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Abstract

Nonlinear extensions to the active subspaces method have brought remarkable results for
dimension reduction in the parameter space and response surface design. We further develop
a kernel-based nonlinear method. In particular we introduce it in a broader mathematical
framework that contemplates also the reduction in parameter space of multivariate objective
functions. The implementation is thoroughly discussed and tested on more challenging bench-
marks than the ones already present in the literature, for which dimension reduction with
active subspaces produces already good results. Finally, we show a whole pipeline for the
design of response surfaces with the new methodology in the context of a parametric CFD
application solved with the Discontinuous Galerkin method.
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1 Introduction

Nowadays, in many industrial settings the simulation of complex systems requires a huge amount
of computational power. Problems involving high-fidelity simulations are usually large-scale, more-
over the number of solutions required increases with the number of parameters. In this context, we
mention optimization tasks, inverse problems, optimal control problems, and uncertainty quantifi-
cation; they all suffer from the curse of dimensionality, that is, in this case, the computational time
grows exponentially with the dimension of the input parameter space. Data-driven reduced order
methods (ROM) [11, 52, 54] have been developed to deal with such costly outer loop applications
for parametric PDEs, but the limit for high dimensional parameter spaces remains.

One approach to alleviate the curse of dimensionality is to identify and exploit some notion
of low-dimensional structure of the model or objective function that maps the inputs to the out-
puts of interest. A possible linear input coordinate transformation technique is the Sliced Inverse
Regression (SIR) [34] approach and its extensions [16, 35, 74]. Sharing some characteristics with
SIR, there is the active subspaces (AS) property1 [53, 12, 13, 75] which, in the last years, has
emerged as a powerful linear data-driven technique to construct ridge approximations using gra-
dients of the model function. AS has been successfully applied to quantify uncertainty in the
numerical simulation of the HyShot II scramjet [15], and for sensitivity analysis of an integrated
hydrologic model [29]. Reduction in parameter space has been coupled with model order reduction
techniques [27, 46, 51] to enable more complex numerical studies without increasing the computa-
tional load. We mention the use of AS in cardiovascular applications with POD-Galerkin [60], in
nonlinear structural analysis [25], in nautical and naval engineering [66, 62, 63, 61], coupled with
POD with interpolation for structural and computational fluid dynamic (CFD) analysis [19, 65],
and with Dynamic Mode Decomposition in [64]. Applications in automotive engineering within a
multi-fidelity setting can be found in [48], for turbomachinery see [57], while for results in chemistry
see [30, 70]. Advances in efficient global design optimization with surrogate modeling are presented
in [38, 37] and applied to the shape design of the N +2 Supersonic Passenger Jet. Applications to
enhance optimization methods have been developed in [68, 23, 20, 18]. AS has also been success-
fully used to reduced the memory consumption of highly parametrized systems such as artificial
neural networks [17, 39].

Possible extensions and variants of the active subspaces property are the Local Active Subspace
method [50], the Active Manifold method [10] which reduces the problem to the analysis of a 1D
manifold by traversing the level sets of the model function at the expense of high online costs, the
shared Active Subspace method [31], the active subspaces property for multivariate functions [75],
and more recently an extension of AS to dynamical systems [5]. Another method is Nonlinear
Level set Learning (NLL) [77] which exploits RevNets to reduce the input parameter space with a
nonlinear transformation.

The search for low dimensional structures is also investigated in machine learning with manifold
learning algorithms. In this context the Active Subspaces methodology can be seen as a supervised
dimension reduction technique along with Kernel Principal Component Analysis (KPCA) [59] and
Supervised Kernel Principal Component Analysis (SKPCA) [7]. Other methods in the context of
kernel-based ROMs are [26, 32, 40]. In [43] a non-linear extension of the active subspaces property
based on Random Fourier Features [47, 36] is introduced and compared with machine learning
manifold learning algorithms for the construction of Gaussian process regressions (GPR) [73].

From the preliminary work [43] in the context of supervised dimension reduction algorithms in
machine learning, we develop the kernel-based active subspaces (KAS) method. The novelties of
our contribution are the following:

• regarding the AS theoretical background, we provide an upper bound of the ridge approxi-
mation error (2) for vector-valued objective functions and for a wide collection of probability
distributions (see Assumption 3).

• we extend kernel-based AS to vector-valued model functions and develop a detailed algo-
rithmic procedure for the optimization of the feature map. We also test different spectral
measures (see Equation (3.2) for the definition), differently from [43] where only the Gaussian
measure is employed.

1Some authors refer to the active subspaces method, we prefer to employ the term active subspaces property, as
suggested by Constantine.

2



• the application to several test problems of increasing complexity. In particular, we mainly
test KAS on problems where the active subspace is not present or the behaviour is not linear,
differently from [43], where the comparison is made with KPCA and its variants on datasets
with linear trends in the reduced parameter space, apart from the hyperparaboloid test case
that we have also included among our toy problems.

• the KAS method is finally applied to a computational fluid dynamics problem and compared
with the standard AS technique. We study the evolution of fluid flow past a NACA 0012 air-
foil in a duct composed by an initialization channel and a chamber. The motion is modelled
with the unsteady incompressible Navier-Stokes equations, and discretized with the Discon-
tinuous Galerkin method (DG) [28]. Physical and geometrical parameters are introduced
and sensitivity analysis of the lift and drag coefficients with respect to these parameters is
provided.

The work is divided as follows: in section 2 we briefly present the active subspaces property of
a model function with a focus on the construction of Gaussian process response surfaces. Then,
section 3 illustrates the novel method called kernel-based active subspaces for both scalar and
vector-valued model functions. Several tests to compare AS and KAS are provided in section 4
where we start from scalar functions with radial symmetry, we analyze an epidemiology model and
a vector-valued output generated from a stochastic elliptic PDE. A parametric CFD test case for
the study of the flow past a NACA airfoil using the Discontinuous Galerkin method is presented
in section 5. Finally, we outline some perspectives and future studies in section 6.

2 Active Subspaces for parameter space reduction

Active Subspaces (AS) approach proposed in [53] and developed in [12] is a technique for dimen-
sion reduction in parameter space. In brief AS are defined as the leading eigenspaces of the second
moment matrix of the model function’s gradient (for scalar model functions) and constitutes a
global sensitivity index [75]. In the context of ridge approximation, the choice of the active sub-
space corresponds to the minimizer of an upper bound of the mean square error obtained through
Poincaré-type inequalities [75]. After performing dimension reduction in the parameter space
through AS, the method can be applied to reduce the computational costs of different parameter
studies such as inverse problems, optimization tasks and numerical integration. In this work we
are going to focus on the construction of response surfaces with Gaussian process regression.

Definition 1 (Hypothesis on input and output spaces). The quantities related to the input space
are:

• m ∈ N the dimension of the input space,

• (Ω,F , P ) the probability space,

• X : (Ω,F , P ) → Rm, the absolutely continuous random vector representing the parameters,

• ρ : Rm → R, the probability density of X with support X ⊂ Rm.

The quantities related to the output are:

• d ∈ N the dimension of the output space,

• V = (Rd, RV ) the Euclidean space with metric RV ∈ M(d× d)2 and norm

∥x∥2RV
= xTRV x,

• f : X ⊂ Rm → V , the quantity/function of interest, also called objective function in opti-
mization tasks.

Let B(Rm) be the Borel σ-algebra of Rm. We will consider the Hilbert space L2(Rm,B(Rm), ρ ; V ),
of the measurable functions f : (Rm,B(Rm), ρ) → (Rd, RV ) such that

∥f∥2L2 :=

∫
X
∥f(x)∥2RV

dρ(x) ≤ ∞;

2In this work with M(m× n) we denote the set of real matrices with m rows and n columns.
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and the Sobolev space H1(Rm,B(Rm), ρ ; V ) of measurable functions f : (Rm,B(Rm), ρ) →
(Rd, RV ) such that

∥f∥2H1 := ∥f∥2L2 + ∥∇f∥2L2 = ∥f∥2L2 + |f |2H1 ≤ ∞ (1)

where ∇f is the weak derivative of f , and ∥∇f∥L2 =: |f |H1 .
We briefly recall how dimension reduction in parameter space is achieved in the construction

of response surfaces. The first step involves the approximation of the model function with ridge
approximation. We will follow [75, 44] for a review of the method.

The ridge approximation problem can be stated in the following way:

Definition 2 (Ridge approximation). Let B(Rm) be the Borel σ-algebra of Rm. Given r ∈ N, r ≪
d and a tolerance ϵ ≥ 0, find the profile h : (Rm,B(Rm), ρ) → V and the r-rank projection
Pr : Rm → Rm such that

EP [∥f(X)− h(PrX)∥2RV
] ≤ ϵ2. (2)

In particular we are interested in the minimization problem

argmin
Pr∈M(m×m)

EP

[
∥f(X)− h̃(PrX)∥2RV

]
, (3)

where h̃ = Eρ[f |σ(Pr)] is the conditional expectation of f under the distribution ρ given the σ-
algebra σ(Pr). The range of the projector Pr, Rr ∼ Im(Pr) ⊂ Rm, is the reduced parameter space.
The kernel of the projector Pr, Rm−r ∼ Im(Pr) ⊂ Rm, is the inactive subspace. The existence of
h̃ is guaranteed by the Doob-Dynkin lemma [9]. The function h̃ is proven to be the optimal profile
for each fixed Pr, as a consequence of the definition of the conditional expectation of a random
variable with respect to a σ-algebra.

Dimension reduction is effective if the inequality (2) is satisfied for a specific tolerance. The
choice of r is certainly of central importance. The dimension of the reduced parameter space can
be chosen a priori for a specific parameter study (for example r-dimensional regression), it can be
chosen in order to satisfy the inequality (2) or it is determined to guarantee a good accuracy of
the numerical method used to evaluate it [Corollary 3.10, [14]].

Dividing the left term of the inequality (2) with Eρ[∥f(X)−Eρ[f(X])∥2RV
] we obtain the Relative

Root Mean Square Error (RRMSE) and since it is a normalized quantity, we will use it to make
comparisons between different models

RRMSE =

√
EP [∥f(X)− h(PrX)∥2RV

]

EP [∥f(X)− EP [f(X)]∥2RV
]
. (4)

We remark that Pr is not unique. It can be shown that if h̃ is the optimal profile, then Pr is not
uniquely defined and can be chosen arbitrarily from the set {Qr : Rm → Rm| kerQr = kerPr}, see
[Proposition 2.2, [75]].

The following lemma is the key ingredient in the proof of the existence of an active subspace.
It is inherently linked to probability Poincaré inequalities of the kind∫

X
∥h(x)∥2L2 dρ(x) ≤ CP (X , ρ)

∫
X
∥∇h(x)∥2L2 dρ(x), (5)

for zero-mean functions in the Sobolev space h ∈ H1(X ), where CP (X , ρ) is the Poincaré constant
dependent on the domain X and on the probability density functions (p.d.f.), ρ. We need to make
the following assumption to prove the next lemma and the next theorem.

Definition 3. The probability density function ρ : X → R belongs to one of the following classes:

1. X is convex and bounded, ∃δ,D > 0 : 0 < δ ≤ ∥ρ(x)∥L∞ ≤ D <∞∀x ∈ X ,

2. ρ(x) ∼ exp(−V (x)) where V : Rm → (−∞,∞] , V ∈ C2 is α-uniformly convex,

uTHess(V (x))u ≥ α∥u∥22, ∀x,u ∈ Rm (6)

where Hess(V (x)) is the Hessian of V (x).
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3. ρ(x) ∼ exp(−V (x)) where V is a convex function. In this case we require also f Lipschitz
continuous.

In particular the uniform distribution belongs to the first class, the multivariate Gaussian distri-
bution N (m,Σ) to the second with α = 1/(σmax(Σ)) and the exponential and Laplace distributions
to the third. A complete analysis of the various cases is done in [44].

Proposition 1. Let (Ω,F , P ) be a probability space, X : (Ω,F , P ) → Rm an absolutely contin-
uous random vector with probability density function ρ belonging to one of the classes from the
Assumption 3. Then the following inequality is satisfied

Eρ

[
(h− Eρ[h|σ(Pr)])

2 |σ(Pr)
]
≤ CP (Pr, ρ)Eρ

[
∥(I − PT

r )∇h∥22|σ(Pr)
]

(7)

for all scalar functions h ∈ H1(X ) and for all r-rank orthogonal projectors, Pr, where CP (Pr, ρ)
is the Poincaré constant depending on Pr and on the p.d.f. ρ.

A summary of the values of the Poincaré constant in relationship with the choice of the prob-
ability density function ρ is reported in [44].

In the next theorem the projection Pr will depend on the output function f , so also the Poincaré
constant CP (Pr, ρ) will depend in fact on f .

We introduce the following notation for the matrix that substitutes the uncentered covariance
matrix of the gradient ∇f in the case of the application of AS to scalar model functions [14]

H =

∫
X
(Dxf(x))

TRV (ρ)(Dxf(x)) dρ(x).

where Dxf(x) ∈ M(d×m) is the Jacobian matrix of f . The matrix RV (ρ) depends on the class
which ρ belongs to, see Appendix A.

Theorem 1 (Existence of an active subspace). Under the hypothesis 1, let f ∈ H1(Rm,B(Rm), ρ ; V )
and let the p.d.f. ρ satisfy Lemma 1 and Assumption 3. Then the solution P̃r of the ridge ap-
proximation problem 2 is the orthogonal projector to the eigenspace of the first r-eigenvalues of H
ordered by magnitude

Hvi = λivi ∀i ∈ {1, . . . ,m}, P̃r =

r∑
j=1

vj ⊗ vj ,

with r ∈ N chosen such that

Eρ

[
∥f − h̃∥2RV

]
≤ C(CP , τ)

(
m∑

i=r+1

λi

) 1
1+τ

≤ ϵ2. (8)

with C(CP , τ) a constant depending on τ > 0 related to the choice of ρ and on the Poincaré
constant from lemma 1, and h̃ = Eρ[f |σ(Pr)] is the conditional expectation of f given the σ-algebra
generated by the random variable Pr ◦X. .

Proof. This theorem summarizes the results from Proposition 2.5 and Proposition 2.6 of [75], and
from Lemma 3.1, Lemma 4.2, Lemma 4.3, Lemma 4.4 and Theorem 4.5 of [44]. The proof is
expanded in Appendix A.

The eigenspace span{v1, . . . , vr} ⊂ Rm is the active subspace and the remaining eigenvectors
generate the inactive subspace span{vr+1, . . . , vm} ⊂ Rm. The condition f ∈ L2(Rm,B(Rm), ρ ; V )
is necessary for f to satisfy the error bound (2).

For the explicit procedure to compute the active subspace given its dimension r see Algorithm 1:
from W1 and W2 we define the approximations of the projector Pr with P̂r =W1W

T
1 .
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Algorithm 1 Active subspace computation.

Require: gradients dataset dY = (dy1, . . . , dyM )T , dyi ∈ M(d×m), that is dY is a 3-rank tensor
Require: symmetric positive definite metric matrix RV ∈ M(d× d)
Require: active subspace dimension r
1: Compute the uncentered covariance matrix with Monte Carlo:

H̃ =
1

M

M∑
j=1

dY [j, :, :]TRV dY [j, :, :].

2: Solve the eigenvalue problem:

H̃vi = λivi ∀i ∈ {1, . . . ,m},
W1 = (v1, . . . ,vr), W2 = (vr+1, . . . ,vm) ⇒ P̂r :=W1W

T
1 .

3: return active eigenvectors W1 = (v1, . . . ,vr) and inactive eigenvectors W2 = (vr+1, . . . ,vm)
with vi ∈ Rm, and ordered eigenvalues (λ1, . . . , λm)

2.1 Response surfaces

The term response surface refers to the general procedure of finding the values of a model function
f for new inputs without directly computing it but exploiting regression or interpolation from a
training set {xi, f(xi)}. The procedure for constructing a Gaussian process response is reported
in Algorithm 2, while in Algorithm 3 we show how to exploit it o predict the model function at
new input parameters.

Directly applying the simple Monte Carlo method with N samples we get a reduced approxi-
mation of f as

(h̃ϵ ◦ Pr)(X) = Eρ [f |σ(Pr)] ≈
1

N

N∑
i=1

f(P̂rX+ (Id − P̂r)Yi) =: ĥϵ,N (P̂rX), (9)

where we have made explicit the dependence of the optimal profile h̃ϵ on ϵ, Y1, . . . ,YN are inde-
pendent and identically distributed samples of Y ∼ ρ, and P̂r is an approximation of Pr obtained
with the simple Monte Carlo method from H, see Algorithm 1. An intermediate approximation
error is obtained employing the Poincaré inequality and the central limit theorem for the Monte
Carlo approximation

EP

[
(f(X)− ĥϵ,N (P̂rX))2

]
≤ C1

(
1 +N−1/2

)2
(λn+1 + · · ·+ λm), (10)

where C1 is a constant, and λn+1, . . . , λm are the eigenvalues of the inactive subspace of H
[Theorem 4.4, [14]].

In practice ĥϵ,N (P̂rX) is approximated with a regression or an interpolation such that a response

surface R satisfying Eρ

[
(ĥϵ,N (P̂rx)− R(P̂rx)

2)
]
≤ C2δ is built, where C2 is a constant, and δ

depends on the chosen method. An estimate for the successive approximations

f(X) ≈ h̃ϵ(PrX) ≈ ĥϵ,N (P̂rX) ≈ Rϵ,N,δ(P̂rX), (11)

is given by

EP

[
(f(X)− R(P̂rX))2

]
≤ C1(1 +N−1/2)2

(
τ(λ1 + · · ·+ λn)

1/2 + (λn+1 + · · ·+ λm)1/2
)2

+ C2λ

where dist(Im(Pr), Im(P̂r)) ≤ τ , and λi are the eigenvalues of H [Theorem 4.8, [14]].
In our numerical simulations we will build the response surface R with Gaussian process re-

gression (GPR) [73].
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Algorithm 2 Response surface construction with Gaussian process regression over the active
subspace.

Require: normalized input dataset X = (x1, . . . ,xM )T , xi ∈ Rm

Require: output dataset Y = (y1, . . . , yM )T , yi ∈ R
Require: active eigenvectors W1 = (v1, . . . ,vr), vi ∈ Rm

Require: kernel k : Rm × Rm → R, with hyper-parameters θ and the variance ϵ of the Gaussian
noise

1: Project the inputs in the active subspace: XW1 = X̃ ∈ M(M × r).
2: Evaluate the Gram matrix: Kij(θ) = k(x̃i, x̃j ; θ), 1 ≤ i, j ≤ r.
3: Tune the hyperparameters minimizing the negative log-likelihood:

θ̄ = argmin
θ

− log p(y|x, θ) ∝ 1

2
log |K(θ) + σIM |+ 1

2
Y T (K(θ) + σIM )−1Y ,

4: return trained Gaussian process

Algorithm 3 Prediction phase using the Gaussian process response surface over the active sub-
space.

Require: trained response surface y(x)
Require: active eigenvectors W1 = (v1, . . . ,vr), vi ∈ Rm

Require: test samples x ∈ Rm

1: Map the test samples x onto the active subspace: x̃ =W1x.
2: Evaluate the Gaussian process on x̃ and return the prediction t ∼ N (E[t], σ2(t)):

E[t] = k(x̃, X)K−1Y, σ2(t) = k(x̃, x̃)− k(x̃, X)K−1k(X, x̃).

3 Kernel-based Active Subspaces extension

Feature space
mapping

Active
subspace

Projection

Regression

Active variable

Figure 1: Illustration of the construction of a one-dimensional response surface with kernel-based
active subspaces and Gaussian process regression.

Keeping the notations of section 1, X : (Ω,F , P ) → Rm is the absolutely continuous random
vector representing the m-dimensional inputs with density ρ : X ⊂ Rm → R, and f : X ⊂ Rm →
(V,RV ) is the model function that we assume to be continuously differentiable and Lipschitz
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continuous.
One drawback of sufficient dimension reduction with AS applied to ridge approximation is

that if a clear linear trend is missing, projecting the inputs as PrX represents a loss of accuracy
on the approximation of the model f that may not be compensated even by the choice of the
optimal profile h̃ ◦ Pr = Eρ[f |σ(Pr)]. In order to overcome this, non-linear dimension reduction to
one-dimensional parameter space could be achieved discovering a curve in the space of parameters
that cuts transversely the level sets of f , this variation is presented in [10] as Active Manifold.
Another approach could consist in finding a diffeomorphism ϕ that reshapes the level sets such
that subsequently applying AS dimension reduction to the new model function f̃ ◦ ϕ = f could be
more profitable:

X ⊂ Rm ϕ(X ) ⊂ Rm

V

ϕ

f
f̃

Unfortunately constructing the Active Manifold or finding the right diffeomorphism ϕ could be
a complicated matter. If we renounce to have a backward map and we weaken the bond of the
method with the model, we can consider an immersion ϕ from the space of parameters X to an
infinite-dimensional Hilbert space H obtaining

X ⊂ Rm ϕ(X ) ⊂ H

V

ϕ

f
f̃

This is a common procedure in machine learning in order to increase the number of features [73].
Then AS is applied to the new model function f̃ : ϕ(X ) ⊂ H → V with parameter space ϕ(X ) ⊂ H.
A response surface can be built with 2 remembering to replace every occurrence of the inputs x
with their images ϕ(x). A synthetic scheme of the procedure is represented in Figure 1.

In practice we consider a discretization of the infinite-dimensional Hilbert space RD ≃ H with
D > m. Dimension reduction with AS results in the choice of a r-rank projection in the much
broader set of r-rank projections in H.

Since for AS only the samples of the Jacobian matrix of the model function are employed,
we can ignore the definition of the new map f̃ : ϕ(X ) ⊂ H → (V,RV ) and focus only on the
computation of the Jacobian matrix of f̃ with respect to the new input variable z := ϕ(x). The
uncentered covariance matrix becomes

H =

∫
ϕ(X )

[
(Dzf̃)

T (z)
]
RV

[
(Dzf̃)(z)

]
dµ(z)

=

∫
X

[
(Dzf̃)

T (ϕ(x))
]
RV

[
(Dzf̃)(ϕ(x))

]
dLX(x),

where µ := ϕ#(LX) is the pushforward probability measure of LX (the law of probability of X)
with respect to the map ϕ. Simple Monte Carlo can be applied sampling from the distribution ρ
in the input space X

H =

∫
X

[
(Dzf̃)

T (ϕ(x))
]
RV

[
(Dzf̃)(ϕ(x))

]
dLX(x)

≈ 1

M

M∑
i=1

[
(Dzf̃)

T (ϕ(xi))
]
RV

[
(Dzf̃)(ϕ(xi))

]
.

The gradients of f̃ with respect to the new input variable Z are computed from the known values
Dxf with the chain rule.

The application of the chain rule to the composition of functions f̃ ◦ ϕ : Rm → H → V is
applicable if f̃ is defined in an open set U ⊃ ϕ(X ). If ϕ is non singular and also injective the
new input space is a m-dimensional submanifold of H. If ϕ is also smooth there exists a smooth
extension of f̃ : ϕ(X ) ⊂ H → V onto the whole domain H, see Proposition 1.36 from [71].
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If the Hilbert space H has finite dimension H ∼ RD this procedure leaves us with an underde-
termined linear system to solve for Dzf̃

Dzf̃(ϕ(x))Dϕ(x) = Dxf(x),

Dzf̃(ϕ(x)) = Dxf(x)(Dϕ(x))
†, (12)

where † stands for the right Moore-Penrose inverse of the matrix Dϕ(x) with rank r, that is

(Dϕ(x))† = V Σ†UT ,

with the usual notation for the singular value decomposition (SVD) of Dϕ(x)

Dϕ(x) = UΣV T , (13)

and Σ† ∈ M(r× r) equal to the diagonal matrix with the inverse of the singular values as diagonal
elements. As anticipated if f is smooth enough and ϕ is an embedding, so that Dϕ has full
rank, the previous system has an unique solution. The most crucial part is the evaluation of the
gradients Dxf(x) from the input output couples, when they are not available analytically or from
the adjoint method applied to PDEs models: different approaches are present in the literature, like
local polynomial regressions and Gaussian process regression on the whole domain to approximate
the gradients; both are available in the ATHENA package [49]. For an estimate of the ridge
approximation error due to inaccurate gradients see [12].

Finally, we remark that in the AS method we approximate the random variable X as

PrX = v1(v1 ·X) + · · ·+ vr(vr ·X), (14)

with {vi} ⊂ Rm the active eigenvectors, whereas with KAS the reduced input space is contained
in H

PrX = v1(v1 · ϕ(X)) + · · ·+ vr(vr · ϕ(X)), (15)

with {vi} ⊂ H the active eigenvectors of KAS. In this case the model is enriched by the non-linear
feature map ϕ.

Algorithm 4 Kernel-based active subspace computation.

Require: gradients dataset dY = (dy1, . . . , dyM )T , dyi ∈ M(d×m)
Require: symmetric positive definite metric matrix RV ∈ M(d× d)
Require: feature subspace dimension D
Require: feature map ϕ : Rm → RD

Require: active subspace dimension r
1: Evaluate gradients solving an overdetermined linear system:

∀j ∈ {1, . . . ,M}, dY [j, :, :](Dϕ)† = dỸ [j, :, :] ∈ M(d,D).

2: Compute the uncentered covariance matrix with Monte Carlo:

H̃ =
1

M

M∑
k=1

dỸ [k, :, :]TRV dỸ [k, :, :].

3: Solve the eigenvalue problem: H̃vi = λivi, ∀i ∈ {1, . . . , D}.
4: return active eigenvectors W1 = (v1, . . . ,vr) and inactive eigenvectors W2 = (vr+1, . . . ,vD)

with vi ∈ RD, and ordered eigenvalues (λ1, . . . , λD)

3.1 Choice of the Feature Map

The choice for the map ϕ is linked to the theory of Reproducing Kernel Hilbert Spaces (RKHS) [8],
and it is defined as

z = ϕ(x) =

√
2

D
σf cos(Wx+ b), (16)

cos(Wx+ b) :=
1√
D
(cos(W [1, :] · x+ b1), . . . , cos(W [D, :] · x+ bD))T (17)
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where σf is an hyperparameter corresponding to the empirical variance of the model, W ∈ M(D×
m) is the projection matrix whose rows are sampled from a probability distribution µ on Rm and
b ∈ RD is a bias term whose components are sampled independently and uniformly in the interval
[0, 2π]. We remark that its Jacobian can be computed analytically as

∂zj

∂xi
= −

√
2

D
σf sin

(
D∑

k=1

Wikxk + bk

)
Wij , (18)

for all i ∈ {1, . . . ,m}, and for all j ∈ {1, . . . , D}.
We remark that in order to guarantee the correctness of the procedure for evaluating the

gradients we have to prove that the feature map is injective and non singular. In general however
the feature map (16) cannot not be injective due to the periodicity of the cosine but at least it is
almost surely non singular if the dimension of the feature space is high enough.

The feature map (16) is not the only effective immersion that provides a kernel-based extension
of the active subspaces. For example an alternative is the following composition of a linear map
with a sigmoid

ϕ(z) =
C

1 + α e−Wz
,

where C is a constant, α is an hyperparameter to be tuned, and W ∈ M(D,m) is, as before, a
matrix whose rows are sampled from a probability distribution on Rm.

Other choices involve the use of Deep Neural Networks to learn the profile h and the projection
function Pr of the ridge approximation problem [67].

The tuning of the hyperparameters of the spectral measure consists in a global optimization
problem where the dimension of the domain can vary between 1 and the dimension of the input
space m. The object function to optimize is the relative root mean square error (RRMSE)

RRMSE(Ytest, Ttest) =

√√√√∑N
i=1(ti − yi)2∑N
i=1(ti − ȳ)2

, (19)

where Ttest = (ti)i∈{1,...,N} are the predictions obtained from the response surface built with KAS
and associated to the test set, Ytest = (yi)i∈{1,...,N} are the targets associated to the test set, and
ȳ is the mean value of the targets. We implemented a logarithmic grid-search, see Algorithm 5,
making use of the SciPy library [69]. Another choice could be Bayesian stochastic optimization
implemented in the open-source library GPyOpt [3].

The tuning of the hyperparameters of the spectral measure chosen is the most computation-
ally expensive part of the procedure. We report the computational complexity of the algorithms
introduced to have a better understanding of the additional cost implied by the implementation
of response surface design with KAS. Let us assume that the number of random Fourier features
D, the number of input, output, and gradient samples M , and the dimension of the parameter
space m, are ordered in this manner D > M > m, as is usually the case, and that the quantity
of interest f is a scalar function. The cost of computing an active subspace is O(Mm2), that is
the cost of the SVD of the gradients matrix dY used to get the active and inactive eigenvectors
in Algorithm 1. The cost of the training of a response surface with Gaussian process regression
in Algorithm 2 depends on the cost of minimization of the log-likelihood: each evaluation of the
log-likelihood involves the computation of the determinant and the inverse of the regularized Gram
matrix K(θ) + σIM , that is O(M3). Finally, the cost for the evaluation of the kernel-based active
subspace is associated to the SVD of dỸ that is O(DM2) in Algorithm 4, and to the resolution of
the overdetermined linear system to obtain the gradients dỸ , that is M times O(Dm2) since it is
related to the evaluation of the pseudo-inverse of Dϕ. So, the computational complexity for the
response surface design with AS and GPR is O(nGPRM

3), while for the response surface design

with KAS and GPR is O
(
ngrid-searchn

(
DM2

n2 + M
n Dm

2 + nGPR
M3

n3

))
, where nGPR is the maxi-

mum number of steps of the optimization algorithm used to minimize the log-likelihood, ngrid-search
is the number of hyperparameter instances γ ∈ G to try in Algorithm 5, and n is the number of
batches in the n-fold cross validation procedure. In particular, for each grid search hyperparameter
the main cost is associated to the GPR training since nGPR usually satisfy Dn < nGPRM , when
the optimizer chosen is L-BFGS-B from SciPy [69], accounting also for the number of restarts of
the optimizer: in the numerical tests we performed the number of restarts of the training of the
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GPR is problem-dependent but always less than 10. In general, the number ngrid-search depends
on the chosen application, and the multiplicative factor between the computational complexity of
the response surface design procedure with KAS or AS is lower than 3ngrid-searchn.

Algorithm 5 Tuning the feature map with logarithmic grid-search.

Require: normalized input dataset X = (x1, . . . ,xM )T , xi ∈ Rm

Require: output dataset Y = (y1, . . . , yM )T , yi ∈ R
Require: gradients dataset dY = (dy1, . . . , dyM )T , dyi ∈ M(d×D)
Require: spd metric matrix RV ∈ M(d× d)
Require: feature subspace dimension D
Require: feature map ϕ : Rm → RD

Require: spectral density with hyperparameter α, µ = µ(α)
Require: active subspace dimension r
Require: tolerance for the tuning procedure tol ≈ 0.8.
1: Create the grid G and set the variable BEST to 1.
2: for γ ∈ G do
3: Compute the feature map projection matrix W associated to γ: W [i, :

] sampled from µ(γ), ∀i ∈ {1, . . . , D}.
4: Compute the uniformly sampled bias b: b[i] ∼ U(0, 2π).
5: Compute score with n-fold cross validation:
6: for i = 1 to n do
7: Divide input, output, and gradients in train and test datasets.
8: Compute (W1,W2, (λ1, . . . , λD)) with KAS method in Algorithm 4 with inputs

(dYtrain, RV , D, ϕ, r).
9: Build GPR response surface with inputs (Xtrain, Ytrain,W1, k) using Algorithm 2.

10: Predict the values Ttest using Algorithm 3 with input Xtest.
11: Evaluate the score as score[n] = RRMSE(Ytest, Ttest).
12: if score[n] > tol then
13: Stop cross validation and pass to the next value of α.
14: end if
15: end for
16: if mean(score) < BEST then
17: Save W and b, and set BEST to mean(score).
18: end if
19: end for
20: return projection matrix W , and bias b

3.2 Random Fourier Features

The motivation behind the choice for this map from Equation (16) comes from the theory on
Reproducing Kernel Hilbert Spaces. The infinite-dimensional Hilbert space (H, ⟨·, ·⟩) is assumed
to be a RKHS with real shift-invariant kernel k : X × X → R with k(0) = 1 and feature map ϕ.

In order to get a discrete approximation of ϕ : X ⊂ Rm → H, random Fourier features
are employed [47, 36]. Bochner’s theorem [41] guarantees the existence of a spectral probability
measure µ such that

k(x,y) =

∫
Rm

eiω·(x−y) dµ(ω).

From this identity we can get a discrete approximation of the scalar product ⟨·, ·⟩ with Monte Carlo
method, exploiting the fact that the kernel is real

⟨ϕ(x), ϕ(y)⟩ = k(x,y) ≈ 1

D

D∑
i=1

cos(ωi · x+ bi) cos(ωi · y + bi) = zT z, (20)

z =
1√
D
(cos(ω1 · x+ b1), . . . , cos(ωD · x+ bD)), (21)
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and from this relation we obtain the approximation ϕ ≈ z. The sampled vectors {ωi}i=1,...,D are
called random Fourier features. The scalars {bi}i=1,...,D are bias terms introduced since in the
approximation we have excluded some trigonometric terms from the following initial expression

1

D

D∑
i=1

(cos(ωi · x) cos(ωi · y)− sin(ωi · x) sin(ωi · y)) .

Random Fourier features are frequently used to approximate kernels. We consider only spectral
probability measures which have a probability density, usually named spectral density. In the
approximation of the kernel with random Fourier features, under some regularity conditions on
the kernel, an explicit probabilistic bound depending on the dimension of the feature space D can
be proved [41]. This technique is used to scale up Kernel Principal Component Analysis [56, 55]
and Supervised Kernel Principal Component Analysis [7], but in the case of kernel-based AS the
resulting overdetermined linear system employed to compute the Jacobian matrix of the new model
function increases in dimension instead.

The most famous kernel is the squared exponential kernel also called Radial Basis Function
kernel (RBF)

kRBF(x,y) = exp

(
−∥x− y∥2

2l2

)
, (22)

where l is the characteristic length-scale. The spectral density is Gaussian N (0, 1/4π2l2):

S(ω) = (2πl2)D/2exp(−2π2l2ω2). (23)

Thanks to Bochner’s theorem to every probability distribution that admits a probability density
function corresponds a stationary positive definite kernel. So having in mind the definition of the
feature map ϕ from Equation (16), we can choose any probability distribution for sampling the
random projection matrix W ∈ M(D ×m) without focusing on the corresponding kernel since it
is not needed by the numerical procedure.

After the choice of the spectral measure the corresponding hyperparameters have to be tuned.
This is linked to the choice of the hypothesis models in machine learning and it is usually carried
out for the hyperparameters of the employed kernel. From the choice of the kernel and the corre-
sponding hyperparameters some regularity properties of the model are implicitly assumed [73].

4 Benchmark test problems

In this section we are going to present some benchmarks to prove the potential gain of KAS
over standard linear AS, for both scalar and vectorial model functions. In particular we test
KAS on radial symmetric functions, with 2-dimensional and 8-dimensional parameter spaces, on
the approximation of the reproduction number R0 of the SEIR model, and finally on a vectorial
output function that is the solution of a Poisson problem.

One dimensional response surfaces are built following the algorithm described in subsection 2.1.
The tuning of the hyperparameters of the feature map is carried out with a logarithmic grid-search
and 5-fold cross validation for the Ebola test case, while for the other cases we employed Bayesian
stochastic optimization implemented in [24] with 3-fold cross validation. The score function cho-
sen is the Relative Root Mean Square Error (RRMSE). The spectral measure for each test case
is chosen by brute force among the Laplace, Gaussian, Beta and multivariate Gaussian distribu-
tions. The number of Fourier features is not established based on a criterion but we have seen
experimentally that above a certain threshold the number of features is high enough to at least
reproduce the accuracy of the AS method. Since the most sensitive part to the final accuracy of
the response surface is the tuning of the hyperparameters of the spectral measures, we suggest to
choose an affordable number of features between 1000 and 2000, and focus on the tuning of said
hyperparameters instead.We remark that the number of samples employed is problem dependent:
some heuristics to determine it can be found in [12], but the crucial point is that additional training
samples with respect to the ones used for the AS method are not needed for the novel KAS method.
Moreover, the CPU time for the hyperparameters tuning procedure is usually negligible with re-
spect to the time required to obtain input-output pairs from the numerical simulation of PDEs
models: in our applications the tuning procedure’s computational time is in the order of minutes
(usually around 10-15 minutes for most testcases), while for the CFD application of Section 5 it is
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in the order of days and for the stochastic elliptic partial differential equation of Subsection 4.3 it
is in the order of hours. We also remark that the tuning Algorithm 5, the GPR training restarts,
and the choice of the spectral measure can be easily parallelized.

For the radial symmetric and Ebola test cases the inputs are sampled from a uniform distribu-
tion with problem dependent ranges.For the stochastic elliptic partial differential case the inputs
are the coefficients of a Karhunen-Loève expansion and are sampled from a normal distribution.
All the computations regarding AS and KAS are done using the open source Python package called
ATHENA [49].

4.1 Radial symmetric functions

Radial symmetric functions represent a class of model functions for which AS is not able to unveil
any low dimensional behaviour. In fact for these functions any rotation of the parameter space
produce the same model representation. Instead Kernel-based AS is able to overcome this problem
thanks to the mapping onto the feature space.

We present two benchmarks: an 8-dimensional hyperparaboloid defined as

f : [−1, 1]8 ⊂ R8 → R, f(x) =
1

2
∥x∥2, (24)

and the surface of revolution in R3 with generatrix g(x) = sin(x2)

f : [−3, 3]2 ⊂ R2 → R, f(x) = g(∥x∥) = sin(∥x∥2). (25)

The gradients are computed analytically.
For the hyperparaboloid we use Ns = 500 independent, uniformly distributed training samples

in [−1, 1]8, while for the sine case the training samples are Ns = 800 in [−3, 3]2. In both cases
the test samples are 500. The feature space has dimension 1000 for both the first and the second
case. The spectral distribution chosen is the multivariate normal with hyperparameter a uniform
variance λId, and a product of Laplace distributions with γ and b as hyperparameters, respectively.
The tuning is carried out with 3-fold cross validation. The results are summarized in Table 1.

Table 1: Performance results for AS and KAS methods. For each case we report the parameter
space dimension, the number of samples Ns used for the training, the chosen distribution, the
dimension of the feature space, and the RRMSE mean and standard deviation for AS and KAS.
In bold the best results.

Case Dim Ns
Spectral Feature

RRMSE AS RRMSE KAS
distribution space dim

Hyperparaboloid 8 500 N (0, λId) 1000 0.98 ± 0.03 0.23 ± 0.02
Sine 2 800 Laplace(γ, b) 1000 1.011 ± 0.01 0.31 ± 0.06
Ebola 8 800 Beta(α, β) 1000 0.46 ± 0.31 0.31 ± 0.03
SPDE (30) 10 1000 N (0,Σ) 1500 0.611 ± 0.001 0.515 ± 0.013

Looking at the eigenvalues of the uncentered covariance matrix of the gradients H̃ for the
hyperparaboloid case in Figure 2, we can clearly see how the decay for AS is almost absent, while
using KAS the decay after the first eigenvalue is pronounced, suggesting the presence of a kernel-
based active subspace of dimension 1.

The one-dimensional sufficient summary plots, which are f(x) againstWT
1 x— in the AS case —

or againstWT
1 ϕ(x) — in the KAS case —, are shown in Figure 3 and Figure 4, respectively. On the

left panels we present the Gaussian process response surfaces obtained from the active subspaces
reduction, while on the right panels the ones obtained with the kernel-based AS extension. As we
can see AS fails to properly reduce the parameter spaces, since there are no preferred directions
over which the model functions vary the most. The KAS approach, on the contrary, is able to
unveil the corresponding generatrices. This results in a reduction of the RMS by a factor of at
least 3 (see Table 1).
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Figure 2: Eigenvalues of the covariance matrix H̃ ∈ R8×8 applied to the hyperparaboloid case for
the AS procedure on the left, and the first 10 eigenvalues of the covariance matrix H̃ ∈ R1000×1000

for the KAS procedure applied to the same case on the right.
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Figure 3: Comparison between the sufficiency summary plots obtained from the application of
AS and KAS methods for the hyperparaboloid model function with domain [−1, 1]8, defined in
Equation 24. The left plot refers to AS, the right plot to KAS. With the blue solid line we depict
the posterior mean of the GP, with the shadow area the 68% confidence intervals, and with the
blue dots the testing points.
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Figure 4: Comparison between the sufficiency summary plots obtained from the application of AS
and KAS methods for the surface of revolution model function with domain [−3, 3]2, defined in
Equation 25. The left plot refers to AS, the right plot to KAS. With the blue solid line we depict
the posterior mean of the GP, with the shadow area the 68% confidence intervals, and with the
blue dots the testing points.
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4.2 SEIR model for the spread of Ebola

In most engineering applications the output of interest presents a monotonic behaviour with re-
spect to the parameters. This means that, for example, the increment in the inputs produces a
proportional response in the outputs. Rarely the model function has a radial symmetry, and in
such cases the parameter space can be divided in subdomains, which are analyzed separately. In
this section we are going to present a test case where there is no radial symmetry, showing that,
even in this case the kernel-based AS presents better performance with respect to AS.

For the Ebola test case3, the output of interest is the basic reproduction number R0 of the
SEIR model, described in [21], which reads

R0 =
β1 +

β2ρ1γ1

ω + β3

γ2
ψ

γ1 + ψ
, (26)

with parameters distributed uniformly in Ω ⊂ R8. The parameter space Ω is an hypercube defined
by the lower and upper bounds summarized in Table 2.

Table 2: Parameter ranges for the Ebola model. Data taken from [21].

β1 β2 β3 ρ1 γ1 γ2 ω ψ

Lower bound 0.1 0.1 0.05 0.41 0.0276 0.081 0.25 0.0833
Upper bound 0.4 0.4 0.2 1 0.1702 0.21 0.5 0.7

We can compare the two one-dimensional response surfaces obtained with Gaussian process
regression. The training samples are Ns = 800, and we use 1000 features. As spectral measure
we use again the multivariate gaussian distribution N (0,Σ) with hyperparameters the elements of
the diagonal of the covariance matrix. The tuning is carried out with 5-fold cross validation. Even
in this case, the KAS approach results in smaller RMS with respect to the use of AS (around 60%
less), as reported in Table 1. In Figure 5 we report the comparison of the two approaches over an
active subspace of dimension 1.
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Figure 5: Comparison between the sufficiency summary plots obtained from the application of AS
and KAS methods for the R0 model function with domain Ω, defined in Equation 26. The left plot
refers to AS, the right plot to KAS. With the blue solid line we depict the posterior mean of the
GP, with the shadow area the 68% confidence intervals, and with the blue dots the testing points.

4.3 Elliptic Partial Differential Equation with random coefficients

In our last benchmark we apply the kernel-based AS to a vectorial model function, that is the
solution of a Poisson problem with heterogeneous diffusion coefficient. We refer to [75] for an
application, on the same problem, of the AS approach.

3The dataset was taken from https://github.com/paulcon/as-data-sets.
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We consider the following stochastic Poisson problem on the square x = (x, y) ∈ Ω := [0, 1]2:
−∇ · (κ ∇u) = 1, x ∈ Ω,

u = 0, x ∈ ∂Ωtop ∪ ∂Ωbottom,

u = 10y(1− y), x ∈ ∂Ωleft,

n · ∇u = 0, x ∈ ∂Ωright,

(27)

with homogeneous Neumann boundary condition on the right side of the domain, that is ∂Ωright,
Neumann boundary conditions on the left side of the domain, that is ∂Ωleft, and Dirichlet boundary
conditions on the remaining part of ∂Ω. The diffusion coefficient κ : (Ω,A, P ) × Ω → R, where
A is a σ-algebra, is such that log(κ) is a Gaussian random field, with covariance function C(x,y)
defined by

C(x,y) = exp

(
−∥x− y∥2

β2

)
, ∀x,y ∈ Ω, (28)

where β = 0.03 is the correlation length. This random field is approximated with the truncated
Karhunen-Loève decomposition

κ(s,x) ≈ exp

(
m∑
i=0

Xi(s)γiψi(x)

)
∀(s,x) ∈ Ω× Ω, (29)

where (Xi)i∈1,...,m are independent standard normal distributed random variables, and (γi,ψi)i∈1,...,d

are the eigenpairs of the Karhunen-Loève decomposition of the zero-mean random field κ.
In our simulation the domain Ω is discretized with a triangular unstructured mesh T with 3194

triangles. The parameter space has dimension m = 10. The simulations are carried out with the
finite element method (FEM) with polynomial order one, and for each simulation the parameters
(Xi)i=1,...m are sampled from a standard normal distribution. The solution u is evaluated at
d = 1668 degrees of freedom, thus (V,RV ) ≈ (Rd, S +M) where the metric RV is approximated
with the sum of the stiffness matrix S ∈ Rd ×Rd and the mass matrix M ∈ Rd ×Rd. This sum is
a discretization of the norm of the Sobolev space H1(Ω). The number of features used in the KAS
procedure is D = 1500, the number of different independent simulations is M = 1000.

Three outputs of interest are considered. The first target function f : Rm → R is the mean
value of the solution at the right boundary ∂Ωright, which reads

f(X) =
1

|∂Ωright|

∫
∂Ωright

u(s) ds, (30)

and it is used to tune the feature map minimizing the RRMSE of the Gaussian process regression,
as described in Algorithm 5. A summary of the results for the first output is reported in Table 1.
The plots of the regression are reported in Figure 6. Even in this case both from a qualitative and
a quantitative point of view, the kernel-based approach achieves the best results.

The second output we consider is the solution function

f : Rm → (V,RV ) ≈ (Rd, S), f(X) = u ∈ Rd. (31)

This output can be employed as a surrogate model to predict the solution u given the parameters X
that define the diffusion coefficient instead of carrying out the numerical simulation. The surrogate
model should be constructed over the span of the modes identified by the chosen reduction strategy,
after projecting the data. AS and KAS modes are distinguished but can detect some common
regions of interest as shown in Table 3.

The third output is the evaluation of the solution at a specific degree of freedom with index î,
that is

f : Rm → R, f(X) = uî ∈ R, (32)

in this case the dimension of the input space is m = 100. Since we use a Lagrangian basis in the
finite element formulation and the polinomial order is 1, the node of the mesh associated to the
chosen degree of freedom has coordinates [0.27, 0.427] ∈ Ω. Qualitatively we can see from Table 3
that the AS modes locate features in the domain which are relatively more regular with respect to
the KAS modes. To obtain this result we increased the dimension of the input space, otherwise not
even the AS modes could locate properly the position in the domain Ω of the degree of freedom.
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Figure 6: Comparison between the sufficiency summary plots obtained from the application of AS
and KAS methods for the stochastic PDE model, defined in Equations (27) and (30). The left plot
refers to AS, the right plot to KAS. With the blue solid line we depict the posterior mean of the
GP, with the shadow area the 68% confidence intervals, and with the blue dots the testing points.

In the second and third case the diffusion coefficient is given by

κ(x) = exp

(
D∑
i=1

vj [i]ψ̃j(x)

)
∀(s,x) ∈ Ω× Ω, (33)

where vj ∈ RD, j ∈ {1, . . . , D}, is the j-th active eigenvector from the KAS procedure and the

functions Ψ̃ := (ψ̃1, . . . , ψ̃D) are defined by

Ψ̃ = ϕ(Ψ), (34)

where ϕ is the feature map defined in Equation (16) with the projection matrix W and bias b, and
Ψ := (γ1ψ1, . . . , γmψm).

The gradients of the three outputs of interest considered are evaluated with the adjoint method.

5 A CFD parametric application of KAS solved with the
DG method

We want to test the kernel-based extension of the active subspaces in a computational fluid dy-
namics context. The lift and drag coefficients of a NACA 0012 airfoil are considered as model
functions. Numerical simulations are carried out with different input parameters for quantities
that describe the geometry and the physical conditions of the problem. The evolution of the model
is protracted until a periodic regime is reached. Once the simulation data have been collected,
sensitivity analysis is performed searching for an active subspace and response surfaces with GPR
are then built from the application of AS and KAS techniques.

The fluid motion is modelled through the unsteady incompressible Navier-Stokes equations ap-
proximated through the Chorin-Temam operator-splitting method implemented in HopeFOAM [4].
HopeFOAM is an extension of OpenFOAM [1, 72], an open source software for the solution of com-
plex fluid flows problems, to variable higher order element method and it adopts a Discontinuous
Galerkin Method, based on the formulation proposed by Hesthaven and Warburton [28].

The Discontinuous Galerkin method (DG) is a high-order method, which has appealing features
such as the low artificial viscosity and a convergence rate which is optimal also on unstructured
grids, commonly used in industrial frameworks. In addition to this, DG is naturally suited for
the solution of problems described by conservative governing equations (Navier Stokes equations,
Maxwell’s equations and so on) and for parallel computing. All these properties are due to the fact
that, differently from formulations based on standard finite elements, no continuity is imposed on
the cell boundaries and neighboring elements only exchange a common flux. The major drawback
of DG is its high computational cost with respect to continuous Galerkin methods, due to the
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Table 3: First 3 modes using Karhunen-Loève (K-L) decomposition, AS, and KAS, for the outputs
defined in Equations (30), (31), and (32).

Case Mode 1 Mode 2 Mode 3

K-L

0 1
0

1

-0.7

-0.5

-0.4

-0.2

-0.0

0 1
0

1

-0.6

-0.3

-0.0

0.3

0.6

0 1
0

1

-0.5

-0.3

-0.1

0.2

0.4

AS (30)

0 1
0

1

-0.5

-0.2

0.0

0.3
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need of evaluating fluxes during each time step and the presence of extra degree of freedoms in
correspondence of the elemental edges.

Nowadays efforts are aimed at applying the DG in problems which involve deformable do-
mains [76] and at improving the computational efficiency of the DG adopting techniques based on
hybridization methods, matrix-free implementations, and massive parallelization [42, 45].

5.1 Domain and mesh description

The domain Ω of the fluid dynamic simulation is a two-dimensional duct with a sudden area
expansion and a NACA 0012 airfoil is placed in the largest section. The inflow ∂ΩI is placed at
the beginning of the narrowest part of the duct, and here the fluid velocity is set constant along
all the inlet boundary. The outlet is placed on the right hand side and it is denoted with ∂ΩO.
We refer with ∂ΩW := ∂Ω\{∂ΩO ∪ ∂ΩI} to the boundaries of the airfoil and to the walls of the
duct, where no slip boundary conditions are applied. The horizontal lengths of the sections of
the channels are 0.6 m and 1.35 m, respectively. The vertical length of the duct after the area
expansion is 0.4 m, while the width of the first one depends on two distinct parameters. The airfoil
has a chord-length equal to 0.1 m but its position with respect to the duct and its angle of attack
are described by geometric parameters. Further details about the geometric parameterization of
the geometry are provided in the following section. A proper triangulation is designed with the
aid of the gmsh [2] tool and the domain is discretized with 4445 unstructured elements.

The evaluation of adimensional magnitudes, commonly used for characterizing the fluid flow
field, requires the definition of some reference magnitudes. For the problem at hand we consider
the equivalent diameter of the channel in correspondence of the inlet as the reference lengthscale,
while the reference velocity is the one imposed at the inlet.

5.2 Parameter space description

We chose 7 heterogeneous parameters for the model: 2 physical, and 5 geometrical which describe
the width of the channel and the position of the airfoil. In Table 4 are reported the ranges for
the geometrical and physical parameters of the simulation. U is the first component of the initial
velocity, ν is the kinematic viscosity, x0 and y0 are the horizontal and vertical components of the
translation of the airfoil with respect to its reference position (see Figure 7), α is the angle of the
counterclockwise rotation and the center of rotation is located right in the middle of the airfoil,
y+ and y− are the module of the vertical displacements of the upper and lower side of the initial
conduct from a prescribed position.

Table 4: Parameter ranges for the NACA problem.

ν U x0 y0 α y+ y−

Lower bound 0.00036 0.5 -0.099 -0.035 0 -0.02 -0.02
Upper bound 0.00060 2 0.099 0.035 0.0698 0.02 0.02

In Figure 7 are reported different configurations of the domain for the minimum and maximum
values of the parameters α, x0, y0, and the minimum opening of the channel.

We have considered only the counterclockwise rotation of the airfoil for symmetrical reasons.
The range of the Reynolds number varies from 400 to 2000, still under the regime of laminar flow.

5.3 Governing equations

The CFD problem is modeled through the incompressible Navier-Stokes and the open source solver
HopeFOAM [4] has been employed for solving this set of equations [28].

Let Ω ⊂ R2 be the two-dimensional domain introduced in subsection 5.1, and let us consider
the incompressible Navier-Stokes equations. Omitting the dependence on (x, t) ∈ Ω × R+ in the
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Figure 7: Domain configuration for minimum and maximum values of some geometric parameters.
In order are represented the maximum angle of attack α, the ranges for the horizontal translation
x0, the ranges for the vertical translation y0, and the minimum opening of the channel which
depends on the parameters y+ and y− in Table 4.

first two equations for the sake of compactness, the governing equations are

∂tu+ (u · ∇)u = −∇p+ ν∆u x ∈ Ω,

∇ · u = 0 x ∈ Ω,

u(x, 0) = u0, p(x, 0) = 0 x ∈ Ω,

u(x, t) = u0, n · ∇p(x, t) = 0 x ∈ ∂ΩI ,

u(x, t) = 0, n · ∇p(x, t) = 0 x ∈ ∂ΩW ,

n · ∇u(x, t) = 0, p(x, t) = 1 x ∈ ∂ΩO,

(35)

where p is the scalar pressure field, u = (u, v) is the velocity field, ν is the viscosity constant and
u0 is the initial velocity. In conservative form, the previous equations can be rewritten as{

∂tu+∇ · F = −∇p+ ν∆u,

∇ · u = 0,
(36)

with the flux F given by

F = [F1,F2] =

[
u2 uv
uv v2

]
. (37)

From now on, in order to have a more compact notation, the advection term is written as N (u) =
∇ · F(u).

For each timestep the procedure is broken into three stages accordingly to the algorithm pro-
posed by Chorin and adapted for a DG framework by Hesthaven et al. [28]: the solution of the
advection dominated conservation law component, the pressure correction weak divergence-free
velocity projection, and the viscosity update. The non-linear advection term is treated explicitly
in time through a second order Adams-Bashforth method [22], while the diffusion term implicitly.
The Chorin algorithm is reported in Algorithm 6.

In order to recover the Discontinuos Galerkin formulation, the equations introduced by the
Chorin method are projected onto the solution space by introducing a proper set of test functions
and then the variables are approximated over each element as a linear combination of local shape
functions. The DG does not impose the continuity of the solution between neighboring elements
and therefore it requires the adoption of methods for the evaluation of the flux exchange between
neighboring elements. In the present work the convective fluxes are treated accordingly to the Lax-
Friedrichs scheme, while the viscous ones are solved through the Interior Penalty method [6, 58].

The aerodynamic quantities we are interested in are the lift and drag coefficients in the incom-
pressible case computed from the quantities u, p, ν, Aref, and u0 with a contour integral along the
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Algorithm 6 Chorin Algorithm.

Require: state variables u and p at t = 0, mesh, and boundary conditions
1: while t < tfinal do
2: Update state variables un−1 = un, un = un+1.
3: Find a guess value for the velocity ũ by solving:

γ0ũ− α0u
n − α1u

n−1

∆t
= −β0N (un)− β1N (un−1).

4: Find the pressure at n+ 1 solving: −∆p̄n+1 = − γ0

∆t∇ · ũ.
5: Find the intermediate velocity ˜̃u solving: γ0

˜̃u−ũ
∆t = ∇p̄n+1.

6: Find the velocity at the n+ 1 time instant solving: γ0

(
un+1−˜̃u

∆t

)
= ν∆un+1.

7: Update tn.
8: end while
9: return state variables u and p at t = tfinal

airfoil Γ as

f =

∮
Γ

pn− ν
(
∇u+∇uT

)
n ds. (38)

The vector n is the outward normal along the airfoil surface. The circulation in Γ is affected by
both the pressure and stress distributions around the airfoil. The projection of the force along the
horizontal and vertical directions gives the drag and lift coefficients respectively

CD =
f · e1

1
2 |u0|2Aref

, (39)

CL =
f · e2

1
2 |u0|2Aref

, (40)

where the reference area Aref is the chord of the airfoil times a length of 1 m. For the aerodynamic
analysis of the fluid flow past an airfoil see [33].

5.4 Numerical results

In this section a brief review of the procedure and some details about the numerical method and the
computational domain will be presented along the results obtained. For what concerns the DG the
polynomial order chosen is 3. The total number of degrees of freedom is 133350. Small variations
on the mesh are present in each of the 285 simulations due to the different configurations of the
domain. Each simulation is carried out until a periodic behaviour is reached and for this reason
the final times range between 3.5 and 5 s, depending on the specific configuration. The integration
time intervals are variable and they are updated at the end of each step in order to satisfy the CFL
condition. The 7 physical and geometrical parameters of the simulation are sampled uniformly
from the intervals in Table 4. In total we consider a dataset of 285 samples.

With the purpose of qualitatively visualizing the results, 4 different simulations are reported
in Figure 8 for the module of the velocity field and the scalar pressure field, respectively, both
evaluated at the last time instant. These simulations were chosen from the 285 collected in order
to show significant differences in the evolution of the fluid flow. In Table 5 are reported the corre-
sponding parameters. Depending on the position of the airfoil and the other physical parameters,
different fluid flow patterns can be qualitatively observed.

Table 5: Parameters associated to the simulations plotted in Figure 8.

# ν U x0 y0 α y+ y−

1 0.000405 1.99 -0.096 -0.00207 0.00282 0.00784 0.0188
2 0.000541 0.763 -0.084 0.00279 0.0260 -0.0108 0.0195
3 0.000406 0.533 -0.0503 -0.0327 0.0604 -0.0193 0.0068
4 0.000430 1.11 -0.0897 -0.0279 0.0278 -0.00624 0.0197
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Figure 8: Module of the velocity fields (on the left) and pressure fields (on the right) evaluated
at the last time instant of 4 different simulations. The corresponding parameters are reported in
Table 5.

The lift (CL) and drag (CD) coefficients are evaluated when stationary or periodic regimes are
reached, starting from the values of pressure and viscous stresses evaluated on the nodes close to
the airfoil. After this sensitivity analysis is carried out. First the AS method is applied. The
gradients necessary for the application of the AS method are obtained from the Gaussian process
regression of the model functions CL and CD on the whole parameters’ domain. The eigenvalues
of the uncentered covariance matrix for the lift and drag coefficients suggest the presence of a
one-dimensional active subspace in both cases.

The plots of the first active eigenvector components are useful as sensitivity measures, see
Figure 9. The greater the absolute value of a component is, the greater is its influence on the
model function. We observe that the lift coefficient is influenced mainly by the vertical position of
the airfoil and the angle of attack, while the drag coefficient depends mainly on the initial velocity,
and secondarily on the viscosity and on the angle of attack.

As one could expect from physical considerations, the angle of attack affects both drag and lift
coefficients, while the viscosity, which governs the wall stresses, is relevant for the evaluation of the
CD. The vertical position of the airfoil with respect to the symmetric axis of the section of the duct
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after the area expansion also greatly affects both coefficients, and this is mainly due to the fact that
the fluid flow conditions change drastically between the core, where the speed is higher, and the
one close to the wall of the duct, where the speed tends to zero. On the other hand, the horizontal
translation has almost no impact on the results, given the regularity of the fluid flow along the
x-axis for the considered range of x0. Moreover, the non-symmetric behaviour of the upper and
lower parameters which determine the opening of the channel is due to the non-symmetric choice
of the range considered for the angle of attack.

ν U x0 y0 α y+ y−
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Figure 9: Components of the first active eigenvector for the lift coefficient (on the left), and for
the drag coefficient (on the right). Values near 0 suggest little sensitivity for the target function.

The KAS method was applied with 1500 features. In order to compare the AS and KAS
methods 5-fold cross validation was implemented. The score of cross validation is the relative root
mean square error (RRMSE) defined in Equation 19.
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Figure 10: Comparison between the sufficiency summary plots obtained from the application of
AS and KAS methods for the lift coefficient CL defined in Equation 40. The left plot refers to AS,
the right plot to KAS. With the blue solid line we depict the posterior mean of the GP, with the
shadow area the c68% confidence intervals, and with the blue dots the testing points.

The Gaussian process regressions for the two methods are shown in Figure 10 for the lift
coefficient, and in Figure 11 for the drag coefficient. They were obtained as a single step of 5-fold
cross validation with one fifth of the 285 samples used as test set. The spectral distribution of the
feature map is the Gaussian distribution for the lift, and the Beta for the drag, respectively. The
RRMSE mean and standard deviation from 5-fold cross validation, are reported for different active
dimensions in Table 6. The feature map from Equation (16) was adopted. The hyperparameters
of the spectral distributions were tuned with logarithmic grid-search with 5-fold cross validation
as described in Algorithm 5.
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Figure 11: Comparison between the sufficiency summary plots obtained from the application of
AS and KAS methods for the drag coefficient CD defined in Equation 39. The left plot refers to
AS, the right plot to KAS. With the blue solid line we depict the posterior mean of the GP, with
the shadow area the c68% confidence intervals, and with the blue dots the testing points.

Regarding the drag coefficient, the relative gain using the KAS method reaches the 19.2% on
average when employing the Beta spectral measure for the definition of the feature map. The
relative gain of the one dimensional response surface built with GPR from the KAS method is 7%
on average for the lift coefficient. This result could be due to the higher noise in the evaluation
of the CL. In this case the relative gain increases when the dimension of the response surface
increases to 2 with a gain of 14.6%. A slight reduction of the AS RRMSE relative to the drag
coefficient is ascertained when increasing the dimension of the response surface.

Table 6: Summary of the results for AS and KAS procedures. In bold the best results.

Method Dim
Feature Lift spectral

RRMSE Lift
Drag spectral

RRMSE Drag
space dim distribution distribution

AS 1 - - 0.37 ± 0.09 - 0.268 ± 0.032
KAS 1 1500 N (0, λId) 0.344 ± 0.048 Beta(α, β) 0.218 ± 0.045
AS 2 - - 0.384 ± 0.073 - 0.183 ± 0.027
KAS 2 1500 N (0, λId) 0.328 ± 0.071 Beta(α, β) 0.17 ± 0.02

6 Conclusions and perspectives

In this work we presented a new nonlinear extension of the active subspaces property that in-
troduces Kernel-based Active Subspaces (KAS). The method exploits random Fourier features to
find active subspaces on high-dimensional feature spaces. We tested the new method over 5 differ-
ent benchmarks of increasing complexity, and we provided pseudo-codes for every aspects of the
proposed kernel-extension. The tested model functions range from scalar to vector-valued. We
also provide a CFD application discretized by the Discontinuous Galerkin method. We compared
the kernel-based active subspaces to the standard linear active subspaces and we observed in all
the cases an increment of the accuracy of the Gaussian response surfaces built over the reduced
parameter spaces. The most interesting results regard the possibility to apply the KAS method
when an active subspace does not exist. This was shown for radial symmetric model functions.

Future developments will involve the study of more efficient procedures for tuning the hyper-
parameters of the spectral distribution. Other possible advances could be done finding an effective
back-mapping from the targets to the actual parameters in the full original space. This could
promote the implementation of optimization algorithms or other parameter studies enhanced by
the kernel-based active subspaces extension.
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A Appendix - Proof details

In this section we provide an expanded version of the proof of Theorem 1.

Proof of Theorem 1: existence of an active subspace. The proof is remodeled from [44, 75], and it
is developed in five steps:

1. Since RV ∈ M(d, d) is symmetric positive definite there exists a basis of eigenvectors
(wi)i∈{1,...,d} and a corresponding set of positive eigenvalues (βi)i∈{1,...,d} such that

RV =

d∑
i=1

βi wi ⊗wi. (41)

2. Let us define the ridge approximation error as

e = ∥f − h ◦ Pr∥L2(Rm,B(Rm),ρ;V ) = EP

[
∥(f(X)− h(Pr(X))∥2RV

]
. (42)

Then we can decompose the error analysis for each component employing the spectral de-
composition (1)

EP

[
∥e(X)∥2RV

]
= EP [tr((RV e(X))⊗ e(X))] =

=

d∑
i=1

βi EP [tr(((wi ⊗wi)e(X))⊗ e(X))] =

=

d∑
i=1

βi EP [(wi · e(X)) tr(wi ⊗ e(X))] =

=

d∑
i=1

βi EP

[
(wi · e(X))2

]
, (43)

so we can define ei(X) = wi · e(X) = fi(X) − hi(Pr(X)), ∀i ∈ {1, . . . , d} and treat each
component separately.

3. The next step involves the application of Lemma 1 to the scalar functions fi(X)−hi(Pr(X)), ∀i ∈
{1, . . . , d}

EP

[
(fi(X)− hi(Pr(X)))

2
]
= EP

[
EP

[
(fi(X)− hi(Pr(X)))

2 |σ(Pr)
]]

≤ EP

[
Cp(ρ, Pr(X))EP

[
∥(I − PT

r )∇fi(X)∥22|σ(Pr)
]]

≤ EP [Cp(ρ, Pr(X))]
1
p EP

[
∥(I − PT

r )∇fi(X)∥22
] 1

q , (44)

where we used the Hölder inequality with indexes (p, q) = (∞, 1) when ρ belongs to the first
and second classes of Assumption 3, and (p, q) = ( τ+1

τ , 1 + τ) when ρ belongs to the third
class.

Then we can bound EP [(Cp, Pr(X))]
1
p with a constant C(Cp(ρ, Pr(X))) which depends on

the class of ρ (see Lemma 3.1, Lemma 4.2, Lemma 4.3, Lemma 4.4 and Theorem 4.5 of [44])
as follows

EP [Cp(ρ, Pr(X))]
1
p EP

[
∥(I − PT

r )∇fi(X)∥22
] 1

q ≤

≤ C(Cp(ρ, Pr(X))) tr(EP

[
(I − PT

r )∇fi(X)(∇fi(X))T (I − Pr)
] 1

q ) =

= C(Cp(ρ, Pr(X))) tr((I − PT
r )EP

[
∇fi(X)(∇fi(X))T

]
(I − Pr))

1
q . (45)

4. The spectral decomposition (1) is employed again and the covariance matrix H is introduced
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in the last equation

EP

[
∥e(X)∥2RV

]
≤

≤
d∑

i=1

βi C(Cp(ρ, Pr(X))) tr((I − PT
r )EP

[
((∇f(X))Twi)⊗ ((∇f(X))Twi)

]
(I − Pr))

1
q =

= C(Cp(ρ, Pr(X))) tr((I − PT
r )EP

[
(∇f(X))T

(
d∑

i=1

βq
i wi ⊗wi

)
∇f(X)

]
(I − Pr))

1
q =

= C(Cp(ρ, Pr(X))) tr((I − PT
r )EP

[
(∇f(X))TRV (ρ)∇f(X)

]
(I − Pr))

1
q =

= C(Cp(ρ, Pr(X))) tr((I − PT
r )H(I − Pr))

1
q , (46)

where RV (ρ) is the original metric matrix if ρ belongs to the first or second class of Assump-
tion 3 and is equal to

d∑
i=1

β1+τ
i wi ⊗wi, (47)

if ρ belongs to the third class.

5. Finally the bound in the statement of the theorem is recovered solving the following mini-
mization problem with classical model reduction arguments employing singular value decom-
position (SVD)

P̃r = argmin
Pr∈O(m,m)

tr((I − PT
r )H(I − Pr)). (48)
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