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Abstract

A convenient way of analysing Riemannian manifolds is to

embed them in Euclidean spaces, with the embedding typi-

cally obtained by flattening the manifold via tangent spaces.

This general approach is not free of drawbacks. For ex-

ample, only distances between points to the tangent pole

are equal to true geodesic distances. This is restrictive and

may lead to inaccurate modelling. Instead of using tangent

spaces, we propose embedding into the Reproducing Kernel

Hilbert Space by introducing a Riemannian pseudo kernel.

We furthermore propose to recast a locality preserving

projection technique from Euclidean spaces to Riemannian

manifolds, in order to demonstrate the benefits of the

embedding. Experiments on several visual classification

tasks (gesture recognition, person re-identification and tex-

ture classification) show that in comparison to tangent-

based processing and state-of-the-art methods (such as

tensor canonical correlation analysis), the proposed ap-

proach obtains considerable improvements in discrimina-

tion accuracy.

1. Introduction

Recently, non-Euclidean geometry, such as Riemannian

manifolds, has opened new ways to interpret and analyse

image as well as video data [14, 18, 19, 25, 26, 28]. The cu-

rious mind might ask what are the motivations and advan-

tages of switching from the well-defined Euclidean spaces

to curved, Riemannian spaces? A short answer to this ques-

tion would be – the features and visual models often do not

lie on an Euclidean space. In other words the underlying

distance function on the space is not the usual Euclidean Lp

norm. As such, Riemannian manifolds might be an appro-

priate way of inference in various regimes of visual compu-

tation, especially the identification paradigm.

In this paper we consider the space formed by non-

singular covariance matrices, which are symmetric positive

definite matrices. Such matrices form a connected Rieman-

nian manifold, not an Euclidean space [28]. Covariance ma-

trices as region descriptors were first introduced by Tuzel et

al. [27] and since then have been employed successfully for

object tracking [20], pedestrian detection [28], action recog-

nition [11] and medical imaging [19].

Prior Work. Inference on Riemannian manifolds can

be achieved by embedding the manifolds in higher dimen-

sional Euclidean spaces, which can be considered as flatten-

ing the manifold. In the literature, the most popular choice

for embedding the manifold is through considering tangent

spaces [11, 20, 28]. Tuzel et al. [28] tackled the problem of

pedestrian detection by designing a LogitBoost classifier [8]

over Riemannian manifold spaces. Due to the curvature of

the space, Tuzel et al. designed each weak classifier on an

appropriate tangent space. As such, the inference on the

manifold was made through several tangent spaces. Sub-

barao et al. [25] reformulated the mean shift algorithm [4]

over non-linear manifolds. In particular they showed that

the mean shift can be seen as an iterative approach that

switches between manifold and tangent spaces. For action

classification, Guo et al. [11] proposed to a sparse-based so-

lution on Riemannian manifolds by mapping all the points

on the manifold to the tangent space of the identity matrix.

Flattening the manifold through tangent spaces is not

free of drawbacks. For example, only distances between

points to the tangent pole are are equal to true geodesic

distances. This is restrictive and may lead to inaccurate

modelling. A recent alternate school of thought consid-

ers embedding Grassmann manifolds (a special case of

Riemannian manifolds) into Reproducing Kernel Hilbert

Spaces (RKHS) [24], through the use of dedicated Grass-

mann kernel functions [12, 14]. This in turn opens the door

for employing many kernel-based machine learning algo-

rithms [24].

Contributions. There are two main novelties in this

work. Firstly, based on the Riemannian geodesic distance,

we propose a Riemannian pseudo kernel. Unlike the ker-

nels used in [12, 14], the proposed kernel is not restricted

to any special class of Riemannian manifolds. Secondly,

having a kernel at our disposal, we exploit RKHS theory to

recast a locality preserving projection method [15] from Eu-

clidean vector spaces to Riemannian manifolds. Lastly, we

apply the proposed approach to 3 distinct visual classifica-

tion tasks: recognition of actions, textures and pedestrians.
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We continue the paper as follows. Section 2 provides a

brief overview of Riemannian manifolds, which leads to the

proposed Riemannian pseudo kernel in Section 3. In Sec-

tion 4 we recast Euclidean locality preserving projection to

Riemannian manifolds. In Section 5 we compare the perfor-

mance of the proposed method with previous approaches on

the abovementioned visual classification tasks. The main

findings and possible future directions are summarised in

Section 6.

2. Riemannian Geometry

In this section we briefly review Riemannian geometry,

with a focus on the space of symmetric positive definite ma-

trices. Formally, a manifold is a topological space which is

locally similar to an Euclidean space [28]. Intuitively, we

can think of a manifold as a continuous surface lying in a

higher dimensional Euclidean space.

The tangent space, TX at X , is the plane tangent to the

surface of the manifold at that point. The tangent space can

be thought of as the set of allowable velocities for a point

constrained to move on the manifold. The minimum length

curve connecting two points on the manifold is called the

geodesic, and the distance between two points X and Y is

given by the length of this curve.

For a Riemannian manifold, geodesics (on the manifold)

are related to the tangents in the tangent space. For each

tangent ∆ ∈ TX , there exists a unique geodesic starting at

X with initial velocity ∆. Two operators, namely the expo-

nential exp
X

and logarithm maps log
X

= exp−1

X
, are defined

over the Riemannian manifolds to switch between manifold

and tangent space at X . More specifically, the exponen-

tial operator maps ∆ to the point Y on the manifold. The

property of the exponential map ensures that the length of

∆ is equivalent to the geodesic distance between X and Y .

The logarithm map is the inverse of the exponential map

and maps a point on the manifold to the tangent space TX .

The exponential and logarithm operators vary as point X

moves. These concepts are illustrated in Fig. 1.
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Figure 1. Illustration of the tangent space TX at point X on

a Riemannian manifold M. A covariance matrix can be inter-

preted as point X in the space of symmetric positive definite ma-

trices. The tangent vector ∆ can be obtained through the loga-

rithm mapping, ie. ∆ = log
X

(Y ). Every tangent vector in TX

can be mapped back to the manifold through the exponential map,

ie. exp
X

(∆) = Y . The dotted line shows the geodesic starting at

X and ending at Y .

Symmetric positive definite matrices with size d × d,

eg. non-singular covariance matrices, can be formulated as

a connected Riemannian manifold (Sym+

d ). For Sym+

d the

exponential and logarithm maps are defined as:

exp
X

(y) = X
1

2 exp
“

X
− 1

2 yX
− 1

2

”

X
1

2 (1)

log
X

(Y ) = X
1

2 log
“

X
− 1

2 Y X
− 1

2

”

X
1

2 (2)

In (1) and (2), exp (·) and log (·) are matrix exponential

and logarithm operators, respectively. For symmetric pos-

itive definite matrices they can be computed through Sin-

gular Value Decomposition (SVD). More specifically, let

X = UΣUT be the SVD of the symmetric matrix X , then

exp (X) = U exp (Σ) U
T

(3)

log (X) = U log (Σ) U
T

(4)

In the above equations, exp (Σ) and log (Σ) are two diag-

onal matrices where the diagonal elements are respectively

equivalent to the exponential or logarithms of the diagonal

elements of matrix Σ.

3. Riemannian Kernel

By considering the geodesic distance between Rieman-

nian points, we propose the following pseudo kernel:

kR (X , Y ) = exp{−σ−1dG (X , Y )} (5)

where dG (X , Y ) = trace
n

log2

“

X− 1

2 Y X− 1

2

”o

for Sym+

d .

Under certain conditions the proposed kernel be-

comes a true kernel (ie. a positive definite kernel

function on M). Specifically, the kernel matrix

K = [kij ]; kij = kR (Xi,Xj) is positive definite iff

V T
KV > 0, ∀V ∈ R

n. Expanding V T
KV yields:

V
T

KV =
“

Xn

i=1
vi

”2

− 2

n
X

i=1

X

j 6=i

vivj + 2

n
X

i=1

X

j 6=i

vivjki,j

=
“

Xn

i=1
vi

”2

+ 2

n
X

i=1

X

j 6=i

vivj (ki,j − 1) (6)

Note that ki,j ∈ [0, 1]. For values of vi and vj where

min (vivj(ki,j − 1)) = − vivj holds, we obtain:

min
“

V
T

KV
”

=
“

Xn

i=1
vi

”2

− 2
n

X

i=1

X

j 6=i

vivj (7)

As the right-hand side of Eqn. (7) is positive for vi 6= 0,

K would be a positive-definite matrix.

While the proposed pseudo kernel is not guaranteed to

always be a positive definite function, experiments in Sec-

tion 5 indicate that it can nevertheless still be quite useful.

We note that it is possible to convert pseudo kernels into

true kernels, as discussed in [3].
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4. Riemannian Locality Preserving Projection

Given an affinity graph in a vector space, the purpose of

locality preserving projections is to minimise an objective

function that incurs a heavy penalty if neighbouring points

in the original space are mapped far apart in the transformed

space [15]. This problem can be solved through a gener-

alised eigen-analysis framework. In the following text, we

formulate the locality preserving projections over Rieman-

nian manifolds. We call the resulting algorithm Riemannian

Locality Preserving Projection (RLPP).

Given N points X = {X1, X2, · · · , XN} from the un-

derlying Riemannian manifold M, the local geometrical

structure of M can be modelled by building a similarity

graph W . The simplest form of W is a binary graph ob-

tained based on the nearest neighbour properties of Rieman-

nian points:

• ǫ-neighbourhoods. Two nodes are connected if the

geodesic distance between them is less than a thresh-

old.

• k nearest neighbours. Two nodes are connected by an

edge if one node is among the k nearest neighbours of

the other node.

We note that more complex affinity graphs can also be

used to encode distances between points on Riemannian

manifolds [24]. Our aim is to find a mapping from M to

M′, ie. α : X i → Y i, to preserve the local geometry of the

manifold. A suitable transform would place the connected

points of W as close as possible, while being flexible to

some extent for the unconnected points of W . Such a map-

ping can be described by optimising the following objective

function:

f = min
1

2

X

i,j
(Y i − Y j)

2 W (i, j) (8)

Eqn. (8) punishes connected neighbours if they are

mapped far away in M′. Assume that points on the man-

ifold are implicitly known and only a measure of similarity

between them is available through a Riemannian kernel, de-

noted as kij = 〈X i, Xj〉.

Confining the solution to be linear, ie. αi=
PN

j=1
aijXj ,

we have:

Y i = (〈α1, X i〉 , 〈α2, X i〉 , · · · , 〈αr, X i〉)
T

(9)

By defining Al= [al1, al2, · · ·, alN ]T and Ki= [ki1, ki2, · · ·, kiN ]T,

it can be shown that 〈αl, X i〉 = AT
l K i. Hence Eqn. (8) can

be simplified to:

1

2

P

i,j (Y i − Y j)
2 W (i, j)

=
P

i AT
i K iK

T
i AT

i W (i, i) −
P

i,j AT
i KjK

T
i AT

i W (i, j)

= A
T

KDK
T

A − A
T

KW K
T

A

= A
T

KLK
T

A

(10)

Algorithm 1. Pseudocode for training Riemannian Locality

Preserving Projection (RLPP).

Input:

• Training set X = {X1, X2, · · · , XN} from the underlying

Riemannian manifold.

• The Riemannian heat kernel function kij , for measuring the

similarity between two points on a Riemannian manifold.

Processing:

1. Compute the Gram matrix [K]ij for all X i, Xj

2. Compute the similarity graph, its degree and Laplacian matri-

ces, W , D, and L respectively.

3. Solve the minimisation problem in Eqn. (11) by eigen de-

composition to obtain A. The r smallest eigenvectors of the

Rayleigh quotient KDK
T

KLKT form A.

Output:

• The projection matrix A = [A1|A2| · · · |Ar], where each Ai

is an eigenvector found in step 3 above; the eigenvectors are

sorted in an ascending manner according to their corresponding

eigenvalues.

where A = [A1|A2| · · · |Ar], K = [K1|K2| · · · |KN ] and

L = D − W is the Laplacian matrix. The minimum of (10)

can be found by imposing the constraint A
T

KDK
T

A = 1

[15, 30]. Hence we are interested in solving

arg min
A

A
T

KLK
T

A

s.t. A
T

KDK
T

A = 1 (11)

The solution of (11) can be found through the following

generalised eigenvalue problem:

KLK
T

A = λKDK
T

A (12)

Algorithm 1 outlines the locality preserving projection

on Riemannian manifolds. The algorithm uses the points

on the Riemannian manifold implicitly (ie. via measur-

ing similarities through a kernel) to obtain a mapping,

A = [A1|A2| · · · |Ar], that preserves a measure of local sim-

ilarity.

Upon acquiring the mapping A, the matching prob-

lem over Riemannian manifolds is reduced to classifica-

tion in vector spaces. More precisely, for any query sam-

ple Xq, a vector representation using the kernel function

and the mapping A is acquired, ie. V q = A
T Kq, where

Kq = (〈X1, Xq〉 , 〈X2, Xq〉 , · · · , 〈XN , Xq〉)
T . Similarly,

gallery points X i are represented by r dimensional vectors

V i = A
T K i and classification methods such as Nearest-

Neighbours or Support Vector Machines [2] can be em-

ployed to label Xq.
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Figure 2. Comparison of the proposed RLPP approach with

tangent-based analysis on synthetic data.

5. Experiments

We start this section by evaluating the performance of the

proposed RLPP method1 on synthetic data. We then com-

pare and contrast RLPP to previous state-of-the-art meth-

ods on several classification tasks, including gesture recog-

nition, texture classification and person re-identification.

5.1. Synthetic Data

For the synthetic data, we consider a multi-class clas-

sification problem over Sym+

3 . Since we are interested in

contrasting tangent-based analysis with the proposed ap-

proach, we considered several classification problems on

the identity tangent space (the space created by considering

the identity matrix as the pole or centre of projection).

We randomly generated 16 classes over the identity tan-

gent space where the samples in each class obey a normal

distribution. Then all the generated samples were mapped

back to the manifold using the exponential map. By fix-

ing the mean of each class and increasing the class variance

we created several classification problems with increasing

difficulty.

Fig. 2 demonstrates that RLPP obtains superior perfor-

mance when compared with tangent-based inference. We

note that by increasing the class variance, samples of dif-

ferent classes are intertwined which leads to a decrease in

recognition accuracy.

5.2. Gesture Recognition

For the hand-gesture recognition task, we used the Cam-

bridge hand-gesture dataset [16] which consists of 900 im-

age sequences of 9 gesture classes. Each class has 100 im-

age sequences performed by 2 subjects, captured under 5

illuminations and 10 arbitrary motions. The 9 classes are

1Matlab/Octave source code for the proposed method is available at

http://itee.uq.edu.au/˜uqmhara1

defined by the 3 primitive hand shapes and 3 primitive mo-

tions. Each sequence was recorded at 30 fps with a resolu-

tion of 320×240, in front of a fixed camera. The gestures are

roughly isolated in space and time. See Fig. 3 for examples.

We follow the test protocol defined in [16], where sequences

with normal illumination are considered for training while

tests are performed on the remaining sequences.

The descriptor for a video sequence is obtained by com-

puting the covariance matrix of frame descriptors. In a sim-

ilar manner to [22], each frame descriptor is obtained by

dividing the image into nR rectangular regions and concate-

nating the descriptors from each region. There is no overlap

between adjacent regions. Each region is further split into

small (8×8) overlapping blocks. The amount of overlap be-

tween two adjacent blocks is np pixels. The region descrip-

tor is simply the average of the descriptors of the region’s

blocks.

The descriptor for each block was obtained as follows.

First, each block is normalised to zero mean and unit vari-

ance, to reduce the undesired effects of illumination varia-

tion. The 2D Discrete Cosine Transform (DCT) [10] is then

used as a straightforward dimensionality reduction tech-

nique. Specifically, the top ρ low frequency components

are retained as the block descriptor, not including the 0-th

DCT component (as it has no information due to the nor-

malisation).

Based on preliminary experiments, we used nR=9, np=4

and ρ=15. Note that while the DCT typically decorrelates

image data at the block level, there is still correlation among

features due to the concatenation of the region descriptors.

As per [16] we report the recognition rates for the 4 illu-

mination sets. The proposed method was compared against

Riemannian geodesic distance, Tensor Canonical Correla-

tion Analysis (TCCA) [16] and principal angle [29]. TCCA,

as the name implies, is the extension of canonical correla-

tion analysis to multiway data arrays or tensors. Canonical

correlation analysis and principal angles are standard meth-

ods for measuring the similarity between subspaces [13]. If

A ∈ R
d×n1 and B ∈ R

d×n2 are two linear subspaces in R
d

with minimum rank r = min(rank(A, B)), then r unique

principal angles can be defined between A and B via:

cos(θi) = max
ai∈A, bj∈B

a
T
i bj (13)

subject to aT
i ai = bT

i bi = 1, aT
i aj = bT

i bj = 0, i 6= j. The

principal angle between the two subspaces is θi ∈ [0, π/2],

with i ∈ {1, 2, · · · , r}. In line with previous literature

[13, 14, 16, 29], we created the subspaces by applying SVD

on grey-level images. To compare subspaces, nearest neigh-

bour classification over the first principal angle was em-

ployed. The results, presented in Table 1, show that the

proposed approach outperforms both the TCCA and princi-

pal angle methods by a notable margin.
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Figure 3. Examples of actions in the Cambridge hand-gesture

video dataset [16].

Method Set1 Set2 Set3 Set4 Overall

Geodesic 66 79 82 85 78.00, σ=8.37
PA [29] 81 74 78 77 77.50, σ=2.89
TCCA [16] 81 81 78 86 81.50, σ=3.32
RLPP 86 86 85 88 86.25, σ=1.26

Table 1. Average correct recognition rate for the hand-

gesture recognition task using geodesic distance, principal an-

gle (PA) [29], Tensor Canonical Correlation Analysis (TCCA) [16]

and the proposed approach. In the last column, σ represents stan-

dard deviation.

5.3. Texture Classification

In this experiment, we performed a classification task

using the Brodatz texture dataset [21], which contains 111

texture images of size 640 × 640. Examples are shown in

Fig. 4.

Each image was divided into four equal parts of size

320 × 320. From each image, we used two parts for train-

ing and the remaining two parts for testing. To create a

Riemannian manifold, from each 320 × 320 image, we ex-

tracted one hundred rectangular regions of random cen-

tre, height and width. We confined the width and height

of the regions to be in the range of [16, 128]. For every

pixel I (x, y) in a region, we then computed a feature vec-

tor F (x, y)=
h

I (x, y) ,

˛

˛

˛

∂I
∂x

˛

˛

˛
,

˛

˛

˛

∂I
∂y

˛

˛

˛
,

˛

˛

˛

∂2I
∂x2

˛

˛

˛
,

˛

˛

˛

∂2I
∂y2

˛

˛

˛

i

. Each region is

then described by a 5 × 5 covariance descriptor of these

features.

In the test protocol, for any covariance descriptor we find

the nearest neighbour descriptor from the training set and

assign the corresponding image class to it. As a result, each

320×320 image is described by one hundred of such labels.

The class of each image was obtained using a majority vot-

ing rule. Since there are 111 × 2 × 100 = 22, 200 points in

the training set, generating affinity graphs is computation-

ally intensive. Instead, we randomly select 10 samples from

each texture class and train the model using the smaller sub-

set of 10 × 100 points. Upon deriving the Laplacian space,

we projected both the training and testing sets into the new

space.

Figure 4. Representative examples from the Brodatz texture

dataset [21].

Method Performance

Maximum response-M8 [9] 94.64%
Leung-Malik [17] 97.32%
Covariance descriptor 95.49%
Geodesic 97.77%
RLPP 99.54%

Table 2. Average correct recognition rate for the texture classifica-

tion task using maximum response filter bank) [9], Leung-Malik

filter bank [17], covariance descriptor, Riemannian geodesic dis-

tance and the proposed RLPP approach.

State-of-the-art methods for texture classification utilise

the notion of bag of words [22, 31]. More specifically, tex-

tons can be considered as visual words derived through clus-

tering a feature space. The feature space is built from the

output of a filter bank applied at every pixel, with the meth-

ods mainly differing in the employed filter bank. Leung-

Malik (LM) [17] and maximum response (MR) [9] filter

banks have been shown to be quite successful over the Bro-

datz dataset [27] and hence are considered here.

The LM filter bank is a combination of 48 anisotropic

and isotropic filters and produces a 48 dimensional feature

space. The MR filter bank is derived from both rotationally

symmetric and oriented filters. To achieve rotational invari-

ance, the responses of the oriented filters are aggregated by

a maximum operation. The feature space is 8 dimensional.

Results in Table 2 indicate that the proposed RLPP ap-

proach obtains the highest recognition accuracy.

5.4. Person Reidentification

For the person re-identification task, we used the modi-

fied ETHZ dataset [23]. The original ETHZ was captured

using a moving camera [6], providing a range of variations

in appearance of people. The dataset is structured into three

sequences. Sequence 1 contains 83 pedestrians (4,857 im-

ages), Sequence 2 contains 35 pedestrians (1,936 images),

and Sequence 3 contains 28 pedestrians (1,762 images). See

Fig. 5 for examples.
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We downsampled all images to 64 × 32 pixels. For each

subject we randomly selected 10 images for training and

used the rest for testing. Random selection of training and

testing data was repeated 20 times to obtain reliable statis-

tics. To describe each image, the covariance descriptor was

computed using the following features:

Fx,y=
ˆ

x, y, Rx,y , Gx,y , Bx,y , R′
x,y , G′

x,y , B′
x,y , R′′

x,y , G′′
x,y , B′′

x,y

˜

where x and y represent the position of a pixel, while

Rx,y, Gx,y and Bx,y represent the corresponding colour

information. Furthermore, C′
x,y=

h˛

˛

˛

∂C
∂x

˛

˛

˛
,

˛

˛

˛

∂C
∂y

˛

˛

˛

i

and

C′′
x,y=

h˛

˛

˛

∂2C
∂x2

˛

˛

˛
,

˛

˛

˛

∂2C
∂y2

˛

˛

˛

i

represent the gradient and Lapla-

cian for colour C, respectively.

We compared the proposed RLPP method with Par-

tial Least Squares (PLS) [23], Histogram Plus Epitome

(HPE) [1], and Symmetry-Driven Accumulation of Local

Features (SDALF) [7]. The results are shown in Fig. 6

in terms of recognition rate, by the Cumulative Matching

Characteristic (CMC) curve. The CMC curve represents

the expectation of finding the correct match in the top n

matches. The proposed method obtains superior perfor-

mance on Sequences 1 and 2, while matching the SDALF

method on Sequence 3.

6. Main Findings and Future Directions

Inference problems on Riemannian manifolds are typi-

cally tackled by embedding the manifolds into Euclidean

spaces. The general practice in this school of thought is to

use tangent spaces for embedding. In this paper we pro-

posed a new approach for making inference method on Rie-

mannian manifolds. Specifically, we devised a Riemannian

pseudo kernel and employed it for embedding Riemannian

manifolds into the familiar RKHS space. To demonstrate

the benefits of embedding into RKHS, we recast a local-

ity preserving projection approach from Euclidean spaces

to Riemannian manifolds.

When compared to several state-of-the-art methods, ex-

periments on gesture recognition, person re-identification

and texture classification indicate that the proposed kernel-

based embedding approach leads to considerable improve-

ments in discrimination accuracy.

Future avenues of research include exploring clustering

through kernel analysis on Riemannian manifolds. This is

particularly useful for creating visual dictionaries over Rie-

mannian manifolds and can open new paths to adapt the

ideas of sparse representation [5] to non-Euclidean spaces.
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Figure 5. Examples of pedestrians in the ETHZ dataset [6].

Rank

Figure 6. Performance comparison on Sequences 1 through 3 of

the ETHZ dataset, in terms of Cumulative Matching Characteristic

curves. The proposed RLPP method is compared with Histogram

Plus Epitome (HPE) [1], Symmetry-Driven Accumulation of Lo-

cal Features (SDALF) [7] and Partial Least Squares (PLS) [23].
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