
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007 973

Kernel-Based Least Squares Policy Iteration for
Reinforcement Learning

Xin Xu, Dewen Hu, Senior Member, IEEE, and Xicheng Lu

Abstract—In this paper, we present a kernel-based least squares
policy iteration (KLSPI) algorithm for reinforcement learning
(RL) in large or continuous state spaces, which can be used to
realize adaptive feedback control of uncertain dynamic systems.
By using KLSPI, near-optimal control policies can be obtained
without much a priori knowledge on dynamic models of control
plants. In KLSPI, Mercer kernels are used in the policy eval-
uation of a policy iteration process, where a new kernel-based
least squares temporal-difference algorithm called KLSTD-Q
is proposed for efficient policy evaluation. To keep the sparsity
and improve the generalization ability of KLSTD-Q solutions,
a kernel sparsification procedure based on approximate linear
dependency (ALD) is performed. Compared to the previous
works on approximate RL methods, KLSPI makes two progresses
to eliminate the main difficulties of existing results. One is the
better convergence and (near) optimality guarantee by using the
KLSTD-Q algorithm for policy evaluation with high precision.
The other is the automatic feature selection using the ALD-based
kernel sparsification. Therefore, the KLSPI algorithm provides
a general RL method with generalization performance and con-
vergence guarantee for large-scale Markov decision problems
(MDPs). Experimental results on a typical RL task for a stochastic
chain problem demonstrate that KLSPI can consistently achieve
better learning efficiency and policy quality than the previous
least squares policy iteration (LSPI) algorithm. Furthermore, the
KLSPI method was also evaluated on two nonlinear feedback
control problems, including a ship heading control problem and
the swing up control of a double-link underactuated pendulum
called acrobot. Simulation results illustrate that the proposed
method can optimize controller performance using little a priori
information of uncertain dynamic systems. It is also demonstrated
that KLSPI can be applied to online learning control by incorpo-
rating an initial controller to ensure online performance.

Index Terms—Approximate dynamic programming, kernel
methods, least squares, Markov decision problems (MDPs), rein-
forcement learning (RL).

I. INTRODUCTION

I N recent years, reinforcement learning (RL), which was
originally conceived as descriptive models for phenomena

observed in animal behavior, has attracted many research

Manuscript received November 30, 2005; revised September 20, 2006;
accepted February 5, 2007. This work was supported by the National Natural
Science Foundation of China under Grants 60303012, 60234030, 60225015,
and 60675005, and by the National Fundamental Research Program of China
under Grant 2005CB321801.

X. Xu is with the Institute of Automation, College of Mechatronics and Au-
tomation, National University of Defense Technology, Changsha 410073, P. R.
China (e-mail: xuxin_mail@263.net).

D. Hu is with the Department of Automation Control, College of Mecha-
tronics and Automation, National University of Defense Technology, Changsha
410073, P. R. China (e-mail: dwhu@nudt.edu.cn).

X. Lu is with the School of Computer, National University of Defense Tech-
nology, Changsha 410073, P. R. China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2007.899161

interests not only in machine learning, but also in operations
research, control engineering, and other related disciplines.
In RL, the learning agent interacts with an initially unknown
environment and modifies its action policies to maximize
its cumulative payoffs [1], [2]. Thus, RL provides a general
methodology to solve complex uncertain sequential decision
problems, which are very challenging in many real-world
applications. The environment of RL is typically modeled as a
Markov decision process or Markov decision problem (MDP),
which has been popularly studied in operations research. How-
ever, different from traditional dynamic programming methods
in operations research, an RL agent is assumed to learn the
optimal or near-optimal policies from its experiences without
knowing the parameters of the MDP.

To estimate the optimal policy of an MDP, RL algorithms
usually estimate the value functions by observing data gener-
ated from the state transitions and the rewards. There is a large
literature on RL algorithms using various value-function esti-
mation techniques in the last decade. Since no explicit teacher
signals can be obtained in RL, the estimation of value func-
tions in RL differs from the regression problems in supervised
learning. An earlier breakthrough on value-function estimation
is the temporal difference (TD) learning algorithm proposed
by Sutton [3]. After that, several algorithms have been studied
to implement value-function estimation of finite-state MDPs,
and various theoretical results have been proven. For example,
the famous -learning algorithm proposed by Watkins [4] was
proven to be asymptotically convergent to optimal value func-
tions provided every state of the finite-state MDP has been vis-
ited an infinite number of times [4], [5]. A general form of
TD learning algorithm, i.e., TD , was proven to converge
when the cardinality of tunable parameters was the same as that
of the state space [6], [7]. In [8], the convergence results of a
variant of -learning called the state–action–reward–state–ac-
tion (SARSA) algorithm were also established.

Despite the successful developments in RL theory and
algorithms for discrete-state MDPs, an open fundamental
problem in RL research is to study RL algorithms and theories
based on approximate value functions or policies since most
real-world applications have large or continuous state spaces,
which make earlier tabular RL algorithms impractical. Aiming
at this problem, the research on approximate RL or approxi-
mate dynamic programming methods becomes a hot topic in
the literature and the existing work on approximate RL can
be mainly classified into three categories, i.e., value-function
approximation (VFA) [9], direct policy search [10], [11], and
the actor–critic approaches [12], [13].

Among these three kinds of approximate RL methods, VFA
is the most popular one, and lots of empirical results as well

1045-9227/$25.00 © 2007 IEEE

974 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

as some theoretical analyses have been given. According to
the basic properties of function approximators, there are two
different kinds of VFA methods in RL. One is RL using linear
function approximators, such as linear basis functions [14],
[15], etc., and the other includes RL algorithms using nonlinear
VFA, e.g., RL based on multilayer perceptrons (MLPs). Since
linear VFA algorithms in RL usually have worse approxima-
tion and generalization abilities than nonlinear VFA, most
successful applications or empirical results of RL are based
on nonlinear approximators, which include elevator group
control, job–shop scheduling, and the game of TD-Gammon
[16]–[18], etc. In these applications, MLPs are commonly em-
ployed as the nonlinear approximators for VFA. However, the
empirical results of successful RL applications using nonlinear
VFA commonly lack a rigorous theoretical analysis and the
nonlinear features are usually based on manual selection, e.g.,
the structures of MLPs. Moreover, the weights are computed
by various forms of approximate gradient learning rules, e.g.,
the direct gradient rules used in [17] and [18]. In [19] and
[7], negative results concerning divergence were reported for

-learning and TD learning based on direct gradient rules.
In [19], a class of residual gradient learning algorithms was
proposed to keep the stability of VFA. However, the residual
gradient algorithms discussed in [19] and later in [20] only
guarantee local convergence based on Bellman residual mini-
mization, so it is hard to make the obtained policy optimal or
near-optimal due to the manual selection of initial weights as
well as the approximation structures.

In contrast to VFA methods in RL, policy search is another
class of approximate solution approaches, where the policies of
MDPs are represented and approximated directly. Earlier work
on policy search for RL is the REINFORCE algorithm [21].
Recently, the gradient in partially observable Markov decision
processes (GPOMDP) algorithm [11] was proposed for partially
observable MDPs. In these policy search algorithms, stochastic
policies are parameterized and the parameters are adjusted by
computing the gradient of the average reward, so they are also
called policy gradient approaches in RL. Although it has been
proven that, under certain conditions, local convergence can be
guaranteed for policy gradient algorithms such as GPOMDP,
the computational costs are very large for large-scale MDPs and
due to the local minima of gradient algorithms, the optimality
of ultimate policies is sensitive to initial conditions.

The third class of approximate RL methods for large-scale
MDPs is the actor–critic method, which can be viewed as a hy-
brid of VFA and policy search. In an actor–critic architecture,
there is an actor for policy learning and a critic for VFA or policy
evaluation. One pioneering work on RL algorithms using the
actor–critic architecture was published in [12]. Recently, there
have been increased research interests on actor–critic methods
for RL, where adaptive critic designs (ACDs) [38], [39] were
widely studied as an important class of approximate dynamic
programming methods for nonlinear optimal control problems.
Until now, several learning control architectures based on ACDs
have been proposed, which include heuristic dynamic program-
ming (HDP), dual heuristic programming (DHP), and global-
ized dual heuristic programming (GDHP), etc. [38]. Among
these ACD architectures, DHP is the most popular one and has

been proven to be more efficient than HDP [38]. In addition
to the research on ACDs, there are other works about making
use of some recent results on policy gradient algorithms in an
actor–critic architecture. In [22], the value and policy search
(VAPS) algorithm was proposed by combining the residual gra-
dient learning method with a parameterized policy and the up-
date of value functions and policies was based on a measure
combining value-function accuracy and policy performance. Al-
though the stability of gradient learning is guaranteed, VAPS
will not converge to a local optimal policy except that no weight
is put on value-function accuracy. In [23], a policy gradient al-
gorithm was presented for a class of actor–critic methods, where
a compatibility condition was required between the VFA and the
policy parameterization.

As a popular method studied in operations research, policy
iteration (PI) can also be viewed as a class of actor–critic
learning algorithms, since in PI, the value functions and the
policies are approximated separately, which correspond to the
critic and the actor, respectively. In [24], based on the work of
least squares temporal difference learning methods in [15], the
least squares policy iteration (LSPI) algorithm was proposed. In
LSPI, the data efficiency of least squares temporal difference
learning, i.e., the LSTD algorithm, is employed and it
offers an RL method with better properties in convergence,
stability, and sample complexity than previous RL algorithms.
However, the approximation structure in value function and
policy representation may have degenerated performance when
the features are improperly selected, which was discussed and
illustrated in the experiments of [24]. In addition, the application
of LSPI to feedback control of complex dynamic systems,
from the control engineering perspective, has not been well
studied.

As stated previously, despite many advances in RL theory
and algorithms, two main obstacles still remain for the wider
applications of RL. One is the local convergence of various
gradient-based VFA or policy learning methods. Due to the
local convergence of gradient algorithms, it is hard to ensure the
quality of the ultimate policies to be optimal or near-optimal.
The other obstacle is that many RL algorithms and theories
with good convergence properties rely heavily on manually
selected approximation structure so that the optimal policies
are difficult to be well approximated without carefully selected
features, for example, the LSPI algorithm, TD algorithms,
etc. Furthermore, the applications of RL methods in feedback
control of dynamic systems still need to be investigated in
depth.

In this paper, to solve those problems, we propose a kernel-
based least squares policy iteration (KLSPI) algorithm, where a
novel kernel-based least squares temporal-difference algorithm
(KLSTD-Q) is used for efficient policy evaluation. In KLSPI,
the main novelty is that Mercer kernels are used in the policy
evaluation process and a kernel sparsification procedure based
on approximate linear dependency (ALD) is performed to
keep the sparsity and improve the generalization ability of
the KLSTD-Q solutions. Compared to the previous works on
approximate RL methods, KLSPI makes two contributions
to eliminate the main difficulties of existing results. One is
the convergence and (near) optimality guarantee by using the

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 975

KLSTD-Q algorithm for policy evaluation with high precision.
The other is the automatic feature selection using the ALD-based
kernel sparsification approach. Therefore, the KLSPI algorithm
provides a general RL method with generalization performance
and convergence guarantee for large-scale MDPs. Experimental
results on a stochastic Markov decision problem show that the
proposed KLSPI algorithm converges within fewer iterations
than LSPI and the optimal or near-optimal solutions can be
more easily estimated only with small size of collected samples.
Moreover, the application of KLSPI in feedback control of
nonlinearuncertain systemswasalsostudied,where twoadaptive
optimal control problems, including the swing-up control of an
underactuated double-link pendulum and a tanker ship heading
control problem, were considered. It was verified that the
proposed KLSPI method could be used as an online learning
control method by combining with a conventional PD controller
since the performance can be well guaranteed by using the
conventional PD controller as the initial policy. Therefore, for
KLSPI in online learning control, it is not necessary for the
random data gathering stages in which random/intermediate
controls are applied to the system. Simulation results show that
KLSPI can optimize the controller performance based on the
data generated from the initial policy, where the online data
gathering and controlleroptimization processesare implemented
alternatively.

This paper is organized as follows. In Section II, an introduc-
tion on MDPs as well as the previous TD learning algorithms is
given. The KLSPI algorithm, the KLSTD-Q algorithm, and the
convergence analysis are presented in Section III. In Section IV,
experimental results on a stochastic chain problem as well as
two feedback control problems of uncertain nonlinear systems
are provided to illustrate the effectiveness of the proposed algo-
rithm. Some related work is discussed in Section V. Section VI
draws conclusions and suggests future work.

II. MARKOV DECISION PROCESSES AND TD LEARNING

A. Markov Decision Processes

A Markov decision process is denoted as a tuple
, where is the state space, is the action

space, is the state transition probability, and is the reward
function. The policy of the MDP is defined as a function

, where is a probability distribution in
the action space. The objective is to estimate the optimal policy

satisfying the following:

(1)

where is the discount factor and is the reward at time-step ,
stands for the expectation with respect to the policy and

the state transition probabilities, and is the expected total
reward.

The state value function for a stationary policy and the op-
timal state value function for the optimal policy are defined

as follows:

(2)

(3)

According to the theory of dynamic programming [25], the
optimal value function satisfies the following Bellman equation:

(4)

where is the expected reward received after taking ac-
tion in state .

In RL, to facilitate policy improvement, a variant of the state
value functions is usually used, which is the state-action value
function defined as

(5)

The state-action value function of an MDP satisfies the fol-
lowing Bellman equation:

(6)

where the expectation is with respect to the state transition
probability.

The optimal state-action value function is

(7)

When is computed, the optimal policy is easy to be
obtained by

(8)

B. Policy Iteration and TD Learning Algorithm

As stated in Section I, policy iteration is closely related to the
actor–critic learning control architecture of RL, which can be
depicted in Fig. 1.

In Fig. 1, policy iteration is implemented in an actor–critic
learning control architecture. The critic and the actor perform
the procedures of policy evaluation and policy improvement, re-
spectively. Policy evaluation usually makes use of TD learning
algorithms to estimate the value functions without any
model information of the underlying MDPs. Based on the es-
timation of , the policy improvement in the actor produces
a greedy policy over as

(9)

976 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

Fig. 1. Policy iteration and actor–critic learning.

Thus, the greedy policy is a deterministic policy and
when the value function approximates very well,

will be at least as good as if not better. This iteration
process is repeated until there is no change between the poli-
cies and . After the convergence of policy iteration,
the optimal policy may be obtained, usually within very few it-
erations. However, the convergence of policy iteration greatly
relies on the approximation precision of the real value func-
tions of policies. If the value functions are exactly represented,
e.g., in cases of tabular state spaces, or the approximation er-
rors are small enough to be neglected, the convergence and the
performance of policy iteration will be very satisfactory. Thus,
the success of model-free policy iteration will mainly depend
on the performance of TD learning algorithms for policy eval-
uation. In the following, we will briefly introduce some pre-
vious work on TD learning, which include tabular TD , linear
TD , and LSTD , and in Section III, we will present a new
kernel-based TD-learning algorithm, i.e., the KLSTD-Q algo-
rithm, for KLSPI. First, some mathematical notations are pre-
sented.

Consider a Markov chain with states in a finite or countable
infinite space . The states of the Markov chain can be indexed
as , where is possibly infinite. Let the trajec-
tory generated by the Markov chain be denoted by

. Although the algorithms and results in this
paper are applicable to Markov chains with general state space,
the following discussion will be restricted within the cases with
a countable state space to simplify the notation.

In TD , there are two basic mechanisms which are the tem-
poral difference and the eligibility trace, respectively. Temporal
differences are defined as the differences between two succes-
sive estimations and have the following form:

(10)

where is the successive state of , denotes the esti-
mate of value function , and is the reward received after
the state transition from to .

As discussed in [1] and [3], the eligibility traces can be
viewed as an algebraic trick to improve learning efficiency
without recording all the data of a multistep prediction process.
This trick is originated from the idea of using a truncated
reward sum of Markov chains. In TD learning with eligibility

traces, an -step truncated return is defined as

(11)

For an absorbing Markov chain whose length is , the
weighted average of truncated returns is

(12)

where is a decaying factor and

(13)

In (13), is the Monte Carlo return at the terminal state. In
each step of TD , the update rule of value-function estima-
tion is determined by the weighted average of truncated returns
defined previously, i.e.,

(14)

where is a learning factor.
The updated equation (14) can be used only after the whole

trajectory of the Markov chain is observed. To realize incre-
mental or online learning, eligibility traces are defined for each
state as follows:

if
if

(15)

The online TD update rule with eligibility traces is

(16)

where is the temporal difference at time step , which is de-
fined in (10) and for all .

The convergence of tabular TD learning algorithms has been
well studied in [26]. Nevertheless, in most applications, function
approximators have to be used for generalization in large and
continuous state spaces.

C. Linear and Least Squares TD Algorithm

For Markov chains with large or continuous state spaces,
function approximators are commonly used in TD learning
algorithms, where the value functions are represented as

(17)

where is a vector of basis
functions, is an observation state in the trajectory

generated by a Markov chain, and
is the weight vector.

The update rule for TD algorithms with function approx-
imation becomes

(18)

where the eligibility trace vector is defined as

(19)

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 977

In [7], the previous TD algorithm was proven to con-
verge with probability 1 under certain assumptions and the
limit of convergence was also derived, which satisfies the
following:

(20)

where form a Markov
process, stands for the expectation with respect to the
unique invariant distribution of , and and
are defined as

(21)

(22)

The least squares TD algorithm, i.e., LSTD , proposed
in [15], computes the weight vector by solving (20) directly,
i.e.,

(23)
As studied in [15] and [14], LSTD and recursive LSTD

algorithms have better data efficiency than conventional TD
algorithms. However, for Markov chains with nonlinear value
functions, the performance of LSTD algorithms may de-
grade significantly when the basis functions which are not prop-
erly selected cannot approximate nonlinear value functions with
good precision and generalization ability.

III. KLSPI

As discussed previously, the convergence of policy iteration
greatly depends on the approximation ability of TD learning
algorithms. In this section, by introducing a new kernel-based
least squares TD learning method for state-action value func-
tions, which is called KLSTD-Q, the KLSPI algorithm is
proposed. In the policy evaluation of KLSPI, least squares TD
learning is implemented in a kernel-induced linear feature space
so that linear LSTD algorithms can be applied while having
a nonlinear value-function representation in the original space.
The KLSTD-Q algorithm is a new variant of the kernel-based
LSTD algorithm, which was first presented in [27]. Further-
more, to reduce the computational costs of kernel methods,
a kernel sparsification method based on approximate linear
dependence (ALD) analysis is integrated into KLSTD-Q. In the
following, we will present the framework of KLSPI first, and
then, the KLSTD-Q algorithm with the kernel sparsification
procedure, as well as the convergence analysis of KLSPI will
be given.

A. Framework of KLSPI

In KLSPI, the kernel function and its induced feature space
play important roles both in policy evaluation and in policy im-
provement. Let denote the original state space. A kernel func-
tion is a mapping from to , which is usually assumed to
be continuous. A Mercer kernel is a kernel function that is pos-
itive definite, i.e., for any finite set of points ,
the kernel matrix is positive definite. According

to the Mercer theorem [28], there exists a Hilbert space and
a mapping from to such that

(24)

where is the inner product in . Although the dimension
of may be infinite and the nonlinear mapping is usually
unknown, all the computation in the feature space can still be
performed if it is in the form of inner products. Due to the
aforementioned properties of kernel functions, kernel methods
have attracted many research interests to kernelize or design new
forms of previous machine learning algorithms in linear spaces
so that nonlinear feature extraction or function approximation
can be realized only by selecting appropriate kernel functions,
e.g., support vector machines (SVMs), kernel principal compo-
nent analysis (KPCA), kernel independent component analysis
(ICA), etc. [29], [30].

By introducing Mercer kernels in the policy evaluation and
policy improvement process of policy iteration, KLSPI can be
viewed as a kernelized version of the previous LSPI algorithm.
However, there are two important problems to be considered
specifically in KLSPI. The first one is how to integrate kernel
methods in TD learning algorithms for approximating the state-
action value functions of a given policy. A slightly different
problem has been recently studied by Xu et al. [27], where the
kernel-based TD learning method—KLSTD—was proposed. In
the policy evaluation process of KLSPI, we will employ a new
variant of KLSTD, the KLSTD-Q algorithm, which will be de-
scribed in detail in Section III-B. By using KLSTD-Q, the state-
action value function is represented by

(25)

where and are the combined features of state-action pairs
and , respectively, are the

coefficients, and are selected state-
action pairs in the sample data, i.e., trajectories generated from
a Markov decision process.

The second problem for KLSPI is how to guarantee the spar-
sity of solutions and decrease the computational costs of kernel
methods. As is well known, a key problem for the applications
of kernel methods is that the number of adjustable parameters
or coefficients in the solutions is originally equal to the number
of sample data points so that when the size of training data
increases, there will be severe computational problems as
well as the decrease of generalization performance. Aiming at
this problem, various regularization methods for sparsifying
kernel machines were studied in the literature. For example,
the sparsity of support vector regression is obtained by making
use of the structural risk minimization (SRM) principle and
the -insensitive cost function [29]. In KLSPI, we will employ
an ALD analysis method which has been applied in some
kernel-based supervised learning algorithms including sparse
online SVMs [31] and the kernel recursive LS (RLS) algorithm
in [32]. Although other supervised kernel regression methods
such as SVMs can realize the sparsification process in a more
direct way, the extension of these methods to RL may need
more complex theoretical analysis to ensure convergence and

978 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

optimality since the SRM principle was originally dedicated
to supervised learning problems. On the contrary, our method
integrates kernel methods with LSTD so that the existing
theoretical works on LSTD can be well employed to analyze
the convergence and optimality of KLSPI.

Let denote a set of observation data
samples and be a feature mapping on the data. A feature vector
set can be obtained as . To per-
form ALD analysis on the feature vector set, a data dictionary
is defined as a subset of the feature vector set, whose elements
are approximately linearly independent. The data dictionary is
initially empty and the ALD analysis is implemented by testing
every feature vectors in , one at a time. If the feature vector

of a data sample cannot be approximated, within a prede-
fined precision, by the linear combination of the feature vectors
in the dictionary, it will be added to the dictionary; otherwise,
it will not be added to the dictionary. Thus, after the ALD anal-
ysis process, all the feature vectors of the data samples in
can be approximately represented by linear combinations of the
feature vectors in the dictionary within a given precision.

Suppose we have tested feature vectors of
the samples in the original data set and

is the obtained data dictionary. The approx-
imately linearly dependent condition of a new feature vector

is tested as follows [32]:

(26)

where and is a threshold parameter to determine the
approximation accuracy and the sparsity level. When is ap-
propriately selected, the sparsity of kernel-based solutions can
be guaranteed without sacrificing much in approximation accu-
racy.

In KLSPI, the sparsification procedure using ALD analysis
is integrated into the KLSTD-Q algorithm, where the feature
vectors are implicitly constructed by the kernel function.
Different from the previous discussion of ALD analysis, where
the feature vectors are tested and stored in the dictionary, in
KLSPI, we will use the data samples directly in the dictionary
since the feature vectors are only implicitly determined by the
kernel functions. Moreover, the computation of (26) will also be
replaced by corresponding kernel functions.

The sparsification procedure in KLSPI mainly includes two
steps. The first step is to compute the following optimization
solutions:

(27)

which is equivalent to

(28)

Due to the kernel trick, after substituting (24) into (28), we
can obtain

(29)

where , are the
elements in the dictionary, is the length of the data dic-
tionary, ,

and .
The optimal solution for (29) is

(30)

(31)

The second step of the ALD-based sparsification is to update
the data dictionary by comparing with a predefined threshold

. If , the dictionary is unchanged; otherwise, is added
to the dictionary, i.e., .

By introducing the ALD-based sparsification method, the
computational complexity as well as the memory cost of kernel
methods can be greatly reduced and more benefits of general-
ization ability are also obtained.

For a given set of data samples generated from an MDP, which
has the form of , a com-
bined data vector or can be defined for each state-ac-
tion pair. After the sparsification procedure, a data dictionary

with reduced number of data vectors will be obtained and
the approximated state-action value function can be represented
as follows:

(32)

where , usually much smaller than the original sample size
, is the length of the dictionary and

are the elements of the data dictionary.
Based on the previous discussion, the framework of the

KLSPI algorithm, where the ALD-based kernel sparsification
procedure is integrated into KLSTD-Q, can be described in the
following.

Algorithm 1: KLSPI Algorithm

1. Given:
• A kernel function and its parameters.
• A termination criterion for the algorithm and the other

parameters such as the sparsification threshold .
• An initial policy , which can be randomly generated

or obtained from an a priori policy.
• Sources of data samples

generated by an MDP under the initial policy .

2. Initialize:
Let iteration number .

3. Loop:
3.1. For the current set of data samples, using the KLSTD-Q

algorithm with ALD-based kernel sparsification, which
will be presented in Section III-B, to approximate the
state-action value functions.

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 979

3.2. Use (9) to perform policy improvement so that a new
greedy policy with respect to the approximated
value functions is obtained.

3.3. Generate new data samples using the policy .
3.4. , return to (3.1).
until the termination criterion is satisfied.

The termination criterion for KLSPI can be selected as the
maximum iteration number or the distance between two succes-
sive policies and . When generating new data sam-
ples, some of the old data samples may be reused, i.e., a sample

in the last iteration may be replaced by

(33)

where is the action selected by the new policy ,
which is greedy with respect to the estimated state-action value
function, i.e.,

(34)

B. KLSTD-Q Algorithm With Kernel Sparsification

As discussed in Section III-A, KLSPI makes use of a new ver-
sion of kernel-based TD learning algorithms, called KLSTD-Q,
for model-free nonlinear approximation of state-action value
functions. The details of KLSTD-Q will be given in this sec-
tion.

Based on the idea of kernel methods, KLSTD-Q represents
the state-action value functions of an MDP as follows:

(35)

where is a combined feature vector of state-action pair .
From (20) to (22), the regression equation for linear LSTD(0)

learning algorithms is

(36)

where

(37)

and (36) can be rewritten as

(38)

(39)

Similar to the discussion in [32], the weight vector in (37)
can be represented by the weighted sum of the state feature vec-
tors

(40)

where are the observed state-action features
and are the corresponding coefficients.

Since the unbiased estimations of expectation can be
obtained as

(41)

where are observed data of random variable
, the least squares regression (38) can be expressed as follows:

(42)
The single-step observation function of (42) is

(43)
where is the observation noise.

Let

(44)

(45)

By multiplying to both sides of the observation (43), due
to the kernel trick, we can get

(46)

where is a transformed noise vector and

(47)

Let

(48)

(49)

Then, the kernel-based least squares solution to the TD
learning problem is as follows:

(50)

Based on (48) and (49), the incremental update equations for
the KLSTD-Q algorithm are

(51)

(52)

As is well known, TD learning is aimed at solving policy eval-
uation of MDPs with stationary policies, which can be modeled
as ergodic or absorbing Markov chains. For ergodic Markov
chains, the aforementioned update formula of KLSTD-Q can
be applied without modification. However, for Markov chains

980 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

with absorbing states, the state features of absorbing states are
all zeros so that the update (51) will be

(53)

To make the aforementioned KLSTD-Q algorithm practical,
one key problem is to decrease the computational and memory
costs of kernel vectors , whose dimension is originally equal
to the number of data points. This problem is common to almost
all the kernel-based learning algorithms and, in KLSTD-Q, we
use the ALD method for sparsification of kernel vectors . As
stated in Section III-A, in the ALD-based kernel sparsification,
a dictionary is defined for the sparsification procedure, which is
initially empty and new elements are added when the approx-
imation error computed by (31) is greater than a threshold

. After the data samples are collected for a given policy, the
ALD-based sparsification method is used to select a part of
the data samples both for sparsification and for generalization.
When the sparsification procedure is completed, the feature vec-
tors produced by the elements in data dictionary are employed
to replace the feature vectors of the whole data set and the fol-
lowing vectors with reduced dimensions can be obtained:

(54)

(55)

where is the data
dictionary, here .

Then, the incremental update equation for KLSTD-Q is mod-
ified as

(56)

(57)

The solution to the kernel-based LSTD problem is

(58)

(59)

Compared to the LSTD-Q algorithm studied in [24], the main
difference in KLSTD-Q is that the manually selected linear fea-
ture vector is replaced by a kernel-based feature vector

, which can be automatically generated by the kernel func-
tion and the ALD-based kernel sparsification procedure. Thus,
the kernel sparsification procedure in KLSTD-Q can be viewed
as an automated feature selection and optimization method in a
kernel-induced linear feature space. This feature selection and
optimization method provides an efficient solution to the main
difficulty of the LSPI algorithm, which was pointed out as a fun-
damental problem of LSPI to be solved [24]. Furthermore, the
approximation and generalization ability of kernel methods will
greatly contribute to the convergence and performance of policy
iteration algorithms, which will be analyzed in theory and illus-
trated in our experiments.

The KLSTD-Q algorithm with the ALD-based kernel sparsi-
fication procedure for ergodic Markov chains can be presented
as follows.

Algorithm 2: KLSTD-Q Algorithm

1. Given:
• A sample data set .
• A kernel function .
• Threshold parameter for kernel sparsification.

2. Perform sparsification:
2.1. Let , the initial dictionary .
2.2. Loop for the whole data set or selected part of the data set.

1) .
2) For state-action pair , use (30) and (31) to

compute the ALD coefficients and .
3) If , the dictionary is unchanged, Else

, where is the
combined feature of state-action pair .

4) For state-action pair , perform the same
computation and update to the dictionary.

3. Compute and incrementally:
3.1. Let , , and .
3.2. Loop for the whole data set:

1) .
2) For the current sample , use

(55) to compute the kernel-based feature vectors of
state-action pairs and .

3) Use (56) and (57) to compute and .

4. Compute the KLSTD solution using (58), output as well
as the data dictionary.

For absorbing Markov chains, the KLSTD-Q algorithm is
only different in dealing with the absorbing states, i.e., if state-
action pair is an absorbing state, the update equation for

becomes

(60)

C. Convergence Analysis

The convergence of KLSPI is determined by three factors.
One is the convergence of the ALD-based kernel sparsification
process. Second is the approximation error of KLSTD-Q and
the third one is the convergence of approximate policy iteration
based on approximate policy evaluation and greedy policy im-
provement. In this section, the convergence theorem of KLSPI
will be presented by analyzing the three factors in KLSPI. First,
the Lemmas 3.1–3.3 are introduced.

Lemma 3.1 [32]: For the ALD-based kernel sparsification
procedure, assume the following: 1) is a continuous
Mercer kernel and 2) is a compact subset of a Banach space.
Then, for any training sequence
and for any , the number of dictionary vectors is finite.

In Lemma 3.1, it is shown that if the original state space is
compact, the ultimate dictionary set will be finite regardless of
the dimension of the Hilbert space . The proof of Lemma 3.1
as well as the relationship between ALD and KPCA was given
in [32]. From Lemma 3.1, it can be guaranteed that when the
ALD-based sparsification procedure is completed, there will be

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 981

a finite dictionary set for computing kernel-based feature vectors
by using (55) and the kernel-based feature vectors are approxi-
mately linearly independent.

The convergence of KLSTD-Q is straightforward since it uses
a batch least squares update to obtain the solutions. The re-
mained problem is the approximation error between the true
state-action value function and the solution based on
the least squares regression equation (58). Since KLSTD-Q es-
sentially implements linear TD learning using kernel-based fea-
ture vectors, (58) is equivalent to the regression equation of
linear LSTD learning algorithms and the existing convergence
and approximation error analysis of linear LSTD algorithms can
be applied [7].

As noted in Section II, to simplify the notation, a countable
state-action space is considered; however, the following results
on TD-learning can also be extended to general spaces [7]. Let
the cardinality of the state-action pairs be . The kernel matrix
can be denoted as

(61)

Based on the analysis of temporal difference learning using
linear basis functions in [7], Lemma 3.2 can be easily obtained.

Lemma 3.2: Let be the weight vector determined by (58)
and be the true state-action value function of the Markov
chain. Let be the space of state-action pairs. Let the assump-
tions A1)–A3) be satisfied.

A1) Markov chain , whose states are produced by the
state-action pairs of an MDP with a stationary policy, is
ergodic and the transition probability matrix is . There
is a unique distribution that satisfies with

for all and is a finite or infinite vector,
depending on the cardinality of .

A2) The transition rewards satisfy

(62)

where is the expectation with respect to the distri-
bution .

A3) For every , the basis function

(63)

Then, the following relation holds:

(64)

where , ,
(in KLSTD-Q), and .

Similar to the discussion in [7], assumptions A1)–A3) are
easily satisfied and the linear independence assumption of basis
functions is not necessary. From Lemma 3.2, we can see that the
solution obtained by KLSTD-Q will approximate the real value
functions with errors bounded by (64).

Lemma 3.3 [24]: Let be the se-
quence of policies generated by policy iteration algorithms
and let be the corresponding approximate value

functions. Let be a positive scalar that bounds the errors be-
tween the approximate and the true state-action value functions
over all iterations

(65)

Then, this sequence eventually produces policies whose per-
formance is at most a constant multiple of away from the op-
timal performance

(66)

Based on the Lemmas 3.1–3.3, the convergence property of
the proposed KLSPI algorithm can be described in Theorem 3.1.

Theorem 3.1: If the initial data samples
are generated by an MDP

using a stationary initial policy, the policies produced by the
KLSPI algorithm will at least converge to an area of policy
space having suboptimal performance bounds determined by
the approximation error of KLSTD-Q. Furthermore, if the
approximation error becomes zero, KLSPI will converge to the
optimal policy of the MDP.

Proof: In KLSPI, after the ALD-based kernel sparsifica-
tion procedure, a finite dictionary set can be produced due to
Lemma 3.1, and a set of approximately linearly independent
basis functions can be formed. In the policy evaluation process,
the data samples generated by the MDP using stationary poli-
cies can be transformed to the state transitions of corresponding
Markov chains. Thus, in KLSTD-Q, kernel-based feature vec-
tors are computed for the Markov chains, which is equivalent
to the form of linear feature vectors. Then, due to Lemma 3.2,
the approximation errors of KLSTD-Q are bounded by (64). At
last, the convergence results of KLSPI can be established using
Lemma 3.3.

IV. EXPERIMENTAL RESULTS

In this section, three illustrative examples are given to show
the effectiveness of the KLSPI algorithm. Since KLSPI is a
substantial extension of the LSPI algorithm using manually
selected basis functions, the performance of KLSPI and LSPI
is compared in the experiments. The results clearly show that
KLSPI usually converges in fewer iterations than LSPI and the
optimal policies are easier to be produced in KLSPI due to the
approximation and generalization ability of kernel methods in
policy evaluation. Furthermore, the feature selection problems
in LSPI are simplified since the kernel-based features can be
automatically constructed by kernel sparsification and only
very few parameters are to be selected for kernel functions.
One of the experiments, i.e., the 20-state chain problem, was
also studied in the previous work on LSPI and their publicly
available simulation code is used in our experiments so that
the performance comparison will be in the same experimental
setup. Although the 20-state chain problem is a simple sto-
chastic control problem, it was used both in [24] and in this
paper to study the convergence behavior of approximated value
functions and policies since the real optimal value functions
and policies can be exactly computed when the model is known.
To evaluate the effectiveness of KLSPI in feedback control

982 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

Fig. 2. Four-state problematic MDP [24].

Fig. 3. Improved policy of KLSPI after each iteration (R action—dark shade; L action—light shade; KLSPI—top stripe; exact—bottom stripe). Top
left—iteration 1. Bottom left—iteration 3. Right—iteration 2.

of complex dynamic systems, simulation experiments on the
swing-up control of an underactuated double-link pendulum
and the steering control of a tanker ship were conducted and the
results show that the KLSPI algorithm can optimize controller
performance by collecting data samples online and the perfor-
mance of the learning control systems can be well guaranteed
by incorporating conventional controller as initial policies.

A. The 20-State Chain Problem

The first experiment is a 20-state chain problem which is a
problematic MDP noted in [24]. The MDP consists of a chain
with 20 states (numbered from 1 to 20) and a simplified ex-
ample with four states is shown in Fig. 2. For each state, there
are two actions available, i.e., “left” (L) and “right” (R). Each
action succeeds with probability 0.9, changing the state in the
intended direction, and fails with probability 0.1, changing the
state in the opposite direction. The two boundaries of the chain
are dead-ends. For the four-state problem in Fig. 2, the reward
vector over states is (0, 1, 1, 0) and the discount factor
is set to 0.9. It is clear that the optimal policy is RRLL. In
[33], a policy iteration method was used to solve the four-state
problem, where LSTD was employed for state VFA. However,
the resulting policies obtained in [33] only oscillated between
the suboptimal policies RRRR and LLLL. The reason is mainly
due to the limited approximation abilities of linear basis func-
tions in policy evaluation.

The 20-state problem has the same dynamics as the four-state
problem, except the reward of 1 given only at the boundaries
(states 1 and 20). The optimal policy in this case is to go left in
states 1–10 and right in states 11–20. In [24], LSPI was tested
on the same problem. However, for the 20-state problem, careful

selection of basis functions is required since the state space is
larger than the four-state problem.

In the following, the experimental setup is the same as the ex-
periments for LSPI in [24]. For the LSPI algorithm, a polyno-
mial of 4 was used to approximate the value function for each
of the two actions, giving a block of five basis functions per ac-
tion. The two algorithms use a single set of samples collected
from a single episode in which actions were chosen uniformly
at random for 5000 steps. The performance is evaluated by the
iterations for convergence as well as the ultimate policies after
convergence. Figs. 3 and 4 show the improved policy after each
iteration of KLSPI and LSPI, respectively. In Figs. 3 and 4, the
both policies learned by KLSPI and the exact policies computed
based on the model are depicted, where different colors corre-
spond to different actions at every state. From Figs. 3 and 4, it is
illustrated that although both algorithms converge to the optimal
policy, KLSPI converges to the optimal policy only after three
iterations while LSPI converges to the optimal policy after seven
iterations. In fact, KLSPI finds the optimal policy only after two
iterations, and then, it stabilizes in the optimal policy. Thus,
compared with LSPI, KLSPI is much more efficient in conver-
gence rates and little work is required on feature selection. In
KLSPI, we use a radius basis function (RBF) kernel function
and the unique parameter to be selected is the width of RBF.
In the experiments, the RBF width is selected as , which
was simply tuned using a 1-D search process. The other param-
eter for KLSPI is the precision threshold of ALD-based kernel
sparsification procedure. In all the following experiments, is
equal to 0.001.

The convergence of KLSPI is mainly due to the powerful
approximation and generalization ability of the kernel-based

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 983

Fig. 4. Improved policy of LSPI after each iteration (R action—dark shade; L action—light shade; LSPI—top stripe; exact—bottom stripe). Top left—iteration 1.
Bottom left—iteration 7. Others—iterations 2–6.

Fig. 5. State-action value function Q(s; a) of the policy being evaluated in
each iteration (KLSPI approximation—solid line; exact values—dotted line).
Top left—iteration 1. Bottom left—iteration 3. Right—iterations 2.

Fig. 6. State-action value function Q(s; �(s)) of the policy being evaluated in
each iteration (LSPI approximation—solid line; exact values—dotted line). Top
left—iteration 1. Bottom left—iteration 7. Others—iterations 2–6.

policy evaluation using KLSTD-Q. This can be illustrated in
Figs. 5–8, where the approximated value functions in each it-
eration as well as the exact values are plotted for both KLSPI
and LSPI. In Fig. 5, it is shown that by using KLSTD-Q, KLSPI
can approximate the exact state-action value functions with high
precision so that it converges to the optimal policy in fewer it-
erations. In Fig. 6, it can be seen that there are relatively larger
approximation errors in LSPI using LSTD-Q with manually se-
lected basis functions, especially in the first four iterations. As

Fig. 7. State value function V (s) of the policy being evaluated in each
iteration (KLSPI approximation—solid line; exact values—dotted line). Top
left—iteration 1. Bottom left—iteration 3. Right—iteration 2.

Fig. 8. State value function V (s) of the policy being evaluated in each
iteration (LSPI approximation—solid line; exact values—dotted line). Top
left—iteration 1. Bottom left—iteration 7. Others—iterations 2–6.

the errors become smaller, LSPI also converges to the optimal
policy but more iterations are needed.

In the experiments, the state-action pairs of the 20-state MDP
have a total number of 40 since there are two actions available
for each state, and every state-action pair was originally repre-
sented as a 2-D vector , where the elements were normal-
ized by a positive constant, i.e.,
and . After the kernel sparsification process,
a kernel-based feature vector, which has the dimension of 21,

984 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

Fig. 9. Acrobot.

was automatically obtained from the 5000 training samples. Al-
though the feature dimension of KLSPI is larger than
that of LSPI , they are both compact representations
of the original state-action space and the increase of
computational costs in KLSPI is not significant when compared
with the benefits of better approximation accuracy and better
convergence behavior. Moreover, the features in KLSPI are au-
tomatically produced and optimized by the kernel sparsification
procedure.

Figs. 7 and 8 make comparisons of the state value functions
approximated by KLSPI and LSPI. It is also clearly shown

that KLSPI can approximate the true state value functions with
smaller errors and converge within fewer iterations than LSPI.

B. Swing-Up Control of an Underactuated Double-Link
Pendulum

In this section, a more difficult learning control problem,
which is the swing-up control of an underactuated double-link
pendulum in minimum time, is studied to evaluate the effec-
tiveness of KLSPI. The underactuated double-link pendulum is
also called an acrobot, which is a class of underactuated robots
that has been widely studied in control engineering [40]–[42].
As shown in Fig. 9, the acrobot is a double-link pendulum (link
OA and AB) moving on a vertical plane with only one actuator
at the elbow. It has two equilibrium points, which are the stable
straight-down equilibrium point and the unstable straight-up
equilibrium point. The control objective is to swing up the
acrobot from the stable equilibrium point to the neighborhood
of the unstable equilibrium and balance it there. Because of
the complexity of the problem, the control of the acrobot is
usually divided into two phases which are the swing-up and the
balancing control phases. In this paper, we will only consider
the time-optimal swing-up control of the acrobot.

Until now, several approaches have been proposed for the
controller design of the acrobot. In [40] and [41], nonlinear ap-
proximation and pseudolinearization methods were presented
for the balancing control of the acrobot. In [42], a partial feed-
back linearization method was proposed for the swing-up con-
trol of an acrobot, together with a linear quadratic regulator
(LQR) method to balance it. However, the previous methods
greatly rely upon the dynamics model of the acrobot and it may
take a long time to swing up the acrobot. The learning control
of the acrobot is to realize time-optimal swing-up motion of the

acrobot without knowing the exact dynamics of the system and
it has been studied by researchers from the RL community. In
[43], a SARSA-learning algorithm was applied to the problem,
where a function approximator based on cerebellar model ar-
ticulation controller (CMAC) was used. In [20], an improved
RL algorithm using VFA has been proposed for the acrobot
problem. However, all the aforementioned results lack rigorous
convergence proofs and it still takes many learning episodes
to obtain good performance. In the following, both LSPI and
KLSPI will be applied to the swing-up control of the acrobot
and their performance will be compared.

In Fig. 9, the first joint O is fixed to a bar and it cannot exert
torques. The only control torque is applied at the second joint
A. The control aim is to swing the acrobot up so that the tip
point B is above the bar by an amount equal to one of the links.
The time-optimal learning control problem is to swing up the
acrobot in minimal time without knowing the dynamics of the
system.

The dynamics model of the acrobot system is described by
the following equations, which are only used for simulation:

(67)

(68)

where

(69)

(70)

(71)

(72)

In (69)–(72), the parameters , , , , , and are the
angle, the angle velocity, the mass, the length, the moment of
inertia, and the length of the center of mass for link ,
respectively.

Let denote the goal state of the swing-up control. Since
the control aim is to swing up the acrobot in minimum time, the
reward function is defined as

if
else

(73)

In the simulation, the parameters for the acrobot are chosen
as 1 kg, 1 kg m , 0.5 m,

1 m, and 9.8 m/s . The control torque has three
discrete values . The time step for simulation
is 0.05 s and the time interval for learning control is 0.2 s. A
learning episode is defined as the period that starts from the
stable equilibrium, i.e., , and ends when the goal
state is reached or a maximum time step is accumulated. The
performance of the algorithms is evaluated based on the time
steps needed to swing up the acrobot.

As discussed in [20] and [43], the swing-up control problem
of the acrobot can be modeled as an MDP with four-state
variables , , , and . In our simulations, both LSPI and
KLSPI are applied to learn a near-optimal policy to swing up

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 985

Fig. 10. Variations of � for the acrobot controlled by the policies of KLSPI at each iteration (the three subfigures at the first row are curves of � at iterations
1–3; the second row corresponds to iterations 4–6; and curves of � at iterations 7 and 8 are shown at the last row).

the acrobot as fast as possible. The initial training samples
were generated by a random control policy, where 12 episodes
of data were simulated and each episode had a maximum
time step of 250. Thus, the maximum initial training samples
may have samples and every sample has the form
of , where ,

. Each iteration of LSPI or KLSPI is composed of
two stages, i.e., a data collecting and policy evaluation stage
and a policy improvement stage. Although the initial policy can
be constructed by an a priori controller to improve performance
and speed of convergence, in the acrobot example, only random
initial policies were consider to study the complete convergence
behavior of LSPI and KLSPI. In the next example of tanker
ship steering control, an initial controller using prior knowledge
will be used to improve the online performance of KLSPI.

In the implementation of KLSPI, RBF kernel functions are
used and the width parameter for RBF kernel is selected as

. The threshold parameter for ALD-based sparsifica-
tion is set as . The discount factor is chosen as

. The simulation experiments were conducted for sev-
eral independent runs with random initial policies. For every
run of KLSPI, the learning control process of KLSPI consists
of eight iterations. The simulation results show that KLSPI can
obtain a very good control policy after very few iterations and it
can stabilize or converge to a near-optimal policy very soon. A
typical run of KLSPI with eight iterations is shown in Figs. 10
and 11, where the variations of the acrobot angles and are
depicted, respectively. From Figs. 10 and 11, it is clearly shown
that KLSPI converges to a near-optimal policy after four iter-
ations and the obtained policy can swing up the acrobot with
only 52 time steps, which is better than the near-optimal poli-
cies (around 70 steps) found by previous RL algorithms [20],
[43].

To compare the performance between KLSPI and LSPI,
learning control experiments of the acrobot were also con-
ducted by making use of the LSPI method. A total number
of 243 RBF basis functions of LSPI were selected, where
there were three RBF functions for each dimension of state
variables and action variables. The learning control process of
LSPI also has several independent runs, where each run has
ten iterations. In the simulations, the policies of LSPI usually
cannot converge to a near-optimal policy, which can be seen in
Fig. 12. The reason is mainly due to the improperly selected
basis functions which have limited generalization ability.
However, to manually select a set of good basis functions for
LSPI in high-dimensional domains is difficult. For comparison,
in the learning control process of Figs. 10 and 11, KLSPI can
automatically construct a kernel-based feature vector of 131
dimensions.

As an adaptive learning control method based on approxi-
mate dynamic programming, KLSPI can be used to optimize
controller performance without much a priori knowledge about
the dynamics of control plants. In addition, since KLSPI can
converge to a near-optimal policy with relatively small number
of iterations or training episodes, it will be beneficial to use
KLSPI for control systems with changing dynamics. The fol-
lowing Fig. 13 shows the variations of for the acrobot when
the mass of pole 1 changes from 1 kg to 1.5 kg. It can
be seen that KLSPI can quickly optimize the controller perfor-
mance (after four iterations, the converged policy can swing up
the acrobot within 49 steps) without knowing the exact change
of plant dynamics, even if a randomly generated initial policy
is used. However, to ensure online performance, especially the
performance in the initial stage, a suitable controller can be
used as the initial policy of KLSPI. This problem will be fur-
ther studied in the following tanker ship heading control task,

986 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

Fig. 11. Variations of � for the acrobot controlled by the policies of KLSPI at each iteration (the three subfigures at the first row are curves of � at iterations
1–3; the second row corresponds to iterations 4–6; and curves of � at iterations 7 and 8 are shown at the last row).

Fig. 12. Variations of � for the acrobot controlled by the policies of LSPI at each iteration (the three subfigures at the first row are curves of � at iterations 1–3;
the second and third rows correspond to iterations 4– 6 and iterations 7–9, respectively; and the curve of � at iteration 10 is shown at the last row).

where an initial PD control structure will be used to improve
online performance.

C. Adaptive Steering Control of a Tanker Ship

To improve fuel efficiency and reduce wear on ship com-
ponents, autosteering systems have been developed and imple-

mented for controlling the directional heading of ships. Tradi-
tional steering control systems of ships often make use of simple
control schemes such as PID control. However, in many cases,
the parameters of the ship steering controller have to be contin-
ually optimized. Such continual optimization is necessary since
the dynamics of a ship change with the speed, trim, and loading

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 987

Fig. 13. Variations of � for the acrobot (the mass of pole 1 changes to m = 1.5 kg) controlled by the policies of KLSPI at each iteration (the three subfigures
at the first row are curves of � at iterations 1–3; the second row corresponds to iterations 4–6; and curves of � at iterations 7 and 8 are shown at the last row).

Fig. 14. Steering control of a tanker ship [46].

of the ship, and adaptive control law must be developed to com-
pensate for large disturbances resulting from variations in the
wind, waves, current, and water depth. Manual optimization of
the controller parameters is often a burden on the crew and poor
adjustment may be caused by human error. As a result, it is of
great significance to develop a method for automatically opti-
mizing or modifying the underlying controller for ship steering
or heading control.

In the following, the adaptive steering control problem of a
heavy tanker ship will be considered, which has been studied
by many researchers from the control engineering community
[44]–[46]. The tanker ship dynamics are usually modeled by
applying Newton’s laws of motion to the ship. For very large
tanker ships, the motion in the vertical plane may be neglected
since the vertical motion is very small for large tanker vessels.
The motion of the ship is generally described by a coordinate
system that is fixed to the ship [45], [46], which is shown in
Fig. 14.

In Fig. 14, is the forward velocity, is the lateral velocity,
is the heading of the ship, and is the rudder angle, which

serves as the control signal. Although a simplified linear model

of the tanker ship may be used, it will be impractical for rudder
angles that are larger than 5 . Therefore, the same nonlinear
model studied in [45] was used in the simulation, which is given
by

(74)

where , , , and are parameters that are a function of the
ship’s constant forward velocity and its length , and is
a nonlinear function of .

As discussed in [45], the nonlinear function can be
given by

(75)

where and are real-valued constants such that is always
positive.

The relationships between , , , and are
described as follows:

(76)

(77)

The previously described dynamics model of a tanker ship
was further studied in [47], where a fuzzy control method and a
neural control method based on RBF neural networks have been
designed for the ship heading control problem. In this paper, the
same tanker ship dynamics will be used for simulation but the
KLSPI algorithm does not need model information as a priori
and it can optimize controller performance only by collecting

988 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

Fig. 15. Variations of heading error for the tanker ship controlled by the policies of KLSPI at each iteration (the three subfigures at the first row are error curves
at iterations 1–3; the second row corresponds to iterations 4–6; and curves of heading error at iterations 7 and 8 are shown at the last row).

observation data samples. Thus, KLSPI needs little work on the
modeling of the tanker ship and it will have advantages in re-
alizing adaptive learning control of tanker ships under different
conditions. The remaining problem is to ensure the online per-
formance during the learning control process of KLSPI. In this
paper, we propose to combine the KLSPI method with a PD
control structure and make use of KLSPI to automatically se-
lect the PD parameters. Moreover, the initial PD parameters or
candidate PD parameters to be selected can be designed using
other conventional method and KLSPI is employed to improve
the controller’s performance further so that the online learning
control process will have good performance.

Based on the aforementioned idea, the KLSPI controller has
the following form:

(78)

where and are the heading error and the derivative of
heading error, respectively, is the action output of the KLSPI
algorithm, and is a constant. For the implementation of
KLSPI, a 2-D vector (and) is used as the state vector, and
the action is selected from three values . Although
continuous actions of KLSPI can also be considered by using a
searching process for greedy action selection, in the simulation,
we only focus on KLSPI with discrete actions since the conver-
gence behavior and generalization performance are our main
concerns. Furthermore, by combining KLSPI with a PD control
structure, good controller performance can still be obtained for
KLSPI with discrete actions.

In the simulation, an episode is defined as a period that starts
from an initial state (0, 0) at 0 s and ends at 200 s.

A desired heading angle of 45 is used during all the simula-
tions. Therefore, the initial heading error (in radians) is

. The initial training samples were gener-
ated by a random control policy of combined with the PD con-
trol structure in (78), where five episodes of data were simulated
and each episode has a time step of 200. Thus, the maximum ini-
tial training samples have samples and every sample
has the form of , where ,

and and are the heading error and the deriva-
tive of heading error at time step , respectively. An iteration of
KLSPI is composed of a data collecting and policy evaluation
stage, and a policy improvement stage. The simulation param-
eters are chosen as , , , ,

, , and 350 m. The ship is assumed
to travel in the direction at a constant velocity of 5 m/s. The
parameters for KLSPI include the RBF kernel width ,
and the constant for PD control structure .

A typical run of KLSPI with eight iterations is shown in
Figs. 15 and 16, where the variations of the ship heading error
and its derivatives are depicted, respectively. From Figs. 15 and
16, it is demonstrated that KLSPI converges to a near-optimal
policy after very few iterations and the obtained policy is much
better than the initial policy provided.

To compare the performance of KLSPI with other methods,
the tanker ship heading control problem was also simulated by
applying the fuzzy control method and neural feedback con-
troller studied in [47], as well as a conventional PD controller
with constant PD parameters, which has the form of (78). The
parameters of the fuzzy and RBF controllers are the same as
those in the Matlab simulation code used in [47] and the PD
control parameters are and .

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 989

Fig. 16. Variations of the derivatives of heading errors for the tanker ship controlled by the policies of KLSPI at each iteration (the three subfigures at the first row
are error derivative curves at iterations 1–3; the second row corresponds to iterations 4–6; and curves of heading error derivatives at iterations 7 and 8 are shown
at the last row).

Fig. 17. Performance comparison between KLSPI combined with a PD control structure and other controllers for the ship heading control problem. (a) Fuzzy
control. (b) RBF control. (c) PD control. (d) KLSPI+PD.

Fig. 17 shows the curves of the ship heading error under con-
trol by different methods. It can be seen from the results that the
performance of the proposed KLSPI method is comparable to
the fuzzy controller and the RBF controller studied in [47] and
it is much better than a simple PD controller with manually se-
lected parameters. Nevertheless, the main advantage of KLSPI
is the adaptive learning ability with good convergence and gen-
eralization performance.

V. RELATED WORK AND DISCUSSION

Recently, kernel machines are popularly studied to realize
nonlinear and nonparametric versions of supervised or unsu-

pervised learning algorithms. The main idea behind kernel ma-
chines is that an inner product in a high-dimensional feature
space can be represented as a Mercer kernel function so that ex-
isting supervised or unsupervised learning algorithms in linear
spaces can be transformed to nonlinear algorithms without ex-
plicitly computing the inner products in high-dimensional fea-
ture spaces. This idea, which is usually called the “kernel trick,”
has been widely used in supervised and unsupervised learning
problems. In supervised learning, the most popular kernel ma-
chines include the SVMs and Gaussian processes (GPs), which
have been successfully applied in many classification and re-
gression problems and in most cases, kernel machines can ob-

990 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

tain better results or even the state-of-the-art performance. In
unsupervised learning, KPCA was also addressed in many pa-
pers. Comprehensive reviews on kernel machines can be found
in [28]–[30].

The combination of kernel methods with RL did not receive
much attention several years ago since the regression or function
approximation problem is more difficult in RL than supervised
learning. One of the earliest works in this direction was published
in 2002 [34], where kernel-based locally weighted averaging was
used to approximate the state value functions of MDPs. However,
as indicated in [24], by working directly on value-function space
and performing the Bellman update and projection without any
kind of model, LSPI as well as KLPSI make better use of func-
tion approximation than the kernel-based locally weighted aver-
agingmethod.Inrecentyears, therewerestudiesdoneonapplying
GPs or SVMs to RL problems, such as GPs in TD(0) learning
[35], SVMs for RL [36], and GPs in model-based policy iteration
learning [37]. The work on GPs in TD learning (GPTD) [35] has
some similarities with KLSTD-Q. Both GPTD and KLSTD-Q
make use of kernel sparsification procedure based on ALD anal-
ysis.However,GPTDis todefineaprobabilisticgenerativemodel
for the state value function by imposing a Gaussian-prior over
valuefunctionsandassumingaGaussiannoisemodel.KLSTD-Q
isbasedonthe least squaresapproach toapproximate thestate-ac-
tionvaluefunctionsanditcanbeeffectivelycombinedwithpolicy
improvement to produce highly efficient policy iteration algo-
rithms with proven convergence. Furthermore, GPTD was only
combined with the optimistic policy iteration (OPI) method and
no convergence guarantee has been given. In [36], support vector
regression was applied to batch learning of the state value func-
tionsofMDPs,but indiscretestatespaces,andtherewerenotheo-
retical results on the policies obtained. The GPs method in policy
iteration learning [37] is aimed at realizing a model-based RL by
approximating the plant dynamics and the state value functions
of MDPs using two GP regression model. The GP-based policy
iteration method uses support points, which are usually selected
by manual discretization of the state spaces, for generalization in
large or continuous spaces and the policy evaluation is performed
using the state transition model approximated by a GP model.
Thus, the analysis on the convergence of the GP-based policy it-
eration method is complex and has not been solved yet.

The most related work to this paper is the LSPI algorithm
studied in [24]. The relationship between LSPI and KLSPI can
be summarized as follows. On one aspect, the KLSPI algorithm
can be viewed as a substantial extension of LSPI by introducing
kernel-based features that are constructed by an ALD-based
kernel sparsification procedure. This extension from manually
selected features of LSPI to automatically constructed features
eliminates one of the main obstacles to successful applications
of LSPI. On the other hand, by using KLSTD-Q, the policy
evaluation in KLSPI can efficiently approximate the state-action
value functions with high precision; therefore, the convergence
as well as the policy optimality of KLPSI is better guaranteed
than LSPI.

VI. CONCLUSION AND FUTURE WORK

As a class of model-free approximate dynamic programming
methods, RL is very promising when applied in many complex

sequential decision problems where conventional mathematical
programming and supervised learning methods cannot be used,
either due to the lack of model information or the model being
too complex. However, there are several difficulties for wide ap-
plications of current RL theory and algorithms, e.g., generaliza-
tion and convergence in large-scale MDPs. Despite the recent
research work that has been devoted to solving these problems,
especially the LSPI algorithm in [24] and kernel methods in RL
[35]–[37], there still remain two difficulties. One difficulty is
the convergence guarantee to the optimal or near-optimal poli-
cies when various function approximators are employed. The
other difficulty is the feature selection for improving general-
ization and learning efficiency. The KLSPI algorithm proposed
in this paper makes two improvements to eliminate these two
difficulties. One is the convergence and (near) optimality guar-
antee based on the KLSTD-Q algorithm for policy evaluation
with high precision. The other is the automatic feature selec-
tion using the ALD-based kernel sparsification method. Exper-
imental results demonstrate that KLSPI can converge to the op-
timal or near-optimal policies within fewer iterations and with
smaller size of sample sets than the previous LSPI. Thus, KLSPI
provides a general RL method with generalization performance
and convergence guarantee for large-scale MDPs.

For applying KLSPI to feedback control of dynamic systems,
where online learning and optimization with performance guar-
antees are usually required, it is not necessary for the random
data gathering stages in which random/intermediate controls are
applied to the system. Instead, a suitable initial policy or con-
troller such as a PD controller can be used, and KLSPI is able
to optimize the controller performance incrementally based on
the data gathered from the initial policy. Therefore, KLSPI can
also be used in online learning control problems when an initial
controller is provided to guarantee the online performance and
stability. The simulation experiments on the heading control of
a tanker ship have shown that the online learning control process
of KLSPI can be realized in a periodical way, i.e., data gathering
and learning optimization are both performed online but alter-
natively. Compared to other neural network methods for feed-
back control such as ACDs [38], KLSPI uses kernel methods
and VFA to implicitly establish the behavior model of uncertain
dynamic systems and the controller performance is optimized
via approximate dynamic programming based on policy itera-
tion. Although the results are very encouraging, the applications
of KLSPI in more real-world problems, as well as comprehen-
sive comparisons between KLSPI and ACDs, are to be studied
in future work, not only to provide optimized solutions of com-
plex sequential decision problems but also for further verifica-
tion and improvement of the KLSPI algorithm.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions, which greatly im-
proved the quality of this paper. They would also like to thank
Dr. M. G. Lagoudakis, Dr. R. Parr, and Prof. K. M. Passino for
their publicly available simulation codes for LSPI and tanker
ship heading control.

XU et al.: KLSPI FOR REINFORCEMENT LEARNING 991

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning, an Introduction.
Cambridge, MA: MIT Press, 1998.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[3] R. Sutton, “Learning to predict by the method of temporal differences,”
Mach. Learn., vol. 3, no. 1, pp. 9–44, 1988.

[4] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
pp. 279–292, 1992.

[5] J. N. Tsitsiklis, “Asynchronous stochastic approximation and
Q-learning,” Mach. Learn., vol. 16, pp. 185–202, 1994.

[6] P. Dayan and T. J. Sejnowski, “ TD(�) converges with probability 1,”
Mach. Learn., vol. 14, pp. 295–301, 1994.

[7] J. N. Tsitsiklis and B. V. Roy, “An analysis of temporal difference
learning with function approximation,” IEEE Trans. Autom. Control,
vol. 42, no. 5, pp. 674–690, May 1997.

[8] S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari, “Con-
vergence results for single-step on-policy reinforcement-learning algo-
rithms,” Mach. Learn., vol. 38, pp. 287–308, 2000.

[9] D. P. Bertsekas and J. N. Tsitsiklis, Neurodynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[10] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,”
IEEE Trans. Neural Netw., vol. 12, no. 4, pp. 875–889, Jul. 2001.

[11] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estima-
tion,” J. Artif. Intell. Res., vol. 15, pp. 319–350, 2001.

[12] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron-like adap-
tive elements that can solve difficult learning control problems,” IEEE
Trans. Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 834–846, Sep.
1983.

[13] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in Neural Information Processing Systems. Cambridge, MA: MIT
Press, 2000, vol. 12.

[14] X. Xu, H. G. He, and D. W. Hu, “Efficient reinforcement learning
using recursive least-squares methods,” J. Artif. Intell. Res., vol. 16,
pp. 259–292, 2002.

[15] J. Boyan, “Technical update: Least-squares temporal difference
learning,” Mach. Learn., vol. 49, no. 2–3, pp. 233–246, 2002.

[16] R. H. Crites and A. G. Barto, “Elevator group control using multiple
reinforcement learning agents,” Mach. Learn., vol. 33, no. 2–3, pp.
235–262, 1998.

[17] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,
achieves master-level play,” Neural Comput., vol. 6, pp. 215–219,
1994.

[18] W. Zhang and T. Dietterich, “A reinforcement learning approach to
job-shop scheduling,” in Proc. 14th Int. Joint Conf. Artif. Intell., 1995,
pp. 1114–1120.

[19] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Proc. 12th Int. Conf. Mach. Learn., San Francisco,
CA, Jul. 9–12, 1995, pp. 30–37.

[20] X. Xu and H. G. He, “Residual-gradient-based neural reinforcement
learning for the optimal control of an acrobot,” in Proc. IEEE
Int. Symp. Intell. Control, Vancouver, BC, Canada, Oct. 2002,
pp. 758–763.

[21] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Mach. Learn., vol. 8, pp.
229–256, 1992.

[22] L. Baird and A. Moore, “Gradient descent for general reinforcement
learning,” in Advances in Neural Information Processing Systems.
Cambridge, MA: MIT Press, 1999, vol. 11.

[23] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approxima-
tion,” in Advances in Neural Information Processing Systems. Cam-
bridge, MA: MIT Press, 2000, vol. 12.

[24] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J.
Mach. Learn. Res., vol. 4, pp. 1107–1149, 2003.

[25] M. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. New York: Wiley, 1994.

[26] J. N. Tsitsiklis, “Asynchronous stochastic approximation and
Q-learning,” Mach. Learn., vol. 16, pp. 185–202, 1994.

[27] X. Xu, T. Xie, D. W. Hu, and X. C. Lu, “Kernel least-squares
temporal difference learning,” Int. J. Inf. Technol., vol. 11, no.
9, pp. 54–63, 2005.

[28] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[29] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[30] B. Schölkopf and A. Smola, Learning With Kernels. Cambridge, MA:
MIT Press, 2002.

[31] Y. Engel, S. Mannor, and R. Meir, “Sparse online greedy support vector
regression,” in Proc. 13th Eur. Conf. Mach. Learn., 2002, pp. 84–96.

[32] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[33] D. Koller and R. Parr, “Policy iteration for factored MDPs,” in Proc.
16th Conf. Uncertainty Artif. Intell., Stanford, CA, 2000, pp. 326–334.

[34] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,” Mach.
Learn., vol. 49, no. 2–3, pp. 161–178, 2002.

[35] Y. Engel, S. Mannor, and R. Meir, “Bayes meets Bellman: The
Gaussian process approach to temporal difference learning,” in Proc.
Int. Conf. Mach. Learn., 2003, pp. 154–161.

[36] T. G. Dietterich and X. Wang, “Batch value function approximation
via support vectors,” in Advances in Neural Information Processing
Systems 14. Cambridge, MA: MIT Press, 2002, pp. 1491–1498.

[37] C. E. Rasmussen and M. Kuss, “Gaussian processes in reinforcement
learning,” in Advances in Neural Information Processing Systems 16,
S. Thrun, L. K. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT
Press, 2004, pp. 751–759.

[38] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[39] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Com-
parison of heuristic dynamic programming and dual heuristic
programming adaptive critics for neurocontrol of a turbogenerator,”
IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 764–773, May 2002.

[40] J. Hauser and R. M. Murray, “Nonlinear controllers for non-integrat-
able systems: The acrobot example,” in Proc. Amer. Control Conf., San
Diego, CA, 1990, pp. 669–671.

[41] S. Bortoff and M. W. Spong, “Pseudolinearization of the acrobot using
spline functions,” in Proc. IEEE Conf. Decision Control, Tucson, AZ,
1992, pp. 593–598.

[42] M. W. Spong, “The swing up control problem for the acrobot,” IEEE
Control Syst. Mag., vol. 15, no. 1, pp. 49–55, Feb. 1995.

[43] R. Sutton, “Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding,” in Advances in Neural Informa-
tion Processing Systems 8. Cambridge, MA: MIT Press, 1996, pp.
1038–1044.

[44] K. M. Passino, “Intelligent control: an overview of techniques,” in Per-
spectives in Control Engineering: Technologies, Applications, and New
Directions, T. Samad, Ed. New York: IEEE Press, 2001, pp. 104–133.

[45] K. M. Passino and S. Yurkovich, Fuzzy Control. Reading, MA: Ad-
dison-Wesley, 1998.

[46] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[47] K. M. Passino, Biomimicry for Optimization, Control, and Automa-
tion. London, U.K.: Springer-Verlag, 2005.

Xin Xu was born in Hubei, P. R. China, in 1974. He
received the B.S. degree in control engineering from
the Department of Automatic Control, National Uni-
versity of Defense Technology (NUDT), Changsha,
P. R. China, in 1996 and the Ph.D. degree in electrical
engineering from the College of Mechantronics and
Automation (CMEA), NUDT.

From 2003 to 2004, he was a Postdoctoral Fellow
at School of Computer, NUDT. Currently, he is an
Associate Professor at the Institute of Automation,
CMEA, NUDT. He has coauthored four books and

published more than 40 papers in international journals and conferences. His
research interests include reinforcement learning, data mining, learning control,
robotics, autonomic computing, and computer security.

Dr. Xu received the excellent Ph.D. dissertation award from Hunan Province,
P. R. China, in 2004. He has served as a Session Chair in many international
conferences, and currently, he is a reviewer for many journals.

992 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

Dewen Hu (M’03–SM’06) was born in Hunan, P. R.
China, in 1963. He received the B.Sc. and M.Sc. de-
grees from Xi’an Jiaotong University, Xi’an, China,
in 1983 and 1986, respectively, and the Ph.D. degree
from the National University of Defense Technology,
Changsha, P. R. China, in 1999, all in automatic con-
trol.

From 1986, he was with the National University of
Defense Technology. From October 1995 to October
1996, he was a Visiting Scholar at the University of
Sheffield, Sheffield, U.K. He was promoted Professor

in 1996. He published over 180 papers and three monographs in the areas of his
interests. His research interests include image processing, system identification
and control, neural networks, and cognitive science.

Dr. Hu is the joint recipient of more than a dozen academic prizes for his
research on neurocontrol, intelligent robot, and image processing. Currently, he
is an action editor of Neural Networks.

Xicheng Lu was born in Jiangsu, P. R. China, in
1946. He received the B.Sc. degree in computer
science from Harbin Military Engineering Institute,
China, in 1970.

From September 1982 to September 1984, he was a
Visiting Scholar at the University of Massachusetts.
Since 1978, he has been with the School of Com-
puter, National University of Defense Technology,
Changsha, P. R. China. He became a Professor in
1992. His research interests include distributed com-
puting, computer networks, high-performance com-

puting, etc. He has over 120 papers and three books in the areas of his interests.
Prof. Lu is an academician of Chinese Academy of Engineering and he is the

joint recipient of four First Class National Scientific and Technological Progress
Prize in his research area.

