Neptune-class planets was
recently studied in detail by Rogers et al. (2011). They find that
modestly more massive H/He envelopes than found on Uranus
and Neptune (leading to larger planetary radii and lower den-
sities) may be a common outcome of the core-accretion planet
formation process.

The inner, 3.5 day period planet Kepler-18b, is a super-
Earth that requires a dominant mixture of water ice and rock,
and no hydrogen/helium envelope. While the latter cannot be
excluded simply on the basis of the planet’s mass and radius,
the evaporation timescale for a primordial H/He envelope for a
hot planet such as Kepler-18b is much shorter than the old age
derived for the Kepler-18 system, and such a H/He envelope
should not be present. Thus, despite its lower equilibrium
temperature, Kepler-18b resembles 55 Cnc e and CoRoT-7b

(as originally measured by Queloz et al. (2009), though the
Hatzes et al. (2011) re-analysis makes CoRoT-7b very similar to
Kepler-10b). Kepler-18b, together with 55 Cnc e (Winn et al.
2011), are likely our best known cases yet of water planets
with substantial steam atmospheres (given their high surface
temperatures).

It is interesting to compare the three transiting planets
in Kepler-18 in terms of their apparent compositions and
orbital sequence. Kepler-18 reinforces a pattern already seen
in Kepler-11, and with less confidence in Kepler-10 and Kepler-
9. Namely, inner planets are denser, though not always by very
much—compare Kepler-18b versus c and d, and Kepler-11b and
c versus d, e, and f (Figure 12). It remains unclear at present
whether this reflects a density gradient at formation or could be
accomplished by evaporation later.

Kepler was competitively selected as the tenth Discovery
mission. Funding for the Kepler Mission is provided by NASA’s
Science Mission Directorate. We are deeply grateful for the
very hard work of the entire Kepler team. This research is
based in part on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA.
Support for this work was provided by NASA through an award
issued by JPL/Caltech. Some of the data presented herein were
obtained at the W. M. Keck Observatory, which is operated
as a scientific partnership among the California Institute of
Technology, the University of California, and the National
Aeronautics and Space Administration. The Keck Observatory
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APPENDIX

INCORPORATING COPLANARITY IN
MULTI-TRANSITING SYSTEMS TO ESTIMATE

TRANSIT PROBABILITY

In a system with N transiting planets, what is the geometric
probability that an additional planet (called “planet N + 1”)
with a given period would transit, taking into account the
fact that planetary orbits are expected (or observed) to be
nearly coplanar? By incorporating the effect of coplanarity,
the probability is significantly increased for additional planets
to transit in known transiting planet systems compared to
isotropically distributed planets.

In a one-planet, one-candidate system, N = 1 and there is
not much that can be done unless a prior assumption for the true
mutual inclination is taken (Beatty & Seager 2010). While in
some cases, the true mutual inclination can be directly measured
(see Ragozzine & Holman 2010 for various methods), generally
it will have to be inferred from population statistics. Lissauer
et al. (2011b) estimate that the inclination distribution of short-
period planetary systems seen by Kepler ranges from 1◦to 4◦.
This range could be used as a prior, both in the case of N = 1 and
in the case of higher multiplicities. Additionally, with careful
analysis, the absence of transit timing and duration variations
can be used to put an upper limit on mutual inclinations, as in
the case of Kepler-9 where the mutual inclination must be less
than 10◦ (Holman et al. 2010).

However, systems with two or more transiting planets, such as
Kepler-18, have evidence of being thin without direct reference
to the greater population of Kepler multiples. Furthermore, the
inclinations of the known planets themselves give information
on both the location of the reference plane of that system (i.e.,
the Laplace plane) and the typical inclination dispersion. If both
planets have the same inclination slightly different from 90◦,
as in the case of Kepler-18c and d, then this suggests that the
reference plane for this system is something like the average
plane between the two planets and that the inclinations with
respect to that plane are likely quite small. In this situation,
candidates with periods smaller than the inner planet are quite
likely to transit (Ragozzine & Holman 2010). If both planets
have quite different inclinations, as in the case of Kepler-10 b
and Kepler-10 c (Batalha et al. 2011), this implies an uncertainty
in the location of the reference plane and a non-flat system, and
the probability of additional planet transiting is enhanced over
completely isotropic systems, but not as much (Fressin et al.
2011).

The goal is to quantify this effect in a natural way that uses
all the available information. This is done using a Monte Carlo
simulation that randomly generates reference planes, inclination
dispersions, and nodal angles. The Monte Carlo trials that result
in systems that match the observed inclinations of the N planets
well are given higher weight than the vast majority of trials
that do a very poor job. The line-of-sight inclination of the
additional planet is also calculated in each Monte Carlo trial,
allowing for the generation of a final weighted distribution.
The assumptions made in this calculation are that exoplanet
reference planes are, a priori, randomly oriented in an isotropic
way and that the inclinations (with respect to the reference
plane) of all the planets in a system are faithfully represented
by a single Rayleigh distribution. The latter assumption does

not account for the possible anticorrelation between size and
inclination that can occur in dynamically thermalized systems,
i.e., larger planets may be more well aligned than smaller
planets. With the Monte Carlo nature of the calculation and
the error bars on inclinations that are typically produced by
Kepler, the importance of a possible anticorrelation is reduced.

In practical terms, the Monte Carlo simulation draws a
random inclination (ir) for the reference plane (uniform in
cos ir ). The width of the Rayleigh distribution σi is drawn
randomly from a distribution that is assumed a priori. For
each Monte Carlo trial, a random inclination is drawn from
the Rayleigh distribution as is a random nodal angle for each of
the N+1 planets; the nodal angles are chosen uniformly between
0 and 2π . Using the method in Equation (2) of Ragozzine &
Holman (2010), the on-the-sky inclinations of the N planets are
calculated. These are compared to the observed inclinations by
computing the standard Gaussian z-score, i.e., by calculating the
number of standard deviations away the trial value is from the
observed value. (This could be modified if the inclinations and
errors of the known planets are either not known or are known
not to be Gaussian.) The assigned weight for each planet is equal
to the area under the Gaussian that has more extreme scores
than the trial value, i.e., with a z-score of z = iMC − iobs/ierr, the
weight is w = 1.0−erf(|z|/

√
2), where iMC is the calculated trial

inclination, iobs is the observed inclination with error ierr, and
erf is the standard error function. If the trial value of the
inclination is exactly the same as the observed inclination, the
weight is 1; if it is many standard deviations off, then the weight
is essentially 0. The total weight for a Monte Carlo trial is the
product of these weights over all the known N planets based
on their inclinations. As expected, the weight increases when
the reference plane is taken near the average of the known
planetary inclinations with a Rayleigh width similar to the
standard deviation between the known inclinations.

Each of the Monte Carlo trials also calculates an inclination
for planet N + 1, based on the same reference inclination and σi .
Using the weights derived from the observed inclinations of the
N transiting planets, the weighted distribution of the inclination
of planet N + 1 can be created. To calculate the probability that
planet N+1 would be found transiting, the sum of the weights for
those simulations that would have produced a transiting planet
is divided by the sum of the weights for the entire Monte Carlo
simulation.

Despite the information on the inclination dispersion from
the known planets that is included in the weighting, the answer
depends somewhat on the prior assumption for σi . For example,
when applied to Kepler-18 with Kepler-18b as planet N + 1,
this technique predicts a transit probability of 47%, 84%, and
97% when the prior on σi is uniformly drawn between 0◦

and 90◦, 0◦ and 10◦, and 0◦ and 4◦, respectively. In every
case, the near coplanarity and low impact parameter of the
two outer planets significantly increase the probability that
Kepler-18b is transiting. Changing the prior on the inclination
of the reference plane does not affect the result. This method
provides a quantitative way to estimate the increased in-transit
probability for planets in multi-transiting systems. When applied
in combination with BLENDER and other techniques, it will
allow multi-transiting systems to be validated more easily than
singly transiting systems. Note that the method described here
only estimates the improvement in the probability of the planet
hypothesis due to geometric constraints, and does not include
the additional effect that planets tend to be found in multiple
systems, as discussed in Lissauer et al. (2011b).
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