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KERNEL-BASED DISCRETISATION FOR SOLVING

MATRIX-VALUED PDES

PETER GIESL∗ AND HOLGER WENDLAND†

Abstract. In this paper, we discuss the numerical solution of certain matrix-valued partial
differential equations. Such PDEs arise, for example, when constructing a Riemannian contraction
metric for a dynamical system given by an autonomous ODE. We develop and analyse a new meshfree
discretisation scheme using kernel-based approximation spaces. However, since these approximation
spaces have now to be matrix-valued, the kernels we need to use are fourth order tensors. We
will review and extend recent results on even more general reproducing kernel Hilbert spaces. We
will then apply this general theory to solve a matrix-valued PDE and derive error estimates for
the approximate solution. The paper ends with applications to typical examples from dynamical
systems.

Keywords. Meshfree Methods, Radial Basis Functions, Autonomous Systems, Contraction
Metric.

AMS subject classifications. 65N35, 65N15, 37B25, 37M99

1. Introduction. Kernel-based discretisation methods provide an extremely
flexible, general framework to approximate the solution to even rather unconven-
tional problems (see for example [7, 5, 47, 13, 15, 39]). They are meshfree methods,
requiring only a discrete data set for discretising the underlying domain. Since the
kernel can be chosen problem dependent, it is very easy to construct in particular
smooth approximation spaces and high order methods.

Kernel-based methods have extensively been used for solving partial differential
equations (see for example [17, 28, 14, 46]). They have been used in the context of
dynamical systems for constructing Lyapunov functions ([19, 24]) and they also play
a key role in learning theory ([10, 11, 35, 40, 43, 41]) and high-dimensional integration
(see for example [12]) and many other areas.

Our main motivation for extending these methods to solving matrix-valued PDEs
is the following application from the theory of dynamical systems. We consider the
autonomous ODE

ẋ = f(x) (1.1)

where f ∈ C1(Rn,Rn). The solution x(t) with initial condition x(0) = ξ is denoted
by x(t) =: Stξ and is assumed to exist for all t ≥ 0. A set G ⊆ R

n is called positively
invariant if StG ⊆ G for all t ≥ 0.

We are interested in the existence, uniqueness and exponential stability of an
equilibrium, as well as the determination of its basin of attraction. An equilibrium
is a point x0 ∈ R

n such that f(x0) = 0 and its basin of attraction is defined by
A(x0) = {x ∈ R

n | limt→∞ Stx = x0}.
If the equilibrium is known, then Lyapunov functions are one way of analysing

the basin of attraction of the equilibrium as well as its basin of attraction, see the
recent survey article [23] for constructing such Lyapunov functions. A different way of
studying stability and the basin of attraction, which does not require any knowledge
about the equilibrium and which is also robust with respect to perturbations of the
ODE uses contraction metrics.
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A Riemannian contraction metric is a matrix-valued function M : Rn → R
n×n,

such that M(x) is symmetric and positive definite for every x. It defines a (point-
dependent) scalar product on R

n by 〈v, w〉M(x) = vTM(x)w. For M to be a contrac-
tion metric, we require the distance between adjacent solutions of (1.1) to decrease
with respect to such a contraction metric. This can be expressed by the negative
definiteness of

F (M)(x) := Df(x)TM(x) +M(x)Df(x) +M ′(x); (1.2)

see Theorem 1.1 below. Here, Df is the matrix of first-order deriviatives of f and
M ′ denotes the so-called orbital derivative, i.e. it is component-wise defined to be
(M ′(x))ij = ∇M(x)ij · f(x). The existence of a contraction metric in a certain set G
gives information about the basin of attraction of a unique equilibrium in G.

Theorem 1.1 ([20]). Let ∅ 6= G ⊆ R
n be a compact, connected and positively

invariant set and M be a Riemannian contraction metric in G, i.e.
• M ∈ C1(G,Rn×n), such that M(x) is symmetric and positive definite for all
x ∈ G.

• F (M)(x) is negative definite for all x ∈ G.
Then there exists one and only one equilibrium x0 in G; x0 is exponentially stable and
G is a subset of the basin of attraction A(x0).

The difficulty of this approach is to constructively find such a contraction metric.
In [20], a contraction metric is characterised as the solution of a first-order PDE of
the form F (M)(x) = −C for all x ∈ A(x0), where C ∈ R

n×n is a given constant,
symmetric and positive definite matrix.

As we do not know A(x0) in advance, we thus seek to reconstruct the matrix-
valued function M : Ω ⊆ R

n → R
n×n from the matrix-valued PDE

F (M)(x) = −C, x ∈ Ω ⊆ R
n, (1.3)

where Ω ⊆ R
n is a given, sufficiently large domain. We then need to ensure that the

solution M is also symmetric and positive definite.
In the accompanying paper [25], we will prove the theoretical results required in

the dynamical system context. In this paper, however, we will concentrate on deriving
the numerical framework for discretising even more general PDEs of the form

F (M)(x) = −C(x), x ∈ Ω, (1.4)

where F is not necessarily of the form (1.2) but can be a rather general differential
operator which maps matrix-valued Sobolev functions of order σ to matrix-valued
Sobolev functions of order τ and C is a smooth, not necessarily constant matrix-
valued function.

Other applications for matrix-valued valued PDEs arise, e.g., in image processing,
in particular magnetic resonance imaging in the medical sciences [8]. While many
models rely on nonlinear PDEs [9], in [44] linear matrix-valued diffusion techniques
are compared to nonlinear improvements. For a study of linear matrix-valued PDEs
from a theoretical point of view see [34].

The paper is organised as follows. In Section 2 we will review and extend results
on optimal recovery in general reproducing kernel Hilbert spaces, going far beyond
the usual definition. In Section 3 we will employ these general results in the concrete
situation of reproducing kernel Hilbert spaces of matrix-valued functions which are
also Sobolev spaces. In Section 4 we will derive error estimates for the optimal recovery
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processes of solutions to (1.4). Section 5 then deals with the application to the above
mentioned problem to construct a contraction metric for an autonomous system by
solving (1.3). The final section gives numerical examples.

2. Optimal Recovery in Reproducing Kernel Hilbert Spaces. Reproduc-
ing kernel Hilbert Spaces (RKHS) have first been introduced to describe real-valued
functions f : Ω → R on a domain Ω ⊆ R

d (see for example [2]). They require a
kernel Φ : Ω × Ω → R with the reproduction property f(x) = 〈f,Φ(·, x)〉H for
f ∈ H, x ∈ Ω where H denotes a Hilbert space of functions f : Ω → R. Later,
so-called matrix-valued kernels Φ: Ω × Ω → R

n×n with the reproduction property
f(x)Tα = 〈f,Φ(·, x)α〉H, have been introduced to recover vector-valued functions
f : Ω → R

n where H denotes a Hilbert space of functions Ω → R
n and α ∈ R

n is an
arbitrary vector (see for example [1, 4, 18, 33, 36, 48]).

In this paper, we are interested in reproducing kernel Hilbert spaces of matrix-
valued functions. While it is possible to describe such Hilbert spaces using vector-
valued functions, it is, in particular when it comes to the consideration of subspaces,
much cleaner to take a broader point of view and employ a more general approach,
which we will shortly describe now. More details and applications in learning theory
can, for example, be found in [35] and the literature therein.

LetW be a real Hilbert space and denote the linear space of all linear and bounded
operators L : W → W by L(W ). For any L ∈ L(W ), we will denote the adjoint
operator by L∗ ∈ L(W ). Let Ω ⊆ R

d be a given domain and let H(Ω;W ) be a Hilbert
space of W -valued functions f : Ω → W .

Definition 2.1. The Hilbert space H(Ω;W ) is called a reproducing kernel
Hilbert space (RKHS) if there is a function Φ : Ω× Ω → L(W ) with

1. Φ(·, x)α ∈ H(Ω;W ) for all x ∈ Ω and all α ∈ W .
2. 〈f(x), α〉W = 〈f,Φ(·, x)α〉H for all f ∈ H(Ω;W ), all x ∈ Ω and all α ∈ W .

The function Φ is called the reproducing kernel of H(Ω;W ).
The following results are proven as in the real-valued case, see [35] for details.
Lemma 2.2.
1. The reproducing kernel Φ of a Hilbert space H(Ω;W ) is uniquely determined.
2. The reproducing kernel satisfies Φ(x, y)∗ = Φ(y, x) for all x, y ∈ Ω.
3. The reproducing kernel is positive semi-definite, i.e. it satisfies

N
∑

i,j=1

〈αi,Φ(xi, xj)αj〉W ≥ 0

for all x1, . . . , xN ∈ Ω and all α1, . . . , αN ∈ W .
If the functions Φ(·, xj)αj are linearly independent, the kernel is even positive

definite in the sense of the following definition.
Definition 2.3. A kernel Φ : Ω× Ω → L(W ) which satisfies Φ(x, y)∗ = Φ(y, x)

for all x, y ∈ Ω is called positive definite if for all N ∈ N, for all x1, . . . , xN ∈ Ω,
pairwise distinct, and for all α1, . . . , αN ∈ W , not all of them zero, we have

N
∑

i,j=1

〈αi,Φ(xi, xj)αj〉W > 0.

As usual in the theory of reproducing kernel Hilbert spaces, it is also possible to
start with a kernel and to build its Hilbert space from scratch. This is done as
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follows. Suppose we have a positive definite kernel Φ : Ω×Ω → L(W ) as in Definition
2.3. Then, we can form the space

FΦ(Ω;W ) = span {Φ(·, x)α : x ∈ Ω, α ∈ W}

and equip this space with an inner product defined by

〈Φ(·, x)α,Φ(·, y)β〉Φ := 〈Φ(x, y)β, α〉W .

The closure of FΦ(Ω;W ) with respect to the norm induced by this inner product is
then the corresponding Hilbert space H(Ω;W ) for which Φ is the reproducing kernel.

Within this general framework, we now want to discuss the more general concept
of optimal recovery. Hence, let H(Ω;W ) be our reproducing kernel Hilbert space with
reproducing kernel Φ : Ω× Ω → L(W ). As usual, we denote the dual of H(Ω;W ) by
H(Ω;W )∗.

Definition 2.4. Given N linearly independent functionals λ1, . . . , λN ∈
H(Ω;W )∗ and N values f1 = λ1(f), . . . , fN = λN (f) ∈ R generated by an element
f ∈ H(Ω;W ). The optimal recovery of f based on this information is defined to be
the element s∗ ∈ H(Ω;W ) which solves

min {‖s‖H : s ∈ H(Ω;W ) with λj(s) = fj , 1 ≤ j ≤ N} .

The solution to this minimisation problem is well-known and follows directly from
standard Hilbert space theory; it works in any Hilbert space, not only in reproducing
kernel Hilbert spaces. We quote the following result from [47, Theorem 16.1]:

Theorem 2.5. Let H be a Hilbert space. Let λ1, . . . , λN ∈ H∗ be linearly inde-
pendent linear functionals with Riesz representers v1, . . . , vN ∈ H. Then the element
s∗ ∈ H which solves

min{‖s‖H : s ∈ H with λj(s) = fj , 1 ≤ j ≤ N}

is given by

s∗ =

N
∑

k=1

βkvk,

where the coefficients βk ∈ R are determined by the generalised interpolation condi-
tions λi(s

∗) = fi, 1 ≤ i ≤ N , which lead to the linear system AΛβ = f with the
positive definite matrix AΛ = (aik) having entries aik = λi(vk) = 〈vk, vi〉H .

If we want to to apply this general result to our specific situation H = H(Ω;W )
then we need to know the Riesz representers of the functionals λ ∈ H(Ω;W )∗. In the
case of a separable Hilbert space W the Riesz representers are given as stated in the
next Proposition.

Proposition 2.6. Assume that the Hilbert space W is separable and that
{αj}j∈J is an orthonormal basis of W . Then, the Riesz representer of a functional
λ ∈ H(Ω;W )∗ is given by

vλ(x) =
∑

j∈J

λ(Φ(·, x)αj)αj , x ∈ Ω.
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Proof. Since vλ(x) ∈ W for every x ∈ Ω and since {αj}j∈J is an orthonormal
basis of W , we can expand vλ(x) within this basis using its Fourier representation

vλ(x) =
∑

j∈J

〈vλ(x), αj〉Wαj .

The result then follows immediately from the reproducing kernel property:

〈vλ(x), αj〉W = 〈vλ,Φ(·, x)αj〉H = 〈Φ(·, x)αj , vλ〉H = λ(Φ(·, x)αj).

Thus, the optimal recovery problem can be recast as a linear system. From now
on, we will write λy(Φ(y, x)α) to indicate that the functional λ acts on the variable y
of the kernel.

Corollary 2.7. Assume that {αj}j∈J is an orthonormal basis of W . The
solution of the minimisation problem of Theorem 2.5 is given by

s∗ =

N
∑

k=1

βk

∑

j∈J

λy
k(Φ(y, ·)αj)αj ,

and the coefficients βk ∈ R are determined by

N
∑

k=1

λx
i



λy
k

∑

j∈J

(Φ(y, x)αj)αj



βk = fi, 1 ≤ i ≤ N.

3. Matrix-Valued Theory. After establishing the general theory, we will, in
this section, consider special cases to which we will apply the main result of the
previous section stated in Corollary 2.7.

To be more precise, we will choose W to be the space R
n×n of real-valued n× n

matrices or its subspace S
n×n of symmetric matrices. Moreover, we will consider

specific RKHS spaces, namely matrix-valued Sobolev spaces Hσ(Ω; Sn×n), where the
kernel is built from the kernel of the corresponding real-valued Sobolev space. The
next section is then devoted to specific functionals and an error analysis.

We start this section by setting W = R
n×n or W = S

n×n, the space of all
symmetric n× n matrices. On W we define the following inner product to make it a
Hilbert space.

〈α, β〉W =
n
∑

i,j=1

αijβij = tr(αβT ), α = (αij), β = (βij). (3.1)

According to the general theory of the last section, a kernel Φ is now a mapping
Φ : Ω×Ω → L(Rn×n) and can be represented by a tensor of order 4. To this end, we
will write Φ = (Φijkℓ) and define its action on α ∈ R

n×n by

(Φ(x, y)α)ij =
n
∑

k,ℓ=1

Φ(x, y)ijkℓαkℓ. (3.2)

By the second statement of Lemma 2.2, a necessary requirement for the kernel is
the adjoint condition 〈Φ(x, y)α, β〉W = 〈α,Φ(y, x)β〉W , which means in the given
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situation

n
∑

i,j=1

n
∑

k,ℓ=1

Φ(x, y)ijkℓαkℓβij =

n
∑

i,j=1

n
∑

k,ℓ=1

Φ(y, x)ijkℓαijβkℓ

=

n
∑

i,j=1

n
∑

k,ℓ=1

Φ(y, x)kℓijαkℓβij .

Hence, we require our tensor kernel to satisfy

Φ(x, y)ijkℓ = Φ(y, x)kℓij . (3.3)

This will motivate the choice of a kernel in (3.6) later on. The kernel Φ is positive
definite, see Definition 2.3, if

N
∑

µ,ν=1

〈α(ν),Φ(xν , xµ)α
(µ)〉W =

N
∑

µ,ν=1

n
∑

i,j=1

n
∑

k,ℓ=1

Φ(xν , xµ)ijkℓα
(ν)
ij α

(µ)
kℓ ≥ 0 (3.4)

and the sum is positive if not all of the α(ν) are zero. The associated reproducing
kernel Hilbert space H(Ω;W ) = H(Ω;Rn×n) consists of matrix-valued functions.

Finally, for a given functional λ ∈ H(Ω;Rn×n)∗, we can write its Riesz representer
as follows. Let Eµν ∈ R

n×n be the matrix with value 1 at position (µ, ν) and value zero
everywhere else. Then, {Eµν : 1 ≤ µ, ν ≤ n} is an orthonormal basis of W = R

n×n

and the Riesz representer of λ hence becomes, by Proposition 2.6,

vλ(x) =

n
∑

µ,ν=1

λ(Φ(·, x)Eµν)Eµν , x ∈ Ω.

In the case of symmetric matrices, we can proceed quite similarly. However, we need
to consider a different orthonormal basis, namely {Es

µν : 1 ≤ µ ≤ ν ≤ n}. We define
Es

µµ to be the matrix with value 1 at position (µ, µ) and value zero everywhere else.

For µ < ν, we define Es
µν to be the matrix with value 1/

√
2 at positions (µ, ν) and

(ν, µ) and value zero everywhere else. It is easy to see that {Es
µν : 1 ≤ µ ≤ ν ≤ n} is

an orthonormal basis of W = S
n×n.

For a given functional λ ∈ H(Ω; Sn×n)∗, the Riesz representer of λ is, by Propo-
sition 2.6, hence given by

vλ(x) =
∑

1≤µ≤ν≤n

λ(Φ(·, x)Es
µν)E

s
µν , x ∈ Ω. (3.5)

In the following, we will be concerned with specific functionals defined on specific
reproducing kernel Hilbert spaces. We end this section with discussing the spaces.
The functionals will be subject of the next section.

Throughout this paper, we will assume that Hσ(Ω) denotes the Sobolev space of
order σ > d/2, where the weak derivatives are measured in the L2(Ω)-norm. However,
σ does not necessarily have to be an integer and the space can then be defined,
for example, by interpolation. We will always assume that σ > d/2 such that the
Sobolev embedding theorem yields Hσ(Ω) ⊆ C(Ω) which particularly means that
Hσ(Ω) has a reproducing kernel. The kernel is uniquely determined by the inner
product. However, it is possible to define equivalent norms on Hσ(Ω) using other
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inner products. This then leads to other reproducing kernels. Examples of such kernels
comprise the Sobolev (or Matérn) kernels and Wendland’s radial basis functions (see
[13, 45, 38]). We will also assume that Ω ⊆ R

d is a bounded domain with a boundary
which is at least Lipschitz continuous.

Definition 3.1. Let Ω ⊆ R
d and σ > d/2 be given. Then, the matrix-valued

Sobolev space Hσ(Ω;Rn×n) consists of all matrix-valued functions M having each
component Mij in Hσ(Ω). Similarly, the Sobolev space Hσ(Ω; Sn×n) consists of all
symmetric matrix-valued functions M having each component Mij in Hσ(Ω).

Hσ(Ω;Rn×n) and Hσ(Ω; Sn×n) are Hilbert spaces with inner product given by

〈M,S〉Hσ(Ω;Rn×n) :=
n
∑

i,j=1

〈Mij , Sij〉Hσ(Ω);

the same inner product can be used for Hσ(Ω; Sn×n). They are also reproducing
kernel Hilbert spaces. The next result shows that a reproducing kernel of such a
space can simply be given by using a diagonal kernel.

Lemma 3.2. Let Ω ⊆ R
d and σ > d/2 be given. Assume that φ : Ω × Ω → R

is a reproducing kernel of Hσ(Ω). Then, Hσ(Ω;Rn×n) and Hσ(Ω; Sn×n) are also
reproducing kernel Hilbert spaces with reproducing kernel Φ defined by

Φ(x, y)ijkℓ := φ(x, y)δikδjℓ (3.6)

for x, y ∈ Ω and 1 ≤ i, j, k, ℓ ≤ n.

Proof. We have to verify the two defining properties of a reproducing kernel given
in Definition 2.1. First of all, we obviously have Φ(·, x)α ∈ Hσ(Ω;Rn×n) for all x ∈ Ω
and all α ∈ R

n×n since

(Φ(·, x)α)ij =
n
∑

k,ℓ=1

Φ(·, x)ijkℓαkℓ =
n
∑

k,ℓ=1

φ(·, x)δikδjℓαkℓ = φ(·, x)αij

and φ is a reproducing kernel of Hσ(Ω). For Hσ(Ω; Sn×n), note that Φ(·, x)α is
symmetric if α is symmetric.

Secondly, we have the reproduction property. If once again α ∈ R
n×n and f ∈

Hσ(Ω;Rn×n) then the computation just made shows

〈f,Φ(·, x)α〉Hσ(Ω;Rn×n) =

n
∑

i,j=1

〈fij , (Φ(·, x)α)ij〉Hσ(Ω)

=

n
∑

i,j=1

〈fij , φ(·, x)αij〉Hσ(Ω)

=

n
∑

i,j=1

αijfij(x) = 〈f(x), α〉Rn×n ,

using the reproduction property of φ in Hσ(Ω). The proof for Hσ(Ω; Sn×n) is the
same.

Corollary 3.3. Let the assumptions of Lemma 3.2 hold with a positive definite
kernel φ : Ω× Ω → R. Then, also the tensor-valued kernel Φ is positive definite.
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Proof. The kernel is positive definite in the sense of (3.4), since we have

N
∑

µ,ν=1

n
∑

i,j=1

n
∑

k,ℓ=1

Φ(xν , xµ)ijkℓα
(ν)
ij α

(µ)
kℓ =

N
∑

µ,ν=1

n
∑

i,j=1

n
∑

k,ℓ=1

φ(xν , xµ)δikδjℓα
(ν)
ij α

(µ)
kℓ

=

n
∑

i,j=1

N
∑

µ,ν=1

φ(xν , xµ)α
(ν)
ij α

(µ)
ij ≥ 0

and at least one of the inner sums is positive.

4. Error Analysis of the Reconstruction Process. After having specified
the reproducing kernel Hilbert spaces in the last section, we will now analyse the error
of the reconstruction process of Theorem 2.5 in this specific setting. To this end, we
have to define the relevant functionals on Hσ(Ω;Rn×n) and Hσ(Ω; Sn×n) that we
are interested in. Note that using a kernel of the form (3.6) together with point
evaluations would simply lead to a component-wise treatment. In such a situation,
dealing with each component separately would be more efficient. Here, however, we
are interested in the following situation. Suppose F : Hσ(Ω;Rn×n) → Hτ (Ω;Rn×n)
(or F : Hσ(Ω; Sn×n) → Hτ (Ω; Sn×n)) is a linear and bounded map, i.e. there is a
constant C > 0 such that

‖F (M)‖Hτ (Ω;Rn×n) ≤ C‖M‖Hσ(Ω;Rn×n), M ∈ Hσ(Ω;Rn×n).

Suppose further that τ > d/2 so that F (M) ∈ C(Ω;Rn×n) is continuous. Then, we
can define functionals of the form

λ
(i,j)
k (M) = eTi F (M)(xk)ej

for 1 ≤ i, j ≤ n (or 1 ≤ i ≤ j ≤ n for Sn×n) and 1 ≤ k ≤ N , where X = {x1, . . . , xN}
is a given discrete point set in Ω. We will specify the mapping F later on but we can
derive a general theory using just these assumptions.

To derive our error estimates, we will follow general ideas from scattered data
approximation. In particular, we will measure the error in terms of the so-called fill
distance or mesh norm

hX,Ω := sup
x∈Ω

min
xi∈X

‖x− xi‖2.

This means that we can derive the classical error estimates based upon sampling
inequalities also in this case. We will require the following result (see [37]).

Lemma 4.1. Let Ω ⊆ R
d be a bounded domain with Lipschitz continuous bound-

ary. Let σ > d/2 and let X = {x1, . . . , xN} ⊆ Ω. If f ∈ Hσ(Ω) vanishes on X, then
there is a constant C > 0 independent of X and f such that

‖f‖L∞(Ω) ≤ Ch
σ−d/2
X,Ω ‖f‖Hσ(Ω).

We can now use this result component-wise to derive estimates for the matrix-
valued set-up. We will do this immediately for the situation we are interested in,
which gives our first main result of this paper.

Theorem 4.2. Let Ω ⊆ R
d be a bounded domain with Lipschitz continuous

boundary. Let either W = R
n×n or W = S

n×n. Let σ, τ > d/2 be given and F :
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Hσ(Ω;W ) → Hτ (Ω;W ) be linear and bounded. Finally, let X = {x1, . . . , xN} ⊆ Ω
be given and let

λ
(i,j)
k (M) := eTi F (M)(xk)ej , 1 ≤ k ≤ N,

{

1 ≤ i, j ≤ n if W = R
n×n,

1 ≤ i ≤ j ≤ n if W = S
n×n.

Then each λ
(i,j)
k belongs to the dual of Hσ(Ω;W ).

Let us further assume that the functionals are linearly independent. If S denotes
the optimal recovery of M ∈ Hσ(Ω;W ) in the sense of Definition 2.4 using these
functionals and a reproducing kernel of Hσ(Ω;W ) then

‖F (M)− F (S)‖L∞(Ω;Rn×n) ≤ Ch
τ−d/2
X,Ω ‖M‖Hσ(Ω;Rn×n),

where ‖A‖L∞(Ω;Rn×n) = maxi,j=1,...,n ‖aij‖L∞(Ω).
Proof. We only consider the case W = R

n×n as the proof for W = S
n×n is

essentially the same. Obviously, the λ
(i,j)
k are linear. Because of our assumptions,

F (M) is indeed continuous by the Sobolev embedding theorem, i.e. the functionals
are well-defined. Furthermore,

|λ(i,j)
k (M)| ≤ C‖F (M)‖Hτ (Ω;Rn×n) ≤ C‖M‖Hσ(Ω;Rn×n), M ∈ Hσ(Ω;Rn×n),

by the Sobolev embedding theorem and by the continuity of F . This means that all
functionals indeed belong to the dual of Hσ(Ω;Rn×n).

For the error estimate we note that the matrix-valued function F (M) − F (S) ∈
Hτ (Ω;Rn×n) vanishes on the data set X. Hence, we can apply Lemma 4.1 to each
component of F (M)− F (S) yielding

‖F (M)− F (S)‖L∞(Ω;Rn×n) ≤ Ch
τ−d/2
X,Ω ‖F (M − S)‖Hτ (Ω;Rn×n)

≤ Ch
τ−d/2
X,Ω ‖M − S‖Hσ(Ω;Rn×n)

≤ Ch
τ−d/2
X,Ω ‖M‖Hσ(Ω;Rn×n),

using also the continuity of F and the fact that S is the Hσ(Ω;Rn×n) optimal recovery
of M .

To show linear independence, we follow the scalar-valued case [24] and define
singular points for a general linear differential operator F , mapping matrix-valued
functions to matrix-valued functions. We will then apply the rather general result of
Theorem 4.2 to a particular class of operators F .

Definition 4.3. Let n, d ∈ N, Ω ⊆ R
d, σ > m + d/2 and τ = σ − m. Let

W = R
n×n or W = S

n×n. Let F : Hσ(Ω;W ) → Hτ (Ω;W ) be a differential operator
of degree m of the form

F (M)(x) =
∑

|α|≤m

cα(x)[D
αM(x)]

where Dα is applied component-wise and cα : Ω → L(W ) is such that x 7→
cα(x)[D

αM(x)] ∈ Hτ (Ω;W ) for every M ∈ Hσ(Ω;W ).
We define x to be a singular point of F if for all |α| ≤ m the linear map cα(x) is

not invertible.
In the next lemma we will show symmetry properties for F , defined on the sym-

metric matrices, which will later be needed for explicit calculations.
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Lemma 4.4. Assume that F : Hσ(Ω; Sn×n) → Hτ (Ω; Sn×n) is a differential
operator as in Definition 4.3, i.e. in particular cα(x)(M) ∈ S

n×n for M ∈ S
n×n.

Assume furthermore that the kernel Φ(x, y)ijkℓ = φ(x, y)δikδjℓ from (3.6) is used.
Then

F (Φ(·, x)·,·,µ,ν)ij = F (Φ(·, x)·,·,ν,µ)ji. (4.1)

Proof. The linear map cα(x) can, similar to (3.2), be described by a tensor of
order 4, i.e.

(cα(x)(M))ij =

n
∑

k,ℓ=1

cα(x)ijkℓMkℓ. (4.2)

We show that we can assume

cα(x)ijkℓ = cα(x)ijℓk (4.3)

for all x ∈ Ω without loss of generality. Indeed, let cα be given satisfying (4.2) and
define c̃α by

c̃α(x)ijkℓ :=
1

2
(cα(x)ijkℓ + cα(x)ijℓk) .

It is clear that c̃ satisfies (4.3) and we also have, using M ∈ S
n×n,

n
∑

k,ℓ=1

c̃α(x)ijkℓMkℓ =

n
∑

k=1

c̃α(x)ijkkMkk +
∑

1≤k<ℓ≤n

c̃α(x)ijkℓ[Mkℓ +Mℓk]

=
n
∑

k=1

cα(x)ijkkMkk + 2
∑

1≤k<ℓ≤n

c̃α(x)ijkℓMkℓ

=

n
∑

k=1

cα(x)ijkkMkk +
∑

1≤k<ℓ≤n

(cα(x)ijkℓ + cα(x)ijℓk)Mkℓ

=

n
∑

k,ℓ=1

cα(x)ijkℓMkℓ = (cα(x)(M))ij .

For M ∈ S
n×n we have cα(x)(M) ∈ S

n×n and hence

n
∑

k,ℓ=1

cα(x)ijkℓMkℓ = (cα(x)(M))ij = (cα(x)(M))ji =

n
∑

k,ℓ=1

cα(x)jikℓMkℓ

=

n
∑

k,ℓ=1

cα(x)jikℓMℓk =

n
∑

k,ℓ=1

cα(x)jiℓkMkℓ

as M ∈ S
n×n. Choosing M = Es

µν to be a basis “vector” of Sn×n shows, using (4.3),

n
∑

k,ℓ=1

cα(x)ijkℓ(E
s
µν)kℓ =

1√
2
[cα(x)ijµν + cα(x)ijνµ] =

√
2cα(x)ijµν ,

n
∑

k,ℓ=1

cα(x)jiℓk(E
s
µν)kℓ =

1√
2
[cα(x)jiνµ + cα(x)jiµν ] =

√
2cα(x)jiνµ,
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i.e.

cα(x)ijkℓ = cα(x)jiℓk. (4.4)

For (4.1) note that

DαΦ(·, x)i,j,µ,ν = Dαφ(·, x)δiµδjν

so that

F (Φ(·, x)·,·,µ,ν)ij =
∑

|α|≤m

Dαφ(·, x)
n
∑

k,ℓ=1

cα(·)ijkℓδkµδℓν =
∑

|α|≤m

Dαφ(·, x)cα(·)ijµν

=
∑

|α|≤m

Dαφ(·, x)cα(·)jiνµ =
∑

|α|≤m

Dαφ(·, x)
n
∑

k,ℓ=1

cα(·)jikℓδkνδℓµ

= F (Φ(·, x)·,·,ν,µ)ji,

where we have used (4.4).

Proposition 4.5. Let σ > m + d/2 and F be a linear differential operator F :
Hσ(Ω;Rn×n) → Hτ (Ω;Rn×n) (F : Hσ(Ω; Sn×n) → Hτ (Ω; Sn×n)) as in Definition
4.3. Let X = {x1, . . . , xN} be a set of pairwise distinct points which are not singular
points of F . Then the functionals

λ
(i,j)
k (M) := eTi F (M)(xk)ej , 1 ≤ k ≤ N, 1 ≤ i, j ≤ n (1 ≤ i ≤ j ≤ n).

are bounded and linearly independent over Hσ(Ω;Rn×n) (Hσ(Ω; Sn×n)).

Proof. The boundedness of the functionals is clear from the assumptions. We will
prove the linear independence of the functionals over Hσ(Ω; Sn×n). In Theorem 4.2,
we have already seen that the functionals belong to the dual of Hσ(Ω; Sn×n). Now
assume that

N
∑

k=1

∑

1≤i≤j≤n

d
(i,j)
k λ

(i,j)
k = 0

on Hσ(Ω; Sn×n) with certain coefficients d
(i,j)
k . We need to show that all d

(i,j)
k = 0.

To this end, let g ∈ C∞
0 (Rd;R) be a flat bump function, i.e. a nonnegative,

compactly supported function with support B(0, 1), satisfying g(x) = 1 on B(0, 1/2).

Fix 1 ≤ ℓ ≤ N , as well as i∗, j∗ ∈ {1, . . . , n} with i∗ ≤ j∗. Since xℓ is no singular
point of F there exists a minimal |β| ≤ m such that cβ(xℓ) is invertible. The function

gℓ(x) =
1

β!
(x− xℓ)

βg

(

x− xℓ

qX

)

,

where qX denotes the separation distance of X, then satisfies Dαgℓ(xk) = 0 for all
|α| ≤ m and xk 6= xℓ. Moreover, Dαgℓ(xℓ) = 0 for α 6= β and Dβgℓ(xℓ) = 1. Hence,
defining the matrix valued function G ∈ Hσ(Ω; Sn×n) by G(x) = gℓ(x)cβ(xℓ)

−1Es
i∗j∗ ,
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we have

0 =
N
∑

k=1

∑

1≤i≤j≤n

d
(i,j)
k λ

(i,j)
k (G)

=
N
∑

k=1

∑

1≤i≤j≤n

d
(i,j)
k eTi F (G)(xk)ej

=

N
∑

k=1

∑

|α|≤m

∑

1≤i≤j≤n

d
(i,j)
k eTi cα(xk)cβ(xℓ)

−1Es
i∗j∗ej Dαgℓ(xk)

=
∑

1≤i≤j≤n

d
(i,j)
ℓ eTi cβ(xℓ)cβ(xℓ)

−1Es
i∗j∗ej

= ci∗,j∗d
(i∗,j∗)
ℓ ,

where ci∗,j∗ = 1√
2
for i∗ 6= j∗ and ci∗,i∗ = 1. Since ℓ, i∗, j∗ were chosen arbitrarily,

this shows the linear independence.
Now we consider a special type of F , which will later arise in the application

within Dynamical Systems.
Theorem 4.6. Let Ω ⊆ R

d be a bounded domain with Lipschitz continous bound-
ary. Let σ > d/2 + 1 and let V ∈ Hσ−1(Ω;Rn×n) and f ∈ Hσ−1(Ω;Rn). Define
F : Hσ(Ω; Sn×n) → Hσ−1(Ω; Sn×n) by

F (M)(x) := V (x)TM(x) +M(x)V (x) +M ′(x),

where (M ′(x))ij = ∇Mij(x) · f(x).
For each x0 ∈ Ω with f(x0) = 0 (equilibrium point), we assume that all eigenval-

ues of V (x0) have negative real part (positive real part).
Finally, let X = {x1, . . . , xN} ⊆ Ω be a set of pairwise distinct points and let

λ
(i,j)
k (M) := eTi F (M)(xk)ej , 1 ≤ k ≤ N, 1 ≤ i ≤ j ≤ n.

Then, each λ
(i,j)
k belongs to the dual of Hσ(Ω; Sn×n) and they are linearly independent.

If S denotes the optimal recovery of M ∈ Hσ(Ω; Sn×n) in the sense of Definition 2.4
using these functionals, then

‖F (M)− F (S)‖L∞(Ω;Sn×n) ≤ Ch
σ−1−d/2
X,Ω ‖M‖Hσ(Ω;Sn×n).

Proof. The operator F is a differential operator of degree 1 as in Definition 4.3
with

c0(x)(M) = V (x)TM +MV (x),

cei(x)(M) = fi(x)M.

We have x 7→ cα(x)[D
αM(x)] ∈ Hσ−1(Ω; Sn×n) for every M ∈ Hσ(Ω; Sn×n). To

apply Proposition 4.5, we have to show that there are no singular points in Ω.
Case 1: If f(x) 6= 0, then there is an i∗ ∈ {1, . . . , n} with fi∗(x) 6= 0 and hence

cei∗ (x) is invertible with cei∗ (x)
−1 = 1

fi(x)
id.
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Case 2: If f(x) = 0, then by assumption V (x) (−V (x)) has eigenvalues with only
negative real part. Then the so-called Lyapunov equation

V (x)TM +MV (x) = C (−C)

has a unique solution for every C ∈ S
n×n , see e.g. [29, Theorem 4.6], i.e. the operator

c0(x) is injective and, because it maps the finite-dimensional space S
n×n into itself,

also bijective.
The rest follows from the previous results, in particular Theorem 4.2 by setting

τ = σ − 1.

5. Contraction metric. In this section we will apply the previous general re-
sults to the ODE problem of constructing a contraction metric mentioned in the
introduction. We seek to show existence, uniqueness and exponential stability of an
equilibrium and to study its basin of attraction through a contraction metric.

Contraction analysis can be used to study the distance between trajectories, with-
out reference to an attractor, establishing (exponential) attraction of adjacent trajec-
tories, see [30, 26, 32], see also [22, Section 2.10]; it can be generalised to the study
of a Finsler-Lyapunov function [16].

If contraction to a trajectory through x occurs with respect to all adjacent trajec-
tories, then solutions converge to an equilibrium. If the attractor is, e.g., a periodic
orbit, then contraction cannot occur in the direction tangential to the trajectories.
Hence, contraction analysis for periodic orbits assumes contraction only to occur in a
suitable (n − 1)-dimensional subspace of the tangent space. Contraction metrics for
periodic orbits have been studied by Borg [6] with the Euclidean metric and Sten-
ström [42] with a general Riemannian metric. Further results using a contraction
metric to establish existence, uniqueness, stability and information about the basin
of attraction of a periodic orbit have been obtained in [27, 31].

Only few converse theorems for contraction metrics have been obtained, establish-
ing the existence of a contraction metric, see [20] for some references. Constructive
converse theorems, providing algorithms for the explicit construction of a contrac-
tion metric, are given in [3] for the global stability of an equilibrium in polynomial
systems, using Linear Matrix Inequalities (LMI) and sums of squares (SOS). This
method is applicable to polynomial systems which are globally stable, i.e. the basin
of attraction is the whole phase space; the maximal degree of the polynomial for the
contraction metric has to be fixed beforehand and the method is slow if the degree
is large, however, it verifies the definiteness of the contraction metric. In contrast,
our method is applicable to general systems and can determine compact subsets of
the basin of attraction. The definiteness of the constructed metric is guaranteed by
error estimates for sufficiently dense collocation points, but as these estimates involve
unknown quantities, we need to verify the definiteness directly in applications.

An algorithm to construct a continuous piecewise affine (CPA) contraction metric
for periodic orbits in time-periodic systems using semi-definite optimization has been
proposed in [21]; this is a dynamically different problem, but in comparable problems
meshfree collocation is more efficient than semi-definite optimisation.

In [20], the existence of a contraction metric for an equilibrium was shown which
satisfies F (M) = −C, where C is a given constant, symmetric and positive definite
matrix. In [25], summarised in the following theorem, we establish existence and
uniqueness of solutions of the more general matrix-valued PDE (5.1).

Theorem 5.1. Let f ∈ Cs(Rn,Rn), s ≥ 2. Let x0 be an exponentially stable
equilibrium of ẋ = f(x) with basin of attraction A(x0). Let Ci ∈ Cs−1(A(x0), S

n×n),
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i = 1, 2, such that Ci(x) is a positive definite matrix for all x ∈ A(x0). Then, for
i = 1, 2 the matrix equation

Df(x)TMi(x) +Mi(x)Df(x) +M ′
i(x) = −Ci(x) (5.1)

has a unique solution Mi ∈ Cs−1(A(x0), S
n×n).

Let K ⊆ A(x0) be a compact set. Then there is a constant c, independent of Mi

and Ci such that

‖M1 −M2‖L∞(K;Sn×n) ≤ c‖C1 − C2‖L∞(γ+(K);Sn×n)

where γ+(K) =
⋃

t≥0 StK.
Applied to M1 = M and M2 = S, the optimal recovery of M , the theorem shows

that if ‖F (M)(x) − F (S)(x)‖ ≤ ǫ for all x ∈ γ+(K), then ‖M(x) − S(x)‖ ≤ cǫ for
all x ∈ K. In particular, as M is positive definite in K, so is S, if ǫ is small enough.
Note that for a positively invariant and compact set K we have γ+(K) = K.

Let f ∈ Cs(Rn,Rn), s ≥ 2. In what follows, we will always have d = n. Let x0

be an exponentially stable equilibrium of ẋ = f(x) with basin of attraction A(x0).
Then, our strategy for constructing a Riemannian contraction metric is to choose a
symmetric and positive definite matrix C ∈ S

n×n and to approximate the partial
differential equation

F (M)(x) := Df(x)TM(x) +M(x)Df(x) +M ′(x) = −C. (5.2)

using generalised collocation as described in the previous sections. This can be sum-
marised as follows. We set W = S

n×n to be the space of all symmetric n×n matrices
with inner product as in (3.1) and we define H = Hσ(Ω;W ) to be the matrix-valued
Sobolev space of Definition 3.1 with reproducing kernel Φ : Ω × Ω → L(W ) as in
(3.6), where Ω ⊆ R

n will be chosen appropriately later on. Since the solution of the
matrix equation satisfies M ∈ Cs−1(A(x0), S

n×n), we set σ = s − 1. We then define

the linear functionals λ
(i,j)
k : Hσ(Ω;W ) → R by

λ
(i,j)
k (M) = eTi

[

Df(xk)
TM(xk) +M(xk)Df(xk) +M ′(xk)

]

ej (5.3)

=: eTi Fk(M)ej

= eTi F (M)(xk)ej

for xk ∈ Ω, 1 ≤ k ≤ N and 1 ≤ i ≤ j ≤ n. Here, ei denotes once again the ith unit
vector in R

n.
Then, we can compute the solution S of the optimal recovery problem as in

Definition 2.4. This gives the following result.
Theorem 5.2. Let σ > n/2 + 1, s = σ + 1 and let Φ : Ω × Ω → L(Sn×n) be a

reproducing kernel of Hσ(Ω; Sn×n). Let X = {x1, . . . , xN} ⊆ Ω be pairwise distinct

points and let λ
(i,j)
k ∈ Hσ(Ω; Sn×n)∗, 1 ≤ k ≤ N and 1 ≤ i ≤ j ≤ n be defined by

(5.3) with V := Df satisfying the conditions of Theorem 4.6. Then there is a unique
function S ∈ Hσ(Ω; Sn×n) solving

min
{

‖M‖Hσ(Ω;Sn×n) : λ
(i,j)
k (M) = −Cij , 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ N

}

,

where C = (Cij)i,j=1,...,n is a symmetric, positive definite matrix.
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It has the form

S(x) =
N
∑

k=1

∑

1≤i≤j≤n

γ
(i,j)
k

∑

1≤µ≤ν≤n

λ
(i,j)
k (Φ(·, x)Es

µν)E
s
µν

=
N
∑

k=1

∑

1≤i≤j≤n

γ
(i,j)
k

[ n
∑

µ=1

Fk(Φ(·, x)·,·,µ,µ)ijEµµ

+
1

2

n
∑

µ,ν=1
µ 6=ν

[Fk(Φ(·, x)·,·,µ,ν)ij + Fk(Φ(·, x)·,·,ν,µ)ij ]Eµν

]

, (5.4)

where the coefficients γk = (γ
(i,j)
k )1≤i≤j≤n are determined by λ

(i,j)
ℓ (S) = −Cij for

1 ≤ i ≤ j ≤ n, 1 ≤ ℓ ≤ N .
If the kernel Φ is given by (3.6) then we also have the alternative expression

S(x) =

N
∑

k=1

n
∑

i,j=1

β
(i,j)
k

n
∑

µ,ν=1

Fk(Φ(·, x)·,·,µ,ν)ijEµν (5.5)

where the symmetric matrices βk ∈ S
n×n are defined by β

(j,i)
k = β

(i,j)
k = 1

2γ
(i,j)
k if

i 6= j and β
(i,i)
k = γ

(i,i)
k .

Proof. The first formula follows from Corollary 2.7 as by (3.5), the Riesz repre-
senters are given by

v
λ
(i,j)
k

(x) =
∑

1≤µ≤ν≤n

λ
(i,j)
k (Φ(·, x)Es

µν)E
s
µν .

By (3.2) we have

(

Φ(·, x)Es
µν

)

ij
=

n
∑

k,ℓ=1

Φ(·, x)ijkℓ(Es
µν)kℓ.

For µ = ν we have

λ
(i,j)
k (Φ(·, x)Es

µµ)E
s
µµ = Fk(Φ(·, x)·,·,µ,µ)ijEµµ.

For µ < ν we have

λ
(i,j)
k (Φ(·, x)Es

µν)E
s
µν =

1√
2
(Fk(Φ(·, x)·,·,µ,ν)ij + Fk(Φ(·, x)·,·,ν,µ)ij)

1√
2
(Eµν + Eνµ)

=
1

2
(Fk(Φ(·, x)·,·,µ,ν)ij + Fk(Φ(·, x)·,·,ν,µ)ij) (Eµν + Eνµ).

Hence, this yields

v
λ
(i,j)
k

(x) =

n
∑

µ=1

Fk(Φ(·, x)·,·,µ,µ)ijEµµ

+
1

2

n
∑

µ,ν=1
µ 6=ν

[Fk(Φ(·, x)·,·,µ,ν)ij + Fk(Φ(·, x)·,·,ν,µ)ij ]Eµν ,
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which shows (5.4). To show (5.5), note that by (4.1) we have

Fk(Φ(·, x)·,·,µ,ν)ij = Fk(Φ(·, x)·,·,ν,µ)ji. (5.6)

To show (5.5) it suffices to establish

n
∑

i,j=1

β
(i,j)
k

n
∑

µ,ν=1

Fk(Φ(·, x)·,·,µ,ν)ijEµν =

n
∑

µ=1

∑

1≤i≤j≤n

γ
(i,j)
k Fk(Φ(·, x)·,·,µ,µ)ijEµµ

+

n
∑

µ,ν=1
µ 6=ν

∑

1≤i≤j≤n

γ
(i,j)
k

1

2
[Fk(Φ(·, x)·,·,µ,ν)ij + Fk(Φ(·, x)·,·,ν,µ)ij ]Eµν

for 1 ≤ k ≤ N . We compare the expressions on both sides above for each Eµν . For
µ = ν we have to show

n
∑

i,j=1

β
(i,j)
k Fk(Φ(·, x)·,·,µ,µ)ij =

∑

1≤i≤j≤n

γ
(i,j)
k Fk(Φ(·, x)·,·,µ,µ)ij .

This is true, since for i = j we have γ
(i,i)
k = β

(i,i)
k and for i 6= j we have

Fk(Φ(·, x)·,·,µ,µ)ij = Fk(Φ(·, x)·,·,µ,µ)ji by (5.6) and 1
2γ

(i,j)
k = β

(i,j)
k = β

(j,i)
k .

For µ 6= ν we have to show

n
∑

i,j=1

β
(i,j)
k Fk(Φ(·, x)·,·,µ,ν)ij

=
1

2

∑

1≤i≤j≤n

γ
(i,j)
k [Fk(Φ(·, x)·,·,µ,ν)ij + Fk(Φ(·, x)·,·,ν,µ)ij ] .

Again, this is shown using (5.6) since for i = j we have Fk(Φ(·, x)·,·,µ,ν)ii =

Fk(Φ(·, x)·,·,ν,µ)ii and γ
(i,i)
k = β

(i,i)
k , and for i 6= j we have Fk(Φ(·, x)·,·,µ,ν)ji =

Fk(Φ(·, x)·,·,ν,µ)ij and 1
2γ

(i,j)
k = β

(i,j)
k = β

(j,i)
k .

The error estimate from Theorem 4.2, or more precisely from Theorem 4.6, gives
together with Theorem 5.1 our final result.

Theorem 5.3. Let f ∈ Cs(Rn;Rn), N ∋ s > n/2 + 2 and set σ = s− 1. Let x0

be an exponentially stable equilibrium of ẋ = f(x) with basin of attraction A(x0). Let
C ∈ S

n×n be a positive definite (constant) matrix and let M ∈ Cσ(A(x0), S
n×n) be the

solution of (5.2) from Theorem 5.1. Let K ⊆ Ω ⊆ A(x0) be a positively invariant and
compact set, where Ω is open with Lipschitz boundary. Finally, let S be the optimal
recovery from Theorem 5.2. Then, we have the error estimate

‖M − S‖L∞(K;Sn×n) ≤ c1‖F (M)− F (S)‖L∞(Ω;Sn×n) ≤ c2h
σ−1−n/2
X,Ω ‖M‖Hσ(Ω;Sn×n).

for all X ⊆ Ω with sufficiently small hX,Ω. The constants c1, c2 do not depend on the
collocation points X.

In particular, S itself is a contraction metric in K in the sense of Theorem 1.1,
provided hX,Ω is sufficiently small.

Proof. The error estimates and the linear independence of the λ
(i,j)
k follow imme-

diately from Theorem 4.6 with V (x) = Df(x) ∈ Hs−1(Ω;Rn×n) as well as Theorem
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5.1 with σ = s− 1. To see that S itself defines a contraction metric, we have to verify
that S is positive definite and F (S) is negative definite. We will do this only for S
as the proof for F (S) is almost identical. The main idea here is that the eigenvalues
of symmetric matrix depend continuously on the matrix values. To be more precise,
since M(x) is positive definite for every x ∈ K all its eigenvalues λj(x), 1 ≤ j ≤ n are
positive. If we order them by size, i.e. 0 < λ1(x) ≤ λ2(x) ≤ . . . λn(x), then we have
for x, y ∈ K,

|λj(x)− λj(y)| ≤ ‖M(x)−M(y)‖

for any natural matrix norm. Since M is continuous, so is each function λj . Since K
is compact, there is a λmin such that λj(x) ≥ λmin > 0 for all 1 ≤ j ≤ n and all x ∈ K.
If we now sort the eigenvalues µj(x) of S(x) in the same way, similar arguments as
above show

|λ1(x)− µ1(x)| ≤ ‖M(x)− S(x)‖ ≤ c2h
σ−1−n/2
X,Ω ‖M‖Hσ(Ω;Sn×n)

Hence, if we choose hX,Ω so small that the term on the right-hand side becomes less
than λmin/2, we see that µ1(x) ≥ λmin/2 for all x ∈ K, i.e. S(x) is also positive
definite for all x ∈ K.

While this result guarantees that S(x) is eventually positive definite for all x ∈ K,
it does not provide us with an a priori estimate on how small hX,Ω actually has to be
since we neither know the constant c2 > 0 nor the norm of the unknown function M .
Hence, in applications, we have to verify the positive definiteness directly.

6. Examples.

6.1. Linear example. As a first example we consider the linear system

ẋ = −x+ y, ẏ = x− 2y,

which was considered in [21] as a time-periodic example. Note that the solution of
the matrix equation (5.2) with C = I is constant and can easily be calculated as

M(x) =

(

1 1
2

1
2

1
2

)

, (6.1)

which allows us to analyse the error to the exact solution. Also note that any set of the
form Kc = [−c, c]2 with c > 0 is positively invariant. We have used grids of the form
Xα = {(x, y) ∈ R

2 : x, y = −1, . . . ,−2α,−α, 0, α, 2α, . . . , 1} with α = 1, 1
2 ,

1
22 , . . . ,

1
25 .

As kernel we have used Wendland’s C8(R2) function

φ(r) = (1− cr)10+ (2145(cr)4 + 2250(cr)3 + 1050(cr)2 + 250cr + 25),

where x+ = x if x ≥ 0 and x+ = 0 if x < 0. φ is a reproducing kernel in Hσ(R2)
with σ = 5.5, see [47]. We have used c = 0.9 to balance the trade-off between good
approximation and condition number of the collocation matrix; similar results are
achieved for other values of c of the same size.

In each case we have calculated the errors

eα = max
x∈Xcheck

‖Sα(x)−M(x)‖max = max
x∈Xcheck

max
i,j=1,2

|Sα
ij(x)−Mij(x)|

esα = max
x∈Xcheck

‖F (Sα)(x)− F (M)(x)‖max,
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withXcheck = {(x, y) ∈ R
2 : x, y = −1+ 1

2α0, . . . ,− 3
2α0,− 1

2α0,
1
2α0,

3
2α0, . . . , 1− 1

2α0}
with α0 = 1

26 . By Theorem 5.3 we expect the errors to behave like

e2α
eα

≈ 2σ−1−n/2 = 23.5.

Table 6.1 shows the above described errors for different α, the expected ratios
and the condition numbers of the collocation matrices. The expected approximation
order is well-matched by the observed error F (S)−F (M). In the case of S −M , the
observed error is signficantly better than predicted.

α esα es2α/e
s
α eα e2α/eα condition number

1/2 2.5724 1.2334 779.3362
1/4 1.2833 2.0045 0.9169 1.3452 2.6230e+3
1/8 0.3516 3.6499 0.0124 73.9435 2.9894e+5
1/16 0.0329 10.6838 5.6040e-4 22.1271 5.1283e+8
1/32 0.0025 13.1918 1.6311e-5 34.3572 9.8693e+11
23.5 11.3137 11.3137

Table 6.1
Errors for various computation grids together with the error behaviour and the condition number

of the collocation matrix.

Next, we have fixed the grid to consist of the N = 1681 points X = {(x, y) ∈
R

2 : x, y = −4,−3.8,−3.6, . . . , 0, 0.2, . . . , 4}. As each grid point requires 3 vari-
ables of a symmetric 2 × 2 matrix, we solve a linear system with a 5043 × 5043
matrix; its condition number is 1.6419e+5. We need to check that the constructed
matrix-valued function S(x) is positive definite and F (S)(x) is negative definite, where
F (S) = Df(x)TS(x) + S(x)Df(x) + S′(x). To check that a 2 × 2 matrix A is pos-
itive/negative definite it suffices to check that tr(A) is positive/negative and det(A)
is positive/− det(A) is negative. For this example, trS(x), detS(x) are positive in
the whole area [−4, 4]2, while Figure 6.1, left, shows small areas near the boundary
where F (S)(x) is not negative definite, together with the collocation points. Fig-
ure 6.1, right, illustrates the metric S(x) by plotting ellipses x + v around x with
(v − x)TS(x)(v − x) =const, showing that S(x) approximates the constant solution
(6.1) well.

6.2. Van der Pol. We consider the van der Pol system with reversed time,
which has an exponentially stable equilibrium at the origin. Its basin of attraction is
bounded by an unstable periodic orbit. The system is given by

ẋ = −y, ẏ = x− 3(1− x2)y,

which was, for example, considered in [19] to compute a Lyapunov function. In
our computations, we have used C = I and the grid X = {(x, y) ∈ R

2 | x, y =
. . . ,−0.25,−0.125, 0, 0.125, . . .} ∩ {x− 1.5 < y < 1.5+ x,−3x− 5.5 < y < −3x+5.5}
with N = 501 points, and as each grid point requires 3 variables of a symmetric
2× 2 matrix, we have solved a linear system with a 1503× 1503 matrix; the condition
number is 3.0024e+6. We have used the same kernel as in the previous example.

Figure 6.3, left, shows the collocation points and the basin of attraction of the
origin, bounded by an unstable periodic orbit as well as the boundaries of the areas
where F (S)(x) is negative definite (red) and S(x) is positive definite (blue).
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Fig. 6.1. Left: The collocation points used for the RBF approximation together with the areas
where F (S)(x, y) is not negative definite (red). Right: To illustrate the approximation S, around
some points x, we have plotted the curve of equal distance with respect to metric S(x), in particular
the set {x+ v | (v − x)TS(x)(v − x) = const}.
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Fig. 6.2. Left: sign(trF (S)(x, y))−sign(detF (S)(x, y)). If this function is −2, then F (S)(x, y)
is negative definite. Right: sign(trS(x, y)) + sign(detS(x, y)). If this function is +2, then S(x, y) is
positive definite.

In more detail, Figure 6.2 shows sign(trF (S)(x)) − sign(detF (S)(x)), which is
−2 in the area where we placed the collocation points (left), as well as sign(trS(x))+
sign(detS(x)) which is +2 in the area where we placed the collocation points (right).
Figure 6.3, right, shows the point-dependent metric S(x) by plotting ellipses x + v
around x with (v − x)TS(x)(v − x) =const.
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