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Abstract— Kernel adaptive filters have drawn increasing
attention due to their advantages such as universal nonlinear
approximation with universal kernels, linearity and convexity in
Reproducing Kernel Hilbert Space (RKHS). Among them, the
kernel least mean square (KLMS) algorithm deserves particular
attention because of its simplicity and sequential learning
approach. Similar to most conventional adaptive filtering al-
gorithms, the KLMS adopts the mean square error (MSE) as
the adaptation cost. However, the mere second-order statistics
is often not suitable for nonlinear and non-Gaussian situations.
Therefore, various non-MSE criteria, which involve higher-
order statistics, have received an increasing interest. Recently,
the correntropy, as an alternative of MSE, has been successfully
used in nonlinear and non-Gaussian signal processing and
machine learning domains. This fact motivates us in this paper
to develop a new kernel adaptive algorithm, called the kernel
maximum correntropy (KMC), which combines the advantages
of the KLMS and maximum correntropy criterion (MCC).
We also study its convergence and self-regularization proper-
ties by using the energy conservation relation. The superior
performance of the new algorithm has been demonstrated
by simulation experiments in the noisy frequency doubling
problem.

I. INTRODUCTION

MANY real-word applications require complex nonlin-

ear models. At present, Neural Networks and Kernel

Adaptive Filters are possible solutions. By providing lin-

earity in RKHS and convexity in hypothesis space [1], the

kernel adaptive filter is attracting more attention. Through

a reproducing kernel, kernel adaptive filter maps data from

an input space to a high-dimensional feature space, where

appropriate linear methods are applied to the transformed

data. Most importantly, the kernel method with universal

kernel has universal approximation property, which has been

proved by [2], i.e. for any continuous input-output mapping

f : U → R, ∀ς > 0, ∃{ui}i∈N ∈ U and real number

{ci}i∈N , such that ‖ f − ∑
i∈N ciκ(ui, .) ‖2< ς . This

universal approximation property guarantees that the kernel

method is capable of superior performance in nonlinear tasks.

There are many successful examples of this methodology

including support vector machines [3], kernel regularization

network [4], kernel principal component analysis (kernel

PCA) [5], kernel fisher discriminant analysis [6], kernel

recursive least squares algorithm (KRLS)[7] and among

others. Compared with these algorithms, the Kernel Least

Mean Square (KLMS) is different. It provides well-posedness

solution with finite data [8] and naturally creates a growing

radial-basis function (RBF) network [1]. Moreover, as an

online learning algorithm, KLMS is much simpler to achieve,
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with respect to computational complexity and memory stor-

age, than other batch mode kernel methods.

Similar to most conventional adaptive filtering algorithms,

KLMS has utilized the MSE criterion as a cost function.

The mere second-order statistics is often not suitable for

nonlinear and non-Gaussian situations. Recently, Information

theoretic learning (ITL) has been proved more efficient to

train adaptive systems. Different from MSE criterion using

error energy, ITL utilizes probability density function of the

data, estimated by Parzen kernel estimator [9], as the cost

function. Owning to taking account into the whole signal

distribution, adaptive systems training through information

theoretic criteria have better performance in various appli-

cations in which the signals are non-Gaussian. Correntropy,

developed by Principe et al., is a kind of localized measure

to estimate how similar two random variables are: when

two random variables are very close, correntropy equals the

2-norm distance, which evolves to 1-norm distance if two

random variables get further apart, even falls to zero-norm

as they are far apart [10]. Correntropy has already been

employed to many applications successfully. Kernel PCA can

project the transformed data onto principal directions with

correntropy function [11] , and efficiently compute the prin-

cipal components in the feature space. [12] proposed a power

spectral measure for Fourier based surrogate nonlinearity test

through correntropy as a discriminant measure. Extending

the Minimum Average Correlation Energy (MACE) filter

to nonlinear filter via correntropy improves MACE perfor-

mance, when applied to face recognition [13]. Moreover,

similar extension of Granger causality by correntropy can

detect causality of a nonlinear dynamical system where the

linear Granger causality failed [14]. When it comes to the

cost function of adaptive filtering algorithm, MCC is a robust

adaptation principle in presence of non-gaussian outliers

[15]. Maximazing the similarity between the desire and the

prediction output in the senese of correntropy, [16] induced

a smooth loss function, C-loss function, to approximate the

ideal 0-1 loss in classification problem.

Inspired by KLMS algorithm and MCC criterion, this

paper presents a kernel-based MCC learning algorithm,

called KMC (Kernel Maximum Correntropy). KMC maps

the input data into an RKHS to approximate the input-

output mapping f , then utilizes MCC as a cost function to

minimize the difference between the desired data and the

filter output. This algorithm not only approximates nonlinear

system more accurate than linear model, but also is robust in

different noisy environment. The computational complexity

of our algorithm is similar to KLMS while the robustness is

superior. Furthermore, we prove that the KMC is wellposed

when finite data is used in the training and therefore does



not need explicit regularization, which not only simplifies

the implementation but also results in the potential to pro-

vide better performances because regularization biases the

optimala solution as is well known.

The organization of the paper is as follows. Section II is

a brief review of correntropy and MCC in linear adaptive

filters, and some properties of correntropy are presented to

verify the feasibility of correntropy as cost criterion. After-

wards, KMC algorithm is developed in section III, followed

by convergence analysis and self-regularization interpretation

using energy conservation relation. Finally, simulations for

the adaptive frequency-doubler are studied in Section IV, and

the conclusions and future lines of work are summarized in

Section V.

II. FOUNDATIONS

The goal of our system is to construct a func-

tion f : U → R based on a known sequence

(u1, d1), (u2, d2), . . . , (uN , dN ) ∈ ZN where ui is the

system input at sample time i, and di is the corresponding

desire response. Notice that the desired data may be noisy in

practice, that is di = d′i+ξi, in which d′i is the real clean data

and ξi is noise at time i. Actually, what we want to solve is

the following empirical risk minimization (ERM) problem:

Remp[f ∈ H,ZN ] =

N∑
i=1

(d′i − f(ui))
2 (1)

If the noise distribution has outliers, is non-symmetric, or has

nonzero mean, the conventional MSE criterion would result

in large variation of weights or output shift.

A. Definition and Properties of Correntropy

As developed in [10] and [17], correntropy is a method

to estimate probabilistically the similarity between two ar-

bitrary random variables. The kernel bandwidth controls the

“window” in which similarity is assessed.

Vσ(X,Y ) = E[κσ(X − Y )] (2)

in which, κσ(.) is a symmetric positive definite kernel with

the kernel width being σ. For simplicity, the Gaussian Kernel

is the only one considered in the paper. In practice, we use

a set of finite data to approximate the expectation,

V̂N,σ(X,Y ) =
1

N

N∑
i=1

κσ(X − Y ) (3)

For completeness, we present below some of the most

important properties of the correntropy function.

Property 1: Correntropy is positive definite and bounded,

that is, 0 < Vσ(X,Y ) ≤ 1√
2πσ

. It reaches its maximum if

and only if X = Y .

Property 2: Correntropy involves all the even moments of

the difference between X and Y :

Vσ(X,Y ) =
1√
2πσ

∞∑
n=0

(−1)n/(2nn!)E[(X − Y )2n/(σ2n)]

(4)

Compared with MSE E[(X − Y )2] which is a quadratic

function in the joint input space, correntropy includes second

and higher order statistical information. However, when σ
increases, the high-order information decays faster, so the

second order moment dominates for large σ.

Property 3: Assume i.i.d data sample (xi, yi)i∈N follows

the joint pdf fX,Y (x, y). Define the error random variable

E = Y −X , and f̂E,σ(e) as the Parzen estimation of E with

the kernel size σ. Such that V̂σ(X,Y ) is the value of f̂E,σ(e)
estimated at the point e = 0.

The properties above have already been mentioned and

proved in [10]. Next, new properties about correntropy are

proposed to verify the feasibility of correntropy as cost

criterion of adaptive filter.

Property 4: Express correntropy of X,Y with kernel size

σ as:

hσ(E) = Vσ(X,Y ) (5)

hσ(E) is strictly concave in the range of E ∈ [−σ, σ]. When

correntropy is utilized as a cost criterion in adaptive filters,

strictly concavity guarantees the existence and uniqueness for

the optimal solution of adaptive filter. Because the concave

property is satisfied in the range E ∈ [−σ, σ], the initial

condition should be chosen carefully, or we can use other

criteria to train adaptive filter firstly to make sure current

solution is near the global optimal solution.

As a global measure, MSE includes all the samples in

the input space to estimate the similarity of two random

variables while correntropy is determined by kernel function

along x = y line. This property intuitively explains why the

correntropy is superior than MSE if the residual of X − Y
is non-symmetric or with nonzero mean.

B. Correntropy in Linear Adaptive Filters

When it comes to adaptive filters, the goal is to maximize

correntropy between the desired signal di and the filter output

yi. Such, criterion is

Jn =
1

N

n∑
i=n−N+1

κσ(di, yi) (6)

in which, κσ(.) is a positive definite symmetric kernel with

the kernel width being σ, and N is the number of samples

in Parzen estimate window.

Similar with MSE criterion, we can use an iterative

gradient ascent approach to search the optimal solution, that

is the next set of filter weights are corrected by taking a

value proper to the positive gradient of the cost function in

the weight space. Therefore,

ωn+1 = ωn + η∇Jn (7)

Substituting Jn into Eq.7, we can obtain,

ωn+1 = ωn +
η

N

n∑
i=n−N+1

∂κσ(di, yi)

∂ωn
(8)



For online mode, the current value (N = 1) approximates

the stochastic gradient,

ωn+1 = ωn + η
∂κσ(dn, yn)

∂ωn

= ωn + ηg(en)un

= ωn + ηexp(
−e2n
2σ2

)enun

(9)

in which en = dn−ωT
nun is the prediction error, and g(en) is

a function of en in terms of the kernel choice of Correntropy.

g(en) = exp(
−e2n
2σ2 )en for the Normalized Gaussian Kernel.

In this paper, we assume N = 1 is enough to approximate

the gradient.

This section showed that MCC shares the computational

simplicity of the LMS algorithm. Its computational complex-

ity is O(N), where N is the number of training data. With the

smooth dependence of correntropy on kernel bandwith, this

criterion is a robust statistical method. In [15], experiments

in theoretic and practical applications demonstrate the advan-

tage of MCC in linear adaptive filters thorough comparing

with other criteria.

III. FORMULATION OF KERNEL

MAXIMUM-CORRENTROPY ALGORITHM

A. KMC Algorithm

If the mapping between d and u is nonlinear, linear

adaptive filters cannot obtain good performance. Because of

their universal approximation capabilities and convex opti-

mization [1], kernel methods are good choice for this task.

In our algorithm, the input data ui is transformed to a high-

dimensional feature space F as ϕ(ui) via the kernek-induced

mapping. Furthermore, linear adaptive filter is utilized in the

feature space. As discussed in Representer Theorem [18], the

adaptive filter weight has the representation,

f =
∑
i∈N

ci < ϕ(ui), . >

=
∑
i∈N

ciκ(ui, .)
(10)

where ci are weighted coefficients obtained from the training

data, and κ is a positive define kernel. In general, f is

expressed as Ω in adaptive filters. Then, using the MCC

criterion and the stochastic gradient approximation to the new

pairwise sample {ϕ(un), dn}, yields

Ω0 = 0

Ωn+1 = Ωn + η
∂κσ(dn,Ω

T
nϕ(un))

∂Ωn

= Ωn + η[exp(
−e2n
2σ2

)enϕn]

= Ωn−1 + η
n∑

i=n−1

[exp(
−e2i
2σ2

)eiϕi]

. . .

= η

n∑
i=1

[exp(
−e2i
2σ2

)eiϕi]

(11)

where ϕi is a simplified notation for ϕ(ui). Now, the “kernel

trick” is used to obtain the system output, which can be solely

expressed in terms of inner products between the new input

and previous inputs weighted by prediction errors.

yn+1 = ΩT
n+1ϕn+1

= η
n∑

i=1

[exp(
−e2i
2σ2

)eiϕ
T
i ϕn+1]

= η

n∑
i=1

[exp(
−e2i
2σ2

)eiκ(ui,un+1)]

(12)

As shown in Eq. (12), the computational complexity of

KMC is O(N), where N is the number of training data.

In conclusion, the learning algorithm is as follows:

Algorithm 1
Initialization
η: learning rate

κ: universal kernel

e1 = d1;

y1 = ηe1exp(
−e21
2σ2 );

Computation
while {un, dn} available do
yn = η

∑n−1
i=1 [exp(

−e2i
2σ2 )eiκ(ui,un)];

en = dn − yn;

end while

B. Convergence Restriction

Stability is an extremely important aspect in adaptive fil-

tering. In this part, we use the energy conservation relation to

analyze well-posedness of our algorithm and derive bounds

on the step-size for stability.

An ideal adaptive filter in RKHS attempts to find a weight

vector Ω∗,

dn = Ω∗Tϕn + vn (13)

where vn is a measurement noise and modeling errors. The

adaptive algorithm yields the prediction error

en = dn −ΩT
nϕn

= Ω∗Tϕn −ΩT
nϕn + vn

= Ω̃T
nϕn + vn

(14)

in which Ω̃n = Ω∗−Ωn is the weight-error vector in RKHS

at iteration n. At the next iteration the weight-error vector

can be written as,

Ω̃n+1 = Ω∗ −Ωn+1

= Ω̃n +Ωn −Ωn+1

= Ω̃n −�Ωn

(15)

In order to study the filter learning process, the prior and

posteriori errors are defined as

ean = Ω̃T
nϕn epn = Ω̃T

n+1ϕn (16)



Such that,

epn = Ω̃T
n+1ϕn

= (Ω∗ −Ωn+1)
Tϕn

= (Ω∗ − (Ωn +
Ωn))
Tϕn

= (Ω̃n −
Ωn)
Tϕn

= ean −
ΩT
nϕn

= ean − ηg(en)κ(un,un)

(17)

For Normalized Gaussian Kernel, κ(un,un) = 1. Therefore,

Eq. (17) can be simplified to

epn = ean − ηg(en) (18)

Combining Eq. (17) and Eq. (15), we get,

Ω̃T
n+1 = Ω̃T

n + (epn − ean)/ϕ
T
n

= Ω̃T
n + (epn − ean)ϕn/κ(un,un)

= Ω̃T
n + (epn − ean)ϕn

(19)

Based on the energy conservation relation, both sides of

Eq.(19) should have the same energy,

‖Ω̃n+1‖2F = ‖Ω̃n + (epn − ean)ϕn‖2F (20)

Expanding this equation,

Ω̃T
n+1Ω̃n+1 = [Ω̃n + (epn − ean)ϕn]

T × [Ω̃n + (epn − ean)ϕn]

= Ω̃T
n Ω̃n + 2Ω̃T

n (e
p
n − ean)ϕn + (epn − ean)

2

= Ω̃T
n Ω̃n − 2ηeang(en) + η2g(en)

2

(21)

Such that, we obtain,

E[‖Ω̃n+1‖2F ] = E[‖Ω̃n‖2F ]− 2ηE[eang(en)] + η2E[g(en)
2]

(22)

In order to guarantee a convergence solution, the energy of

weight-error vector should decrease gradually. Therefore,

E[‖Ω̃n+1‖2F ] ≤ E[‖Ω̃n‖2F ]
⇔ −2ηE[eai g(en)] + η2E[g(en)

2] ≤ 0

⇔ η ≤ 2E[eang(en)]

E[g(en)2]

(23)

Therefore, as long as the stepsize of KMC satisfies Eq. (23)

the sequence E[‖Ω̃i‖2F ] is bounded from below, and the

learning process is stable.

C. Self Regularization

Does our method face the ill-posed problem due to small

data size or severe noise, like Least Square (LS)? In the LS

problem, the Tikhonov regularization [8] is widely used to

deal with this issue. If the same method is applied to our

method, a regularization term is introduced to the MCC cost

function

max
Ω

Remp[Ω ∈ F,ZN ] =

N∑
i=1

κσ(di,Ω(ϕi)) + λ‖Ω‖2F
(24)

this optimization problem is equivalent to the following

problem:

max
Ω

Remp[Ω ∈ F,ZN ] =

N∑
i=1

κσ(di,Ω(ϕi))

subjectto‖Ω‖2F ≤ C

(25)

which was already proven in [8]. Therefore, the following

conclusion can be obtained: constraining the norm of the

solution has the same result as adding a regularization term

in the KMC.

As mentioned in previous section, ‖Ω‖2F monotonically

decreases as iterations increase as long as the stepsize

satisfies the constrain of Eq. (23). Hence, for any positive

value C, we can find a Ω with appropriate stepsize and initial

condition, such that ‖Ω‖2F ≤ C. To conclude, KMC learning

is a self-regularization method under the appropriate stepsize

and inital condition.

IV. SIMULATION RESULTS

Frequency doubling is an obvious nonlinear problem. In

this simulation, the input and desire data for the system both

are sine wave with f0 and 2f0 respectively, as shown in Fig.

1. 1500 samples from two sequences are segmented for the

training data, and 200 samples as the test data. We use an

impulsive Gaussian mixture model to simulate the influence

of the non-gaussian noise, whose probability density function

is:

pnoise(i) = 0.9N(0, 0.01) + 0.1N(2, 0.01) (26)
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Fig. 1. Simulation data

1) KMC Performance Compared with KLMS and MCC
with linear adaptive filter : The input vector is dimension 2

(current and one past sample). Under kernel learning process

the learning rate is 0.9, and it is 0.2 for MCC with linear filter.

Moreover, the kernel sizes for kernel-induced mapping in

KMC and KLMS are 0.5, and the kernel sizes for correntropy

criterion in KMC and MCC with linear adaptive filter are set

to 0.4 which performs best on the test data. Meanwhile, in

order to guarantee KMC and MCC with linear filter reach

the global optimal solution, we first train these filters with

MSE criterion during the first 300 samples. 100 Monte-Carlo



simulations are run for the same data with 100 different

starts. All of results are presented with respect to intrinsic

error power (IEP) on clean test data, where clean data means

desired signal without noise. That is

IEP = E[d− f(u)]2 (27)

in which, d and u are the desire and input of clean test data

respectively, and f(u) is the system output for corresponding

test data.

The average learning curves accompanied with standard

derivation are shown in Fig. 2a), and the final estimated IEP

for MCC with linear filter is 1.2793± 0.2475, for KLMS is

0.4765±0.3418 and for KMC is 0.0109±0.0033 (Note that

all of these results are summarized in the form of “average

± standard deviation”). All of these results show that the

performance of KMC is much better than KLMS and linear

filter with MCC. Not only the mean of IEP of KMC is

smaller than other two algorithms, but also the output range is

narrower. Fig. 2b) is a representative visual result. The MCC

with linear filter is incapable of approximating the nonliner

transfer function required for the frequency doubling. Even

though KLMS follows the frequency doubling, the result is

influenced by the noise. However, notice that the kernel width

in the correntropy criterion must be selected by the user to

attenuate the outliers, which depends on the application.

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

epochs

IE
P

KLMS
KMC
MCC

(a) Average learning curves along with standard derivation

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5

2

epochs

x(
n)

signal without noise
MCC
KLMS
KMC

(b) Visual result of a representative simulation

Fig. 2. Performance of different algorithms

2) The effect of the kernel width on MCC in KMC:
The kernel width for correntropy is very important, having

even more influence than the kernel that defines the RKHS.

Actually, correntropy is a measure to estimate how similar

two random variables in a local range controlled by the

kernel width. Kernel width of MCC affects some important

properties of adaptation such as the nature of the performance

surface, presence of local optima, rate of convergence and

robustness to impulsive noise during adaptation [19].

In this section, the effect of the kernel width on MCC in

KMC is demonstrated. We choose eight kernel widths: 0.1,

0.3, 0.4, 0.7, 1.0, 1.5, 4 and the value obtained by Silverman’s

rule. Similarly, 100 Monte Carlo simulations with different

noises are run to study the effect of kernel width, while all

the other parameters of filters are the same as the previous

simulation. Table I presents the results. From this table, KMC

performs at the same level for a large range of kernel sizes,

i.e. when the kernel width is in the range of [0.3, 1.0]. If a

set of kernel sizes σSM by applying Silverman’s rule to the

prediction error, σSM vraies between [0.0602, 0.15], which

is in the neighborhood of the best values mentioned above.

A large kernel width initially is beneficial to avoid local

optimal solution, and the global optimal point will obtain

by using a large kernel width. At the same time, large kernel

width decreases the “window” effect of correntropy, and

adaptive systems with too large kernel width degenerate to

those trained with MSE criterion. Therefore an appropriate

kernel width is a compromise between global optima and

noise outlier cancellation. However, KMC with large kernel

width will not perform worse than KLMS.

TABLE I

EFFECT OF KERNEL WIDTH ON MCC IN KMC

σ IEP
0.1 0.3241± 0.3279
0.3 0.0119± 0.0060
0.4 0.0109± 0.0033
0.7 0.0113± 0.0038
1.0 0.0209± 0.0113
1.5 0.1203± 0.1257
4.0 0.2386± 0.1966

Silverman’s 0.1724± 0.1339

V. CONCLUSIONS

Owing to universal nonlinear approximation, linearity in

RKHS, and convexity in hypothesis space, kernel adaptive

filters are widely used in many applications. However, MSE

criterion which is popular in most conventional adaptive

filters is not appropriate for non-Gaussian and nonlinear

cases. As an alternative option, MCC has been proved to

be more efficient and robust than MSE criterion in these

situations. This paper combines the advantages of these

two approaches and brings a new algorithm called Kernel

Maximum Correntropy. As shown theoretically and exper-

imentally, the performance of this algorithm is superior to

KLMS and conventional linear filters with MCC. Besides,



the computational complexity of KMC is similar to that of

KLMS, being O(N).
Although the KMC filter obtains good performance, the

kernel width in the correntropy criterion must be selected

according to the application to attenuate the outliers. We have

shown that, when proper kernel width is selected, the KMC

provides better performance to attenuate the outliers. How

to select the kernel width appropriately and adaptively is

the most important problem to be solved in the future. The

network size of RBF increases linearly with data number,

which is a common bottleneck for both KLMS and KMC

when applied to continuous adaption. Therefore, another

interesting direction for future work is how to restrict the

computation complexity efficiently.
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