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Abstract
The association of keratin mutations with genetic skin fragility disorders is now one of the
best-established examples of cytoskeleton disorders. It has served as a paradigm for many
other diseases and has been highly informative for the study of intermediate filaments and
their associated components, in helping to understand the functions of this large family of
structural proteins. The keratin diseases have shown unequivocally that, at least in the case
of the epidermal keratins, a major function of intermediate filaments is to provide physical
resilience for epithelial cells. This review article reflects on the variety of phenotypes arising
from mutations in keratins and the reasons for this variation.
Copyright  2004 Pathological Society of Great Britain and Ireland. Published by John
Wiley & Sons, Ltd.
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Introduction

The link between keratin intermediate filament pro-
teins and inherited skin fragility disorders was first
discovered in the early 1990s [1–3] and proved a
turning point in our understanding of intermediate fil-
ament function. The growing number of keratin muta-
tions published over the last 10 years as associated
causatively with human pathology (more than 400 ker-
atin mutations are now logged on an internet database,
www.interfil.org) has begun to draw attention to a
number of facts about keratins and keratin disorders
which were less well recognized previously.

Firstly, keratin-associated disorders are not as rare as
they were thought to be. As more molecular defects are
becoming identified, many forms of keratin-associated
phenotypes are beginning to be viewed as different
points along a single spectrum of mild to severe
disease, rather than many separate and unrelated
disorders [4]. This is leading towards a coalescence
of disease clusters that will have implications for
research strategies and funding as well as for health-
care budgeting. One can carry out a simple calculation
based on a recent estimate of population mutation
frequency in the most widely studied keratin disorder,
epidermolysis bullosa simplex [5], and extrapolate this
to the other keratin diseases where smaller volumes
of data exist. This exercise predicts that ‘keratin
disorders’ caused by pathogenic keratin mutations in
a total of 19 genes so far [6,7], may affect as many as
one person in 3000 in the general population.

Similar evolution of molecular pathology has been
taking place amongst the collagen diseases [8,9], and

other groups of disorders, such as the limb girdle
muscular dystrophies [10], are being reclassified as
different types of genes are being identified as causing
one sub-form or another. In analysing the molecular
mechanisms leading to tissue failure in the keratin
disorders, data from one keratin disorder can usually
be extrapolated informatively to another [4,6]. In many
situations, it will be more useful to consider the keratin
disorders as a cluster of hereditary defects involving
different members of a large closely-related family of
structural genes, rather than a collection of very rare
‘orphan’ diseases.

Another message to emerge from increasing doc-
umentation of keratin mutations is that there is an
extensive degree of phenotypic variation within the
pathology of keratin diseases [4,6]. Firstly, there are
profound differences in the phenotypes that result from
mutation in different keratin genes, in spite of the
close relatedness of these genes. Intermediate filament
genes within the same subclass are usually at least
60% identical in sequence [11]. This phenotypic diver-
sity delayed the recognition of the relatedness between
different keratin disorders. Secondly, there is well-
documented variation in phenotype between different
mutations arising in the same gene [12,13], mostly
resulting from the position of the mutation within
the keratin protein (ie whether in a critical domain
for filament assembly or an important protein–protein
interaction). Thirdly, and still to be explained, there are
also cases of variation in phenotype seen in associa-
tion with the same mutation in the same keratin gene,
such as family members affected to different degrees
of severity by a particular keratin mutation [14]. In
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other words, modifier genes that can influence a ker-
atin phenotype do appear to exist, but their identity is
largely unknown. We will briefly review these levels
of variation in keratin disorders affecting the skin.

Phenotypic variation between different
keratin genes

Although the keratin genes are all closely related,
the effects of mutation in two different keratin genes
can be so different as to be not immediately recog-
nizable as related disorders. Keratins are the prod-
ucts of a large gene family, the intermediate fila-
ment genes [15]. The family is divided up into six
types or subclasses based on the sequence character-
istics of the genes and their products, of which ker-
atins make up type I (K9–K20 plus the type I hair
keratins) and type II (K1–K8 plus the type II hair
keratins) groups [16]. It was recently estimated that
there are at least 65 functional intermediate filament
genes in the human genome, of which 54 are ker-
atins [17]. Like other intermediate filaments, keratins
are characterized by tissue-specific expression patterns
which make them useful tools for diagnostic pathol-
ogy [18–20]. The basic structure of single keratin
polypeptides is illustrated in Figure 1, but this overall

structure could apply equally to any other intermedi-
ate filament protein. The protein products of this gene
family all form α-helical coiled-coil dimers that can
rapidly assemble into 10 nm wide filaments without
the need for any cofactors or associated proteins other
than additional intermediate filament proteins. Most
intermediate filaments will assemble as homopoly-
mers, but keratin homodimers are very unstable and
heterodimers must be formed to polymerize into fila-
ments. Keratin filaments always consist of equimolar
amounts of a type I protein and a type II protein [21],
and the keratins are expressed in cells as specific pairs
according to the differentiation programme of the cell.
Single keratins on their own will not assemble into
filaments but are rapidly degraded [22], which helps
to maintain the balance between specific type I/type II
keratins in a cell.

This differentiation-specific expression of keratins
is very apparent in skin and related structures, and is
the basis for the phenotypic differences seen between
the effects of mutating different keratin genes. An
overview ‘map’ of the major keratin expression pat-
terns in the skin epithelia is shown in Figure 2. Ker-
atin genes implicated in human disorders now include
nearly all of the keratins expressed as major pro-
teins in any population of keratinocyte-related cells in
stratified squamous or complex epithelia, as well as,

Figure 1. Diagrammatic representation of keratin intermediate filament proteins to show major protein domain structure and
the distribution of pathogenic mutations reported to May 2004 in (A) primary keratins (K5 and K14) and (B) secondary or
differentiation-specific keratins expressed by keratinocyte-type cells of various stratified squamous epithelia (K1/K10/K9/K2e,
K6/K16/K17, K4/K13, K3/K12). Numbers of mutations are indicated (above) for each sub-domain (labelled below the protein
structure). Severe mutations (eg leading to Dowling–Meara type EBS for K5/K14) are indicated in red; milder mutations are
indicated in yellow. The α-helical rod domains encompass 1A to 2B and the major cluster sites for the most pathogenic mutations
are localized in the helix boundary motifs at either end of domains 1A and 2B. For a comparison with similar data from simple
epithelial keratins, see Owens and Lane [23]. Data taken from the Intermediate Filament Database, http://www.interfil.org
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Figure 2. Summary of the major consensus patterns of keratin expression in epidermis and epidermal appendages. This map is
not exhaustive as new keratins are still emerging from the human genome

to a lesser extent, simple epithelial keratins K8 and
K18 (associated with liver, gut, and pancreas disor-
ders — see Owens and Lane [23]). In this review arti-
cle we will review the disorders known to be caused
by mutations in keratinocyte keratins associated with
various different subpopulations of cells in the skin
and other external barrier layers.

K5/K14 and epidermolysis bullosa simplex
Keratinocytes are the predominant cell type in the
stratified squamous keratinizing epithelium of the epi-
dermis. They begin their progressive differentiation
in the basal layer attached to the basal lamina of
extracellular matrix by hemidesmosomes, and to each
other by desmosomes, into which the keratin filaments
are linked. The basal keratinocytes are undifferenti-
ated and still capable of proliferation, and this cell
compartment includes some of the stem cells of the
epidermis as well as transit amplifying cells. These
cells all express K5 (type II) and K14 (type I) as their
major, primary keratins. In addition, stable basal cells
also express K15 [24,25] and at some locations and in
certain circumstances, K17 and K19 may be expressed
[26–28].

Mutations in K5 or K14 cause epidermolysis bul-
losa simplex, in which the basal cells are fragile
and may fracture if the epidermis is subjected to
even quite mild physical trauma such as rubbing or
scratching (Figure 3); this intraepidermal cytolysis of
the basal keratinocyte cells leads to fluid-filled blis-
ters. There are different distributions and degrees of
severity of skin blistering, traditionally regarded as
being clinically distinct, that come under the head-
ing of epidermolysis bullosa simplex (EBS). All three
forms can show associated palmoplantar keratoderma,
with the epidermis and stratum corneum becoming
greatly thickened. Dowling–Meara EBS is the most
severe form, diagnosed by the appearance of clus-
tered herpetiform blisters from birth at friction sites
anywhere on the body, and can be life-threatening in
neonates (Figure 3). This form is also associated with
the appearance of electron-dense aggregates [29] of
K5/K14 keratin protein [30] in the cytoplasm of some
of the basal keratinocytes by electron microscopy; the
aggregates may or may not predispose those partic-
ular cells to rupture. These aggregates used to be
the definitive diagnostic criterion for Dowling–Meara
EBS [29].
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Figure 3. Examples of the clinical phenotypes arising from mutations in different keratins expressed in specific sub-compartments
of the stratified squamous epithelia. (A) An infant with the severe Dowling–Meara variant of epidermolysis bullosa simplex. This
patient carries heterozygous missense mutation R125C in the K14 gene, the most common ‘hotspot’ defect in this disorder.
(B) A patient with the milder, site-restricted Weber–Cockayne form of epidermolysis bullosa simplex, showing blisters on the
soles of the feet. (C) The feet of a patient with bullous congenital ichthyosiform erythoderma, showing severe epidermolytic
hyperkeratosis. This patient carries a mutation in the K1 gene. (D) This young child suffers from pachyonychia congenita type 1, in
this instance due to a missense mutation in the K16 gene. The palmoplantar keratoderma in this condition is focal — occurring
mainly on the pressure points. (E) Epidermolytic palmoplantar keratoderma is a form of epidermolytic hyperkeratosis restricted
to the palms and soles, where the causative gene, K9, is exclusively expressed. This patient has a 3 base-pair insertion mutation
leading to an additional amino acid in the highly conserved helix termination motif of the K9 polypeptide. (F) The main feature of
pachyonychia congenita types 1 and 2 is hypertrophic nail dystrophy, seen here in an infant with PC-1 caused by a K16 mutation.
Figures courtesy of Sue Morley, Peter Steijlen, Colin Munro, and Irene Leigh

Milder forms of EBS are classified as Köbner
(generalized blistering) and Weber–Cockayne EBS
(targeting hands and feet). The variations in clinical
severity of the different forms of EBS generally
correlate well with the position in the protein at which
the mutation occurs (Figure 1 and see below), as
observed previously [13,31]. Mutations in K5 or K14
have been identified in about three-quarters of all the
patients diagnosed clinically as having EBS, resulting
in 129 separate cases of autosomal dominant mutations
currently catalogued in the www.interfil.org database,
62 of which are in K5 and 67 in K14. No mutations in

any other keratins have been found to lead to basal cell
blistering in the epidermis, although partially similar
phenotypes can be caused by mutations in keratin-
associated proteins such as the desmosomal protein
desmoplakin [32] or the hemidesmosome component
plectin [33,34].

K1/K10 and bullous congenital ichthyosiform
erythroderma

The switch from undifferentiated basal keratinocyte to
a keratinocyte committed to differentiation involves
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Figure 4. Histological effects of mutation in the major epidermal keratins. Expression of K5 (and K14, not shown) in the basal cells
of epidermis (A) is correlated with the cytolysis seen in basal keratinocytes only in patients with epidermolysis bullosa simplex (C).
By electron microscopy, basal cell filaments can be seen to be clumped and irregularly distributed in these cells (E). In contrast,
K10 (and K1, not shown) is expressed in suprabasal cells (B) and mutations in this keratin lead to fragility of the suprabasal cell
layers (D): filaments are clumped and cells are disrupted in the suprabasal layers whilst the basal cells remain intact (F). Primary
antibodies used are AE14 to K5 (panel A) and LHP1 to K10 (panel B). Scale bars = 50 µm (A, B), 20 µm (C, D), and 0.25 µm (E,
F). Panels C–F courtesy of Robin Eady

a conformational change in integrin extracellular
matrix receptors and a change in keratin synthesis
programme, accompanying reduced adhesion to the
basal lamina. The order of these events is unproven
but it seems possible that the change is triggered by
mechanical pressure in the basal layer of cells. The
nature of the change in keratin synthesis depends on
the body site, but in interfollicular epidermis the induc-
tion of synthesis of first K1 and subsequently K10
is seen as synthesis of K5 and K14 is shut down.
K1 and K10 are the major secondary differentiation-
specific keratins of interfollicular epidermis and are
expressed by suprabasal epidermis and any other strati-
fied squamous epithelia that becomes orthokeratinized.
Expression of K1/K10 appears to inhibit cell prolifera-
tion [35] and cells moving up into the suprabasal layers
become post-mitotic, and progressively more termi-
nally differentiated as they continue their journey up
towards the epidermal surface.

Mutations in keratins K1 and K10 are associated
with bullous congenital ichthyosiform erythroderma
(BCIE), also sometimes referred to as EH or EHK
(epidermolytic hyperkeratosis, the principal clinical

feature of this disorder). In this disorder, blisters and
reddened skin are often seen at or soon after birth,
but with passing time the blisters give way to increas-
ingly thickened ichthyotic skin. Instead of the basal
cell layer being fragmented as in EBS, the basal layer
remains intact but the suprabasal cells become frag-
mented easily (see Figure 4). The epidermis becomes
hyperproliferative, probably in response to cytokines
trickling from the chronic partial wound stimulus of
suprabasal cell fragmentation. The stratum corneum
becomes unusually thick, producing the clinical phe-
notype of ichthyosis. The keratin mutations in K1 and
K10 which lead to these disorders are found predom-
inantly in the helix boundary motifs of either keratin
[36–38], in the H1 region of K1 [39], and occasionally
in the L12 linker region [40].

There are currently 35 reported mutations in K1
and 47 in K10, as registered in the intermediate
filament database (www.interfil.org). Because there is
so much similarity between the sequence features and
the morphology of all intermediate filament proteins,
extrapolations can be made between the molecular
consequences of these clinically diverse disorders.
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The mutation cluster sites emerging for K1 and K10
are mostly those which in EBS would indicate a
severe mutation, whereas relatively few mutations
are emerging in the ‘mild’ hotspot sites. The most
likely reason for this is that K5 and K14 proteins
persist in the suprabasal layers even though new
protein synthesis has stopped when cells lose contact
with the basal lamina. The stable proteins K5 and
K14 probably provide a scaffold for the assembly of
K1 and K10 [41,42]. This gives an extra level of
structural reinforcement in these cells, such that ‘mild’
mutations may not produce any phenotype and the
only mutations to be pathologically visible are those
in the ‘severe’ mutation cluster sites.

K2e and ichthyosis bullosa of Siemens

Suprabasal keratinocytes can express other secondary
keratins in various body sites. Late in differentia-
tion of the interfollicular epidermis, K2e is expressed
in suprabasal keratinocytes [43], and mutations in
this keratin have been associated with another form
of epidermal blistering and superficial skin thicken-
ing known as ichthyosis bullosa of Siemens (IBS)
[44–46]. Similarly to K1/K10, mutations in K2e have
been mostly reported to lie within the rod ends, with
the majority in helix 2B. None have been found so
far in the H1 or L12 domains. There have been 26
mutations reported in K2e so far (www.interfil.org)
and some of these mutations have also been found to
give rise to a BCIE-like phenotype [46,47].

K9 and epidermolytic palmoplantar keratoderma

Keratin 9 is a type I keratin expressed in suprabasal
cells in the epidermis of palm and sole [48], where
it may contribute a specific reinforcing effect to with-
stand the greater stress of these skin regions [27]. K9
was thus a strong candidate gene for palmoplantar-
specific keratoderma, and is indeed the source of a
number of mutations causing this disorder [49–51]. A
total of 38 mutations have been reported in K9 in asso-
ciation with epidermolytic palmoplantar keratoderma,
ie thickening of the palm and sole epidermis with a
degree of cytolysis. As with the other keratodermas, it
may be the cytolysis that results in proliferation signals
to the epidermis in an aberrant wound response.

K6, K16, and K17 in pachyonychia congenita

Stress response keratins K6, K16, and K17 are rapidly
induced on injury or inflammation, and are also con-
stitutive components of the epithelium in several epi-
dermal appendages such as hair follicle and nail
[16,52,53]. Mutations in the stress response keratins
give rise to pachyonychia congenita, characterized by
grossly thickened nails [54]. Type 1 pachyonychia con-
genita (Jackson–Lawler type, or PC-1) patients have
thickened nails plus white plaques in the mouth and
other orogenital epithelia, frequent follicular hyperk-
eratosis, and pronounced keratoderma on the hands

and feet [55]. This disorder is linked to mutations
in K16 (12 reported) and K6a (13 reported in the
database) [54–56]. Pachyonychia congenita type 2
(Jadassohn–Lewandowsky form) is linked to K17 (23
reported mutations) and also to one of the K6 genes,
K6b (one report) [54,57]. PC-2-affected individuals
have thick nails without prominent oral leukoplakia
but can also have pili torti (twisted hairs), piloseba-
ceous cysts, and a high incidence of natal teeth, ie
teeth erupted or exposed prematurely at birth [55].
These two different phenotypes are closely correlated
with the cell and tissue types in which these keratins
are expressed constitutively: whilst K16 is a major
secondary keratin in orogenital epithelia and in palmo-
plantar epidermis [27], K17 is only a minor component
of these tissues in the fully developed epidermis but is
significantly expressed in the deep hair follicle where
the hair shaft is being formed [52]. It is likely that the
cellular weakness resulting from K17 mutations leads
to breakdown of the outer root sheath epithelial cells
and loss of the constraints of the deep hair follicle dur-
ing anagen, which normally has the effect of helping
to mould the shape of the forming hair shaft. There is
another condition known as steatocystoma multiplex,
in which cysts are formed in association with the hair
follicle. This disorder was previously regarded as an
unrelated clinical entity, but it is now known to be
caused by mutations in the same K6b and (or) K17
genes as PC-2 [14,58]. The follicular keratoses asso-
ciated with mutations in K6a represent a milder, more
superficial form of cysts than the steatocystoma mul-
tiplex phenotype.

K3/K12 in Meesmann epithelial corneal dystrophy

Keratins K3 and K12 are expressed uniquely in the
anterior corneal epithelium and mutations in these ker-
atins give rise to a condition known as Meesmann
epithelial corneal dystrophy [59–61]. This condition
is also characterized by a cell fragility phenotype.
Small cysts, which are detectable in the clinic with
a slit lamp, form within the corneal stratified epithe-
lium where intraepithelial cytolysis has taken place. To
date, there have been 12 mutations in K12 reported but
only one in K3 (www.interfil.org). Again these muta-
tions are found in the helix boundary motifs of the
keratin protein, and as with the other disorders involv-
ing secondary or differentiation-specific keratins, the
mutations recorded to date are dominant ones.

K4/13 in white sponge naevus

Although white sponge naevus (WSN) is not strictly a
disorder of skin, the genes responsible are expressed
by oral keratinocytes (following the mucosal path of
differentiation). WSN is a benign condition affecting
buccal mucosa and other orogenital epithelia, produc-
ing plaques of loosened white epithelium. Histologi-
cally, the resemblance of these lesions to those of PC-1
and BCIE is very clear: suprabasal cells fragment and
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the thickened epithelium appears white. This disorder
was discovered to be caused by dominant mutations
in K4 and K13, the pair of secondary keratins that
are characteristic of this type of mucosal, parakera-
tinized stratified squamous epithelium [62–64]. These
and other mutations identified to date in WSN all lie in
the helix boundary motifs of either of these two ker-
atins, with three mutations reported for K4 and five
mutations reported for K13 (see www.interfil.org for
details).

Disorders caused by hair keratins

Keratins K1–K20 are all expressed in the ‘soft’
epithelial sheet tissues of the body that line and delimit
not only the exterior surface, but also internal ducts
and glands. There are a further 20 or so keratins
that have now been identified within the cells of
‘hard’ keratin tissues of hair, nail, filiform papillae
of the tongue, and possibly Hassall’s corpuscle of
the thymus [16,65,66]. If the main consequence of
keratin mutations is to render the cells expressing them
fragile and vulnerable to trauma-induced cytolysis,
then it might be expected that such cell breakdown
would be less likely to be apparent in these hard
tissues where the keratin intermediate filaments are
usually embedded in a matrix of cross-linked, oxidized
specialized proteins of highly cornified structures.
However, even here there are now known to be
examples of keratin mutations that lead to structural
tissue defects. Monilethrix is a condition in which the
hair shaft is both fragile and develops with a periodic
beaded appearance. Mutations have been identified in
monilethrix families in the helix initiation motif of two
type II hair keratin genes, hHb6 [67,68] and hHb1 [69].
The current mutation count stands at 33 for hHb6 and
seven for hHb1 (www.interfil.org).

Another condition has recently been identified as
being associated with a sequence variation in a hair
follicle keratin [7]. This is pseudofolliculitis barbae,
a shaving-induced condition in which hairs do not
grow straight out but curl under the skin, giving
rise to an inflammatory reaction to the ingrown hair.
There is a strong association of this condition with
a potentially disruptive polymorphism in the helix
initiation motif of keratin K6hf, a K6 gene that is
expressed in hair follicles. It appears that this sequence
variant predisposes some individuals to this reaction.

Simple epithelial keratins

In the skin and skin appendages, simple epithelial
keratins are expressed in very few locations. K8 and
K18 are found in sweat gland secretory cells; K7 is
found in sebaceous gland and sweat gland and has
been reported in some cells in the hair follicle; and
K19 is found in sweat gland secretory and duct cells
and in the bulge region of the outer root sheath of
the hair follicle [28,70]. All the four keratins have
been reported to be expressed in Merkel cells [71],

but K20 is not otherwise found in skin. No mutation
in any of these keratins has yet been proven to directly
and singly cause any human pathology, either in
skin or elsewhere, although there is evidence for an
association with defects in the liver, pancreas, and
intestinal epithelium (see review article by Owens and
Lane [23]).

Phenotypic variation from mutations within
one keratin gene

Phenotypic variation can also be seen between cases of
keratin disorders caused by different mutations within
the same keratin gene, even between members of
the same family. These clinical variants are largely
dependent on the position of the mutation and, to a
lesser extent, the type of mutation, within the keratin
protein domain structure (Figure 1). Therefore, the
longer-term clinical outcome is predictable to some
extent where the mutation is known.

Diverse phenotypes of K5/K14 mutations

The original template for genotype–phenotype corre-
lation in keratin disorders has come from studies of
the autosomal dominant forms of epidermolysis bul-
losa simplex (EBS). The vast majority of mutations in
Dowling–Meara EBS patients are missense or small
in-frame deletions occurring in the helix boundary
motifs of keratins K5 and K14 [2,3], as shown in
Figure 1. These are the two conserved sequence motifs
that mark either end of the α-helical rod domain. The
rod domain is essentially the construction unit of the
polymeric filament and the sequences at the rod ends
are critical for correct subunit alignment and docking
during filament assembly [72]. There is a particularly
prominent mutation hotspot in the codon for the argi-
nine amino acid at position 125 in K14, resulting from
an intrinsically unstable CpG dinucleotide in the DNA.
This arginine/CpG dinucleotide is conserved in many
type I keratins and the analogous mutation hotspot
appears in many of the keratin diseases and accounts
for a significant proportion of all pathological keratin
mutations.

The two milder forms of EBS are caused by
mutations outside the helix boundary peptides. One
is the Köbner form, which is characterized by blisters
occurring anywhere on the body but not necessarily in
clusters. The other is the milder Weber–Cockayne type
of EBS, in which blisters are generally restricted to
the hands and feet. ‘Mild’ mutation clusters associated
with these forms are recognizable in the second half
of the 1A domain, the L12 domain, and central
2B domain of K5 and K14 [73,74] (summarized in
Figure 1). The H1 sub-domain, which is absent from
type I keratins, is an additional mutation hotspot for
these milder phenotypes. There is also a recurrent
mutation in the V1 domain of K5 that has consistently
been associated with the EBS-mottled pigmentation
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phenotype — another mild clinical variant [75,76]. In
our experience, clinical severity prediction is more
difficult for mutations occurring at the borders between
these hotspots, such as mutations in the middle of the
1A domain, as one might expect.

All these cluster sites must reflect places in the
protein molecules where sequence drift is not tolerated
because this part of the protein is essential for correct
function, although the consequences for function are
milder and more subtle for the Weber–Cockayne
mutations than for the Dowling–Meara ones (see
Figure 2). The absence of mutations in other regions
presumably means that mutations in these other places
are not pathogenic and are therefore clinically silent.

Diverse phenotypes of K1 mutations

Genotype–phenotype correlation has been slower to
emerge for keratins other than K5 and K14; how-
ever, certain trends are now evident, particularly for
K1, where a wide range of overlapping phenotypes
is well established. Mutations in K1 and its partner
K10 were originally shown to cause bullous con-
genital ichthyosiform erythroderma (BCIE) [36–39].
This disorder is characterized clinically by blistering
and erythroderma in infancy and severe generalized
epidermolytic hyperkeratosis in adulthood (Figure 3).
Recently, a number of patients have emerged with
K1 mutations where epidermolytic hyperkeratosis is
almost exclusively limited to palms and soles, a phe-
notype known as ‘K1 keratoderma’ [77,78]. Some of
these mutations are larger in-frame deletions affect-
ing the helix boundary motifs and are therefore dif-
ferent from the classic missense mutations in the
same domains commonly reported in BCIE. Similarly,
frameshift mutations in the V2 domain of K1 have
been found in striate keratoderma [79] and in a pheno-
type resembling ichthyosis hystrix of Curth–Macklin
[80]. In other cases, however, the genotypic difference
is less obvious. For example, substitutions of amino
acid I479 in K1 have variously been associated with
BCIE-like, milder ichthyosis-like phenotypes [81] and
K1 keratoderma [82]. Thus, phenotype prediction is
less clear-cut with K1 mutations compared with EBS.
In terms of K10 mutations, relatively few milder muta-
tions have been reported to date. It has been suggested
that since K1 is the probable partner of both K9 and
K10 in palmoplantar epidermis and the partner of K10
elsewhere in the skin, K1 mutations are more likely to
result in palmoplantar keratoderma phenotypes.

Diversity of phenotypes with K16 and K17
mutations

Outside of the major epidermal keratins, K5/K14 and
K1/K10, less is known about variations in phenotype,
possibly since these groups of keratins are limited
to smaller cell populations. One recent emerging
trend comes from pachyonychia congenita (PC) and
involves later onset of this keratinizing disorder,

described as PC-tarda [83] in association with less
disruptive mutations. The first example was a patient
with PC-1 in whom nail dystrophy did not appear at
birth (as is normally the case) but began in the second
decade of life. The mutation in this case was located
in the central 2B domain of K16, a region that in the
K14 molecule is associated with mild EBS phenotypes
[84]. The second example involves a family with late-
onset PC-2, where the causative mutation was in the
second half of the 1A domain of K17, again a region
associated with mild EBS [85].

Two trends are therefore emerging in relation to
genotype–phenotype prediction in the keratin disor-
ders. Firstly, less disruptive mutations may lead to
site-restricted variants of a given disease such as EBS-
WC, EBS-K or K1 keratoderma. Secondly, milder
mutations may lead to later onset of clinical symp-
toms, as appears to be the case in PC-tarda. Some
keratin disorders are clearly subject to hormonal influ-
ences, notably PC-2, where pilosebaceous cysts occur
only after puberty [55], presumably when the seba-
ceous glands become active. There are also reports,
albeit still anecdotal, of changes in the clinical mani-
festation of keratin disorders during pregnancy. There
may be other more subtle hormonal or longer-term
developmental effects that influence the overall clin-
ical presentation arising from a given keratin defect.
Understanding these modifying factors may provide
useful insights into therapy design for this group of
genetic diseases.

Milder phenotypic variants have not yet been
described for a number of keratin disorders, eg
ichthyosis bullosa of Siemens or white sponge nae-
vus. It is quite possible that milder forms of these
diseases, which are already site-restricted and fairly
benign, may not produce any clear pathology. This
certainly appears to be the case in families affected by
Meesmann epithelial corneal dystrophy, where a num-
ber of completely asymptomatic individuals have been
shown to be carry ‘strongly pathogenic’ mutations (as
predicted from their position in the keratin molecule)
in the K12 gene [59,86]. Many, if not all, of these
symptom-free patients have visible microcysts by slit-
lamp examination but for some unknown reason these
do not cause discomfort or visual impairment in certain
individuals. It is therefore quite likely that less disrup-
tive mutations in K3 or K12 might go unnoticed and
therefore be indistinguishable from polymorphisms on
the basis of clinical phenotype alone.

Variation between cases with the same
mutation

There is further evidence for the existence of genetic
modifying factors influencing the phenotypes in ker-
atin disorders in cases where phenotypes of quite dif-
ferent severity result from the same mutation arising in
two different families, or even in the same family. One
well-documented example was a report of one kindred
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with the classic PC-2 phenotype and another unrelated
family with steatocystoma multiplex but no nail dys-
trophy, both of whom had the same mutation, R94C,
in the helix initiation motif of K17 [14]. The pheno-
types were consistent within each of the two families,
implying a genetic background effect.

In another example, radically different phenotypes
arose from essentially the same frameshift mutation
in the V2 domain of K1: relatively mild striate ker-
atoderma in one family [79] and extremely severe
ichthyosis hystrix in another [80]. In this instance,
the two families were of different ethnicity, again
pointing to an effect at the population level. These
examples, taken with the strain-dependent phenotypes
observed in transgenic mouse models of keratin dis-
eases [87,88], point to the existence of a variety of
genetic modifying factors that attenuate or exacerbate
keratin disease phenotypes.

Recently, there has been a report of a second
modifying mutation within a keratin gene [89]. In
this study, a family presented with several members
affected by autosomal dominant EBS, some of whom
were mildly affected, others quite severely affected.
All the affected persons carried a mutation in the 1A
domain of K5, E170K. The more severely affected
individuals also carried a second mutation on the
other K5 allele, E418K in the centre of the 2B
domain. People in the family carrying only the latter
mutation had no skin blistering phenotype, although
the E418K mutation was shown to produce a low level
of keratin aggregation when expressed in cultured
cells. Neither of these mutations was detected in 100
ethnically matched chromosomes and so were not
common sequence variants in the population. Thus,
the E418K mutation acts as a polymorphism in the
heterozygous state but is able to exacerbate a mild
phenotype when in the compound heterozygous state
[89]. It is not known what the effect of a homozygous
E418K mutation would be in humans but it is quite
possible that this might produce mild recessive EBS,
similar to other reports in the literature [90]. This
study points the way towards understanding at least
some of the factors involved in generating phenotypic
variation within a kindred with a given mutation.
Very often, genetic testing laboratories do not fully
screen genes but halt the screening process as soon
as a mutation is detected and confirmed. This is a
particularly common practice in keratin gene screening
since analysis generally starts with the most prevalent
mutation hotspots (Figure 1), and only when these are
negative are the other exons or other keratin gene
screened. Thus, important modifying factors within a
keratin pair can easily go unnoticed.

In addition to other keratin genes, a whole range
of keratin-associated proteins are good candidates
for genetic modifying factors. For example, loss-of-
expression mutations in plectin, a cytoskeletal cross-
linker protein found in hemidesmosomes, cause a mild
form of EBS with muscle disease [33,34]. Domi-
nant plectin mutations have recently been implicated

in EBS in the absence of a muscle phenotype [91].
It is therefore possible that polymorphisms or reces-
sive mutations in this gene might modify an EBS
phenotype resulting from a keratin mutation. Simi-
larly, keratins are linked to desmosomes by a variety
of proteins, including desmoplakin, plakoglobin, and
plakophilin. Mutations in all of these genes give rise to
skin fragility phenotypes [32,92,93] and so a recessive
allele of any of these genes might be expected to mod-
ify the phenotype of EBS and, indeed, all other ker-
atin disorders since desmosomes are prominent struc-
tural components of all epithelia. A candidate gene
approach in suitable families where mild and severe
phenotypes can be readily distinguished is probably
the only way that phenotypic modifying factors can be
identified in humans, since it is rare that large enough
pedigrees with such variant phenotypes for a genetic
linkage approach are identified (we have not succeeded
in identifying one yet). However, mouse models of
keratin disorders where strain-dependent phenotypes
are present are very suitable for genetic linkage map-
ping and so these types of studies may eventually lead
back to modifiers in humans. The search for these fac-
tors, especially the unknown and less predictable ones,
is worthwhile since it may pave the way to novel gene-
based or pharmacological therapies.

Summary

The keratin gene defects affecting skin and associ-
ated structures illustrate the ability of molecular genet-
ics to shed light on the in vivo functions of a sub-
cellular system — in this case, the intermediate fil-
ament cytoskeleton. This polymeric protein network
had been well studied biochemically and in cultured
cells, but it was a major event in the field when
the first human disease associations and transgenic
mouse models revealed, in a highly conclusive man-
ner, the critical structural role that keratin filaments
play in maintaining epithelial cell integrity in a range
of high-stress tissues. The challenge now is to deter-
mine the tissue-specific functions of the individual
keratin expression pairs: presumably all keratins are
not equal, and we need to identify their important func-
tional differences. Only then can we properly address
the next major challenge in the application of this
understanding to human disease — ie how one can
influence keratin gene expression therapeutically, by
either gene-based or pharmacological strategies, and
perhaps treat some of these incurable and distressing
genetic conditions.
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