
31

ADCAIJ: Advances in Distributed Computing  
and Articial Intelligence Journal  

Regular Issue, Vol. 6 N. 1 (2017), 31-40
eISSN: 2255-2863 - http://adcaij.usal.es

© Ediciones Universidad de Salamanca - cc by-nc-nd

X. Blanco, M. A. Becerra, A. E. Castro, M. Ortega,  
D. Viveros, J. C. Alvarado, and D. H. Peluffo
Kernel-based framework for spectral dimensionality  
reduction and clustering formulation: A theoretical study

ADCAIJ: Advances in Distributed Computing and Articial Intelligence Journal  
Regular Issue, Vol. 6 N. 1 (2017), 31-40

eISSN: 2255-2863
DOI: http://dx.doi.org/10.14201/ADCAIJ2017613140

Kernel-based framework for spectral 
dimensionality reduction and clustering 
formulation: A theoretical study
X. Blanco-Valenciaa, M. A. Becerrab,c, A. E. Castro-Ospinac,  
M. Ortega-Adarmed, D. Viveros-Melod, J. C. Alvarado-
Péreza,e, and D. H. Peluffo-Ordóñezf

aUniversidad de Salamanca, Spain
bInstitución Universitaria Salazar y Herrera, Colombia
cResearch Center of the Instituto Tecnológico Metropolitano, Colombia
dUniversidad de Nariño, Colombia
eCoorporación Universitaria Autónoma de Nariño, Colombia
f Universidad Técnica del Norte, Ecuador - dhpeluffo@utn.edu.ec

KEYWORD ABSTRACT

Kernel PCA; 
Spectral 
clustering; 
Support vector 
machine.

This work outlines a unified formulation to represent spectral approaches for both 
dimensionality reduction and clustering. Proposed formulation starts with a generic 
latent variable model in terms of the projected input data matrix. Particularly, such a 
projection maps data onto a unknown high-dimensional space. Regarding this mod-
el, a generalized optimization problem is stated using quadratic formulations and a 
least-squares support vector machine. The solution of the optimization is addressed 
through a primal-dual scheme. Once latent variables and parameters are determined, 
the resultant model outputs a versatile projected matrix able to represent data in a 
low-dimensional space, as well as to provide information about clusters. Particularly, 
proposed formulation yields solutions for kernel spectral clustering and weighted-ker-
nel principal component analysis.

1.	Introduction
In pattern recognition, the term kernel is used to define a function that establishes the similarity among given 
input elements. Therefore, a kernel function enables learning methods to use similarities for representing the 
samples or data points, instead of using explicitly the input data matrix [Belanche Muñoz, 2013]. Kernel- based 
methods have been widely exploited for both supervised and unsupervised learning approaches showing their 
usability and versatility in several applications [Aldrich and Auret, 2013], such as image segmentation [Wu et 
al., 2015, Molina-Giraldo et al., 2012], time-varying data analysis and complex dynamic data clustering [Lan-
gone et al., 2013, Peluffo-Ordónez et al., 2013], and hypothesis testing [Harchaoui et al., 2013], among others. 
This article explores the benefit of using a kernel model within the design of spectral formulations of clustering 
and unsupervised dimensionality reduction methods.
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On one side, kernel methods are of interest since they allow to incorporate prior knowledge into the cluster-
ing procedure [Filippone et al., 2008]. In case of unsupervised clustering methods (that is to say, when clusters 
are naturally formed by following a given partition criterion), a set of initial parameters should be properly 
selected to avoid any local optimum solution distant from the desired global optimum. Indeed, in spectral clus-
tering (SC), such initial parameters are traditionally the number of clusters and the input kernel matrix itself. On 
the other side, the aim of dimensionality reduction (DR) is to extract a lower dimensional, relevant information 
from high-dim ensional data, being then a key stage for the design of pattern recognition systems. Indeed, when 
using adequate DR stages, the system performance can be enhanced as well as the data visualization can become 
more intelligible [Alvarado-Pérez and Peluffo-Ordóñez, 2015, Alvarado-Pérez et al., 2015]. Recent methods of 
DR are focused on the data topology preservation [Peluffo-Ordóñez et al., 2014b]. Mostly such a topology is 
driven by graph-based approaches where data are represented by a similarity matrix, and it is then susceptible 
to be expressed in terms of a kernel matrix [Ham et al., 2004], which means that a wide range of methods can 
be set within a kernel principal component analysis (KPCA) framework [Peluffo-Ordonez et al., 2014]. At the 
moment to choose a method for either SC or DR, aspects such as nature of data, complexity, aim to be reached 
and problem to be solved should be taken into consideration. In this regard, it must be quoted that there exists a 
variety of spectral methods making then the selection of a method a nontrivial task. In fact, some problems may 
require the combination of methods so that the properties of different methods are simultaneously exploited 
[Peluffo-Ordónez et al., 2015]. Some works have studied the benefit of taking advantage simultaneously of DR 
and SC techniques. For instance, in [Peluffo-Ordóñez et al., 2014a], a DR approach (linear feature extraction) is 
used to enhance the clustering performance by performing the grouping process over the projected data rather 
than over the original data. Other works are focused on generating variable relevance [Wolf and Bileschi, 2005, 
Peluffo Ordoñez et al., 2015] or data representation [Wolf and Shashua, 2005] criteria from conventional spec-
tral clustering formulations.

In this work, the authors outline a unified formulation able to explain kernel approaches for both spectral 
clustering (SC) and unsupervised DR. Such a formulation starts with a latent variable model of a high-dimen-
sional representation of the input data matrix, involving implicitly a mapping function. The model is incorpo-
rated within a quadratic functional, which along with an orthonormal constraint constitutes our optimization 
problem being a non-supervised version of a least-square-support-vector-machine (LS-SVM) formulation. Its 
solution is accomplished by relaxing the problem, and following a primal-dual scheme, which readily leads 
to a kernel representation given the quadratic nature of the functional. The proposed formulation represents 
a framework to easily understand the relationship between kernel-based approaches for SC and unsupervised 
DR. Also, the resultant model yields explicitly the solution of two well-known methods, namely the so-called 
kernel spectral clustering (KSC) proposed in [Alzate and Suykens, 2010], and a version of weighted kernel PCA 
(WKPCA) [Peluffo-Ordonez et al., 2014].

The rest of this paper is organized as follows: Section 2 presents a brief overview on kernels. Section 3 
describes our unified formulation, and explains the SC and DR perspectives. Finally, some final remarks are 
drawn in section 4.

2.	Overview on kernels
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The rest of this paper is organized as follows: Section 2 presents a brief overview on kernels. Section 3
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drawn in section 4.

2. Overview on kernels

For following statements, let us consider the following notation: Let Y ∈ RD×N be the input data matrix
formed by N samples (data points), denoted by yi ∈ RD with i ∈ {1, . . . , N}. As well, from another
point of view, it is conformed by D variables such that y(ℓ) ∈ RN is the ℓ-th variable, with ℓ ∈ {1, . . . , D}.
Mathematically, kernels involve a mapping process from a d-dimensional input space representing a data set to
a (dh-) high-dimensional space, where dh >> D. In terms of pattern recognition, the advantage of mapping the
original data space onto a higher one lies in the fact that the latter space may provide a better data representation
regarding cluster separability. Furthermore, it must be taken into account that the mapping is done before
carrying out any clustering process. Then, the success of the data clustering task can be partly attributed to the
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Currently, kernels with special structure aimed to attend particular interests have been proposed. For in-
stance, in [Seeland et al., 2012], a structural clustering kernel is introduced by incorporating similarities induced 
by a structural clustering algorithm to improve graph kernels recommended by literature. Mercer kernels have 
been used for solving multi-cluster problems [Domeniconi et al., 2011]. In [Belanche Muñoz, 2013], different 
kernels (generative, convolution, and covariance kernels, among others) are explained as well as important 
developments on how to construct kernels from a generating function are described.

In terms of human learning theory, one of the fundamental problems is the discrimination among elements 
or objects. Consider the following instance: We have a set of objects formed by two different classes; then, 
when a new object appears the classification and/or visualization task is to determine to which class such an 
object belongs. This is usually done by taking into account the object’s properties as well as similarities and 
differences with regards to the two previously known classes. According to the above, and regarding kernel 
theory, we need to create or choose a similarity or affinity measure to compare the data. Since such similarities 
are non-negative, kernel functions are positive-definite. A kernel function can be defined in the form:
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In terms of human learning theory, one of the fundamental problems is the discrimination among elements
or objects. Consider the following instance: We have a set of objects formed by two different classes; then,
when a new object appears the classification and/or visualization task is to determine to which class such an
object belongs. This is usually done by taking into account the object’s properties as well as similarities and
differences with regards to the two previously known classes. According to the above, and regarding kernel
theory, we need to create or choose a similarity or affinity measure to compare the data. Since such similarities
are non-negative, kernel functions are positive-definite. A kernel function can be defined in the form:

K(·, ·) : K
D × K

D −→ K

yi, yj �−→ K(yi, yj), (1)

where K = C or R. Note that in this case we have assumed elements yi to be real and D-dimensional. Then,
for a total of N data points, we can arrange the kernel function values into a N × N matrix K with entries
kij = K(yi, yj), called Gram matrix or kernel matrix as well. Such a matrix is positive-semidefinite, i.e., a
N × N complex matrix satisfying

∑N
i=1

∑N
j=1 cic̄jkij ≥ 0, for all ci ∈ C, being c̄i the complex conjugate

of ci. Similarly, a real symmetric N × N matrix K satisfying the same condition given for all ci ∈ R is also
called positive-semidefinite. In terms of spectral matrix analysis, a symmetric matrix is positive-semidefinite
if and only if all its eigenvalues are non-negative. In the literature, a number of different terms are used for
positive-definite kernels, such as reproducing kernel, Mercer kernel, admissible kernel, support vector kernel,
non-negative definite kernel and covariance.

2.1 Kernel trick
Now, let us consider a function to map from the D-dimensional space to that dh dimensional one is in the form
φ(·), such that: φ(·) : RD −→ Rdh , yi �−→ φ(yi). The matrix Φ =

[
φ(y1)⊤, . . . , φ(yN )⊤

]
, Φ ∈ Rdh×N ,

is a high dimensional representation of the input data matrix Y . A sagittal diagram of the mapping function is
shown in Figure 1.

y1

yn

φ(y1)

φ(yn)

φ(·)

RD Rdh

Y ∈ RD×N Φ ∈ Rdh×N

Figure 1: Mapping function to a high dimensional space.
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An interesting property of the kernel functions is the so-called kernel trick. In topology, a kernel function
can be seen as an inner product in the domain of Hilbert space H, as follows: K(yi, yj) = �φ(yi), φ(yi)�H.
Kernel trick allows for performing the mapping and the inner product simultaneously by defining an associated
kernel function. Then, we can estimate the kernel matrix without knowing the mapping function. This property
gains importance in kernel theory, since it permits to replace a positive-definite kernel with another kernel that
is finite and approximately positive-definite. For instance, from a given algorithm formulated in terms of a
positive-definite kernel K, we can construct an alternative algorithm by replacing it by another positive-definite
kernel K̃ [Schölkopf and Smola, 2002], in such a manner that ΦΦ

⊤ = K . Then, in this case, kernel trick has
served to estimate ΦΦ

⊤ as K . In the domain of H, K holds the inner product of the mapped data points (rows
of matrix Φ), or -from another point of view- the outer product of the mapped variables (columns of matrix Φ).

2.2 Types of kernel functions
Radial basis function (RBF) kernels are those that can be written in terms of similarity or dissimilarity measure,
in the form:

K(yi, yj) = f (d(yi, yj)), (2)

where d(·, ·) is a measure on the domain of Y , in this case RD, so:

d(·, ·) :RD × R
D −→ R

+

yi, yj �−→ d(yi, yj) (3)

and f is a function defined on R+. Usually, such measure arises from the inner product; d(yi, yj) =
∥∥yi − yj

∥∥ =√〈
yi − yj , yi − yj

〉
. In Table 1, some common kernels recommended by the state of the art are described.

Kernel name Definition Domain

lineal �yi, yj� RD

Polynomial �yi, yj�D
RD

Rational quadratic 1 −
�yi − yj�2

�yi − yj�2 + σ
, σ ∈ R+ Rd

Exponential exp

(
−

�yi − yj�

2σ2

)
, σ ∈ R+ RD

Gaussian exp

(
−

�yi − yj�2

2σ2

)
, σ ∈ R+ RD

Table 1: Some kernel functions.

2.2.1 Special kernels

- Scaled Gaussian kernel matrix

An alternative to the Gaussian kernel is a local scaled version regarding the data point neighborhood as
follows:

kij = exp

(
−

||yi − yj ||2

σiσj

)
, (4)
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K(yi, yj) = f (d(yi, yj)), (2)

where d(·, ·) is a measure on the domain of Y , in this case RD, so:

d(·, ·) :RD × R
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+

yi, yj �−→ d(yi, yj) (3)

and f is a function defined on R+. Usually, such measure arises from the inner product; d(yi, yj) =
∥∥yi − yj

∥∥ =√〈
yi − yj , yi − yj

〉
. In Table 1, some common kernels recommended by the state of the art are described.

Kernel name Definition Domain
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Polynomial �yi, yj�D
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Rational quadratic 1 −
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(
−
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2σ2
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Table 1: Some kernel functions.

2.2.1 Special kernels

- Scaled Gaussian kernel matrix

An alternative to the Gaussian kernel is a local scaled version regarding the data point neighborhood as
follows:
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An interesting property of the kernel functions is the so-called kernel trick. In topology, a kernel function
can be seen as an inner product in the domain of Hilbert space H, as follows: K(yi, yj) = �φ(yi), φ(yi)�H.
Kernel trick allows for performing the mapping and the inner product simultaneously by defining an associated
kernel function. Then, we can estimate the kernel matrix without knowing the mapping function. This property
gains importance in kernel theory, since it permits to replace a positive-definite kernel with another kernel that
is finite and approximately positive-definite. For instance, from a given algorithm formulated in terms of a
positive-definite kernel K, we can construct an alternative algorithm by replacing it by another positive-definite
kernel K̃ [Schölkopf and Smola, 2002], in such a manner that ΦΦ

⊤ = K . Then, in this case, kernel trick has
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where σi is the scaling parameter defined as σi = ||yi − yi(m)|| being yi(m) the m-th nearest neighbor to data
point yi. The parameter m is established regarding the nature of the input data. This kernel is widely explained
in [Zelnik-manor and Perona, 2004].

2.2.2 Multiple-kernel learning

Multiple kernel learning (MKL) approaches have emerged to deal with different issues in machine learning,
mainly, regarding support vector machines (SVM) [González et al., 2012,Huang et al., 2012]. The intuitive idea
of MKL is that learning can be enhanced when using different kernels instead of an unique kernel. Indeed, local
analysis provided by each kernel is of benefit to examine the structure of the whole data. Herein, we consider
a MKL approach, in which each dimension of matrix X is considered as independent data matrix and then the
resultant kernel is a linear combination of the set of obtained kernels [Molina-Giraldo et al., 2012]. We will

denote the ℓ-th variable (column vector) as y(ℓ) = [y
(ℓ)
1 , . . . , y

(ℓ)
N ]⊤. A basic multiple kernel learning (MKL)

approach can be expressed as a linear combination of variable-related kernels. In particular, for a Gaussian
kernel K ∈ RN×N , we have:

K =
d�

ℓ=1

ρℓKℓ (5)

where Kℓ is the kernel associated to variable ℓ being each entry

k
(ℓ)
ij = exp


−

|y
(ℓ)
i − y

(ℓ)
j |2

2σ2


 , ∀i, j ∈ [N ] (6)

and ρ = [ρ1, . . . , ρD] is the vector of coefficients. As explained in [Molina-Giraldo et al., 2012], vector ρ can
be estimated under a variable-relevance criterion, for example, a PCA-derived one as follows:

ρ =
D�

ℓ=1

λℓvℓ ◦ vℓ (7)

where λℓ and vℓ are respectively the ℓ-th eigenvalue and eigenvector of the covariance matrix of Y and ◦ stands
for the Hadamard (element-wise) product.

3. Generalized kernel formulation
This section is aimed at formulating a model and cost function for a multipurpose data representation. To
establish our model, let us consider an output data matrix X ∈ Rd×N , being d ≤ D formed by N data points
denoted by xi ∈ Rd, with i ∈ {1, . . . , N}, as well as by d variables denoted as x(ℓ) ∈ RN with ℓ ∈ {1, . . . , d}.
Also, let us assume an orthonormal projection matrix W ∈ RDh×d, such that W = [w(1), . . . , w(d)] and
W ⊤W = Id, where w(ℓ) ∈ RDh and Id is a d-dimensional identity matrix. Since W is orthonormal, elements
w(ℓ) represent a d-dimensional base and can then generate a new space by means of a linear combination in
the form: x(ℓ) = w(ℓ)

Φ. So, the output matrix becomes X = W ⊤
Φ. Here, in order to add an offset effect,

we consider a whole latent variable model as x(ℓ) = w(ℓ)
Φ + bℓ1N . Such a model can be expressed in matrix

terms as:

X = W ⊤
Φ + b ⊗ 1

⊤
N , (8)
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where σi is the scaling parameter defined as σi = ||yi − yi(m)|| being yi(m) the m-th nearest neighbor to data
point yi. The parameter m is established regarding the nature of the input data. This kernel is widely explained
in [Zelnik-manor and Perona, 2004].
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Multiple kernel learning (MKL) approaches have emerged to deal with different issues in machine learning,
mainly, regarding support vector machines (SVM) [González et al., 2012,Huang et al., 2012]. The intuitive idea
of MKL is that learning can be enhanced when using different kernels instead of an unique kernel. Indeed, local
analysis provided by each kernel is of benefit to examine the structure of the whole data. Herein, we consider
a MKL approach, in which each dimension of matrix X is considered as independent data matrix and then the
resultant kernel is a linear combination of the set of obtained kernels [Molina-Giraldo et al., 2012]. We will
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where σi is the scaling parameter defined as σi = ||yi − yi(m)|| being yi(m) the m-th nearest neighbor to data
point yi. The parameter m is established regarding the nature of the input data. This kernel is widely explained
in [Zelnik-manor and Perona, 2004].
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of MKL is that learning can be enhanced when using different kernels instead of an unique kernel. Indeed, local
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a MKL approach, in which each dimension of matrix X is considered as independent data matrix and then the
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where λℓ and vℓ are respectively the ℓ-th eigenvalue and eigenvector of the covariance matrix of Y and ◦ stands
for the Hadamard (element-wise) product.
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This section is aimed at formulating a model and cost function for a multipurpose data representation. To
establish our model, let us consider an output data matrix X ∈ Rd×N , being d ≤ D formed by N data points
denoted by xi ∈ Rd, with i ∈ {1, . . . , N}, as well as by d variables denoted as x(ℓ) ∈ RN with ℓ ∈ {1, . . . , d}.
Also, let us assume an orthonormal projection matrix W ∈ RDh×d, such that W = [w(1), . . . , w(d)] and
W ⊤W = Id, where w(ℓ) ∈ RDh and Id is a d-dimensional identity matrix. Since W is orthonormal, elements
w(ℓ) represent a d-dimensional base and can then generate a new space by means of a linear combination in
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Φ. So, the output matrix becomes X = W ⊤
Φ. Here, in order to add an offset effect,
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where σi is the scaling parameter defined as σi = ||yi − yi(m)|| being yi(m) the m-th nearest neighbor to data
point yi. The parameter m is established regarding the nature of the input data. This kernel is widely explained
in [Zelnik-manor and Perona, 2004].

2.2.2 Multiple-kernel learning

Multiple kernel learning (MKL) approaches have emerged to deal with different issues in machine learning,
mainly, regarding support vector machines (SVM) [González et al., 2012,Huang et al., 2012]. The intuitive idea
of MKL is that learning can be enhanced when using different kernels instead of an unique kernel. Indeed, local
analysis provided by each kernel is of benefit to examine the structure of the whole data. Herein, we consider
a MKL approach, in which each dimension of matrix X is considered as independent data matrix and then the
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where bl is a bias term, and b = [b1, . . . , bd], ⊗ denotes Kronecker product, and 1N accounts for a N -
dimensional all ones vector. Both PCA and SVM, in their simplest formulations, involve an energy term
regarding the data matrix. Unlike conventional formulations that starts with a known input matrix, we pose
a latent variable model, being unknown both variables (output and mapped data matrix) as well parameters
(bias term and projection matrix). By incorporating a weighting matrix ∆ = Diag(δ1, . . . , δN ), the energy
term regarding X can be written as X∆X⊤. Then, a functional in terms of the generalized matrix M -
norm [Peluffo Ordoñez et al., 2015] can be expressed as:

1

N
tr(X∆X⊤) = ||X||2(1/N )∆

. (9)

From another point of view, if we define a weighted output data matrix as X̃ ∈ Rd×N as

X̃ = X Diag(δ1/2
1 , . . . , δ1/2

N ), (10)

the functional tr(X∆X⊤) can also be directly seen as an energy term, so: tr(X̃X̃⊤). Our model can be
determined by means of a primal-dual formulation as described below.

Primal formulation: Recalling the functional given in equation (9) and the othonormality condition of
projection matrix, we can write the following optimization problem:

max
X,W ,b

1

N
tr(X∆X⊤), s. t. W ⊤W = Id, X = ΦW + b ⊗ 1

⊤
N , (11)

which can be relaxed as

max
X,W ,b

1

2N
tr(X∆X⊤Γ )−

1

2
tr(W ⊤W ), s. t. X = W ⊤

Φ + b ⊗ 1
⊤
N , (12)

where Γ = Diag([γ1, . . . , γd]) is a diagonal matrix holding regularization parameters. Dual formulation: To
solve problem (12), we form the corresponding Lagrangian of problem stated in equation (12), as follows:

L =
1

2N
tr(X∆X⊤Γ ) −

1

2
tr(W ⊤W ) − tr(A⊤(X − W ⊤

Φ − b ⊗ 1
⊤
N )), (13)

where matrix A ∈ RN×ne holds the Lagrange multiplier vectors, that is, A = [α(1), · · · , α(ne)], being
α(l) ∈ RN the l-th vector of Lagrange multipliers. Solving the Karush-Kuhn-Tucker (KKT) conditions on (13),
we get:

∂L

∂X
= 0 ⇒ X = N∆

−1AΓ −1,
∂L

∂W
= 0 ⇒ W = ΦA,

Therefore, by applying Lagrange multipliers and eliminating the primal variables from the initial problem
(11), the following eigenvector-based dual solution is obtained: AΛ = A∆(IN + (1N ⊗ b⊤)(KΛ)−1)K ,
where Λ = Diag(λ), Λ ∈ RN×N , λ ∈ RN is the vector of eigenvalues with λl = N/γl, λl ∈ R+. Again,
K ∈ RN×N is a given kernel matrix, satisfying the Mercer’s theorem such that Φ

⊤
Φ = K. In order to pose

a quadratic dual formulation satisfying the condition b⊤
1N = 0 by centering vector b (i.e. with zero mean),
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where bl is a bias term, and b = [b1, . . . , bd], ⊗ denotes Kronecker product, and 1N accounts for a N -
dimensional all ones vector. Both PCA and SVM, in their simplest formulations, involve an energy term
regarding the data matrix. Unlike conventional formulations that starts with a known input matrix, we pose
a latent variable model, being unknown both variables (output and mapped data matrix) as well parameters
(bias term and projection matrix). By incorporating a weighting matrix ∆ = Diag(δ1, . . . , δN ), the energy
term regarding X can be written as X∆X⊤. Then, a functional in terms of the generalized matrix M -
norm [Peluffo Ordoñez et al., 2015] can be expressed as:

1

N
tr(X∆X⊤) = ||X||2(1/N )∆

. (9)

From another point of view, if we define a weighted output data matrix as X̃ ∈ Rd×N as

X̃ = X Diag(δ1/2
1 , . . . , δ1/2

N ), (10)

the functional tr(X∆X⊤) can also be directly seen as an energy term, so: tr(X̃X̃⊤). Our model can be
determined by means of a primal-dual formulation as described below.

Primal formulation: Recalling the functional given in equation (9) and the othonormality condition of
projection matrix, we can write the following optimization problem:
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X,W ,b

1

N
tr(X∆X⊤), s. t. W ⊤W = Id, X = ΦW + b ⊗ 1

⊤
N , (11)

which can be relaxed as

max
X,W ,b

1

2N
tr(X∆X⊤Γ )−

1

2
tr(W ⊤W ), s. t. X = W ⊤

Φ + b ⊗ 1
⊤
N , (12)

where Γ = Diag([γ1, . . . , γd]) is a diagonal matrix holding regularization parameters. Dual formulation: To
solve problem (12), we form the corresponding Lagrangian of problem stated in equation (12), as follows:

L =
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N )), (13)

where matrix A ∈ RN×ne holds the Lagrange multiplier vectors, that is, A = [α(1), · · · , α(ne)], being
α(l) ∈ RN the l-th vector of Lagrange multipliers. Solving the Karush-Kuhn-Tucker (KKT) conditions on (13),
we get:

∂L

∂X
= 0 ⇒ X = N∆

−1AΓ −1,
∂L

∂W
= 0 ⇒ W = ΦA,

Therefore, by applying Lagrange multipliers and eliminating the primal variables from the initial problem
(11), the following eigenvector-based dual solution is obtained: AΛ = A∆(IN + (1N ⊗ b⊤)(KΛ)−1)K ,
where Λ = Diag(λ), Λ ∈ RN×N , λ ∈ RN is the vector of eigenvalues with λl = N/γl, λl ∈ R+. Again,
K ∈ RN×N is a given kernel matrix, satisfying the Mercer’s theorem such that Φ

⊤
Φ = K. In order to pose

a quadratic dual formulation satisfying the condition b⊤
1N = 0 by centering vector b (i.e. with zero mean),
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where bl is a bias term, and b = [b1, . . . , bd], ⊗ denotes Kronecker product, and 1N accounts for a N -
dimensional all ones vector. Both PCA and SVM, in their simplest formulations, involve an energy term
regarding the data matrix. Unlike conventional formulations that starts with a known input matrix, we pose
a latent variable model, being unknown both variables (output and mapped data matrix) as well parameters
(bias term and projection matrix). By incorporating a weighting matrix ∆ = Diag(δ1, . . . , δN ), the energy
term regarding X can be written as X∆X⊤. Then, a functional in terms of the generalized matrix M -
norm [Peluffo Ordoñez et al., 2015] can be expressed as:

1
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tr(X∆X⊤) = ||X||2(1/N )∆

. (9)

From another point of view, if we define a weighted output data matrix as X̃ ∈ Rd×N as

X̃ = X Diag(δ1/2
1 , . . . , δ1/2

N ), (10)

the functional tr(X∆X⊤) can also be directly seen as an energy term, so: tr(X̃X̃⊤). Our model can be
determined by means of a primal-dual formulation as described below.

Primal formulation: Recalling the functional given in equation (9) and the othonormality condition of
projection matrix, we can write the following optimization problem:

max
X,W ,b

1
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tr(X∆X⊤), s. t. W ⊤W = Id, X = ΦW + b ⊗ 1

⊤
N , (11)

which can be relaxed as
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tr(X∆X⊤Γ )−
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2
tr(W ⊤W ), s. t. X = W ⊤

Φ + b ⊗ 1
⊤
N , (12)

where Γ = Diag([γ1, . . . , γd]) is a diagonal matrix holding regularization parameters. Dual formulation: To
solve problem (12), we form the corresponding Lagrangian of problem stated in equation (12), as follows:

L =
1

2N
tr(X∆X⊤Γ ) −

1

2
tr(W ⊤W ) − tr(A⊤(X − W ⊤

Φ − b ⊗ 1
⊤
N )), (13)

where matrix A ∈ RN×ne holds the Lagrange multiplier vectors, that is, A = [α(1), · · · , α(ne)], being
α(l) ∈ RN the l-th vector of Lagrange multipliers. Solving the Karush-Kuhn-Tucker (KKT) conditions on (13),
we get:

∂L

∂X
= 0 ⇒ X = N∆

−1AΓ −1,
∂L

∂W
= 0 ⇒ W = ΦA,

Therefore, by applying Lagrange multipliers and eliminating the primal variables from the initial problem
(11), the following eigenvector-based dual solution is obtained: AΛ = A∆(IN + (1N ⊗ b⊤)(KΛ)−1)K ,
where Λ = Diag(λ), Λ ∈ RN×N , λ ∈ RN is the vector of eigenvalues with λl = N/γl, λl ∈ R+. Again,
K ∈ RN×N is a given kernel matrix, satisfying the Mercer’s theorem such that Φ

⊤
Φ = K. In order to pose

a quadratic dual formulation satisfying the condition b⊤
1N = 0 by centering vector b (i.e. with zero mean),
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the bias term is chosen in the form bl = −1/(1⊤
N ∆1N )1⊤

N ∆Kα(l). Therefore, the solution of problem (12) is
reduced to the following eigenvector-related problem:

AΛ = ∆HKA, (14)

where matrix H ∈ RN×N is the centering matrix that is defined as H = IN − (1/(1⊤
NV 1N ))1N1

⊤
N ∆.

Imposing a linear independency constraint on Lagrangian vector multipliers, A might be chosen as an orthonormal
matrix. In consequence, a feasible solution is to estimate A and Λ as the spectral decomposition of a centered
weighted kernel matrix ∆HK -eigenvector and eigenvalue diagonal matrix, respectively. Finally, the output
data matrix can be calculated as follows:

X = A⊤K + b ⊗ 1
⊤
N . (15)

Given this, the solution is determined by the spectrum of a centered weighted kernel matrix and a bias vector
defined so that the centering condition is ensured. In the following sections, we show how this solution can be
applied for both dimensionality reduction and spectral clustering.

3.1 Dimensionality reduction perspective

Latent data matrix X is given by the linear model W ⊤
Φ+ b ⊗ 1

⊤
N , which clearly involves a linear combination.

If we seek for a low-dimensional representation of input data Y ,just estimation X with a low-rank version of
W . Such a estimation of the reduced matrix can be performed on the dual problem solution by using some
eigenvectors from A.

Weighted kernel PCA: Given that the optimization is done under a maximization criterion, the eigenvectors
associated with the largest eigenvalues should be selected. In this sense, final dimension d indicates how many
eigenvectors are to be considered. Indeed, the eigenvalues of the centered weighted kernel defines the explained
variance, so that the final dimension can be estimated with respect to it. Then, our generalized kernel model
represents a weighted kernel PCA formulation when using a low-rank representation of matrix W , being then
able to embed a D-dimensional data matrix Y into a low-dimensional resulting matrix X .

Kernel PCA: To yield conventional kernel PCA, the model should be considered as linear projection in the
form X = W ⊤

Φ. Since d is clearly less than dh, a low-rank version of Φ is then Φ̂ = W X . So, we can
write a functional to be minimized as 1

N
||Φ − Φ̂||2F , which has a dual problem given by:

max
X

tr(XTKX), s. t. X⊤X = Id, (16)

as widely explained in [Peluffo-Ordonez et al., 2014]. Therefore, a feasible solution is when X are the eigenvectors
associated with the d largest eigenvalues. As well, this formulation can be seen as a generalized Weighted PCA
when using a Mahalanobis distance regarding any positive-semidefinite matrix [Peluffo-Ordóñez et al., 2014,
Peluffo-Ordonez et al., 2014]. Since kernel PCA is derived under the assumption that matrix Φ has zero mean,
centering becomes necessary. To satisfy this condition, we can normalize the kernel matrix with:

K ←K −
1

N
K1N1

⊤
N −

1

N
1N1

⊤
N K +

1

N2
1N 1

⊤
NK1N 1

⊤
N

= (IN − 1N1
⊤
N )K(IN − 1N 1

⊤
N ). (17)
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the bias term is chosen in the form bl = −1/(1⊤
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N ∆Kα(l). Therefore, the solution of problem (12) is
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matrix. In consequence, a feasible solution is to estimate A and Λ as the spectral decomposition of a centered
weighted kernel matrix ∆HK -eigenvector and eigenvalue diagonal matrix, respectively. Finally, the output
data matrix can be calculated as follows:

X = A⊤K + b ⊗ 1
⊤
N . (15)

Given this, the solution is determined by the spectrum of a centered weighted kernel matrix and a bias vector
defined so that the centering condition is ensured. In the following sections, we show how this solution can be
applied for both dimensionality reduction and spectral clustering.

3.1 Dimensionality reduction perspective

Latent data matrix X is given by the linear model W ⊤
Φ+ b ⊗ 1

⊤
N , which clearly involves a linear combination.

If we seek for a low-dimensional representation of input data Y ,just estimation X with a low-rank version of
W . Such a estimation of the reduced matrix can be performed on the dual problem solution by using some
eigenvectors from A.

Weighted kernel PCA: Given that the optimization is done under a maximization criterion, the eigenvectors
associated with the largest eigenvalues should be selected. In this sense, final dimension d indicates how many
eigenvectors are to be considered. Indeed, the eigenvalues of the centered weighted kernel defines the explained
variance, so that the final dimension can be estimated with respect to it. Then, our generalized kernel model
represents a weighted kernel PCA formulation when using a low-rank representation of matrix W , being then
able to embed a D-dimensional data matrix Y into a low-dimensional resulting matrix X .

Kernel PCA: To yield conventional kernel PCA, the model should be considered as linear projection in the
form X = W ⊤

Φ. Since d is clearly less than dh, a low-rank version of Φ is then Φ̂ = W X . So, we can
write a functional to be minimized as 1

N
||Φ − Φ̂||2F , which has a dual problem given by:

max
X

tr(XTKX), s. t. X⊤X = Id, (16)

as widely explained in [Peluffo-Ordonez et al., 2014]. Therefore, a feasible solution is when X are the eigenvectors
associated with the d largest eigenvalues. As well, this formulation can be seen as a generalized Weighted PCA
when using a Mahalanobis distance regarding any positive-semidefinite matrix [Peluffo-Ordóñez et al., 2014,
Peluffo-Ordonez et al., 2014]. Since kernel PCA is derived under the assumption that matrix Φ has zero mean,
centering becomes necessary. To satisfy this condition, we can normalize the kernel matrix with:
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K1N1
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N
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the bias term is chosen in the form bl = −1/(1⊤
N ∆1N )1⊤

N ∆Kα(l). Therefore, the solution of problem (12) is
reduced to the following eigenvector-related problem:

AΛ = ∆HKA, (14)

where matrix H ∈ RN×N is the centering matrix that is defined as H = IN − (1/(1⊤
NV 1N ))1N1

⊤
N ∆.

Imposing a linear independency constraint on Lagrangian vector multipliers, A might be chosen as an orthonormal
matrix. In consequence, a feasible solution is to estimate A and Λ as the spectral decomposition of a centered
weighted kernel matrix ∆HK -eigenvector and eigenvalue diagonal matrix, respectively. Finally, the output
data matrix can be calculated as follows:

X = A⊤K + b ⊗ 1
⊤
N . (15)

Given this, the solution is determined by the spectrum of a centered weighted kernel matrix and a bias vector
defined so that the centering condition is ensured. In the following sections, we show how this solution can be
applied for both dimensionality reduction and spectral clustering.

3.1 Dimensionality reduction perspective

Latent data matrix X is given by the linear model W ⊤
Φ+ b ⊗ 1

⊤
N , which clearly involves a linear combination.

If we seek for a low-dimensional representation of input data Y ,just estimation X with a low-rank version of
W . Such a estimation of the reduced matrix can be performed on the dual problem solution by using some
eigenvectors from A.

Weighted kernel PCA: Given that the optimization is done under a maximization criterion, the eigenvectors
associated with the largest eigenvalues should be selected. In this sense, final dimension d indicates how many
eigenvectors are to be considered. Indeed, the eigenvalues of the centered weighted kernel defines the explained
variance, so that the final dimension can be estimated with respect to it. Then, our generalized kernel model
represents a weighted kernel PCA formulation when using a low-rank representation of matrix W , being then
able to embed a D-dimensional data matrix Y into a low-dimensional resulting matrix X .

Kernel PCA: To yield conventional kernel PCA, the model should be considered as linear projection in the
form X = W ⊤

Φ. Since d is clearly less than dh, a low-rank version of Φ is then Φ̂ = W X . So, we can
write a functional to be minimized as 1

N
||Φ − Φ̂||2F , which has a dual problem given by:

max
X

tr(XTKX), s. t. X⊤X = Id, (16)

as widely explained in [Peluffo-Ordonez et al., 2014]. Therefore, a feasible solution is when X are the eigenvectors
associated with the d largest eigenvalues. As well, this formulation can be seen as a generalized Weighted PCA
when using a Mahalanobis distance regarding any positive-semidefinite matrix [Peluffo-Ordóñez et al., 2014,
Peluffo-Ordonez et al., 2014]. Since kernel PCA is derived under the assumption that matrix Φ has zero mean,
centering becomes necessary. To satisfy this condition, we can normalize the kernel matrix with:
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3.2 Clustering perspective
Notice that the primal formulation given in (12) can be seen as a least-squares SVM. Then, our model should
be able to provide information about the clusters immersed in data matrix. Since no supervised information is
used, grouping process is fully unsupervised.

Kernel spectral clustering: Suppose that the output holds non-encoded information about centroids or
prototypes for each cluster. Then, output data points should be represented in low dimension d = K − 1,
being K the assumed number of clusters. Because each cluster is represented by a single point in the K − 1-
dimensional eigenspace, such that those single points are always in different orthants due also to the KKT
conditions, we can encode the eigenvectors considering that two points are in the same cluster if they are in the
same orthant in the corresponding eigenspace [Alzate and Suykens, 2010]. Then, a code book can be obtained
from the rows of the matrix containing the K − 1 binarized leading eigenvectors in the columns, by using
sign(x(ℓ)). Then, matrix X = sgn(X) is the code book being each row a codeword. Finally, clusters are
formed according to the minimal Hamming distance between codewords within the space of X . This clustering
approach is so-called kernel spectral clustering (KSC), introduced in [Alzate and Suykens, 2010]. Figure 2
depicts graphically the effect of cluster assignment when using a Hamming encoding.

Figure 2: Encoding E = sign(E). The example shows a two clusters problem. Since each single cluster is

located in a different orthant, a feasible encoding is by using the sign function and Hamming distance becomes

a proper measure to assign elements to a cluster according to the minimal distance.

Out-of-samples extension: The big advantage of this approach is that it can be extended to out-of-samples
analysis without re-clustering the whole data to determine the assignment cluster membership for new testing
data [Alzate and Suykens, 2010]. In particular, defining z ∈ Rd as the projection vector of a testing data point
ytest, and by taking into consideration the training clustering model, the testing projections can be computed
as z = A⊤Ktest + b, where Ktest ∈ Rd is the kernel vector such thatKtest = [Ktest1 , . . . , KtestN ]⊤, where
Ktesti = K(yi, ytest). Once, the test projection vector z is computed, a decoding stage is carried out that consists
of comparing the binarized projections with respect to the codewords in the code book X and assigning cluster
membership based on the minimal Hamming distance [Alzate and Suykens, 2010].
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3.2 Clustering perspective
Notice that the primal formulation given in (12) can be seen as a least-squares SVM. Then, our model should
be able to provide information about the clusters immersed in data matrix. Since no supervised information is
used, grouping process is fully unsupervised.

Kernel spectral clustering: Suppose that the output holds non-encoded information about centroids or
prototypes for each cluster. Then, output data points should be represented in low dimension d = K − 1,
being K the assumed number of clusters. Because each cluster is represented by a single point in the K − 1-
dimensional eigenspace, such that those single points are always in different orthants due also to the KKT
conditions, we can encode the eigenvectors considering that two points are in the same cluster if they are in the
same orthant in the corresponding eigenspace [Alzate and Suykens, 2010]. Then, a code book can be obtained
from the rows of the matrix containing the K − 1 binarized leading eigenvectors in the columns, by using
sign(x(ℓ)). Then, matrix X = sgn(X) is the code book being each row a codeword. Finally, clusters are
formed according to the minimal Hamming distance between codewords within the space of X . This clustering
approach is so-called kernel spectral clustering (KSC), introduced in [Alzate and Suykens, 2010]. Figure 2
depicts graphically the effect of cluster assignment when using a Hamming encoding.

Figure 2: Encoding E = sign(E). The example shows a two clusters problem. Since each single cluster is

located in a different orthant, a feasible encoding is by using the sign function and Hamming distance becomes

a proper measure to assign elements to a cluster according to the minimal distance.

Out-of-samples extension: The big advantage of this approach is that it can be extended to out-of-samples
analysis without re-clustering the whole data to determine the assignment cluster membership for new testing
data [Alzate and Suykens, 2010]. In particular, defining z ∈ Rd as the projection vector of a testing data point
ytest, and by taking into consideration the training clustering model, the testing projections can be computed
as z = A⊤Ktest + b, where Ktest ∈ Rd is the kernel vector such thatKtest = [Ktest1 , . . . , KtestN ]⊤, where
Ktesti = K(yi, ytest). Once, the test projection vector z is computed, a decoding stage is carried out that consists
of comparing the binarized projections with respect to the codewords in the code book X and assigning cluster
membership based on the minimal Hamming distance [Alzate and Suykens, 2010].
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4.	Final remarks
The aim of this paper is to state a generalized formulation able to explain the close relationship between spec-
tral clustering and dimensionality reduction, within a kernel-based framework. Specifically, it has been shown 
that a least-square-support-vector-machine optimization problem, involving a latent variable model in terms of 
a high- dimensional representation of input data matrix, yields solutions containing information for encoding 
cluster assignment, and in turn for representing data matrix embedded in a lower-dimensional space. Further-
more, our formulation provides researchers on spectral, unsupervised pattern recognition methods with a fully 
matrix notation and formulation to easily understand kernel-based approaches such as KSC and KPCA.
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