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Abstract 

We present the detection of five planets -- Kepler-62b, c, d, e, and f -- of size 1.31, 0.54, 1.95, 

1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4 and 

267.3 days, respectively.   The outermost planets (Kepler-62e & -62f) are super-Earth-size 

(1.25 < planet radius ≤ 2.0 R⊕) planets in the habitable zone (HZ) of their host star, receiving 

1.2 ±  0.2 and 0.41 ±  0.05 times the solar flux at Earth’s orbit (Sʘ). Theoretical models of 

Kepler-62e and -62f for a stellar age of ~7 Gyr suggest that both planets could be solid: either 

with a rocky composition or composed of mostly solid water in their bulk.  

 

 

Main Text 

Kepler is a NASA Discovery-class mission designed to determine the frequency of Earth-radius 

planets in and near the HZ of solar-like stars (1-6).  Planets are detected as “transits” that cause the 

host star to appear periodically fainter when the planets pass in front it along the observer’s line of 

sight. Kepler-62 (KIC 9002278, KOI 701) is one of approximately 170,000 stars observed by the 

Kepler spacecraft. Based on an analysis of long-cadence photometric observations from Kepler 

taken in Quarters 1 through 12 (May 13, 2009 through March 28, 2012), we report the detection of 

five planets including two super-Earth-size planets in the HZ and a hot Mars-size planet orbiting 

Kepler-62 (Fig. 1 and Table 1). Prior to validation, three of these objects were designated as 

planetary candidates KOI-701.01, 701.02, and 701.03 in the Kepler 2011 catalog (7) and the 

Kepler 2012 catalog (8). KOI-701.04 and 701.05 were identified subsequently using a larger data 

sample (9).  

 

Analysis of high-resolution spectra indicates that Kepler-62 is a K2V spectral type with an 

estimated mass and radius (in solar units) of 0.69 ± 0.02 Mʘ and 0.63 ± 0.02 Rʘ (9). Examination 

of the sky close to Kepler-62 showed the presence of only one additional star that contributed as 

much as 1% to the total flux (figs. S3-S4)(9). Warm-Spitzer observations (fig. S9) and the analysis 

of centroid motion (Table S1) were consistent with the target star as the source of the transit 

signals (Fig. 1 and fig. S1). We computed the radius, semi-major axis, and radiative equilibrium 
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temperature of each planet (Table 1) based on light curve modeling given the derived stellar 

parameters (Table S3). 

 

Fig. 1. Kepler-62 light curves after the data 

were detrended to remove the stellar 

variability. Composite of phase-folded transit 

light curves (dots), data binned in ½ hour 

intervals (blue error bars), and model fits 

(colored curves) for Kepler-62b through -62f. 

Model parameters are provided in Table 1.  

The error bars get larger as the period 

becomes larger because there are fewer 

points to bin together. For the shortest 

periods, the bars are too small to see. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4	
  

	
  

Table 1. Characteristics of the Kepler-62 planetary system.  

Parameter Kepler-62b Kepler-62c Kepler-62d Kepler-62e Kepler-62f 

T0 

(BJD-2454900) 
103.9189 ±	
  

0.0009 
67.651 ± 	
  0.008 

113.8117 ±	
  

0.0008 
83.404 ± 	
  0.003 522.710 ±	
  0.006 

P [days] 
5.714932 ±	
  

0.000009 
12.4417 ±	
  0.0001 

18.16406 ±	
  

0.00002 

122.3874 ±	
  

0.0008 
267.291 ±	
  0.005 

duration [hr] 2.31 ± 0.09 3.02 ± 0.09 2.97 ± 0.09 6.92 ± 0.16 7.46 ± 0.20 

depth [%] 0.043 ± 0.001 0.007 ± 0.001 0.092 ± 0.002 0.070 ± 0.003 0.042 ± 0.004 

Rp/R* 0.0188 ±	
  0.0003 0.0077 ±	
  0.0004 0.0278 ±	
  0.0006 0.0232 ±	
  0.0003 0.0203 ±	
  0.0008 

a/R* 18.7 ±	
  0.5 31.4 ± 0.8 40.4 ±	
  1.0 144 ±	
  4 243 ±	
  6 

b 0.25 ± 0.13 0.16 ±	
  0.09 0.22 ±	
  0.13 0.06 ±	
  0.05 0.41 ±	
  0.14 

i 89.2 ±	
  0.4 89.7 ±	
  0.2 89.7 ±	
  0.3 89.98 ±	
  0.02 89.90 ±	
  0.03 

ecosω 0.01 ± 0.17 -0.05 ± 0.14 -0.03 ± 0.24 0.05 ± 0.17 -0.05 ± 0.14 

esinω -0.07 ± 0.06 -0.18 ± 0.11 0.09 ± 0.09 -0.12 ± 0.02 -0.08 ± 0.10 

a [AU] 0.0553 ±	
  0.0005 0.0929 ±	
  0.0009 0.120 ±	
  0.001 0.427 ±	
  0.004 0.718 ±	
  0.007 

Rp [R⊕] 1.31 ±	
  0.04 0.54 ±	
  0.03 1.95 ±	
  0.07 1.61 ±	
  0.05 1.41 ±	
  0.07 

Maximum mass 

(M⊕)(9) 
9 4 14 36 35 

Number of 

observed transits 
171 76 52 8 3 

Total SNR 54 8.5 68 31 12 

Radiative 

equilibrium 

temperature (K) 
750 ± 41 578 ± 31 510 ± 28 270 ± 15  208 ± 11  

Notes: 1) T0 is the epoch in mid-transit in Barycentric Julian Days, P is the period, duration is the transit 

duration, “depth” is the percent reduction of the flux during the transits determined from the model fit to the 

data, Rp/R* is the ratio of the radius of the planet to the radius of the star, a/R* is the ratio of the planet’s 

semi-major axis to the stellar radius, b is the impact parameter in units of stellar radius, i is the orbital 

inclination, ecosω is the product of the orbital eccentricity e with the cosine of the periapse angle ω, a is the 

semi-major axis, and Rp is the radius of the planet, and Maximum Mass is the upper limit to the mass based 

on transiting timing and RV observations, M⊕ is the mass of the Earth, and Teq is the radiative equilibrium 

temperature. 

2) The values of the uncertainties are ±1 standard deviation unless otherwise noted.  

3) Values for the maximum mass are for the 95
th

 percentile. See (9). 

4) A second set of values for the planetary parameters was computed by an independent model and found to 

be in good agreement with the listed values.  
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The masses of the planets could not be directly determined using radial velocity (RV) 

measurements of the host star because of the planets’ low masses, the faintness and variability of 

the star, and the level of instrument noise. In the absence of a detected signal in the RV 

measurements (9, Section 5), we statistically validate the planetary nature of Kepler-62b through -

62f with the BLENDER procedure (10-13) by comparing the probability of eclipsing binaries and 

other false positive scenarios to bona-fide transiting planet signals (14-18).  

 

We performed a systematic exploration of the different types of false positives that can mimic the 

signals, by generating large numbers of synthetic light curves that blend together light from 

multiple stars/planets over a wide range of parameters and comparing each blend with the Kepler 

photometry (Fig. 2). We rejected blends that result in light curves inconsistent with the 

observations. We then estimated the frequency of the allowed blends by taking into account all 

available observational constraints from the follow-up observations discussed in (9). Finally we 

compared this frequency with the expected frequency of true planets (planet "prior") to derive the 

"odds ratio" (9, §7).  
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Fig. 2. BLENDER goodness-of-fit contours for Kepler-62bcdef corresponding to the three different 

scenarios that contribute to the overall blend frequency: background eclipsing binaries (left column), 

background or foreground stars transited by a planet (middle column), and physical companions transited 

by a planet (right column). Viable blends must be less than about 5.0 (left) or 5.5 (middle) magnitudes 

fainter than Kepler-62 (dashed line). Only blends inside the solid white contour match the Kepler light 

curve within acceptable limits (3σ, where σ is the significance level of the chi-square difference compared 

to a transit model fit). Lighter-colored areas (red, orange, yellow) mark regions of parameter space giving 

increasingly worse fits to the data (4σ, 5σ, etc.), and correspond to blends that we consider to be ruled out. 

The cyan cross-hatched areas indicate regions of parameter space that we consider ruled out because the 

resulting r-Ks color of the blend is either too red (left) or too blue (right) compared to the measured color, 

by more than 3σ (0.15 mag). The green hatched regions indicate blends that are ruled out because the 

intruding stars are less than 3.5 magnitudes fainter than the target and would be so bright that they would 

have been detected spectroscopically. Finally, the thin gray area on the left panel for Kepler-62e rule out 

stars based on our Spitzer observations (fig. S8), (9, §2.3). The likelihood of a false positive for each 

planetary candidate is derived from the integration of the area that remains within the 3σ boundary that is 

not eliminated by the hatched areas. 

 

Incorporating these constraints into a Monte Carlo (MC) model that considers a wide range of 

stellar and planetary characteristics provides estimates of the probabilities of a false positive that 

could explain the observations (9, §6).  

 

Our simulations of each of the candidates indicate that the likelihood of a false-positive 

explanation is much smaller than the likelihood of the planetary system explanation. In particular, 

the calculated odds ratios that Kepler-62b through -62f represent planets rather than false-positives 

are 5400, >5000, 15000, 14700, and > 5000, respectively (9, §7). There is also a 0.2% chance that 

the planets orbit a widely space binary composed of two K2V stars and therefore the planets are √2 

larger in radius than shown in Table 1 (9, §7). 	
  

 

To determine if a planet is in the HZ, we calculated the flux of stellar radiation that it intercepts. It 

is convenient to express intercepted flux in units of the average solar flux intercepted by Earth, 

denoted by Sʘ. The values of the stellar flux intercepted by Kepler-62b to -62f are 70 ± 9, 25 ± 3, 

15 ± 2, 1.2 ± 0.2 and 0.41 ± 0.05 Sʘ. Eccentric planetary orbits increase the annually averaged 

irradiation from the primary star by a factor of 1/(1-e
2
)

1/2

 
(19). Because the model results for the 

orbital eccentricities of Kepler-62b through -62f are small and consistent with zero, no corrections 

were made.  

 

The HZ is defined here as the annulus around a star where a rocky planet with a CO2/H2O/N2 

atmosphere and sufficiently large water content (such as on Earth) can host liquid water on its solid 

surface (20). In this model, the locations of the two edges of the HZ are determined based on the 

stellar flux intercepted by the planet and the assumed composition of the atmosphere. A 

conservative estimate of the range of the HZ (labeled “narrow HZ” in Fig. 3) is derived from 
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atmospheric models by assuming that the planets have a H2O– and CO2–dominated atmosphere 

with no cloud feedback (21). The flux range is defined at the inner edge by thermal run-away due 

to saturation of the atmosphere by water vapor and at the outer edge by the freeze-out of CO2. In 

this model the planets are assumed to be geologically active and that climatic stability is provided 

by a mechanism in which atmospheric CO2 concentration varies inversely with planetary surface 

temperature.  

 

The “empirical” HZ boundaries are defined by the solar flux received at the orbits of Venus and 

Mars at the epochs when they potentially had liquid water on their surfaces. Venus and Mars are 

believed to have lost their water at least 1 Gyr and 3.8 Gyr ago, respectively when the Sun was less 

luminous. At these epochs, Venus received a flux of 1.78 Sʘ and Mars a flux of 0.32 Sʘ (20). The 

stellar-spectral-energy distributions of stars cooler than the Sun are expected to slightly increase 

the absorbed flux (20). Including this factor changes the HZ flux limits to 1.66 and 0.27 Sʘ for the 

empirical HZ and 0.95 and 0.29 Sʘ for the narrow HZ (21). Figure 3 shows that the Earth and 

Kepler-62f are within the flux-boundaries of the “narrow” HZ while Kepler-22b and Kepler-62e 

are within the “empirical” flux-boundaries.  

 

Although RV observations were not precise enough to measure masses for Kepler-62e and -62f, 

other exoplanets with a measured radius below 1.6 R⊕ have been found to have densities indicative 

of a rocky composition. In particular, Kepler-10b (22), Kepler-36b (23), CoRoT-7b (24) have radii 

of 1.42 R⊕, 1.49 R⊕, 1.58 R⊕ and densities of 8.8, 7.5, and 10.4 gr/cc, respectively. Thus it is 

possible that both Kepler-62e and -62f (with radii of 1.61 R⊕ and 1.41 R⊕) are also rocky planets.  

 

The albedo and the atmospheric characteristics of these planets are unknown, and therefore the 

range of equilibrium temperatures Teq at which the thermal radiation from each planet balances the 

insolation is large and depends strongly on the composition and circulation of the planets’ 

atmospheres, their cloud characteristics and coverage, as well as the planets’ rotation rates (25, 26). 	
  

However, for completeness, values of Teq were computed from Teq = Teff [β (1-AB)(R*/2a)
2
]

1/4
, 

where Teff is the effective temperature of the star (4925°K), R* is the radius of the star (0.64), AB is 

the planet Bond albedo, a is the planet semi-major axis, β is a proxy for day-night redistribution 

with 1 for full redistribution and 2 for no redistribution.  For the MCMC calculations, it was 

assumed that β = 1, and that AB is a random number from 0 to 0.5. (Table 1) 
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. 

Fig. 3. Comparison of known exoplanets with measured radii less than 2.5 R⊕ in the HZ to the Solar System 

planets. The sizes of the circles indicate the relative sizes of the planets to each other. The dashed and the 

solid lines indicate the edges of the narrow and empirical HZ, respectively.  

 

Gravitational interactions between Kepler-62e and -62f are too weak (9, §4) to cause non-linear 

variations in the times of transits (27, 28) and thereby provide estimates of their masses. 

Nevertheless, upper limits (95
th

 percentile) for -62e and -62f were derived (Table S4): 150 M⊕  

and 35 M⊕, respectively.  A lower upper limit to the mass of Kepler-62e based on RV observations 

(Table S4) gives 36 M⊕. These values confirm their planetary nature without constraining their 

composition. Despite the lack of a measured mass for Kepler-62e and -62f, the precise knowledge 

of their radii, combined with estimates of their Teq and the stellar age (~7 Gyr) imply that Kepler-

62e and -62f have lost their primordial or outgassed hydrogen envelope (29, 30). Therefore Kepler-

62e and -62f are Kepler’s first HZ planets that could plausibly be composed of condensable 

compounds and be solid, either as a dry, rocky super-Earth or one composed of a significant 

amount of water (most of which would be in a solid phase due to the high internal pressure) 

surrounding a silicate-iron core.  

 

We do not know if Kepler-62e and -62f have a rocky composition, an atmosphere, or water. Until 

we get suitable spectra of their atmospheres we cannot determine whether they are in fact 

habitable. With radii of 1.61 and 1.41 R⊕ respectively, Kepler-62e and -62f are the smallest 



10	
  

	
  

transiting planets detected by the Kepler Mission that orbit within the HZ of any star other than the 

Sun. 
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Supporting Online Material	
  
	
  

In this supplementary material, we provide additional details regarding the detection of 

five planets orbiting Kepler-62 (KIC 9002278, KOI-701). This supplement is organized as 

follows; In §1, we describe the data, the transit detection, and the image analysis used to 

detect signals from nearby stars.  In §2 we describe the follow-up observations that help to 

further rule out non-planetary astrophysical sources. §3 describes the procedures to 

measure the host star characteristics including, effective temperature, surface gravity, 

metallicity, mass, age, and rotation rate. §4 discusses the search for transit timing 

variations, §5 describes planetary mass constraints based on high-precision Doppler 

measurements. §6 presents the MCMC light-curve modeling that yields estimates of the 

orbital and planet characteristics. §7 provides details of the validation of the planet 

interpretation.  
	
  

1. Candidate Identification 

1.1 Data 

The analysis presented here utilizes twelve quarters of 30-minute cadence data (Q1-Q12) 

spanning 1013.86 days between 13 May 2009 and 17 March 2012 (fig. S1). The duty cycle for 

cadences averages 93% of the elapsed time. However, the removal of the cadences taken near the 

thermal transients associated with monthly data downloads and during the transits of other 

Kepler-62 planets, causes the duty cycle to drop to 81%.  The data were processed with various 

versions of the data analysis pipeline: Q1-Q8 with Pipeline version SOC 8.1, Q9-Q11 with 

Pipeline version SOC 8.0, and Q12 with Pipeline version SOC 8.1. For a description of each 

pipeline version, see the Kepler Data Handbooks at the Mikulski Archive at Space Telescope 

Institute (http://archive.stsci.edu/Eepler/Kepler_fov/search.php). 

 
Fig. S1. Top panel; Q1-Q12 photometric time series after correction for trends and instrument 

systematics. It is a representation of the stellar variability. Bottom panel; detrended and normalized time 

series flux after the removal of both the instrument artifacts and stellar variability. It was used to model 

the planetary transits. The green, magenta, red, blue and cyan lines mark the occurrence of transits from 

Kepler-62b through -62f, respectively. 
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1.2 Transit detection 

Kepler-62b, -62d, & -62e correspond to KOI-701.02, 701.01, and 701.03 (listed in order of 

increasing orbital period) that were reported in (7).  Updated properties and vetting statistics for 

these KOIs are reported in (8).  

 

After KOI 701.01-.03 were found, we found evidence of a fourth planet. We then carried out a fit 

of a pulse profile multiplied by a low-order polynomial at every point in the (three-planet-

removed) light curve, and computed the difference in chi-square between fits with and without 

the pulse included.  Upon inspection of the results, we found three times at which a pulse was a 

significantly better fit. These three locations were spaced by a separation of 267 days.  We added 

an additional planet to our model with this ephemeris, and found an excellent fit to these three 

times with a transit profile of the expected duration (bottom light curve of Fig. 1).  After 

examination of the pixel data, we confirmed that this was not due to a background body, so we 

promoted this to a planet candidate, KOI 701.04 (Kepler-62f after validation), with a preliminary 

period and epoch that were later refined via light curve modeling.  

 

A pre-release verification and validation run of the SOC 8.3 pipeline software using Q1-Q12 

data became available during the writing of this manuscript.  The shallower transit of the roughly 

Mars-sized planet candidate with an approximate orbital period 12.44 days was identified (Fig. 1, 

second light curve from the top) in this run and became 701.05 (Kepler-62c, after validation). 

 

The SOC 8.3 pipeline did not detect 701.04 because it has the minimum number of transits 

required for detection (three) and because the first transit occurs in the vicinity of a break in 

science data to downlink the data. The TPS algorithm deemphasizes cadences in the vicinity of 

Earth-points in a tapered fashion because residual artifacts there lead to many false positive 

Threshold Crossing Events (TCEs). Removal of the tapering led to a detection with an SNR of 

12.  

 

1.3 Validation tests using data characteristics	
  

Tests on both pixel flux time series are carried out as described in (8) in an effort to identify 

astrophysical false positives masquerading as planet transits. The even-numbered transits and 

odd-numbered transits in the flux light curve are examined independently for each of the planet 

candidates. The depth of the phase-folded, even-numbered transits is compared to that of the 

odd-numbered transits.  A statistically significant difference in the transit depths is an indication 

of a diluted or grazing eclipsing (or transiting) binary (or larger planetary) system. The Kepler-

62 light curves show no evidence of such an odd/even effect. The difference between the ratios 

of the odd-numbered and even-numbered transit depths to noise for Kepler-62b through -62f are 

1.5σ, 1.1σ, 2.3σ, 1.2σ, and 0.4σ, respectively. 

 

Two methods are used to examine the motion of the image centroids to determine if they are due 

to a source other than Kepler-62b through -62f. The first method measures the center-of-light 

distribution in the photometric aperture and will be referred to as the flux-weighted 

centroid method. This method measures the flux-weighted centroid of every observational 

cadence and fits the computed transit model multiplied by a constant amplitude to the observed 

flux-weighted centroid motion (Table S1). The value of the constant that provides the best fit is 
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taken to be the amplitude of the centroid motion. This amplitude is scaled by the transit depth to 

estimate the location of the transit source, which is used to compute the offset distance of the 

transit source from Kepler-62. 	
  

 

The second technique uses the difference-image technique and is referred to as Pixel Response 

Function (PRF) fitting. The PRF-fitting method fits the measured Kepler PRF to a 

difference image. This image is formed from the average in-transit and average out-of-transit 

(but near-transit) pixel images. The PRF-fitted difference-image centroid provides a 

direct measurement of the location of the transit signal in pixel space. This difference-

image centroid position is compared with the position of the PRF-fit centroid of the average out-

of-transit image, giving the offset of the transit signal source from Kepler-62. 

  

Both centroiding methods begin in pixel coordinates. To perform multi-quarter analysis, the 

pixel-level results are projected onto the sky in RA and Dec coordinates. In the case of flux-

weighted centroids, this projection takes place during the χ2 fit. The PRF-fitted centroids 

are computed quarter-by-quarter and the final results are projected into celestial coordinates. 

The quarterly PRF-fitted results are then averaged (minimizing a robust χ2 fit to a constant 

position) to account for quarterly bias due to PRF-fit error and possible crowding by nearby 

stars.  

 

Both methods are subject to systematic biases (due, for example, to crowding), but the PRF-

fitting method is more robust against noise and bias than the flux-weighted method.  Generally 

the flux-weighted method's uncertainties are larger than the PRF-fit 

uncertainties.  The quoted uncertainties do not include such systematic biases, so the measured 

offsets can have different statistical significance between the two methods.  We therefore use 

both methods to increase our confidence in the accuracy of the results, though we believe the 

PRF-fit measurements are higher quality than the flux-weighted measurements.  We only 

consider an offset statistically significant if it is greater than 3σ.  Table S1 presents quantitative 

values for the observed offsets in arc seconds and in σ based on the Q1-Q12 data. 

 

 

Table S1. Photocenter offsets with uncertainties for each planet calculated with both 

the PRF and flux-weighted methods. 

Planet PRF offset 

(") 

PRF offset 

(σ) 

Flux-weighted 

offset (") 

Flux-weighted 

offset (σ) 

Kepler-62b 0.24 ± 0.27 0.9 0.50 ± 0.36 1.4 

Kepler-62c 1.34 ± 0.76 1.8 0.20 ± 1.1 0.2 

Kepler-62d 0.16 ± 0.27 0.6 0.46 ± 0.31 1.5 

Kepler-62e 0.14 ± 0.69 0.2 1.1 ± 0.54 2.1 

Kepler-62f 0.81 ± 0.57 1.4 0.94 ± 0.84 1.1 

 

The photocenter offsets are consistent with transits of the target star. Even in the worst-case 

uncertainty (0.72" for Kepler-62c), any object outside of a 3σ circle (2.2") can be ruled out for 

any of these planets. Figure S2 displays the offsets for each planet based on the PRF results and 
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the 3σ uncertainty boundaries centered on the calculated offset for each planet. The fig. shows 

that the nearby star does not fall within any of the 3σ boundaries. Thus the nearby star cannot be 

the source of the transits.   

 

 
Fig. S2. Boundaries of uncertainty centered on the measured off-set position of the transit source for each 

planet. The center diamond symbol marks the known position of Kepler-62. The diamond symbol to the 

left marks the position of a nearby star. Each “plus” sign is the observed off-set position determined by 

the PRF method. The lengths of the “plus” sign indicate the uncertainty in the off-set position. The circles 

are centered on the observed off-set for each planet and indicate the 3σ-uncertainty boundary for each 

planet.  

 

2. Follow-up Observations 

2.1 Inspection of the nearby star field 

Images were taken to inspect the star field near Kepler-62 to search for the presence of any stars 

that could dilute the light from the target or introduce a confounding signal. This process starts 

with an examination of background images (“seeing-limited images”) to determine the 

distribution and brightness of nearby stars. Next adaptive optics (AO) are used characterize stars 

close to the center of the photometric aperture.  

 

The seeing-limited image taken by the Keck 1 guider (fig. S3) shows only a single star to the 

East at a distance of 3” that is 6 magnitudes fainter than Kepler-62. It adds less than 1% to the 

visible flux in the photometric aperture. 
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Fig. S3. Best-seeing images. Left panel is a 42" × 58" of the region surrounding Kepler-62 while the right 

panel is a 9" × 9" view centered on the target taken with the Keck 1 guider. The right panel shows the 

presence of a single faint star approximately 3" to the east of the target star. 
 

Near-infrared adaptive-optics imaging of Kepler-62 was obtained on the night of 05 May 2012 

with the Keck-II telescope and the NIRC2 near-infrared camera behind the natural-guide-star 

adaptive-optics system.  NIRC2, a 1024x1024 HgCdTe infrared array, was utilized in 9.9 

mas/pixel mode yielding a field of view of approximately 10". Observations were performed in 

the K-prime filter (K’, λ = 2.124 µm; Δλ = 0.351 µm), and in the J filter (λ = 1.248 µm; Δλ = 

0.163µm). Total integration times of 288 seconds and 96 seconds were taken in the K’ and J 

filters, respectively. The frames were dark-subtracted and a flat-field correction was applied to 

form the final image for each filter. The central cores of the resulting point spread functions in 

the images have widths of full-width-half-maximum (FWHM) = 0.05" (approximately 5.7 

pixels) at K’ and FWHM = 0.09" (approximately 6.1 pixels) at J. The final coadded K’ image is 

shown in fig. S4.   
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Fig. S4. A portion of the Keck NIRC2 K’ image. The arrow points at the nearby star.   

 

A faint source is detected 2.8" from the primary target at a position angle of PA = 107° east of 

north, but no other sources were detected. The source is fainter than the primary target by ΔK’ = 

4.12 ± 0.05 mag and ΔJ = 4.5 ± 0.1 mag, yielding magnitudes of J≈16.8 mag and K’≈15.8 mag. 

No other sources were detected within 5" of the primary target. The point source detection limits 

were estimated from a series of concentric annuli drawn around the star. The separation and 

widths of the annuli were set to the FWHM of the primary target psf. The standard deviation of 

the background counts is calculated for each annulus, and the 5σ limits are determined within 

each annular ring (31). The sensitivity curve for the K’ observations is shown in fig. S5. 

 

 
Fig. S5.The point source sensitivity for the Keck NIRC2 K’ image, as a function of angular distance from 

Kepler-62. The Δmag values are 5σ limits. The filled circles represent the sensitivity limits as measured 

in the K’ image in steps of the FWHM; the dashed lined represents the K’ limits converted to estimated 

Kepler magnitudes based upon the measured colors of stars (32).  
 

Figures S4 and S5 indicate that any background star 0.2" or further from the target would be at 

least 6 magnitudes fainter than the target star and thus could not be the source of the observed 

transit pattern. These sensitivity limits are used as input to the BLENDER analysis (described in 

§7) that assesses the likelihood of false-positive scenarios. 

 

2.2 Spectroscopic check for stellar companions 
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Spectroscopic analysis with high-SNR data yields information about small-separation 

companions and complements the high spatial resolution AO imaging searches that are sensitive 

to separations beyond a fraction of an arc second. In searching for the second spectrum, the full 

range of Teff, log(g), and [Fe/H] are examined.  

 

The Keck HIRES spectrometer was used to take a spectrum with a resolution of 60000 and SNR 

= 45 per pixel in the V band for the purpose of stellar classification (see §3).  The spectrum is 

also used to place constraints on the presence of stellar companions within approximately 0.4" of 

the primary star (given a 0.87" x 3" entrance slit).  The analysis makes use of a library of 750 

HIRES spectra of template stars spanning a wide range of effective temperatures and surface 

gravities.  Chi-squares minimization yields the template that best matches the spectrum of 

Kepler-62. The best-fit library spectrum was that of HD 29883 with Teff = 4947K, log (g) =4.56, 

and [Fe/H] = -0.15.	
  	
    

 

 
Fig. S6.  Cross-correlation of the Kepler-62 spectrum with the best-matching template (dots) and its 

reflection about a vertical at the rest velocity (solid). There is no visual evidence of a second peak 

indicative of secondary lines indicative of a nearby star contaminating the spectrum of Kepler-62. 

 

 

The cross correlation diagram presented in fig. S6 is based on a single spectrum taken without 

the iodine absorption cell at Keck/HIRES. By cross correlating the spectrum of Kepler-62, we 

are able to visualize how closely the spectrum of Kepler-62 matches the solar spectrum.   The tall 

central peak has a 20 km/s width that is expected width for the cross-correlation function 

between two G-type dwarfs with absorption spectral lines having widths of roughly 10 km/s 

each.   Discrepancies between the two are less than 3%; suggesting no secondary spectrum from 

a (FGK) star within 0.4” brighter than 3% of Kepler-62. 

 

To quantify the sensitivity to the detection of secondary spectra, we proceed with a chi-square 

minimization against a blended spectrum: the best-matching template plus secondary of a given 

relative flux, spectral type and velocity offset.  An example is shown in fig. S7 which plots the 
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normalized chi-square as a function of velocity offset for the case of an M-dwarf secondary with 

1%, 1.5%, and 2% the flux of the primary.  Also shown for comparison are the chi-square values 

for the single-star case (solid line).  Deviations near the rest velocity are due to slight 

inadequacies in the fit of the primary star. 

 
Fig. S7. Normalized chi-square statistic as a function of velocity offset for the Kepler-62 versus the best-

matching template (solid line) and Kepler-62 versus a blend of the template plus M-dwarf spectrum at 

three different relative flux levels (1%, 1.5%, and 2%). 

 

An M-dwarf having a flux 1.5% of the primary star flux (dashed black line) would stand out at 

the 4σ level. Companion stars as faint as 2% of the target star make a 10σ signal (dashed line). 

Even companions at the 1% flux level would be apparent at the 3σ level. 3σ flux limits are 

computed for a range of spectral types and velocity offsets. The results are shown in fig. S8.  

 

	
  

Fig. S8. The 3σ flux sensitivity limits as a function of spectral type and velocity offset.  M-dwarf blends 

with just 1% the flux of the primary would be detected at the 3σ level as long as the velocity separation is 

not smaller than 10 km/s.  The sensitivity becomes slightly worse as the spectral features of the secondary 

become more similar to those of the primary. There is no need to simulate relative velocities higher than 

30 km/s as the spectral lines of the secondary star would be well separated from those of the primary star 

for all such velocities, making the secondary star equally detectable for all such velocities.  
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Figure S8 shows that companions of spectral type K or M would be detected down to thresholds 

of 1 – 2%, depending on RV separation. The entrance slit to the spectrometer is 0.87"x3" to 

allow us to detect any companion in that tight domain around the primary star. These detection 

thresholds are useful in diminishing the probability of companions, especially bound ones, 

around Kepler-62. 

 
For Kepler-62 we can also rule out close binary stars based on our precise RV measurements 

made over a period of 128 days using the iodine cell. The dates, RV values, and uncertainties of 

the 13 RVs are presented in Table S2. These show a root-mean-square (rms) uncertainty of about 

3 m/s, consistent with the RV errors for a g-band magnitude (similar to V) of 14.4 mag.   

 

Any bound companion star orbiting within 10 AU would cause orbital motion in the primary 

star, KIC 9002278, of over 10 m/s (0.01 km/s), just due to their mutual orbital motion during 128 

days. The exact RV variation of the primary star depends, of course, on the actual mass of any 

prospective orbiting star, its orbital phase, the inclination, and the eccentricity.  But the limit of 

3.5 m/s is adequate to detect a Jupiter-mass companion at 1 AU.  Thus any stellar companion 

(with >80x the mass of a Jupiter) would make an obvious RV change, 80 times more than 3.5 

m/s, if at 1 AU.  Even if the stellar companion were orbiting within 10 AU, the RVs would 

exhibit a change of many times 3.5 m/s during the 128-day interval of the RV measurements. 

In summary, the analysis to explicitly search for secondary lines found none.  This rules out 

stellar companions as faint as 1% of the flux of the primary star except for another K dwarf 

orbiting beyond 20 AU where the splitting the two sets of lines would not be detected. 

 

We have also considered the possibility that a rapidly rotating G or F star could be bright enough 

to produce a transit of the right depth if its light is diluted by that from Kepler-62, and thus 

would not be readily visible in the HIRES spectrum because of its broad lines. However, nearly 

all G-type stars and late F-type stars rotate at about the same equatorial speed of 1 - 10 km/s.   At 

these slow speeds, our spectroscopic method of detecting FGKM stars is effective for these types 

of stars, except for early F-type stars (< F2). Thus we would have detected FGKM-type stars 

located within 0.4" of Kepler-62, if they have a flux greater than ~2% of the primary star and 

have a Doppler separation of over 15 km/s. It should also be noted that rapidly rotating G or F 

stars are far less common than K or M stars, so that their contribution to the overall frequency of 

blends is negligible.  

 

2.3 Warm-Spitzer results for Kepler-62e 

To demonstrate the color independence of the transit depth, the transit depth of Kepler-62e was 

observed during one transit with Warm-Spitzer/IRAC (33, 34) at 4.5 µm (program ID 80117). 

The observation occurred on UT 2011 Oct 05. The entire visit lasted 14.42 hrs. The data were 

gathered in full-frame mode (256 × 256 pixels) with an exposure time of 10.4 s per image which 

yielded 4294 images.  

 

A comparison of the transit depths measured by Warm-Spitzer in the infrared and by Kepler in 

the visible is shown in fig. S9. The measured value of   570!!""
!!"# ppm is in agreement with the 

Kepler measured depth at the 1σ level. If the depth was substantially larger, it would indicate the 

presence of a confounding star in the aperture. The agreement in the depth of the transit in both 
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wavelength regions indicates that the ratio Rp/R* of the candidate Kepler-62e to its host star is a 

wavelength independent function, in agreement with that expected from a dark planetary object. 

Based on the assumption that all five planets orbit the same star, we determine a lower limit to 

the blend mass of 0.55 M⊙ , for Kepler-62.  

 

Table S2. Keck RV observations used to estimate the upper limits to the masses 

of Kepler-62b, -62c, -62d, -62e, & -62f. 

Observation 

number 

UT date Julian date -

244,000,000 

Measured 

velocity (m/s) 

Velocity 

uncertainty 

(m/s) 

rj155.66 2012/07/29 16137.974661 -4.24 3.78 

rj158.275     2012/09/02    16172.755513     -0.80           3.36    

rj158.481     2012/09/03    16173.790612     -5.45           3.27    

rj158.670     2012/09/04    16174.756512      1.72           3.77    

rj158.902     2012/09/05    16175.824954     -3.89           4.32    

rj158.1062   2012/09/06    16176.800297      6.60           3.66    

rj158.1274   2012/09/08    16178.753087      2.08           3.02   

rj158.1383   2012/09/09    16179.793288      -1.13           3.11    

rj159.78       2012/09/22    16192.742073     0.12           3.25    

rj159.687     2012/09/25    16195.812869     -1.58           3.28    

rj161.77       2012/10/07    16207.754739      2.69           3.89    

rj161.489     2012/10/09    16209.792603      3.53           3.85    

rj163.264     2012/12/04    16265.721603      -0.17           3.55    
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Fig. S9. Spitzer transit light-curve of Kepler-62e observed in the IRAC band-pass at 4.5 µm. Top panel: 

raw (unbinned) transit light-curve. The red solid line corresponds to the best fit model which includes the 

time and position instrumental decorrelations as well as the model for the planetary transit. Bottom panel: 

corrected, normalized and binned by 30 minutes transit light-curve with the transit best-fit plotted in red 

and the transit shape expected from the Kepler observations over-plotted as a green line. The two models 

agree at the 1σ level. 

 

We used the APER routine to perform an aperture photometry with a circular aperture of 

variable radius, using radii of 1.5 to 8 pixels, in 0.5 pixel steps. A sliding median filter was used 

to select and trim outliers in flux and positions greater than 5σ, which correspond to 1.7% of the 

data. We also discarded the first half-hour of observations, which is affected by a significant 

telescope jitter before stabilization. The final number of photometric measurements used is 3839. 

The raw time series is presented in the top panel of fig. S9. Using the rms of the residual from 

the fit of the transit light curve, we find that the typical signal-to-noise ratio (S/N) is 150 per 

image which corresponds to 90% of the theoretical signal-to-noise. Therefore, the noise is 

dominated by Poisson photon noise. 

 

We used a transit light curve model multiplied by instrumental decorrelation functions to 

measure the transit depth and its uncertainty from the Spitzer data (13). We compute the transit 

light curve with the IDL transit routine OCCULTSMALL (35). To obtain an estimate of the 

correlated and systematic errors (36) in our measurements, we use the residual permutation 

bootstrap method (37). We use asymmetric error bars spanning 34% of the points above and 

below the median of the distributions to derive the 1σ uncertainties for each parameters as 

described in (38).  
	
  

3 Star Properties  

3.1. Spectroscopic determination of host star characteristics 

We obtained preliminary reconnaissance spectra of Kepler-62 with the 2.7 m Harlan J. Smith 

telescope at McDonald Observatory on 09:55 UT 2010 May 30, 06:21 UT 2010 July 22 and 
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01:39 UT 2010 October 31. These low signal/noise spectra were used to confirm the preliminary 

stellar properties from the Kepler Input Catalog (KIC) (32) and to ensure that the star was not a 

spectroscopic binary.   

 

Higher SNR spectroscopic observations to obtain the best determination of the stellar 

characteristics of Kepler-62 were conducted at the Keck Observatory on 26 May 2011 at 

13:34:39 (UT). LTE spectroscopic analysis using the spectral synthesis package SME was 

applied to a high resolution template spectrum from Keck-HIRES to derive an effective 

temperature, Teff = 4925 ± 70 K, surface gravity, log (g) = 4.683 ± 0.067 (cgs), metallicity, 

[Fe/H] = −0.368 ± 0.042, v sin i = 0.4 ± 0.5 km s
-1

, and the associated error distribution for each 

of them.  

 

3.2. Fundamental stellar properties  

As described in §3, spectroscopic observations were used to derive the stellar effective 

temperature, log(g), and metallicity. By matching these values to Yonsie-Yale stellar evolution 

models (39, 40), the stellar size, mass, luminosity, and age were estimated.  The model matching 

was done by varying the stellar mass, age and [Fe/H] and comparing the model-derived values of 

Teff, log(g) and [Fe/H] to the spectroscopic values with a chi-square statistic.  An initial match 

was found by scanning in mass increments of 0.1 Mʘ and restricting ages from 0 to 14 Gyr and 

identifying a best matching model (fig. S10). A Markov-Chain-Monte-Carlo (MCMC) routine 

was then seeded with this trial value of stellar mass, age and [Fe/H] to determine posterior 

distributions. In total 100,000 chain elements were generated.  The model was also used to 

determine posterior distributions for the stellar radius, luminosity and mean stellar density.  For 

each stellar parameter we report the median and standard deviations.  These are listed in Table 

S3. 

 
 

Notes: A; from KIC (32), B; from analysis of high resolution spectra, C; modeling results based on 

Table S3. Adopted stellar parameters for Kepler-62. 

Parameter Adopted Value Notes 

Right Ascension (J2000) 18
h

52
m

51.06
s

 A 

Declination (J2000) +45◦
 

20'
 

59.50" A 

Kepler Magnitude 13.75 A 

R magnitude 13.65 A 

Effective temperature Teff (K) 4925  ± 70 B 

Metallicity [Fe/H] -0.37 ± 0.04 B 

Gravity log(g) (cgs) 4.68 ± 0.04 B 

Projected rotation velocity v sin i (km/s) 0.4 ± 0.5 B 

Mass M* (Mʘ) 0.69 ± 0.02 C 

Radius R* (Rʘ) 0.64 ± 0.02 C 

Density ρ*  (cgs) 3.8 ± 0.3 C 

Age (Gyr) 7 ± 4 C 

Luminosity L* (Lʘ) 0.21 ± 0.02 D 

Rotation Period (days) 39.3±0.6 E 

Distance (pc) 368 F 
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measured values of Teff and gravity plus Yonsei-Yale evolutionary curves (39, 40), D; calculated from 

stellar size and Teff; E; from Fourier analysis of photometric light curve, F; determined from derived 

Rmag, conversion to Vmag equals 0.73, interstellar extinction = 0.15magV, and for an absolute visual 

magnitude of 6.4 for a K2 dwarf. 

 

 
Fig. S10. Yonsei-Yale evolutionary curves based on the measured log(g) and Teff were used to deduce 

stellar mass, density, age and their uncertainties. The three boxes show the 1, 2, and 3σ uncertainties from 

SME spectroscopic analysis.  The tracks show the evolution-model grid starting at 0.6 Mʘ on the right to 

0.79 Mʘ on the left in 0.1 Mʘ intervals.  The red, green, blue, cyan and magenta lines highlight the 0.6, 

0.65, 0.7, 0.75 and 0.79 Mʘ tracks.  The labels indicate the model ages in Gyr.   

 

3.3. Activity and rotation  

Figure S11 shows the power spectrum of the Kepler-62 light curve for quarters Q1-Q12. A 

periodogram analysis reveals a significant peak at 39.3 ± 0.6 days.  Assuming this corresponds to 

the stellar rotation period, the age-rotation relation (41) can be used to estimate the age of the 

star. We find an estimated age of 6.5 ± 0.2 Gyr, in agreement with the value determined from 

isochrone fits to the spectroscopic Teff, log(g), and [Fe/H] values.  
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Fig. S11. Power spectrum of Kepler-62 showing a strong peak at 39.3 days.  

 

It is also possible to estimate the age and rotation rate using the CaII H &K emission index 

log(R’HK). Following the methodology of (42), we simultaneously measure the CaII H&K lines 

of Kepler-62 with each radial velocity observation. (These lines are often used tracers of stellar 

chromospheric activity.) As detailed therein, we transform these measurements into the S index 

of chromospheric activity (43) finding S = 0.212 ± 0.002. Given the empirical relationship 

between chromospheric activity and rotation period, and hence age (44, 45), we use our CaII 

H&K measurements to estimate the age of Kepler-62 with the gyrochronology relations 

commonly used to estimate the ages of field stars (46, 47). Taking the B-V color of 0.832, as 

measured by (48) and following the prescription of (45), we transform our S index into the 

log(R'HK) index of activity, related to the former but corrected for photospheric 

contributions.  We find log(R'HK) = -4.863 ± 0.006, an inactive star according to (49). (see also 

(42, 50). With this value and using the relations of (47), we derive a rotation period of 37 ± 6 

days, in agreement with the photometrically measured period of 39.3 ± 0.6 days, and we estimate 

a stellar age of 5.4 ± 1.7 Gyr, comparable to the age of 6.8 Gyr obtained from stellar 

evolutionary models. 

 

4. Search for Transit Timing Variations (TTV) 

We fit transit models (35) to the data, short cadence where available and long cadence elsewhere, 

with mid-transit time being a free parameter.  We found no convincing transit timing variations, 

and therefore calculate only upper limits to the planet masses from these data.  For planets -62e 

and -62f, we calculated the standard deviation of the offset of the times from a constant period, 

after resampling them according to their error bars, and are able to limit at a 95% confidence 

level, the standard deviation to less than 20 minutes and 14 minutes for planets -62e and -62f 

respectively. Planet -62f has only 3 transits measured so far, and the third transit falls within ~ 5 

minutes of its expected position given the period established by the first two transits.  In 

principle, even a large TTV signal might have 2 consecutive periods that are the same 

length.  Therefore we asked not whether certain masses could match that constraint, but rather 
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how fine-tuned such a situation is.  We turned to numerical integrations to determine this, as 

follows. 

  

We picked osculating Jacobian periods and transit epochs close to the observed values, and 

sampled a grid of ecosω and esinω values for each planet, between ± 0.3 with steps of 0.03, 

resulting in 194,481 simulations.  We pared down the simulated transits to only those that were 

observed, and computed the standard deviation of their TTV about their own best-fitting linear 

ephemeris.   The dynamical effects the data can probe at this point are all in the linear regime, 

i.e., the amplitude of the signal scales with the mass of the perturbing planet (51). Therefore we 

picked 10 M⊕ for both planets in these investigations, and scaled the signal to make inferences 

about other masses. 

 

At particular masses, larger eccentricities give larger TTV signals (52). At the masses used for 

the simulation (10 M⊕ each), eccentricities of ~0.3 gave TTV signals comparable to the limits.  At 

low eccentricities ≤ 0.1, masses above 150 M⊕ for planet e and above 35 M⊕ for planet -62f 

contradicted the timing data in more than 95% of trials.  

Therefore our 95% confidence limits on the masses of planets -62c, -62d, -62e, and -62f are 4, 

120, 150, 35 M⊕, respectively.  In all of these cases, the transit times do not yield physically 

interesting constraints on the densities of the planets, which may be up to about 100 g cm
-3 

and 

still agree with the timing data. 

 

In addition, we also carried out a separate analysis in which we computed a dynamical fit to the 

11 transit times of planets -62e and -62f through Q13.   The planets were assumed to be coplanar, 

giving 10 model parameters (planet/star mass ratio and four orbital elements for each planet), 

leaving two degrees of freedom.  Over a grid of mass ratios for the two planets, we held the mass 

ratio of each planet fixed, and minimized the chi-square of the fit with respect to all of the other 

parameters in the model (requiring Hill stability for each of the computed models).  The fits 

result in an upper limit of 51.5 M⊕ (3σ) for Kepler-62f, while no upper limit on Kepler-62e was 

found up to the largest mass ratio of 0.003. These two analyses give consistent results for Kepler-

62f, and are compatible for Kepler-62e considering that the second analysis did not penalize 

large eccentricities. 

 

5. Mass Constraints from High-Precision Doppler Measurements 

We obtained 13 Keck-HIRES RVs for Kepler-62 spanning 128 days in 2012, from 

BJD=2456137.97 to 2456265.72.  See Table S2 for the list of all times, RVs, and uncertainties 

which include jitter of 2 m/s added in quadrature. With typical exposure times of 45 minutes, we 

achieved a SNR of 70 per pixel.   
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Figure S12. Upper limit to the sum of the RV amplitudes (solid curve) versus time based on the upper 

limits to the RV for each of the five planets. Measurements are shown as dots with 95
th

 percentile error 

bars.  

 

The upper limit to the radial velocity of each planet is found that would be inconsistent with the 

measurements. Given the periods and ephemerides for all five planets, an MCMC analysis 

provides the posterior distribution of the planet masses and densities.  Upper mass and density 

limits (95
th

 percentile of the posterior distribution)	
   for all five of the transiting planets were 

calculated and are tabulated in Table S4. 

 

Figure S12 compares the sum of the calculated upper limits with the RV measurements (Table 

S2). The results indicate that the measured RV values are consistent with planetary mass objects, 

but do not yield physically interesting constraints on the planet densities.  

 

 Table S4. Upper limits to the masses and densities of Kepler-62b through -62f	
  

Planet Period 

(days) 

TTV Results (95th percentile) RV Results (95th percentile) 

Upper limit to 

the mass (M⊕) 

Upper limit to 

density (g/cc) 

Upper limit to 

the mass (M⊕) 

Upper limit to 

density (g/cc) 

Kepler-62b 5.7   9 22 

Kepler-62c 12.4 4 140 9 338 

Kepler-62d 18. 120 90 14 11 

Kepler-62e 122 150 200 36 47 

Kepler-62f 267 35 70 43 85 

 

6. Planet Properties from Model Results 

To determine the planetary parameters for Kepler-62b though -62f, we started with the Q1-Q12  

Simple Aperture Photometry long-cadence light curve.  The time series was then detrended with 

a running 2 day median filter using the method described in (18). Observations that occur during 

a planetary transit event were excluded from the calculation of the median and each quarterly 

light curve was normalized by the quarterly median prior to detrending. The resultant flux series 

(bottom panel of fig. S1) was used to model the planetary transits.   
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The photometric model assumes non-interactive Keplerian orbits and uses the quadratic transit 

model of (35). We used the limb-darkening parameters from (53) which were fixed to 0.5396 

and 0.1731.  The model is parameterized by the mean-stellar density (ρ*), photometric zero point 

epoch (T0), period (P), scaled planetary radius (Rp/R*), impact parameter (b) and eccentricity (e) 

and the argument of periapse (ω) parameterized as esinω and ecosω.  The semi-major axis for 

each planet is estimated by (a/R*)
3
 ~ ρ* * G * P

2/3
, where G is the gravitational constant and the 

assumption is made that the sum of the planetary masses is much less than the mass of star.  For 

a Jupiter-mass companion, a systematic error of 0.02% would be incurred for the measurement 

of ρ*. 

 

A best fit model was calculating by a Levenberg-Marquardt chi-square minimization routine.  In 

this model, the mean stellar density was fixed to the stellar model value from Table S3.  The 

best-fit model was then used to seed a MCMC routine (18) to determine posterior distributions 

of all the model parameters.  We used the posterior distribution for the mean-stellar density as 

determined in Table S3 as a constraint.  This restricts the allowed solution space of model 

parameters that are correlated with the stellar density ρ* such as the impact parameter b and 

esinω.   

 

We ran the MCMC algorithm 4 separate times, each time generating 1,000,000 elements.  The 

first 10% of each chain was discarded and then the four chains were combined and used to 

produce posterior distributions for each parameter.  We report the median value and ± 68 

percentiles for each parameter in Table 1.  It should be noted, that using the constraint on the 

mean-stellar density drives the model parameters of planet -62e towards an eccentric orbit.  This 

informs us that the stellar parameters are not consistent with a model that assumes a circular 

orbit.  A circular model would require a mean-stellar density of 2.7 g cm
-3

 which disagrees with 

the stellar models.  Also, such a low stellar density is incompatible with stellar evolution theory 

for a star with Teff = 4925 K that has an age less than 14 Gyr. 

 

We also tested the long-term stability of the system based on the parameters reported in Table 1, 

with nominal masses based on a fit to the planet mass-radius relation of solar system planets, 

Mp/M⊕ = (Rp/R⊕)
2.06

 (54). While planets -62c and -62d quickly collided when we used the values 

of ecosω and esinω from Table 1, we found no signs of long-term instability when starting from 

nearly circular orbits based on 10 Myr integrations.  The system could also be rendered stable by 

reducing the masses of planets -62c and/or -62d relative to the above mass-radius relation or by a 

combination of reduced masses and eccentricities. 

 

7. Validation  
Dynamical confirmation of the planetary nature of the signals presented by Kepler-62 has 

traditionally required either a detection of the reflex motion of the star (Doppler signature) or a 

detection of transit timing variations from the mutual interactions among the objects. In the 

absence of such tell-tale diagnostics, we take an alternative approach.  We perform follow-up 

observations designed to that rule out as many astrophysical false positive scenarios as possible 

and then estimate, via numerical simulations, the probability that the signal is due to one of the 

remaining false-positive scenarios that could not be ruled out by observations.  We compare this 
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probability to the likelihood of the planet interpretation and consider a planet to be statistically 

validated if this odds ratio exceeds 400:1 (approximately corresponding to the cumulative 

distribution function at 3-sigma for a normal distribution).  The numerical simulations are part of 

the BLENDER procedure (10-13) and used to validate a number of other Kepler planets (14-18). 

We refer the reader to these works for the full details and offer only a brief summary here. 

 

We performed a systematic exploration of the different types of false positives that can mimic 

the signals by generating large numbers of synthetic blend light curves over a wide range of 

parameters and comparing each of them with the Kepler photometry in a chi-square sense. We 

rejected blends that result in light curves inconsistent with the observations.  We then estimated 

the frequency of the allowed blends by taking into account all available observational constraints 

from the follow-up observations mentioned above. Finally we compared this frequency with the 

expected frequency of true planets (planet "prior") to derive the "odds ratio". 

 

The types of false positives we considered include eclipsing systems falling within the Kepler 

aperture that are either in the background or foreground, or that are physically associated with 

the target. We allowed the object producing the eclipses to be a star or a planet.  The 

observational constraints we used include the following: (a) the color of the star as reported in 

the KIC which allows us to rule out any simulated blends resulting in a combined-color that is 

significantly redder or bluer than the target; (b) limits from the centroid motion analysis on the 

angular separation of companions that could produce the signal (Sect. 1); (c) brightness and 

angular separation limits from high-resolution adaptive optics (Sect. 2.1); (d) limits on the 

brightness of unresolved companions from high-resolution spectroscopy (Sect. 2.2); and (e) a 

constraint from the measured transit depth of Kepler-62e derived from our Spitzer observations 

(Sect. 2.3), that place an upper limit on the mass (spectral type) of stars producing the blend. For 

eclipsing systems physically associated with the target, we also considered dynamical stability 

constraints in hierarchical triple configurations (55). To estimate the planet prior we relied on the 

list of candidate planets (KOIs) by (8), restricted to main-sequence host stars and with the 

assumption that the list is complete (i.e., that all signals have been detected) and that the rate of 

false positives is negligible.  Our simulations for the signals discussed here indicate that the 

contribution of background eclipsing binaries to the blend frequencies is nearly insignificant in 

all cases. Background stars transited by large planets, on the other hand, can more easily mimic 

the signals, as can stars that are physically associated with the target and that are transited by a 

large planet. 

 

For Kepler-62b (KOI-701.02) we found that the frequency of background/foreground blends is 

6.04x10
-8

, while that of blends involving larger planets transiting physical companions to the 

target is 1.02x10
-7

. The planet prior was estimated by counting the number of known KOIs (61 in 

this case) that are in the same radius range (within 3σ) and period range (within a factor of 2) as 

the putative planet. The same period constraint is used for the blend population.  We account for 

limitations in the sample completeness and reliability following the procedures described in (56). 	
  
	
  

 These simulations suggest that 5.8 of the 61 KOIs may be false positives and that a 

completeness factor of approximately 2.19 is required.  That is, a signal like that of Kepler-62b 

could have been detected around only 46% of the main sequence Kepler targets.  The corrected 
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planet count is then (61 - 5.8)*2.19 = 120.9. With this, the planet prior becomes 120.9 / 138,253 

= 8.74x10
-4

. The final odds ratio for Kepler-62b is then 8.74x10
-4

 / (6.04x10
-8

 + 1.02x10
-7

) = 

5400 which allows us to validate the planet with a very high degree of confidence.  We note that 

the issues of completeness and reliability of the KOI catalog apply to both the planet prior and 

the blend frequencies since the latter draws upon the catalog to inform the rate of occurrence of 

large transiting planets comprising the blend. 

 

Applying a similar procedure to Kepler-62d (KOI-701.01), we found a background blend 

frequency of 2.06x10
-9

, and a frequency of blends involving physically associated companions of 

5.53x10
-8

. For the planet prior we tallied 88 KOIs in the relevant radius and period range, of 

which we expect 10.9 may be false positives. The incompleteness boost is a factor of 1.54 in this 

case. The planet prior is then (88 - 10.9)*1.54 / 138,253 = 8.59x10
-4

, and the odds ratio becomes 

approximately 15,000.  This is also high enough to clearly validate the signal as being of 

planetary nature. 

 

For Kepler-62e (KOI-701.03), which is the signal corresponding to a super-Earth-size planet in 

the habitable zone, the background blend frequency is 2.81x10
-9

 and the frequency of blends 

involving physically associated companions is 3.48x10
-9

. Because very few candidates like this 

have been found, the incompleteness correction is larger than for the other two signals, and 

comes to a factor of 4.08 according to our simulations. The false positive rate is also more 

important. The planet prior for this case is (4 - 0.87)*4.08 / 138,253 = 9.24x10
-5

, and the odds 

ratio becomes 9.24x10
-5

 / (2.81x10
-9

 + 3.48x10
-9

) = 14,700. This again validates the signal to a 

high degree of confidence. 

 

The unexpectedly large odds ratio for Kepler-62e, a small planet with a very long orbital period, 

is due to the lower incidence of blends involving physically associated companions, which 

dominate the total blend frequency for the other two signals. The reason these types of blends are 

less frequent for Kepler-62e has to do with the long duration of the transit.  In order for a planet 

orbiting a companion star to reproduce this long transit duration its orbital speed must be slower 

than in a circular orbit of the same period, which generally requires eccentric orbits and transits 

occurring near apastron. As it turns out, most of the low and modest eccentricity cases allowed 

by BLENDER are ruled out by other observational constraints (color information, spectroscopic 

limits), and only the most eccentric cases (e > 0.76) with apocentric transits remain viable. Those 

scenarios, however, are very unlikely. 

 

BLENDER constraints on false positives for each of the five planets can be seen in Fig.2, for 

each of the three blend scenarios found to be relevant here (background eclipsing binaries, 

background/foreground stars transited by a planet, and physically associated stars transited by a 

planet).  Also shown are the complementary constraints afforded by the follow-up observations: 

cross-hatched areas for regions excluded by the color information (cyan) or spectroscopic limits 

on the brightness of unresolved companions (green), and the gray area in the panel for Kepler-

62e for the limits from our Spitzer observations on the mass of potential blended stars.  Each 

panel shows a cross-section of the space of parameters for blends, and a contour enclosing the 

area in which the light curves produced by false positives yield an acceptable fit to the Kepler 

photometry (within 3σ of the best-fit transit model). Only blends within these regions count 
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towards the blend frequencies given above. Blend scenarios outside of this area are ruled out, as 

are blends that are covered by the cross-hatched or gray regions. 

 

The validation of Kepler-62c (KOI-701.05) and Kepler-62f (KOI-701.04) proceeds exactly as for 

Kepler-62b, -62d, and -62e with one exception.  The long period of Kepler-62f and the small size 

of -62c make these standouts in the KOI catalog.  They are practically the only objects of their 

kind detected to date:  there is only one other KOI within each of the radius/period bins defined 

by Kepler-62c and -62f.  Consequently, the construction of a reasonable planet prior relies on 

extrapolation from other regions of parameter space.  The situation is especially problematic for 

Kepler-62f since a significant source of astrophysical false positives is a background blend with 

a transiting Neptune-size planet.  The sample of Neptune-size planets out at periods >200 days is 

also too small to reliably inform the numerical simulations. 

 

For Kepler-62c, we assume that the planet occurrence rate as a function of size is flat for short-

period (6 to 24 days) planets smaller than 1R⊕.  We follow the procedures outlined above and 

then ask the question:  how much smaller would the true occurrence rates have to be to yield a 

validation at exactly the 99.7% confidence level?  We begin with the occurrence rates presented 

in (56) that are reproduced in fig. S13 (solid black line) and extrapolate to smaller sizes by using 

the average of the two smallest-radius bins (dotted line).  This factor alone yields an odds ratio of 

4100 for Kepler-62c.  The occurrence rate of planets the size of Kepler-62c would have to be 

more than 11 times smaller than our extrapolation to yield a confidence level less than 99.7% 

(green line). 

 

The evaluation of the Kepler-62f signal proceeds in a similar manner but with an extrapolation 

out to longer orbital periods.  Figure S14 shows the number of transiting planets per star with a 

size within the 3σ error bars of Kepler-62f, in different period bins (solid black line), the 

extrapolation to longer orbital periods (black dotted line), and the occurrence rates that would 

yield a validation at the 99.7% confidence level (green).  Also plotted, for comparison, is the 

number of transiting/eclipsing blends, or false positives (red).  Note that the distribution of 

possible blends is computed using a similar period extrapolation for Neptune-sized companions 

since they are a significant contributor to the pool of possible blend scenarios.  The analysis 

yields an odds ratio of 5900 for Kepler-62f.  Even if the occurrence rate of planets with 200-300 

day orbital periods is 15.9 times smaller than the occurrence rate of planets with 100-day orbital 

periods, Kepler-62f would still be validated with 99.7% confidence. 

 

There is no indication from radial velocity surveys or from the trends in the occurrence rates that 

are emerging from the Kepler data (56) that there is a cliff in the occurrence rates between Earth-

size and Mars-size planets or between 100-day and 300-day orbital periods.  In the discussions 

that ensue, we assume that the planet interpretation is by far the most likely interpretation to 

explain the transits of Kepler-62c & -62f even under the most conservative of assumptions; i.e. 

that these are validated planets with > 99.7% confidence.	
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Fig. S13. BLENDER results for Kepler-62c. The expected number of planets of similar size and period is 

11 times higher than necessary for a 3σ validation. 

 

	
  

Fig. S14. BLENDER results for Kepler-62f. The expected number of planets of similar size and period is 

15.9 times higher than necessary for a 3σ validation. 

 

There is also a 0.2% chance that the planets orbit a widely space binary composed of two K2V 

stars and therefore the planets are √2 larger in radius than shown in Table 1.   A twin star could 

be there (and unseen) if: 

a) It is not seen in the most precise AO image (using the limit from the KECK AO of ~0.07" for 

stars within 2 mag). 

b)  It does not show a second set of lines in the spectra, nor does it induce a detectable global 

drift in the RV observations within the span of the observations. 

c) It does not make the system dynamically unstable. The outer planet (-62f) sets a minimum 

distance for the companion star. 
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d)  It does not show a discrepancy with the observed colors of the target star.  

To a conservative estimate, we assumed that both the planets and the binary are in circular orbits. 

The multiplicity of K-stars is estimated to be 40% for K stars (57), and their distributions of 

period and eccentricity were used.  Random positions were assigned to the companion stars in a 

large Monte-Carlo simulation. Dynamic stability was assessed from (55). 

 

8. Summary 

An analysis of the spectrum of Kepler-62 (KIC 9002278) shows it to be a slowly rotating, 

middle-age K2 dwarf. Searches for confounding stars in the Kepler aperture using active optics, 

warm-Spitzer, and high-SNR Keck spectra detect no stars bright enough to mimic the transit 

patterns, but cannot rule out very faint stars. Analysis of the Kepler measurements of image 

motions by each planet is consistent with these observations. Modeling results from the Blender 

program estimate the odds that any one of the five planets is a false-positive event to be less than 

1 in 5000. There is also a 0.2% chance that the planets orbit a widely-spaced binary system 

composed of two nearly-identical K2V stars and therefore the radii of the planets are √2 larger in 

radius than shown in Table 1.  MCMC modeling of the stellar and planetary parameters provides  

stable solutions for Kepler-62b, -62c, -62d, -62e, and -62f with sizes of 1.3, 0.54, 1.97, 1.61, and 

1.41 R⊕ with orbital periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. Kepler-62f is 

currently the smallest planet detected in the HZ by the Kepler Mission.  
	
  


