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We investigate the effects of the Kepler rotation of lens binaries on the binary-
microlensing events towards the Large Magellanic Cloud (LMC) and the Small Magellanic
Cloud (SMC). It is found that the rotation effects cannot always be neglected when the lens
binaries are in the LMC disk or the SMC disk, i.e., when they are self-lensing. Therefore we
suggest that it will be necessary to consider the rotation effects in the analyses of the coming
binary events if the microlensing events towards the halo are self-lensing. As an example,
we reexamine the MACHO LMC-9 event, in which the slow transverse velocity of the lens
binary suggests a microlensing event in the LMC disk. From a simple analysis, it is shown
that the lens binary with total mass ∼ 1M� rotates by more than ∼ 60◦ during the Einstein
radius crossing time. However, the fitting of MACHO LMC-9 with an additional parameter,
the rotation period, shows that the rotation effects are small, i.e., the projected rotation
angle is only ∼ 5.9◦(M/M�)1/4 during the Einstein radius crossing time. This contradiction
can be settled if the physical parameters, such as the mass and the velocity, are different
in this event, the binary is nearly edge-on, or the binary is very eccentric, though definite
conclusions cannot be drawn from this single event. If the microlensing events towards the
halo are due to self-lensing, binary-events for which the rotation effects are important will
increase and stronger constraints on the nature of the lenses will be obtained.

§1. Introduction

The analysis of the first 2.1 years of photometry of 8.5×106 stars in the LMC by
the MACHO Collaboration 1) suggests that the fraction 0.62+0.3

−0.2 of our halo consists
of massive compact halo objects (MACHOs) of mass 0.5+0.3

−0.2M� in the standard
spherical flat rotation halo model. A preliminary analysis of four years of data
suggests the existence of at least eight additional microlensing events with tdur ∼ 90
days in the direction of the LMC. 2)

At present, we do not know what MACHOs are. There have been several iden-
tifications of MACHOs proposed, such as brown dwarfs, red dwarfs, white dwarfs,
neutron stars, primordial black holes, and so on. 2) - 21) Any objects clustered some-
where between the LMC and the Sun with column density larger than 25M�pc−2

may also explain the data. 22) They include the following possibilities: LMC-LMC
self-lensing, the spheroid component, thick disk, a dwarf galaxy, tidal debris, and
warping and flaring of the galactic disk. 23) - 29) (See also Ref. 30).)

Such obscurities of the mass and the spatial distribution essentially result from
the fact that the time scale of an event, which is an important observable, is a
degenerate combination of the three quantities one would like to know, the mass, the
velocity and the position of the lensing object. Several methods have been proposed
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to break these degeneracies, for example, launching a parallax satellite into solar
orbit, 31) - 35) observing the annual modulation in light magnification induced by the
Earth’s motion, 36), 37) observing the deviation of light magnification from a simple
point-source model due to the finite-source size effect when the impact parameter of
the trajectory of the lens is comparable to the source size, 38) - 40) distinguishing the
dependence of the lensing rate on the background stellar density, 41) and so on.

A microlensing event due to a binary is one of the best candidates to break the
degeneracies. In binary-microlensing events, the light magnification dramatically
deviates from that of a simple point-source model when the source transverses the
caustics, where a point source is amplified infinitely. We can obtain information
concerning the transverse velocity of the source from this deviation, which can be
used to distinguish between halo-lensing and self-lensing. To this time, two binary-
lens microlensing events have been observed, MACHO LMC-9 42) and MACHO 98-
SMC-1. 43) - 45) Although we cannot say for certain from only these events, 46) these
events support self-lensing because of slow transverse velocities. In the future, the
number of binary-lens microlensing events will increase, 47), 48) and hence these events
will be important to break the degeneracies in the physical parameters.

In almost all analyses of binary-lens microlensing events, the rotation of the lens
binary has been neglected. 42) This is because the period of a lens binary in the halo
is much larger than the time scale of the amplification. However, the lensing object
of the MACHO LMC-9 event, for example, is very likely to reside in the LMC disk,
not in our halo. Since the characteristic transverse velocity of a lens in the LMC
disk or the SMC disk is smaller than that in our halo, the rotation of the lens binary
in the disk may be important. For this reason we reconsider the rotation effects on
the analyses of the binary-lens microlensing events in this paper. As an example we
reanalyze the MACHO LMC-9 event taking the rotation into account. Note that,
in the previous analysis of this event, the transverse velocity is somewhat smaller
than that expected for a lens in the LMC disk. 42) If we take the rotation of the lens
binary into account, the transverse velocity may be larger, since the incident angle
of the trajectory of the source into the caustics may be smaller, and hence the source
may take shorter time to move by one stellar radius of the source. This is one of our
motivations to examine the rotation effects.

In §2 microlensing by a double point mass is reviewed. In §3 the rotation effects
of a lens binary are estimated. We suggest the possibility that the rotation effects
are important when the lens binary resides in the LMC disk or the SMC disk. In §4
we perform the fitting of the MACHO LMC-9 event, taking into account the rotation
of the lens binary. Section 5 is devoted to summary and discussion.

§2. Microlensing by two point masses

We now briefly review microlensing by a double point mass 49), 50) to introduce
our notation. We consider a lens binary consisting of two point masses, M1 and M2,
whose center is at a distance Dol from the observer, and we consider a source at
a distance Dos from the observer in Fig. 1. We define the lens plane as the plane
which contains the center of mass of the lens binary and is perpendicular to the
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Fig. 1. The geometry of the gravitational lens-

ing by a double point mass lens.

line connecting the observer and the
center of mass, i.e., the optical axis. We
also define the source plane as the plane
which contains the source and is parallel
to the lens plane. The distance between
the lens plane and the source plane is
written as Dls = Dos − Dol. We define
a coordinate system (ξx, ξy) on the lens
plane and (ηx, ηy) on the source plane,
taking the origin of each coordinate at
the intersection between each plane and
the optical axis. An equation which re-
lates the image position ξ to the source
position η is called a “lens equation”.
From Fig. 1, we see that the lens equa-
tion for lensing by a double point mass
is

η =
Dos

Dol
ξ −DlsΘ(ξ), (2.1)

Θ(ξ) =
4GM1

c2
ξ − ξ1

|ξ − ξ1|2
+
4GM2

c2
ξ − ξ2

|ξ − ξ2|2
, (2.2)

where ξ1 and ξ2 are the positions of the masses projected onto the lens plane. Θ(ξ)
is the deflection angle of light due to the lens masses, which is the summation of
the deflection angle due to each mass. The Einstein radius for the total mass of the
binary, M =M1 +M2, is defined as

ρE :=

√
4GM

c2
DolDls

Dos
=

√
4GMDos

c2
x(1− x), (2.3)

where x := Dol/Dos. With the definitions

r :=
ξ

ρE
, z := x

η

ρE
, µi :=

Mi

M
, (i = 1, 2) (2.4)

the lens equations (2.1) and (2.2) become dimensionless equations,

z = r − Θ(r), (2.5)

Θ(r) = µ1
r − r1

|r − r1|2 + µ2
r − r2

|r − r2|2 . (2.6)

Note that we are discussing the situation on the lens plane, since we normalize the
length as in Eq. (2.4).

These equations (2.5) and (2.6) can be used to find all images of the source. 51)

If we cannot resolve the images by observations, the only observable quantity is the
amplification of the brightness of the source. The amplification factor I is the inverse
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Fig. 2. Caustics for a double point lens. The lenses have identical masses and are separated by

l = 0.6, 1.4 and 2.2.

of the determinant of the Jacobi matrix,

I =
∑

i

∣∣∣∣det
(
∂z

∂r

)∣∣∣∣
−1

∣∣∣∣∣
r=ri

, (2.7)

where ri is the image position. For certain values of r, the amplification factor I
diverges. A set of these points forms curves called “critical curves”. The projection
of the critical curves onto the source plane with Eqs. (2.5) and (2.6) forms caustics
on the source plane. Caustics have three kinds of morphology, depending on the
separation of the masses. In Fig. 2 these three kinds of caustics are shown. The
number of images is five in the closed caustics and three outside. Around the caustics,
large amplification appears, and the light curve has a peak.

§3. Microlensing events by a binary lens

3.1. Motion of the source

We assume that we can neglect the Earth’s motion around the Sun, and con-
sider the relative motion of the observer, the lens and the source as the motion of
the source. Every quantity on the source plane is projected onto the lens plane
by Eq. (2.4). Hence it is convenient to consider the motion of the source as that
projected onto the lens plane with Eq. (2.4). The trajectory of the source is charac-
terized by its impact parameter b with respect to the origin of the lens plane in units
of the Einstein radius ρE and the angle θ between the x-axis on the lens plane and
the trajectory. The source closest approaches the origin at TS , and the transverse
velocity of the source in the lens plane is V⊥. The transverse velocity of the source
pulled back onto the source plane VT is related to V⊥ as

VT =
V⊥
x
. (3.1)

The Einstein radius crossing time tE is defined as

tE :=
ρE

V⊥
. (3.2)
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It is convenient to measure the time T with respect to tE , t := T/tE . By normalizing
the time in this manner, the source moves by a unit length in a unit time. The source
closest approaches the origin at the normalized time, tS := TS/tE .

If there are enough data around the peak of the light curve, important informa-
tion about the size of the source can be obtained. 42) If the radius of the source is
R�, it takes a time

T� =
R�

VT
= x

R�

V⊥
(3.3)

for the source to move by one stellar radius of the source.

3.2. Rotation of the lens binary

The lens binary rotates according to Kepler’s law. The relative vector U is
defined by U := U1 − U2, where U1 and U2 denote the positions of the binary
masses in the orbital plane. We take the origin of the orbital plane at the center
of the binary masses as M1U1 + M2U2 = 0. Hence, the positions of the binary
masses are determined by the relative vector U as U1 = µ2U and U2 = −µ1U ,
where µ1 and µ2 are defined in Eq. (2.4). In the orbital plane, the relative vector
U = (U cosφ,U sinφ) at a time T is determined through the parameter λ as

T − T0 =
TB

2π
(λ− e sinλ), (3.4)

U = A(1− e cosλ), (3.5)

cos(φ− φ0) =
cosλ− e

1− e cosλ
, (3.6)

where

TB = 2π

√
A3

GM
(3.7)

r

r
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Fig. 3. The relation between the orbital plane

and the lens plane. The (rx, ry) plane is the

lens plane, the (ux, uy) plane is the orbital

plane, and α, β and γ are Euler angles.

is the period, A is the semi-major axis,
and e is the eccentricity of the lens bi-
nary. T0 and φ0 are integral constants.
We can take the coordinates on the or-
bital plane so that φ0 = 0. With the
definitions

tB :=
TB

tE
, t0 :=

T0

tE
,

u :=
U

ρE
, a :=

A

ρE
, (3.8)

the above equations (3.4)–(3.6) become
dimensionless:

t− t0 =
tB
2π
(λ− e sinλ), (3.9)

u = a(1− e cosλ), (3.10)

cosφ =
cosλ− e

1− e cosλ
. (3.11)
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In general, the orbital plane does not coincide with the lens plane. Since we
consider the case Dol � A, it is convenient to think about the lens masses projected
onto the lens plane, i.e., the thin lens approximation. The orientation of the coordi
nates in the orbital plane relative to the coordinates in the lens plane is determined
by Euler angles α, β and γ. In Fig. 3, we show the relation between the orbital plane
and the lens plane, where (rx, ry) plane is the lens plane, (ux, uy) plane is the orbital
plane, and α, β and γ are Euler angles. We can take the coordinates in the lens
plane so that α = 0, since α can be absorbed into θ, the angle between the x-axis
in the lens plane and the trajectory of the source. A point (u cosφ, u sinφ) in the
orbital plane is projected to the point (l cosϕ, l sinϕ) in the lens plane, where

l = u
√
cos2 β cos2(φ+ γ) + sin2(φ+ γ) , (3.12)

tanϕ =
tan(φ+ γ)
cosβ

. (3.13)

3.3. Estimate of the rotation effects

We can estimate the rotation effects of a lens binary by comparing the period of
the binary TB with the Einstein radius crossing time tE . If the ratio tB = TB/tE is
not much larger than unity, we cannot neglect the rotation of the binary.

For a typical MACHO, the ratio tB is given by

tB =
TB

tE
=
2πV⊥
ρE

√
A3

GM
=
2πV⊥
ρE

√
ρ3

Ea
3

GM

∼ 134
(
a

1

)3/2 (
Dos

50 kpc

)1/4 (
M

M�

)−1/4 (
V⊥

200 km/s

) (
x(1− x)

0.5(1− 0.5)

)1/4

, (3.14)

using Eqs. (2.3), (3.2), (3.7) and (3.8). This implies that a typical binary in our
halo rotates by about 360◦/tB � 2.7◦(M/M�)1/4 during the Einstein radius crossing
time. This may be small enough to neglect the rotation of the binary.∗)

On the other hand, if a lens binary resides in the LMC disk, the parameters are
different. For a typical LMC lens, assuming that the thickness of the LMC disk is
smaller than ∼ 500 pc, the ratio tB is given by

tB <∼ 18
(
a

1

)3/2 (
Dos

50 kpc

)1/4 (
M

M�

)−1/4 (
V⊥

60 km/s

) (
x(1− x)

0.99(1− 0.99)

)1/4

,

(3.15)
which implies that the binary rotates by more than ∼ 20◦(M/M�)1/4 during the
Einstein radius crossing time. Thus, if the lens resides in the LMC disk, the rotation
effects may be important for the fitting of the light curve. This argument can also
be applied to an SMC lens, since the transverse velocity is small and x is close to 1.

∗) For a close binary, i.e., for a � 1, it seems that the rotation effects can be large from Eq. (3.14).

However, this is not a correct argument, as discussed in Appendix B.
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Table I. Fitted parameters for MACHO LMC-

9 from Bennett et al. (1996). The rotation

effects are not included.

parameters fitted values

foR 0.259± 0.002

foB 0.174± 0.001

tE [days] 71.7± 0.1

TS [days] 603.04± 0.02

b −0.055± 0.001

θ [radian] 0.086± 0.001

µ1 0.620± 0.002

l 1.6545± 0.0008

T
 [days] 0.65± 0.18

χ2(for 848 degrees) 1489

reduced χ2 1.76

Bennett et al. 42) fitted the data of
MACHO LMC-9 and obtained fitted pa-
rameters as in Table I. The radius of the
source is estimated as

R� = 1.5± 0.2 R�, (3.16)

using the theory of stellar evolution.
The transverse velocity in the source
plane can be estimated as

VT =
R�

T�
= 19± 6 km/s, (3.17)

with T� in Table I and Eq. (3.3). Com-
paring this value with the probability
distribution of the transverse velocity in the LMC disk and the Milky Way halo,
a lens in the LMC disk is preferred over a halo lens. 42) Assuming that the lens of
MACHO LMC-9 resides in the LMC disk, the ratio tB is given by

tB < 5.7
(
a

1

)3/2 (
Dos

50 kpc

)1/4 (
M

M�

)−1/4 (
V⊥

19 km/s

) (
x(1− x)

0.99(1− 0.99)

)1/4

,

(3.18)
where we use the relation V⊥ < VT , since V⊥ = xVT and x < 1. Since Eq. (3.18)
indicates that the binary rotates by more than ∼ 60◦(M/M�)1/4 during the Einstein
radius crossing time, we cannot neglect the rotation of the binary for the fitting of
the data. Therefore we perform the fitting of the MACHO LMC-9 event taking into
account the rotation of the lens binary in the next section.

The conclusion of this section is that the rotation effects cannot be always ne-
glected when the lens binaries are in the LMC disk or the SMC disk, while the
rotation can be neglected when the lenses are in the Milky Way halo.

§4. Fitting of the observed data in the binary-lens events

4.1. Parameters characterizing the binary-lens microlensing events

We summarize the parameters necessary to describe the binary-lens microlensing
event in this section. First, a dual color observation requires two parameters, taking
the blending into consideration:
(1) foR : fraction of the lensed brightness of the lensed star in the red band.
(2) foB : fraction of the lensed brightness of the lensed star in the blue band.
When we can neglect the rotation of the lens binary, we need the following parame-
ters:
(3) tE : Einstein radius crossing time.
(4) TS : time when the source most closely approaches the origin.
(5) b : impact parameter of the source in the lens plane in units of the Einstein

radius.
(6) θ : angle between the x-axis in the lens plane and the trajectory of the source.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/5/983/1884442 by guest on 21 August 2022



990 K. Ioka, R. Nishi and Y. Kan-ya

(7) µ1 : the mass fraction of the first mass.
(8) l : separation of the lens masses projected onto the lens plane in units of the

Einstein radius.
(9) T� : time for the source to move by one stellar radius of the source.
If we can neglect the finite size of the source, the last parameter T� is not necessary.

When we consider the rotation of the lens binary, we need the following param-
eters in addition to the above parameters:
(8) a : semi-major axis of the lens binary in units of the Einstein radius.
(10) tB : period of the lens binary in units of the Einstein radius crossing time.
(11) β : Euler angle.
(12) γ : Euler angle.
(13) e : eccentricity of the lens binary.
(14) T0 : time when the binary is at the pericenter.
Here the parameter (8) has been replaced. We need five additional parameters when
we take the rotation of the lens binary into account.

If we assume that the orbit of the binary is circular (e = 0), the parameters (13)
and (14) are not necessary, since T0 can be absorbed into γ. If we assume that the
orbit of the binary is face-on, the parameters (11) and (12) are not necessary, since
γ can be absorbed into θ. If we assume that the lens binary is face-on and e = 0,
the parameters from (11) to (14) are not necessary.

4.2. Fitting of the MACHO LMC-9 event

We analyze the raw data for the MACHO LMC-9 event. The baseline of the pho-
tometry that corresponds to no amplification has to be determined by the fitting with

Table II. Fitted parameters for MACHO

LMC-9 from our fitting code. The rotation

effects are not included.

parameters fitted values

foR 0.255

foB 0.176

tE [days] 71.4

TS [days] 603.1

b −0.0538

θ [radian] 0.0843

µ1 0.617

a 1.66

T
 [days] 0.611

χ2(for 871− 9 degrees) 1396

reduced χ2 1.62

it added as one more parameter. How-
ever, to save time, we determine the
baseline by the least squares fitting of
the data for T < 300 day and 900 day <
T , where the amplification is expected
to be less than (42+2)/(4×√

42 + 4) ∼
1.006. With this baseline we can trans-
late the raw data into the data for the
amplification.

We first performed the fitting of the
data of MACHO LMC-9 neglecting the
rotation of the lens binary to check our
fitting code. The result of the χ2 fit is
shown in Table II.∗) This result does not
differ greatly from the result in Table I,

∗) There are generally several local minima in the χ2 fitting using some parameters. Several

methods have been proposed to find the global minimum. 52) - 54) However, this requires a great deal

of effort to find the global minimum. Therefore, we restrict the parameter space somewhat from

the shape of the light curve, and then we pick the parameter set with the smallest χ2 from ∼ 50

fittings. For example, we can restrict the morphology of the caustics to the middle in Fig. 2, since

the amplification is sufficiently high between the peaks of the light curve.
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Fig. 4. The structure of the caustics and the trajectory of the source are shown (left). The corre-

sponding light curves for red (middle) and blue (right) are also shown. The rotation effects are

not included.

Fig. 5. The structure of the caustics and the trajectory of the source (left). The corresponding

light curves for red (middle) and blue (right) are also shown. The rotation effects are included.

which is a crosscheck of our fitting code. The structure of the caustics and the
trajectory of the source are shown in Fig. 4. The corresponding light curves are also
shown.

Table III. Fitted parameters for MACHO

LMC-9 from our fitting code. The rotation

effects are included.

parameters fitted values

foR 0.246

foB 0.172

tE [days] 69.4

TS [days] 601.4

b −0.0319

θ [radian] 0.144

µ1 0.560

a 1.69

T
 [days] 0.611

tB 60.6

χ2(for 871− 10 degrees) 1372

reduced χ2 1.59

Next we performed the fitting of
the data of MACHO LMC-9 taking ac-
count of the rotation of the lens binary.
The influence of the rotation of the lens
binary on the light curve can be di-
vided into two effects, the change of the
caustics shape with time caused by the
change of l and rotation of the caustics
with time in the lens plane, which is
treated as a curve of the source trajec-
tory. However, since the former effect is
hardly separated from the ambiguity of
the other parameters within the limited
accuracy of the observation, we consider
only the latter effect. Thus, in order to
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evaluate the rotation effects, it is useful to examine the case that the binary is face-
on and e = 0. Therefore we assume that the binary is face-on and e = 0 as a first
step. Then we need ten parameters, (1)–(10) in §4.1. The results of the χ2 fitting
are shown in Table III. The structure of the caustics and the trajectory of the source
are shown in Fig. 5. The corresponding light curves are also shown.

Contrary to our expectations, there are few differences between the fitted param-
eters with and without the rotation from Tables II and III. This is because the period
of the lens binary tB is quite large. The binary rotates by only ∼ 5.9◦(M/M�)1/4

during the Einstein radius crossing time. Thus the rotation effects are very small.∗)
Note that the result of the small rotation effects does not depend on the face-on
and e = 0 assumptions. We can consider the following three possible reasons for the
contradiction of the simple estimate of tB in Eq. (3.15) and the fitted value of tB in
Table III:
1. The physical parameters in Eq. (3.15), such as the mass M and the velocity

V⊥, are not typical in this event.
2. The binary of this event is nearly edge-on.
3. The binary of this event is very eccentric.

We consider the possible physical parameters that account for the small rotation
effects in §4.3, we consider the possible inclination in §4.4, and we consider the
possible eccentricity in §4.5.
4.3. The mass, the velocity and the distance of the lens

Assuming that the binary is face-on and that e = 0, we can obtain the mass,
the velocity and the position of the lens from only the fitted parameters in Table III
and the radius of the source in Eq. (3.16) as follows. 55) Note that the probability

Fig. 6. f(x) = x2(1− x). The horizontal dot-

ted line is the right-hand side of Eq. (5·3)
with the fitted parameters in Table III.

distribution of the transverse velocity is
not necessary.

We assume that the binary is face-
on and that e = 0. The velocity of the
lens V⊥ is determined by Eq. (3.3) as

V⊥ = x
R�

T�
(4.1)

for given x. Using Eqs. (2.3), (3.2) and
(4.1), the total mass of the lens M is
determined by

M =
c2R2

�

4GDos

(
tE
T�

)2 x

1− x
(4.2)

for given x. Using Eqs. (2.3), (3.2),
(3.7), (3.8) and (4.1), the position of the

∗) Of course, the fitted parameters may be at only a local minimum. The period tB in the

global minimum may be smaller. However, it does not seem that tB is smaller, since we usually find

tB >∼ 60 even when we start the fitting from tB <∼ 60.
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lens x is obtained from

x2(1− x) =
t2B

16π2a3

c2tET�

DosR�
. (4.3)

The left-hand side of this equation, f(x) := x2(1 − x), is plotted in Fig. 6. The
function f(x) has a maximum value f(2/3) = 4/27 at x = 2/3. The equation
f(x) = y has two solutions, x1 and x2, for 0 < y < 4/27. The right-hand side of
Eq. (4.3) is determined from the fitted parameters.

After determining the positions, x1 and x2, with Eq. (4.3), we can obtain the
mass and the velocity of the lens for each distance with Eqs. (4.1) and (4.2). Since
the right-hand side of Eq. (4.3) is 0.0860 from Table III, two solutions of this equation
are

x1 = 0.369 and x2 = 0.892. (4.4)

The corresponding mass and velocity are

M = 0.000902 M�, V⊥ = 7.30 km/s for x = x1, (4.5)
M = 0.0127 M�, V⊥ = 17.6 km/s for x = x2. (4.6)

If the binary of the MACHO LMC-9 event has such physical parameters, we can
explain the small rotation effects. However, these parameters seem to be quite
strange. The mass seems to be too small, and the position favors the halo lens, while
the transverse velocity prefers the LMC lens. However, we cannot draw definite
conclusions from this event alone.

4.4. Inclination

In this section we consider a possible inclination to explain the small rotation
effects in the MACHO LMC-9 event. Without the face-on assumption, the fitted
values of tB and a do not generally coincide with the real values of tB and a. We
obtained the mass, the velocity and the position using t̃B and ã instead of tB and
a, respectively, in Eq. (4.3), where t̃B and ã denote the fitted values of tB and a,
respectively. Therefore a certain inclination may explain the small rotation effects
even if we use typical physical parameters. To investigate the inclination effect, we
set e = 0. Therefore the additional parameters are the Euler angles β and γ, as
shown in §4.1. Rigorously, the parameters tB and a for given β and γ have to be
determined by the fitting. However, we can approximately determine tB and a for
given β and γ from t̃B and ã as follows.

Assuming that ã is mainly determined by the separation between the projected
masses at t = tS , the relation between a and ã can be estimated by Eq. (3.12) as

a =
ã√

cos2 β cos2 γ + sin2 γ
, (4.7)

since φ = 0 at t = tS when e = 0. To determine the relation between tB and t̃B, we
assume that the parameter t̃B is mainly determined by the rotation angle projected
on the lens plane. In other wards, the relation between tB and t̃B is determined by
the condition that the projection of the rotation angle 4π/tB between t = tS −1 and
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t = tS +1 coincides with 4π/t̃B. The angle between the relative vector of the binary
masses U and the x-axis of the orbital plane at t = tS − 1 is φ1 := −2π/tB. The
corresponding angle ϕ1 between the relative vector projected on the lens plane and
the x-axis of the lens plane is determined by Eq. (3.13) as

tanϕ1 =
tan(φ1 + γ)

cosβ
. (4.8)

Similarly, since the angle between the relative vector of the binary masses U and
the x-axis of the orbital plane at t = tS + 1 is φ2 = 2π/tB, the corresponding angle
ϕ2 between the relative vector projected on the lens plane and the x-axis of the lens
plane is determined by Eq. (3.13) as

tanϕ2 =
tan(φ2 + γ)

cosβ
. (4.9)

The relation between tB and t̃B is determined by the condition |ϕ2 − ϕ1| = 4π/t̃B.
With Eqs. (4.8) and (4.9) this relation can be obtained as

2π
tB

= arctan

[{
∓ cosβ

+
√
cos2 β + cos4 γ(cos2 β + tan2 γ)(cos2 β tan2 γ + 1) tan2(4π/t̃B)

}
/ {

cos2 γ(cos2 β tan2 γ + 1) tan(4π/t̃B)
}]

, (4.10)

Fig. 7. The allowed region of the inclination β

and the phase γ for 0.99 < x < 1.

where the minus sign is for 0 < β < π/2
and the plus sign is for π/2 < β < π.

Of course, we cannot determine β
and γ by the fitted parameters. How-
ever, inversely, we can determine the al-
lowed region of β and γ for given x. For
example, if we assume that the lensing
object resides in the LMC disk, i.e.,

0.99 < x < 1, (4.11)

the left-hand side of Eq. (4.3) is less
than 0.009801. Substituting Eqs. (4.7)
and (4.10) into Eq. (4.3), the allowed
region of β and γ can be obtained in
Fig. 7.∗) The probability that the incli-
nation and the phase are in the allowed

∗) We find that the inequalities x < x1 and x2 < x hold for any β and γ, since the inequality

t2B/a3 < t̃2B/ã3 holds irrespective of β and γ. However, these relations do not hold if we consider

the eccentricity.
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region is 26.0%, assuming random inclination and phase. The corresponding mass
and velocity can be obtained by Eqs. (4.1) and (4.2) as

0.153 M� < M, 19.6 km/s < V⊥ < 19.8 km/s. (4.12)

In this way, if the binary of this event is nearly edge-on, we can explain the small
rotation effects with typical physical parameters. However, we cannot draw definite
conclusions from only this event.

4.5. Eccentricity

In this section we consider a possible eccentricity to explain the small rotation
effects in the MACHO LMC-9 event. As in the previous section, without the e = 0
assumption, the fitted values t̃B and ã do not generally coincide with the real values
of tB and a. Since we use t̃B and ã instead of tB and a in Eq. (4.3) to obtain the
physical parameters, a certain eccentricity may explain the small rotation effects
even if we use typical physical parameters. To investigate the eccentricity effect we
consider the face-on binary. Therefore, the additional parameters are e and T0, as
shown in §4.1. We can approximately determine tB and a for given e and T0 from
t̃B and ã as follows.

Assuming that ã is mainly determined by the separation between the projected
masses at t = tS , the relation between a and ã can be approximated by

a =
ã(1 + e cosφ3)

1− e2
, (4.13)

from Eqs. (3.10) and (3.11), where φ3 is determined from Eqs. (3.9) and (3.11) with
t = tS . To determine the relation between tB and t̃B, we assume that the parameter
t̃B is mainly determined by the rotation angle projected on the lens plane. In other
words, the relation between tB and t̃B is determined by the condition that the
rotation angle between t = tS − 1 and t = tS + 1 coincide with 4π/t̃B. The angle φ4

between the relative vector between the masses and the x-axis of the lens plane at
t = tS − 1 is determined by

tS − 1− t0 =
tB
2π
(λ4 − e sinλ4), (4.14)

cosφ4 =
cosλ4 − e

1− e cosλ4
, (4.15)

from Eqs. (3.9) and (3.11). Similarly, the angle φ5 between the relative vector be-
tween the masses and the x-axis of the lens plane at t = tS + 1 is determined by

tS + 1− t0 =
tB
2π
(λ5 − e sinλ5), (4.16)

cosφ5 =
cosλ5 − e

1− e cosλ5
. (4.17)

The relation between tB and t̃B is determined by the condition φ5 − φ4 = 4π/t̃B.
Subtracting Eq. (4.14) from Eq. (4.16), we can determine tB as

2π
tB

= Y − e cosX sinY, (4.18)
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where X := (λ4 + λ5)/2 and Y := (λ5 − λ4)/2 are determined by

tS − t0 =
X − e sinX cosY
Y − e cosX sinY

, (4.19)

from Eqs. (4.14) and (4.16), and

cos
(
4π
t̃B

)
=

e2 cos2 X + (2− e2) cos2 Y − 2e cosX cosY + e2 − 1
e2(cos2 X + cos2 Y )− 2e cosX cosY + 1− e2

, (4.20)

Fig. 8. The allowed region of the eccentricity

e and tS − t0 (mode tB) for 0.99 < x < 1.

from Eqs. (4.15) and (4.17) and the con-
dition φ5 − φ4 = 4π/t̃B.

We assume that the lensing object
resides in the LMC in Eq. (4.11). Sub-
stituting Eqs. (4.13) and (4.18) into
Eq. (4.3), the allowed region of e and
tS − t0 (mode tB) can be obtained in
Fig. 8. The minimum eccentricity of this
allowed region is 0.892. The correspond-
ing mass and velocity are in Eq. (4.12).
In this way, if the binary of this event is
very eccentric, we can explain the small
rotation effects with typical physical pa-
rameters. However we cannot say for
certain from only this event.

§5. Summary and discussion

We investigated the rotation effects of lens binaries on the binary-microlensing
events towards the LMC and SMC. It is found that the rotation effects cannot always
be neglected when the lens binaries are in the LMC disk or the SMC disk, while the
rotation can be neglected when the lenses are in our halo. It follows from this that
we need to consider the rotation effects in the analyses of the coming binary events
if the microlensing events towards the Magellanic Clouds are self-lensing.

In the MACHO LMC-9 event the transverse velocity prefers the lens binary in
the LMC disk. 42) For this reason, we reexamined this event in detail as an example.
The simple estimate in Eq. (3.18) indicates that the binary rotates by more than ∼
60◦(M/M�)1/4 during the Einstein radius crossing time. Therefore we cannot neglect
the rotation of the lens binary in the fitting of MACHO LMC-9. We performed the
fitting of MACHO LMC-9 taking the rotation into account on the assumption that
the binary is face-on and that e = 0.

Contrary to our expectation, the rotation effects are small, i.e., the projected
rotation angle is only ∼ 5.9◦(M/M�)1/4 during the Einstein radius crossing time.
Note that this result does not depend on the face-on and e = 0 assumptions. We can
consider three possible reasons for this contradiction between the simple estimate of
tB in Eq. (3.18) and the fitted value of tB in Table III. The first possibility is that the
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physical parameters in Eq. (3.18) are different in this event as in Eqs. (4.4)–(4.6),
although these parameters are quite peculiar. The second possibility is that the
binary of this event is nearly edge-on with typical physical parameters 0.99 < x < 1
and Eq. (4.12), as shown in Fig. 7, although the probability of β and γ being in
the allowed region is only 26% assuming random inclination and phase. The third
possibility is that the binary of this event is very eccentric with typical physical
parameters 0.99 < x < 1 and Eq. (4.12), as shown in Fig. 8, although the minimum
eccentricity of the allowed region is 0.892. However, since we cannot determine all
physical parameters including the inclination and the eccentricity only from the light
curve, we cannnot draw definite conclusions from only this event.

The transverse velocity is somewhat smaller than that expected for a lens in the
LMC disk. This result is the same as that of the analysis of Bennett et al., 42) even
if we take the rotation of the lens binary into account. Since the incident angle of
the trajectory of the source into the caustics is not greatly changed, the transverse
velocity remains small.

The fitted parameters only represent a local minimum. However, the complete
analysis is difficult, since the number of data points around the peak of the light curve
is so small that there will be many local minima. 54) The lack of data also allows the
possibility that the source is a binary, as Bennett et al. 42) claimed. We agree that
it is important to determine whether the source is a binary or not with HST. In
order not to overlook the important information from the caustic crossing events, it
is necessary to monitor the events frequently, such as with the MOA collaboration 56)

and the Alert system.
Note that the rotation effects are not always important when the lens is in

the LMC disk or the SMC disk. For example, in the MACHO 98-SMC-1 event
the transverse velocity is larger than ∼ 60 km/s. 43) - 45) Since tB >∼ 20 � 1 from
Eq. (3.15), the rotation effects are not efficient in this event. Our statement is that
there is a sufficient probability that the rotation effects are important for self-lensing.

If the microlensing events towards the halo are due to self-lensing, 23), 24) the
number of binary-events for which the rotation effects are important will increase.
We will be able to crosscheck whether or not the microlensing events are self-lensing
by examining the rotation effects, together with the transverse velocity distribution.
As the number of binary-lens events increases, stronger constraints on the nature of
the lenses will be obtained statistically.
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Appendix A
Notations

ξ : image position in the lens plane
η : source position in the source plane
ξ1, ξ2 : positions of the masses of the lens binary in the lens plane
r : image position in the lens plane in units of ρE

z : source position in the source plane in units of ρE

r1, r2 : positions of the masses of the lens binary in the lens plane in units of ρE

U : relative vector between the lens masses in the orbital plane
U 1, U2 : position of the masses of the lens binary in the orbital plane
u : relative vector between the lens masses in units of ρE

M1, M2 : masses of the lens binary
M : M1 +M2, total mass of the lens binary
µi : Mi/M , mass fraction (i = 1, 2)
I : amplification factor
foR : fraction of the lensed brightness of the lensed star in the red band
foB : fraction of the lensed brightness of the lensed star in the blue band
Dol : distance between the observer and the lens plane
Dos : distance between the observer and the source plane
Dls : distance between the lens plane and the source plane
x : Dol/Dos

ρE : Einstein radius
V⊥ : transverse velocity of the source in the lens plane
VT : transverse velocity of the source in the source plane
b : impact parameter of the source in the lens plane in units of ρE

θ : angle between the x-axis and the trajectory of the source
A : semimajor axis of the lens binary
a : semimajor axis of the lens binary in units of ρE

ã : fitted value of a assuming β = 0 and e = 0
l : separation of the lens masses projected on the lens plane in units of ρE

e : eccentricity of the lens binary
φ : azimuthal angle of the binary in the orbital plane
ϕ : angle between the relative vector projected on the lens plane and the

x-axis of the lens plane
tE : Einstein radius crossing time
t : T/tE , time in units of tE
TS : time when the source most closely approaches the origin
tS : TS/tE, time when the source most closely approaches the origin in units

of tE
TB : period of the lens binary
tB : TB/tE, period of the lens binary in units of tE
t̃B : fitted value of tB assuming β = 0 and e = 0
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T0 : time when the binary is at the pericenter
t0 : T0/tE , time when the binary is at the pericenter in units of tE
T� : time for the source to move by one stellar radius of the source
R� : radius of the source
α, β, γ : Euler angles which determine the orbital plane (see Fig. 3)

Appendix B
Rotation Effects of a Close Binary

In this appendix, we show that the rotation effects of a typical MACHO binary
are small even when the binary is the close one. For a close binary (i.e. a � 1),
it seems that the effects of the rotation can be large from Eq. (3.14). For example,
tB is about 4.2 when a is 0.1,∗) which implies that the binary rotates by about 85◦

during the Einstein radius crossing time. However, we have to note that the region
where the rotation effects are important is not within the Einstein radius but within
the caustics. This is because far from the caustics, the light curve due to two point
masses is almost the same as that due to a point mass lens. Therefore it is not
reasonable to compare the binary period with the Einstein radius crossing time in
the estimate of the rotation effects in Eq. (3.14). Instead, we have to compare the
binary period with the caustics crossing time.

To treat the problem analytically, we assume that the mass ratio is unity: µ1 =
µ2 = 1/2. When the semimajor axis is small (i.e. a → 0), the size of the caustics
zcau satisfies 49)

zcau ∼ a2

2
. (B.1)

Thus, when the semimajor axis a is small, the ratio of the binary period to the
caustics crossing time, tcauB , is approximately

tcau
B ∼ TB

zcautE
∼ 2

a2
tB

∼ 2× 134
(
a

1

)−1/2 (
DOS

50 kpc

)1/4 (
M

M�

)−1/4 (
V⊥

200 km/s

) (
x(1− x)

0.5(1− 0.5)

)1/4

∝ a−1/2 (B.2)

for a typical MACHO. The exponent with respect to the semimajor axis a changes
from 3/2 to −1/2. Therefore the rotation effects are small even when the binary is
the close one, as long as the binary is in the Milky Way halo.
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