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Abstract—The recent proliferation of Location-Based Services (LBSs) has necessitated the development of effective indoor

positioning solutions. In such a context, Wireless Local Area Network (WLAN) positioning is a particularly viable solution in terms of

hardware and installation costs due to the ubiquity of WLAN infrastructures. This paper examines three aspects of the problem of

indoor WLAN positioning using received signal strength (RSS). First, we show that, due to the variability of RSS features over space, a

spatially localized positioning method leads to improved positioning results. Second, we explore the problem of access point (AP)

selection for positioning and demonstrate the need for further research in this area. Third, we present a kernelized distance calculation

algorithm for comparing RSS observations to RSS training records. Experimental results indicate that the proposed system leads to a

17 percent (0.56 m) improvement over the widely used K-nearest neighbor and histogram-based methods.

Index Terms—Location-dependent and sensitive mobile applications, applications of pattern recognition, nonparametric statistics,

support services for mobile computing.

Ç

1 INTRODUCTION

SINCE the advent of theGlobal Positioning System (GPS) [1]
and the introduction of the E-911 mandate by the US

Federal Communications Commission, positioning systems
have been used to deliver Location-Based Services (LBSs) [2],
[3] in outdoor environments. The primary role of such
positioning systems is to estimate and report geographical
information pertaining to their users for the purposes of
management, enhancement, and personalization of services.

LBSs are of equal interest in indoor environments in a
wide range of personal and commercial applications. These
include location-based network management and security
[4], [5], medicine and health care [5], [6], personalized
information delivery [7], and context awareness [8]. Un-
fortunately, the level of localization accuracy needed in
such indoor applications cannot be achieved by the existing
cellular-based methods. Furthermore, coverage of the GPS
system is limited in indoor environments and dense urban
areas [9], [10]. In this light, a plethora of indoor positioning
systems have been proposed, employing various technolo-
gies [10], [11] such as proximity sensors, infrared [12], radio
frequency and ultrasonic badges [13], [14], Wireless Local
Area Network (WLAN) radio signals [15], [16], and visual
sensors [17]. Among these, visual surveillance and tracking
is the most widely studied and is shown to provide highly
accurate estimates [17]. Yet, this type of positioning requires
installation of infrastructure and calibration of cameras,
which can lead to hardware and labor overheads in

pervasive deployments. An even more profound concern
is that of privacy in situations where users choose not to be
visually monitored.

With these concerns in mind, several works have
considered positioning based on WLANs owing to their
wide availability and ubiquitous coverage in large environ-
ments. Although a small subset of these works have
explored the use of Time of Arrival (ToA) [18] and Angle
of Arrival (AoA) [19] in the context of indoor WLANs,
received signal strength (RSS) is generally the feature of
choice for WLAN positioning. This is due to the fact that
RSS measurements can be obtained relatively effortlessly
and inexpensively without the need for additional hard-
ware [20]. Moreover, RSS-based positioning is noninvasive,
as all sensing tasks can be carried out on the mobile client
(MC), eliminating the necessity for central processing.

2 RELATED WORK

The key technical challenge in WLAN positioning is the
estimation of a rule hð�Þ : IRL ! IR2, relating the RSS
vector r from L access points (APs) to a spatial position in
2D Cartesian coordinates p ¼ ðx; yÞ. In an ideal propagation
medium (free-space), the received signal power falls off
inversely proportional to the square of the distance to the
transmitter. In real environments, however, the position-
RSS dependency is much more complex because of severe
multipath and shadowing conditions, non-line-of-sight
(NLOS) propagation, and interference from other devices
[21]. Several existing WLAN methods have aimed to use
theoretical models to express these effects through a path
loss model whose parameters are estimated based on
training data [22]. Given an RSS measurement and this
model, the distances from the MC to at least three APs are
determined, and trilateration is used to obtain the MC
position. The main limitations of such approaches are the
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dependence on prior topological information, assumption
of isotropic RSS contours [23], [24], and invariance to
receiver orientation [25].

As an alternative to model-based methods, the RSS-
position relationship has been characterized implicitly
using a training-based method known as location fingerprint-
ing. Fingerprinting-based WLAN positioning is a two-step
procedure. The first step, which is generally carried out
offline, is the collection of training data for the purpose of
obtaining a sufficient representation of spatiotemporal RSS
properties in the given environment. This refers to choosing
a set of training or survey locations and collecting RSS
measurements over time at each point to constitute the
fingerprint. The second step is initiated when a new RSS
measurement from an MC is received during the online
operation of the system. This step involves comparing the
incoming observation to the training record (fingerprint) at
each survey point. The position estimate is one or a
combination of the survey locations whose fingerprint(s)
most closely match(es) the observation.

There are four key challenges in fingerprinting:

1. generation of fingerprints,
2. preprocessing for reducing computational complex-

ity and enhancing accuracy,
3. selection of APs for use in positioning, and
4. estimation of the distance between a new RSS

observation and the fingerprints.

The factors affecting fingerprint generation are the
placement and number of survey points and time samples.
Most approaches have selected such parameters experi-
mentally, except [25], where theoretical guidelines were
provided by assuming specific statistical models for the
distribution of RSS.

After the creation of fingerprints and before positioning
is carried out, preprocessing steps can be performed to
improve both accuracy and efficiency. For example, Yousief
[20] proposes two methods for clustering of spatial locations
based on covering APs to decrease computational complex-
ity and improve accuracy and scalability of the positioning
algorithm. The first method [26] involves an offline
clustering of locations aiming to reduce the search space
to a single cluster. The second proposes an incremental
trilateration technique. Chen et al. [27] consider the
similarity of signal values, as well as the covering APs, to
generate a set of clusters using K-means to improve the
power efficiency of mobile devices. Both of the above
clustering techniques are carried out offline based on the
training data. This hampers the operation of the system
over time since WLAN infrastructures are highly dynamic
and APs can be easily moved or discarded, in contrast to
their base-station counterparts in cellular systems, which
generally remain intact for long periods of time.

The third fingerprinting challenge is that of AP selection.
Recall that estimation of a position in a 2D space requires
measurements from at least three APs. In a typical WLAN
environment, however, the number of available APs is much
greater than three. Clearly, using all available APs increases
the computational complexity of the positioning algorithm.
Furthermore, the geometric configuration of APs in relation
to each other can affect the accuracy of positioning [28] (this

is known as the Geometric Dilution of Precision (GDOP) in
the context of GPS). Since RSS is dependent on the relative
distance of the MC and each AP, as well as the topology of
the environment in terms of obstacles causing NLOS
propagation, subsets of available APs may report correlated
readings, leading to needless redundancy and possibly
biased estimates. This motivates the need for an AP selection
component to choose a subset of the available APs for use in
positioning. The most commonly used selection methodol-
ogy is to choose a subset of APs with the highest observation
RSS as the strongest APs provide the highest probability of
coverage over time [26]. However, it is also known that the
variance of measurements from an AP increases with its
mean power at a given location. In cases where the
measured RSS from an AP exhibits a high degree of
variance, the survey values may be very different than the
online measurement, degrading the accuracy of estimation
[29]. Furthermore, it becomes more difficult to distinguish
neighboring points in such cases. The recent work of Chen
et al. [27] offers a novel selection strategy based on the
discriminant power of each AP quantified through the
entropy-based Information Gain criterion. The APs that best
discriminate the survey points are the ones selected for
positioning. In that work, AP selection is carried out offline
and is independent of the distance measure used during
positioning. Nevertheless, since distance measurement is
performed using the selected AP set, the interplay between
the selection strategy and distance measurement must be
considered when designing the former.

Most RSS positioning efforts have been geared toward
addressing the last challenge in fingerprinting: that of
obtaining an estimate based on a new RSS observation. This
essentially involves the calculation of a distance between the
new RSS observation and the training record at each survey
point. In the simplest case, the euclidean distance is used to
find the distance between the observation and the center of
the training RSS vectors at each survey point [16], [29]. The
location estimate is either the survey point whose finger-
print has the smallest distance to the observation (nearest
neighbor (NN) classification) or the average of K closest
survey points (K-nearest neighbor (KNN)). Despite its
simplicity, the euclidean distance may fail to deliver
adequate performance in cases where the distribution of
RSS training vectors included in the fingerprints are
nonconvex and multimodal [25], [30]. Such distributions
arise frequently in indoor WLAN settings due to NLOS
propagation and the presence of users [25]. The second
group of WLAN positioning methods relies on probabilistic
techniques to handle uncertainty in RSS measurements [28].
Such methods produce Maximum Likelihood (ML), Max-
imum A Posteriori (MAP), or Minimum Mean Square Error
(MMSE) estimates of position using estimates of likelihood
and posterior density functions. These densities are esti-
mated through either parametric [31] or nonparametric
methods [28], [32], [33]. The histogram is generally used as a
nonparametric estimate of the probability density function;
yet, its theoretical properties have remained unexplored. For
example, the histogram density estimate is highly depen-
dent on the choice of origin and bin width. Although
theoretical guidelines are available for determination of
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these parameters [34], existing methods have generally
relied on experimental parameter tuning. Even with optimal
parameters, the histogram’s rate of convergence in the sense
of Asymptotic Mean Integrated Square Error (AMISE) is
relatively slow ðOðn�2=dþ2ÞÞ, where n is the number of time
samples and d is the dimension of the measurement vector
[34]. This indicates that a large number of time samples may
be needed at each survey location for a histogram-based
method to produce an acceptable performance. In [28], a
single-observation kernel density estimator (KDE) has been
utilized to model the RSS density and shown to have a
similar performance to that of the histogram. The accuracy
of the KDE is also heavily dependent on the number of
training samples and the bandwidth parameters, which are
experimentally determined in [28].

Kernel-based learning methods have also been explored
in the context of WLAN positioning [35], [36], [37].
Canonical correlation analysis (CCA) is utilized in [35]
and [36]; Support Vector Machines (SVMs) are used in [37]
for both classification and regression and a comparable
performance to KNN positioning was reported. Such
methods, however, are not resilient to the loss of APs in a
highly dynamic WLAN setting.

The contributions of this paper are threefold. First, a
spatial filtering step is introduced to localize the estimation
problem to a subset of the environment. Second, we
investigate the problem of AP selection for positioning to
enhance positioning accuracy, promote resilience to loss of
APs, and motivate the examination of the interaction
between this component and distance measurement. Third,
we propose a kernelized distance for calculating the
distance between an RSS observation and the fingerprints.
This method nonlinearly maps the original fingerprint data
to a high-dimensional feature space where the distribution
of RSS training vectors is simplified and then carries out
distance calculations in such a space. The outline of the
proposed method is shown in Fig. 1.

For convenience, we provide a list of key mathematical
symbols used in this paper in Table 1.

3 OVERVIEW OF THE PROPOSED METHOD AND

PAPER OUTLINE

The fundamental problem in fingerprinting is to produce a
position estimate using training information on a discrete
grid of training points when a new RSS observation is
received. That is, we seek a function p̂ ¼ gðp1; . . . ;pNÞ,
where pi ¼ ðxi; yiÞ represents the Cartesian coordinates of a
point with respect to a predefined reference point (0, 0). For
the purposes of this work, the problem of positioning is
restricted to the 2D space and, as such, height information
shall be ignored. If the function g is restricted to the class of

linear functions, the problem is reduced to determining a
set of weights such that

p̂ ¼
X

N

i¼1

wðr;FðpiÞÞpi; ð1Þ

where r is the observation RSS vector and the fingerprint
FðpiÞ ¼ ½rið1Þ; . . . ; riðnÞ� is an L� n matrix defined as

FðpiÞ ¼
4

r1i ð1Þ . . . r1i ðnÞ
..
. ..

.

rLi ð1Þ . . . rLi ðnÞ

0

B

@

1

C

A
: ð2Þ

The columns of the fingerprint matrix are RSS vectors
riðtÞ ¼ ½r1i ðtÞ; . . . ; rLi ðtÞ�0 that contain readings from L APs at
time t when the MC resides at pi. Although the minimum
number of APs for positioning in two dimensions is three,
in practice, L � 3 due to the pervasiveness of WLANs. RSS
measurements are integers in units of decibels below 1 mW
with a dynamic range limited by the receiver sensitivity
below and range limitations above. For the experimental
apparatus described in Section 8, this range is (�100, 0).

Although (1) produces the estimate using all survey
points, those far away from the observation point must not
be influential on the average. Moreover, statistics of RSS
measurements, including the mean and variance, are
spatially dependent [25]. For these reasons, we propose a
spatially localized averaging strategy wherein AP coverage
information is used to retain a subset of spatially relevant
survey points (Fig. 1). Details of this spatial filtering step are
discussed in Section 4.

As the second contribution of this paper, we address the
problemof real-timeAP selection for theWLANproblem.As
previously mentioned, in a typical WLAN environment, the
number of available APs is much greater than the minimum
three required ðL � 3Þ; in order to reduce computational
cost and enhance accuracy, an AP selection method is
needed. We propose a novel and real-time AP selection
algorithm in Section 5 to determine a subset of at least three
APs for use in positioning. This differs from the method of
Chen et al. [27] in that the selection is performed during the
online operation of the system to introduce resiliency to
loss of APs. Moreover, we motivate the need for the joint
design of AP selection and distance calculation components.
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Fig. 1. Overview of the proposed system.

TABLE 1
List of Symbols Used in This Paper



The last stage of positioning shown in Fig. 1 is distance
calculations through the calculation of weights in the linear
estimation rule of (1). These weight functions can be
learned using various learning techniques such as regres-
sion and density estimation. In this paper, the weight
functions are obtained as inner products in a kernel-defined
feature space as discussed in Sections 6 and 7. Moreover,
we show the connection between the proposed weights and
Parzen-style nonparametric density estimation.

Finally, the proposed methods are evaluated using
real data from an office environment in Section 8, and
Section 9 concludes the paper and provides directions for
future work.

4 SPATIAL FILTERING

A unique characteristic of the WLAN positioning problem
is that feature patterns vary over space. For example, given
a particular AP, the spread of RSS measurements at fixed
locations decreases as the distance to the AP increases [25].
Thus, RSS patterns collected at survey points closer to the
ith AP exhibit higher variance in the ith dimension of the
feature vector when compared to more distant points. The
spatial dependence of feature patterns motivates the use of
spatially localized algorithms operating in areas where
feature patterns are relatively similar [38]. Therefore, we
propose a novel spatial filtering preprocessor to generate a
subset of survey points fp1; . . . ;pN 0g deemed spatially
relevant to the point of observation on receiving an
observation vector r. This is done based on the premise
that points that are close in the physical space receive
coverage from similar sets of APs.

The proposed spatial filtering uses binary AP coverage
vectors generated from RSS vectors or fingerprints. Speci-
fically, we define a coverage vector as Ip ¼ ½I1p . . . ILp �, where
Iip ¼ 1 if AP i provides continuous coverage at p. Contin-
uous coverage in the context of this paper refers to the
availability of an RSS reading greater than the receiver
sensitivity for at least 90 percent of the time. The main
reason for intermittent coverage is range limitations. For
example, in indoor environments, a typical IEEE 802.11b AP
provides a coverage range of less than 100 m at 5.5 megabits
per second.1 In office environments, this range is further
reduced due to the presence of walls, furniture, and
elevators causing NLOS propagation.

A natural distance measure for comparing the binary AP
coverage vectors is the Hamming distance, indicating the
number of positions in which they differ:

dHðIp; Ip0Þ ¼
X

L

i¼1

jIpðiÞ � Ip0ðiÞj:

Given the Hamming distance, a survey point pi passes the
spatial filtering stage if its AP coverage vector matches that
of the observation, Ir. This is reflected in the final position
estimate by assigning a weight of zero to those points that
fail spatial filtering:

wsðr;FðpiÞ; �Þ ¼
0 if dHðIr; Ipi

Þ > �L;
1 otherwise:

�

ð3Þ

The parameter 0 � � � 1 regulates the localization of spatial
filtering and L is the total number of APs. Large values of �
allow most survey points to pass through the filtering stage
and lead to less localization in space, whereas small values
of this parameter restrict the filtered set to a few points,
producing highly localized regions. It is important to note
that, due to time variations in the propagation environment,
an observation AP vector may not exactly match a
fingerprint even if both measurements were collected at
the same position [20]. Such variations limit the effective-
ness of spatial filtering in practice as small values of � may
exclude relevant survey points.

Finally, the set of filtered points is defined as P0 ¼ fpi :

wsðr;FðpiÞ; �Þ ¼ 1g and jP0j ¼ N 0. With reference to Fig. 1,

AP selection and distance calculation steps are then carried

out on this set.

5 AP SELECTION

Due to the wide deployment of APs, the dimension of the
measurement vector ðLÞ is generally much greater than the
minimum three needed for positioning. Recall that, at a
spatial point p, the RSS from an AP a is a function of the
distance between p and a, as well as environmental factors
that lead to shadowing and multipath effects. Since a
WLAN positioning system may receive RSS measurements
from APs belonging to different networks that are not
deployed with the goal of positioning in mind, distinct APs
may produce similar measurements, leading to biased
estimates and redundant computations, as discussed in
Section 3. This motivates the use of AP selection techniques
to select a subset of available APs for positioning.
Surprisingly, this problem has received little attention in
the existing literature [27]. Selection methodologies have
been limited to choosing a subset of APs with the highest
observation RSS arguing that the strongest APs provide the
highest probability of coverage over time [26]. The strongest
APs, however, may not always provide the best positioning
accuracy as shown in [27].

Although the AP selection problem is one of dimension-
ality reduction, it is important to distinguish between the
problem of feature selection and that of AP selection.
Feature selection is a well-studied problem and aims to
project the data into a lower dimensional space. Examples
of such methods include Principle Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) [30]. Due to
real-time constraints of the WLAN problem and to ensure
comparability to existing methods, we limit the scope of this
paper to AP selection, noting that this need not be the case
in future developments. Recall that the set of APs covering
the survey points is denoted as A and jAj ¼ L. The objective
of AP selection is to determine a set A0 � A such that
jA0j ¼ d < L.

The goal of this paper with respect to AP selection is to
demonstrate the need for AP selection, highlight the
interplay among this component and the distance calcula-
tion step, and encourage future research in the area. With
this in mind, we propose selection methods that reflect the
basic principles of minimizing correlation between selected
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APs, paralleling the GDOP problem. Moreover, the selec-

tion strategies are designed to mirror the properties of the

distance calculation schemes under investigation. The LDA-

like alternative is to devise AP selection methods that

consider the discrimination ability across survey points and

focus on choosing a data representation that best separates

the survey points.

In considering the correlation between signals from the

selected APs, the objective is to obtain a representation with

minimal redundancy. This is achieved through the use of

divergence measures to quantify separability of two APs.

Let Ri
p ¼ ½ripð1Þ . . . ripðnÞ� be the vector of RSS readings from

the ith AP at location p. Then,

A0 ¼ arg min
Ak	A:jAkj¼d

DðAkÞ

¼ arg min
Ak	A:jAkj¼d

X

ai;aj2Ak

Dðai; ajÞ; ð4Þ

where DðAkÞ is the total divergence cost of the AP set Ak

calculated as the sum of pairwise divergences, Dðai; ajÞ. We
define Dðai; ajÞ as the min-max divergence between two
APs, corresponding to the minimum divergence over all
points: Dðai; ajÞ ¼ minpk

dðRi
pk
; Rj

pk
Þ, where dðRi

pk
; Rj

pk
Þ is a

measure of distance between the two time series. Although
a plethora of divergence measures have been utilized in
existing literature [30], we suggest the following to illustrate
the ideas presented here:

. Bhattacharyya distance. Defined as

dB ¼ � ln

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðxÞgðxÞdx
p

� �

;

the Bhattacharyya distance measures the distance
between two probability density functions fðxÞ and
gðxÞ. The integral is not easily evaluated for general
density functions, but a closed-form solution does
exist in the case of two Gaussian distributions with
known mean and covariance Nð�i;�iÞ, i ¼ 1; 2. In
this case, the divergence measure reduces to [30]

dB ¼ 1

8
ð�1 � �2ÞT

�1 þ �2

2

� ��1

ð�1 � �2Þ

þ 1

2
ln

j �1þ�2

2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�1k�2j
p :

Approximating the RSS distributions at APs i and

j at pk by Gaussians using the sample statistics

�i
pk

¼ 1
n

Pn
t¼1 r

i
pk
ðtÞ and �i

pk
¼ 1

n�1

Pn
t¼1ðripk

ðtÞ � �i
pk
Þ2,

the divergence measure can be written as follows:

dBðRi
pk
; Rj

pk
Þ ¼ 1

8
ð�i

pk
� �j

pk
Þ2 �i2

pk
þ �j2

pk

h i�1

þ 1

2
log

1
2
ð�i2

pk
þ �j2

pk
Þ

�i
pk
�j
pk

:
ð5Þ

For the WLAN problem, Ri
pk

are generally not
Gaussian [25]. Despite this, our experiments show
that dB provides an acceptable distance measure for
AP selection when the sample statistics from Ri

pk

and Rj
pk

are used.
. Information potential. Used in [39] as a clustering

evaluation function, it is developed as a nonpara-
metric estimate of Renyi’s quadratic information to
measure the distance between two probability
density functions. This measure is defined as

dIðRi
pk
; Rj

pk
Þ ¼ � ln

1

n2

X

n

t¼1

X

n

t0¼1

kðripk
ðtÞ; rjpk

ðt0ÞÞ
 !

:

ð6Þ
In (6),

kðxi; xjÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ð�2
1 þ �2

2Þ
p exp

�kxi � xjk2
2ð�21 þ �2

2Þ

 !

:

The parameters �1 and �2 control the width of the
Gaussian kernel—automatic methods for selection of
these parameters will be discussed in Section 6. To
produce a minimum distance of zero, dIðRi

pk
; Rj

pk
Þ

must be normalized as in [39].

Since AP selection is performed on the subset of survey

points generated by the spatial filtering stage, it must be

carried out in real time. However, the proposed selection

methods involve an exhaustive search over L
d

� 	

d
2

� 	

sets. In

order to reduce complexity and ensure that the selected APs

provide coverage to survey points near the observation, AP

selection is performed on the strongest L0 < L APs. We

summarize the computation and storage requirements of

each of the proposed methods in Table 2. Calculations

assume offline computation of the pairwise divergences

dðRi
pk
; Rj

pk
Þ in all cases, and execution times are reported for

a Matlab implementation on a Pentium 4 processor with

2 Gbytes of RAM. Execution times are averaged over

500 runs with L0 ¼ 5 and d ¼ 3 to mirror our experimental

setup in Section 8.
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TABLE 2
Computational and Storage Complexity for Four AP Selection Methods: DM, Bhattacharyya Distance (�1 ¼ �2 ¼ 1);

B, Bhattacharyya Distance (�1 6¼ �2); IP, Information Potential; and S, Strongest Signal Power

Parameters L, N, L0, d, and N 0 are as defined in Table 1.



Notice that the Bhattacharyya method relies only on the
first two moments of the RSS distribution at each survey
point. The information potential method uses nonpara-
metric probability density estimates and is consequently
able to capture higher order structure in the data. The
experiments in Section 8 show that this additional informa-
tion may not necessarily lead to significant improvements.

6 DISTANCE CALCULATION

Having thus related the details of spatial filtering and AP
selection, we turn to the problem of distance calculation
between an observation and fingerprints and discuss the
calculation of weights appearing in (1). Specifically, we
require that these are decreasing functions of the distance
between an observation vector and the training record. That
is, survey points whose training records closely match the
observation should receive a higher weight. In particular,
the functions wðr;FðpiÞÞ should satisfy the following
properties:

1.
PN

i¼1 wðr;FðpiÞÞ ¼ 1 so that the estimated position
belongs to the convex hull defined by the set of
survey positions. This can be achieved by including
a normalization term in (1) and will not be discussed
further.

2. wðr;FðpiÞÞ is a monotonically decreasing function in
both arguments with respect to a distance measure
dðr;FðpjÞÞ:

dðr;FðpiÞÞ 
 dðr0;FðpiÞÞ )
wðr;FðpiÞÞ � wðr0;FðpiÞÞ;

ð7Þ

dðr;FðpiÞÞ 
 dðr;FðpjÞÞ )
wðr;FðpiÞÞ � wðr;FðpjÞÞ:

ð8Þ

Although any weight function satisfying the above
conditions can be chosen, we propose using the average
normalized inner product as the weight function for reasons
that will become clear shortly:

wðr;FðpiÞÞ ¼
1

n

X

n

t¼1

hr; riðtÞi
krk kriðtÞk

; ð9Þ

where hr; riðtÞi ¼ rriðtÞT denotes the canonical inner pro-
duct in IRd and d is the number of APs used for positioning.
These weights satisfy (7) and (8) since they are inversely
proportional to the square of the average normalized
euclidean distance between the observation and training
vectors as shown in Theorem 1:

dAEðr;FðpiÞÞ2 ¼
1

n

X

n

t¼1

r

krk �
riðtÞ
kriðtÞk

























2

ð10Þ

¼ r

krk �
1

n

X

n

t¼1

riðtÞ
kriðtÞk































2

þC; ð11Þ

where C ¼ 1� k 1
n

Pn
t¼1

riðtÞ
kriðtÞk k

2 relates the average distance

to the distance from the center of mass of the training

vectors. Note that the normalization is necessary to ensure

compliance with (7) and (8) and that the distance is well

behaved as krk > 0 in a WLAN context. We now state a

theorem on the properties of the weight function. The proof

of this theorem can be found in Appendix A.

Theorem 1 (Properties of weight function). The average
normalized inner product wðr;FðpiÞÞ has four properties:

1. 0 � wðr;FðpiÞÞ � 1.
2. wðr;FðpiÞÞ ¼

�

r
krk ;

1
n

Pn
t¼1

riðtÞ
kriðtÞk

�

. That is, the weight

function is the inner product between the observation

and mean of the training vectors in a normalized space.
3. wðr;FðpiÞÞ ¼ ��ðdAEðr;FðpiÞÞ2 � CÞ, where � ¼

1=2 and C ¼ 2.
4. wðr;FðpiÞÞ is a monotonically decreasing function in

both arguments with respect to dAEðr;FðpiÞÞ2 defined
in (10):

d2AEðr;FðpiÞÞ 
 d2AEðr0;FðpiÞÞ )
wðr;FðpiÞÞ � wðr0;FðpiÞÞ;

ð12Þ

d2AEðr;FðpiÞÞ 
 d2AEðr;FðpjÞÞ )
wðr;FðpiÞÞ � wðr;FðpjÞÞ:

ð13Þ

As seen in (9), the weight function is the average of the
cosines between the observation and the training vectors.
The minimum therefore occurs when the observation is
orthogonal to all training vectors. Experimental results,
reported in Section 8, indicate that this angular measure is
not an effective similarity measure between two RSS
vectors as the maximum angle between them is rather
small in IRd. Furthermore, the presence of users and NLOS
propagation results in complex distributions of RSS
patterns for a given survey point, as shown in Fig. 2.
Motivated by the complexity of RSS patterns in this
euclidean space, we question whether any improvements
can be achieved by using more sophisticated nonlinear
weight functions. To this end, we use the nonlinear
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mapping � : r 2 IRd 7! �ðrÞ 2 F to map the input data to a
higher (possibly infinite) dimensional space F where the
weight calculations take place.

At first glance, the calculation of weights in a possibly
infinite dimensional space may seem computationally
intractable. Fortunately, the kernel trick [40] can be used to
calculate the inner product in F without the need for
explicit evaluation of the mapping �. The kernel trick allows
the replacement of inner products in F by a kernel
evaluation on the input vectors. In the WLAN context, the
kernel is a function k : IRd � IRd ! IR such that kðr; r0Þ ¼
h�ðrÞ; �ðr0Þi [41]. The reason for the particular choice of the
weight function now becomes clear: Since the training data
only enter weight calculations through inner products, the
kernel trick can be used to carry out inner products in F
without the need for explicit evaluation of mapping �. The
kernelized weight function then becomes

wðr;FðpiÞÞ ¼
1

n

X

n

t¼1

h�ðrÞ; �ðriðtÞÞi
k�ðrÞk k�ðriðtÞÞk

ð14Þ

¼ 1

n

X

n

t¼1

kðr; riðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðr; rÞkðriðtÞ; riðtÞÞ
p : ð15Þ

Mercer’s Theorem [40] guarantees the correspondence
between a kernel function and an inner product in a feature
space F , given that the kernel is a positive definite function.
Examples of such functions are the Polynomial kernel

kðx; yÞ ¼ ðhx; yi þ cÞd;

Exponential kernel kðx; yÞ ¼ expðk1ðx; yÞÞ, and Gaussian

kernel kðx; yÞ ¼ exp


� kx�yk2
2�2

�

, where c, d, and � are

parameters and k1ðx; yÞ is a valid kernel function.

7 CHOICE OF KERNEL AND PARAMETER SELECTION

In this section, the choice of the kernel function and its
parameters is discussed. In order to motivate the choices,
the nature of the feature space induced by a kernel function
is first briefly reviewed.

7.1 Kernel-Induced Feature Space

Two common instantiations of the feature space associated
with a positive definite kernel are the Mercer Kernel Map
and the Reproducing Kernel Hilbert Space (RKHS) [40]. For
brevity, we use the RKHS for examining the choice of the
kernel and note that the two Hilbert spaces are isometrically
isomorphic.

Construction of the RKHS begins by considering

� : r 7! kð�; rÞ, mapping an input vector to a function that

measures similarity between the input and all elements in the

input space (in this case, IRd). Now, consider the space of

functions f : IRd ! IR of the form fð�Þ ¼Pn
i¼1 �ikð�; riÞ for

n > 0, �i 2 IR, and ri 2 IRd. The space is endowed with an

inner product defined for two elements fð�Þ ¼Pn
i¼1 �ikð�; riÞ

and gð�Þ ¼Pm
j¼1 �jkð�; rjÞ as

hf; gi ¼
X

n

i¼1

X

m

j¼1

�i�jkðri; rjÞ: ð16Þ

The reproducing property then follows: fðrÞ ¼ hf; kð�; rÞi;
consequently, hkðr; �Þ; kðr0; �Þi ¼ kðr; r0Þ. Completing the

space in the norm kfk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

hf; fi
p

results in a Hilbert space

associated with a kernel k in which kðr; r0Þ ¼ h�ðrÞ; �ðr0Þi.
Using this notation, the weight function of (14) can be

written as an inner product in the RKHS as follows:

wRKHSðr;FðpiÞÞ ¼
1

n

X

n

t¼1

kðr; riðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðr; rÞkðriðtÞ; riðtÞÞ
p

¼ 1

n

X

n

t¼1

kð�; riðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hkð�; riðtÞÞ; kð�; riðtÞÞi
p ;

kð�; rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hkð�; rÞ; kð�; rÞi
p

* +

:

ð17Þ

Theorem 2. The weight function wRKHSðr;FðpiÞÞ is a
decreasing function of the squared distance to the center of
the training vectors in F :

wRKHSðr;FðpiÞÞ ¼ � 1

2
dkðr;FðpiÞÞ2 � C
 �

; ð18Þ

where dkðr;FðpiÞÞ2 ¼ �ðrÞ
k�ðrÞk � 1

n

Pn
t¼1

�ðriðtÞÞ
k�ðriðtÞÞk



















2

and

C ¼ 1þ 1

n2

X

n

t¼1

X

n

t0¼1

kðriðtÞ; riðt0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðriðtÞ; riðtÞÞkðriðt0Þ; riðt0ÞÞ
p

is constant for a given survey point.

The proof of the theorem is provided in Appendix B.

7.2 Choice of Kernel

The choice of the kernel function kð�; rÞ defines the new
feature space F and is therefore an important design
decision. Genton [42] categorizes kernel functions into three
main classes: stationary, locally stationary, and nonstation-
ary. Stationary kernels are those that depend only on the lag
vector between their arguments. An isotropic stationary
kernel results when only the magnitude of the lag vector is
considered. The commonly used Gaussian kernel is an
example of an isotropic stationary kernel. Locally stationary
kernels are a product of two kernels,

Kðx; zÞ ¼ K1

xþ z

2

 �

K2ðx� zÞ;

where K1 reflects the global structure in the data and K2

represents the local structure. Finally, nonstationary kernels
are those that depend directly on their arguments and
include the polynomial kernel.

Since the weight function of (14) is the average of inner
products in a space where all patterns have unit norm and
RSS readings have been shown to be stationary over small
timescales [25], we choose to use a stationary kernel so that
k�ðrÞk2 ¼ kð�ðrÞ; �ðrÞÞ ¼ kð0Þ; 8r 2 IRd. Although the mea-
surements are correlated over time, this choice provides
acceptable positioning accuracy in the experiments in
Section 8.Within the class of stationary kernels, the Gaussian
kernel has been widely studied and applied to a broad range
of pattern recognition problems. Using a Gaussian kernel, all
mapped points lie within the same orthant in the feature
space, ensuring that 0 � wðr;FðpiÞÞ � 1. Moreover, for a set
of distinct but correlated training points rið1Þ; . . . ; riðtÞ, the
mapped points �ðrið1ÞÞ; . . . ; �ðriðtÞÞ are linearly indepen-
dent and span a t-dimensional subspace of the infinite
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dimensional RKHS defined on the domain IRd [40]. Using
the Gaussian kernel, the weights become

wðr;FðpiÞÞ ¼
1

n

X

n

t¼1

exp
�kr� riðtÞk2

2�2

 !

: ð19Þ

7.3 Choice of Kernel Parameters

The parameter � controls the width of the kernel and has a
great effect on the shape of the feature space. To see this,
consider two extreme cases:

. As � ! 0, h�ðrÞ; �ðr0Þi ¼ kðr; r0Þ ! �ðkr� r0kÞ, where
�ð�Þ is the Kronecker delta function. In other words,
the input vectors become orthogonal in the RKHS.
Moreover, wðr;FðpiÞÞ ! 1

n

Pn
t¼1 �ðkr� riðtÞkÞ, risk-

ing significant overfitting of the training data.
. As � ! 1, h�ðrÞ; �ðr0Þi ¼ kðr; r0Þ ! 1 and the input

patterns generate collinear functions in the RKHS.
The weight function wðr;FðpiÞÞ ! 1, underfitting
the data.

Determination of the kernel parameter � is not an easy
task and has been extensively studied in the literature using
techniques such as cross validation [43]. Such methods aim
to optimize the kernel parameter by minimizing an
empirical leave-out-one error measure over the training
set. Due to real-time computation constraints, limited
number of training patterns, and large variances between
validation and test experiments, cross validation is not used
in this paper.

An alternative approach to determination of the kernel
width parameter capitalizes on the knowledge available in
Parzen-window density estimation. Specifically, given the
samples riðtÞ, t ¼ 1; . . . ; n, from a sequence of independent
and identically distributed (i.i.d.) random variables, the
Kernel Density Estimate (KDE) of the unknown density
fðrjpiÞ is

f̂ðrjpiÞ ¼
��d

n

X

n

t¼1

k
r� riðtÞ

�

� �

¼ ��dwðr;FðpiÞÞ; ð20Þ

where kð�Þ is a zero-mean nonnegative kernel function with
unit area (for example, Gaussian kernel normalized to unit
area). In general, the parameter � is determined to minimize
the AMISE between the estimated and true densities. To
ensure the consistency of the resulting estimate (vanishing
bias and variance), � must be chosen such that � ! 0 and
n� ! 1 as n ! 1 [34].

It can be shown that, for the multivariate KDE, the

optimal bandwidth is on the order of Oðn �1
4þdÞ, corresponding

to a minimum AMISE that is on the order of Oðn �4
4þdÞ [34]. In

particular, Silverman [44] recommends the following for-

mula as a quick estimate of the parameter for a Gaussian

kernel but cautions against overfitting:

�� ¼ 4

2dþ 1

� �1=ðdþ4Þ
�̂n�1=ð4þdÞ: ð21Þ

Here, �̂2 ¼ 1
d

Pd
l¼1 �

2
rli
is the average of marginal variances.

Before proceeding further, we list some of the conditions
that make this estimate suboptimal:

. The i.i.d. assumption used in the derivation of the
above estimate is violated for RSS samples as they are
correlated over time periods ranging from a few
seconds [25] to several minutes [32]. Depending on
the degree of correlation, either the sampling period
can be decreased or other correlation handling
methods can be used. For example, Youssef and
Agrawala [32] propose a parametric solution for
dealing with the effect by assuming that variations of
RSS over time can be modeled as an autoregressive
process with white Gaussian noise. However, the
extension of this method to the nonparametric case is
unclear. Experiments in Section 8 show that, despite
this correlation, the proposed method performs well.

. Although the above estimate is asymptotically
optimal, its effectiveness clearly suffers when only
a finite number of training samples is available.

. The above estimate uses a single kernel width across
all dimensions and ignores any cross-correlations.

. Accurate density estimates may not lead to accurate
estimates of weight functions (regression).

Despite the above suboptimalities, the above estimate
has been successfully used in [45] in the context of kernel-
based classification. In this view, we use the scaled
Gaussian weights

wSGðr;FðpiÞÞ ¼ ð2�Þ�d=2��d 1

n

X

n

t¼1

exp
�kr� riðtÞk2

2�2

 !

:

ð22Þ
Theorem 3 reveals important properties of this weight

function (the proof is given in Appendix C).

Theorem 3 (Properties of kernelized weight function). The
kernelized weights defined in (22) have the following properties:

1. 0 � wSGðr;FðpiÞÞ � ð2�Þ�d=2��d.
2. wSGðr;FðpiÞÞ ¼ ð2�Þ�d=2��dh�ðrÞ; 1n

Pn
t¼1 �ðriðtÞÞi.

That is, the weight function is the scaled inner product

between the observation and mean of the training

vectors in the kernel space.
3. wSGðr;FðpiÞÞ ¼ ��ðdkðr;FðpiÞÞ2 � CÞ, where dk ¼

k�ðrÞ � 1
n

Pn
t¼1 �ðriðtÞÞk is the distance from the

observation to the center of the training vectors in F ,

� ¼ ð
ffiffiffiffiffiffi

2�
p

�Þd=2, and

C ¼ 1þ 1

n2

X

n

t¼1

X

n

t0¼1

exp
�kriðtÞ � riðt0Þk2

2�2

 !

:

4. wSGðr;FðpiÞÞ is a monotonically decreasing function
in both arguments with respect to dkðr;FðpiÞÞ2:

d2kðr;FðpiÞÞ 
 d2kðr0;FðpiÞÞ )
wSGðr;FðpiÞÞ � wSGðr0;FðpiÞÞ;

ð23Þ

d2kðr;FðpiÞÞ 
 d2kðr;FðpjÞÞ )
wSGðr;FðpiÞÞ � wSGðr;FðpjÞÞ:

ð24Þ
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It is important to comment on the first part of this
theorem as we required the weights to lie in [0, 1]
previously. Note that the distance from an observation to
each survey is measured in a distinct space. In particular,
because the kernel parameter � is determined based on the
statistics of the samples at a given point, the corresponding
RKHS are in fact different. Normalization by the variance
ensures comparability among the different survey points by
ensuring that similarity functions are defined on regions of
unit volume, that is,

R

kðr; riÞdr ¼ 1.
The outline of the proposed positioning algorithm using

the above weights is shown in Fig. 3.

7.4 Interpretation as the Nadaraya-Watson
Regression Estimator

Using the kernel-based weights and assuming a stationary
kernel, the estimate of (1) becomes

p̂ ¼
PN 0

i¼1 pi

Pn
t¼1 �

�d
i kðr�riðtÞ

�i
Þ

PN 0
i¼1

Pn
t¼1 �

�d
i kðr�riðtÞ

�i
Þ

: ð25Þ

This formulation reveals an interesting connection. For the
case of n ¼ 1, the proposed estimate reduces to the
nonparametric Nadaraya-Watson regression estimator of
the posterior mean EðpjrÞ [34] used in positioning in
cellular systems [2]. For n > 1, we obtain the regression
estimator with multiple RSS samples per survey point. In
contrast to the one-dimensional one-observation KDE used
in [28] as a density estimate, (25) uses multiple training
samples to form a multidimensional kernel regression. Both
of these are important properties in view of the need for
multiple time samples to characterize time variations in RSS
and to model possible correlation among APs on the same
channel.

The formulation of (25) also corresponds to the MMSE
estimator of position in the case where the empirical
probability density estimate (epdf) is used as the prior
fðpÞ [38].

7.5 Complexity

The computational and storage complexity of the pro-
posed method is compared to those of two state-of-the-art

methods in Table 3. Calculations assume offline computa-
tion of observation-independent parameters including
histograms, sample means and variances, and kernel
bandwidths. Execution times are reported for a Matlab
implementation on a Pentium 4 processor with 2 Gbytes of
RAM. Note that the number of points after filtering ðN 0Þ
can be controlled through the spatial filtering threshold �
so that N 0 � N . Also, as reported in Section 8, the number
of time samples used for the kernel method, n, can be as
small as 10. Execution times are averaged over 500 runs
and reported for � ¼ 1, n ¼ 10, K ¼ 4 for the KNN, and
K ¼ 66 for the histogram to reflect the experimental setup
of Section 8.

8 EXPERIMENTS AND RESULTS

This section provides details on the experimental evaluation
of the proposed methods using real data from an office
environment that reflects a typical setting for offering LBSs.

8.1 Setup

8.1.1 The Environment

Experimental results are reported for an office environment
that mimics characteristics of a typical WLAN positioning
application in terms of area, number of APs, and propaga-
tion environment.2 Specifically, the experiments were
carried out on the fourth floor of an eight-story building
at the University of Toronto. The dimensions of the
experimentation site were 36 � 42 m, which are compar-
able to those reported in [23], [25], and [43]. A total of
33 APs were detectable throughout the floor, each provid-
ing only a partial coverage of the environment. In
particular, the average number of APs per point was 9.6,
and out of these, only three are used for positioning as
described below. It has been previously shown that
increasing the number of APs leads to increased position-
ing accuracy [28]. We therefore use three APs to demon-
strate the worst case performance of the methods. The
measurements were collected using a Toshiba Satellite
laptop with a Pentium M processor, an Intel PRO/Wireless
2915ABG Network Adapter, and the Windows XP operat-
ing system. RSS measurements were obtained by a publicly
available network sniffer software, NetStumbler,3 provid-
ing a maximum sampling rate of 2 samples/sec.

8.1.2 Training

The location of the survey points can be determined in two
ways [34]. The first scenario is a random design where the
pairs ðpi; riÞ are assumed to come from a joint probability
distribution fðp; rÞ. In positioning applications, this may
correspond to observing RSS measurements during routine
activities where the position of the MC is known.
Ultimately, this results in having survey points along the
most traveled routes in the environment. The second choice,
which is adopted by all existing systems, is a fixed design
where the location of survey points is chosen by the
designer. For the purposes of these experiments, we rely on
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2. This data is available online at http://www.dsp.utoronto.ca/wlan.
3. http://www.netstumbler.org.

Fig. 3. Outline of the positioning algorithm.



a fixed design to ensure comparability to existing methods

in the literature.
In the absence of prior information regarding the

location of the mobile user, the survey locations are chosen

to lie on a uniform grid (worst case scenario). Unfortu-

nately, realization of a uniform grid may not always be

practical in an indoor environment because of the presence

of walls, furniture, and other obstructions, preventing

measurements in certain areas. Such a grid causes the

estimation algorithm to produce estimates with variable

resolution in different areas.

Another important parameter is the number of survey

pointsN and the spacing between such points. A dense grid

leads to redundancy in the fingerprints and high training

and computational costs, whereas a sparse grid may result

in insufficient resolution. Existing works generally assume a

spacing of 1 to 3 m in each direction between grid points.

For the purposes of this work, a grid spacing of 2 m has

been used. Fig. 4 shows the experimentation area layout

and depicts the training points as black circles.
The training data was collected over two days at 66 points

in the environment at a rate of 1 sample/sec. The experi-

ments described in the following sections use 100 samples

per survey point with the exception of Section 8.6.2, where

we vary the number of samples from 4 to 200 to examine the

effect of this parameter on positioning results. During

training, the orientation of the laptop remained the same

and is indicated by arrows in Fig. 4.

8.1.3 Validation

The data for the validation set was collected on a different
day than the training data and was used to tune system

parameters. It is essential that such a novel set is used for
validation to avoid overfitting in a time-varying environ-

ment that results from changing conditions such as number

and position of people in the environment, doors opening
and closing, and location of small furniture. A total of

60 samples were collected at each survey point at a rate of

1 sample/sec for the laptop orientation shown in Fig. 4.

8.1.4 Testing

Test measurements were collected over two days, separate

from training and validation days, to capture a variety of

environmental conditions. This novel set has been used to

test the system under environmental conditions different

than that of training and validation, reflecting the mismatch

between training and testing conditions in the real-life

operation of the system. The test samples were collected at

44 test points situated on and off the training points.

Moreover, to test the sensitivity of the proposed method to

the orientation of the receiver, test measurements were

collected for four orientations of the laptop, namely, north,

south, east, andwest. A total of 60 sampleswere collected per

test point per orientation at a rate of 1 sample/sec.
Due to the random variations in RSS over time, a true

evaluation must consider not only a large number of test

samples, but also the performance of the estimator for

various survey sets. This, however, is not practically

feasible due to the need for manual collection of data in

the WLAN setting. Therefore, we consider performance

evaluation over one training set to gain insight into the

performance of the proposed methods and the effect of their

parameters.

8.2 Figure of Merit

Since the position of the MC is reported in Cartesian

coordinates, the positioning error is commonly reported as

the L2 norm of the difference between the true position and

its estimate,

	iðtÞ ¼ kpiðtÞ � p̂iðtÞk; ð26Þ
where piðtÞ and p̂iðtÞ denote the tth instance of the ith test

point and its estimate.
The aggregated positioning error is reported numerically

as the Average Root Mean Square Error (ARMSE) since the

RMSE measure provides an indication of both bias and

variance of the estimator:
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TABLE 3
Computational and Storage Complexity of Distance Calculations

Parameters L, N, N 0, n, and d are as defined in Table 1, where b is the number of histogram bins and K is the number of points used in averaging.

Fig. 4. Map of the experimentation environment.
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t ; ð27Þ

¼ 1

Np

X

Np

i¼1
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v
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u

t : ð28Þ

In the above equations, Nt and Np are the numbers of
test samples per point and testing points.

8.3 Comparison to Prior Work

The performance of the proposed method is compared to
those of the KNN and histogram-based methods as
described below.

8.3.1 KNN

This method, first introduced in [16], has been widely used

as a benchmark in WLAN positioning. Despite its simpli-

city, it has been shown to provide excellent positioning

accuracy when compared to more sophisticated techniques

such as SVMs [37]. This method computes the position

estimate as the arithmetic average of K points whose

fingerprints are closest to the observation. Let the set

fpð1Þ; . . . ;pðN 0Þg denote the ordering of survey points with

respect to increasing distance between their sample mean

and the observation. The position estimate is obtained as

p̂ ¼ 1

K

X

K

i¼1

pðiÞ: ð29Þ

Although weighted versions of the above equation have
also been proposed, we note that these in fact correspond to
special cases of the proposed method using different kernel
functions. Fig. 5 shows the ARMSE as a function of the
number of neighbors K for the KNN method. It can be seen
that K ¼ 4 provides the lowest ARMSE on the validation
data set and is therefore used throughout the rest of the
experiments.

8.3.2 Histogram-Based Techniques

Perhaps the most widely used WLAN positioning tech-
nique is the histogram-based method, which uses a
histogram estimate of the probability density at each
survey point to obtain a likelihood or posterior probability.

In order to remedy the curse of dimensionality, the
histogram estimates are computed independently in each
dimension and the estimated probability is obtained as the
product of the marginal values f̂ðrjpiÞ ¼

Qd
l¼1 f̂ðrljpiÞ. Let

the set fpð1Þ; . . . ;pðN 0Þg denote the ordering of survey points
with respect to decreasing f̂ðrjpiÞ. The position estimate is
then calculated as the weighted average of K survey points
with highest posterior probability [20], [28]:

p̂ ¼ 1

K

X

K

i¼1

f̂ðrjpiÞpðiÞ: ð30Þ

Note that K ¼ 1 and K ¼ N correspond to the MAP and
MMSE estimation given a uniform prior [28]. As seen in
Fig. 6a, the performance of the histogram method improves
as K increases. Thus, the value of K ¼ 66 is used for the
histogram for the rest of the experiments.

Another important issue, raised by Roos et al. [28] but not

addressed in the existing literature, is the determination of

histogram parameters, namely, the origin and bin width.

Since RSS values are integers and the histogram estimate has

the lowest bias at the center of each bin, we have chosen the

origin to be at�99:5 dBm. Furthermore, although theoretical

methods for determining the histogram bin width exist [34],

we have determined this parameter using the validation data

as the domain specific knowledge indicates that this bin
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Fig. 5. Effect of the number of neighbors (K) on the performance of KNN.

Fig. 6. Effect of system parameters on ARMSE for the histogram.

(a) ARMSE versus the number of neighbors (K). (b) ARMSE versus

histogram bin width.



width value is an integer. Experimental results reported in

Fig. 6b indicate that a bin width of 10 provides the lowest

positioning error for the histogram for both validation and

testing data sets. This value is consistent with the theoretical

value of 13 approximated by Sturges’s Rule [34], considering

that this rule leads to an oversmoothed histogram.Moreover,

such a large bin is needed to avoid overfitting and to cope

with thevariations in theenvironmentandorientationduring

testing.

8.4 Spatial Filtering

The objective of this section is to examine the effects of

spatial filtering on the overall positioning accuracy. To this

end, positioning was carried out using the above setup with

100 training samples per point and three APs selected by

the traditional method of strongest signal power. Fig. 7

shows the ARMSE for various values of the spatial

threshold for the KNN, histogram, and kernel-based

methods for both the validation and testing data.
The results are consistent for the three positioning

methods in that spatial filtering leads to an improvement

in positioning accuracy (5.2, 2.6, and 4.5 percent for the

KNN, histogram, and kernel methods, respectively). It can

be seen that, for � < 0:2 for validation data and � < 0:28 for

test data, no estimate is available as all survey points have

been filtered out. This confirms that time variations in the

environment may lead to the exclusion of all relevant

survey points when small values of � are used. Moreover, a

larger value of � is needed for the test data since points not

on the original grid and different laptop orientations are

considered in this set. The parameter � should thus be

chosen slightly higher than that obtained during validation.

Such an adjustment is unnecessary when the validation and

test data cover the same conditions.

8.5 AP Selection

The effect of various AP selection methods on positioning
accuracy and their interaction with the distance measure-
ment methods have been examined for five methods,
namely, distance of means (DM) or the Bhattacharyya
distance with �1 ¼ �2 ¼ 1, the Bhattacharyya distance with
sample variances (B), information potential (IP), selection of

APs with the strongest mean, and random selection. The
results for the five methods are shown in Fig. 8. Positioning
has been carried out using 3 APs, 100 training samples per
point, and no spatial filtering. AP selection has been
performed on the five strongest APs to reduce computa-
tional complexity and ensure AP coverage on nearby
survey points. This number was determined using the
validation data.

As expected, the effectiveness of the AP selection method
is dependent on the distance calculation technique used. In
particular, we make the following observations:

. Bhattacharyya distance. The excellent performance

of the Bhattacharyya distance with �1 ¼ �2 ¼ 1 seen

in Fig. 8 is expected for the KNN method as these
distances are directly related to the representative

RSS value per survey point (sample mean). Max-

imizing such distances between APs therefore leads

to decreased redundancy.

The inclusion of variance in the Bhattacharyya

distance leads to a gain in accuracy for the histogram

and kernel as these methods use knowledge of the

entire density during distance calculations. How-

ever, care must be taken when using variance

estimates as this value is more susceptible to changes
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Fig. 7. ARMSE versus spatial filtering threshold � (� ¼ 1 corresponds to
no filtering).

Fig. 8. Effect of the AP selection method on ARMSE: DM, Bhattacharyya
distance (�i ¼ 1, i ¼ 1; 2); B, Bhattacharyya distance (�1 6¼ �2); IP,
information potential; Strongest, strongest signal power; Random,
random selection of APs. (a) ARMSE versus AP selection method.
(b) Information potential method versus kernel width �.



in a time-varying environment than the mean [25].

Thus, the sample variance estimated from the

training data may not always be suitable for use

with data collected at later times.
. Information potential (IP). This method uses an

estimate of the entire density to obtain a measure of

divergence and should be contrasted to the other AP

selection methods presented here that rely only on

first and second moments. Fig. 8b shows the effect of

the kernel width � used in the calculation of the IP

measure on the positioning accuracy (kernel width
for weight calculations remains constant). Although

the IP measure has the capability to outperform the

Bhattacharyya distance for the kernel method, it

requires additional parameter tuning to determine

the kernel width.
. Strongest signal power. The strongest signal meth-

od selects the APs with the strongest received signal

power from the observation vector. The results

reported in [25] indicate that RSS variance increases

with an increase in mean RSS. The degradation in
positioning accuracy for the KNN and kernel

method is therefore attributed to the increased

variance. Despite this, the strongest power method

has the advantage that it increases the chance of AP

coverage for survey points near the observation. This

is especially important in the case of the histogram,

as the estimate of the joint density is obtained as the

product of marginal distributions. This makes the
histogram sensitive to cases where no signal is

received from an AP. Carrying out the above

selection methods (DM, B, and IP) on a subset of

L0 > d strongest APs therefore combines the advan-

tages of both methods.

8.6 Distance Calculation

In this section, the positioning accuracy of kernelized

weight functions is examined as a function of the

parameters � and the number of training points per sample

n and compared to the euclidean distance method of KNN

and the probabilistic distance of the histogram. The

following results were generated using three APs with
strongest signal, 100 training points per sample, and no
spatial filtering. For the purposes of the results presented in
this section, similar results are obtained with different AP
selection methods.

8.6.1 Kernel Width �

Fig. 9a depicts the ARMSE as a function of kernel width �

for both testing and validation data. Evidently, the simple

bandwidth selection method of (21) introduces overfitting

and hampers the performance on testing and validation

data, where environmental conditions differ from that of

training. It is encouraging, however, to note that the kernel

width obtained during validation is near-optimal for the

test data. This reiterates the importance of parameter tuning

using a novel validation set. In our experiments, a kernel

width two to four times that of (21) yields the best results.

8.6.2 Number of Training Points

Since the computation and storage complexity of the

kernel-based distance measure increases with the number

of training samples per survey point, we report the effects

of this parameter on the positioning accuracy. Fig. 9b

shows that the histogram method is more sensitive to the

number of training samples used. Although both the KNN

and proposed methods reach near-optimal results with as

few as 10 samples per point, the performance of the

histogram continues to improve as the number of samples

increases. The work of Youssef et al. [26], for example, uses

300 samples (5 min, 1 sample/sec) for the histogram. Recall

that the rate of convergence of the histogram density

estimator in the AMISE is Oðn�2=dþ2Þ, which is slower than

the Oðn�4=4þdÞ rate achieved by the KDE.

8.6.3 Kernelized Weights

The above results demonstrate the advantages of the

kernelized distance over the KNN and histogram distance

measurement techniques. Distance measurement in the

kernel space leads to an improved accuracy of 8 percent

(0.24 m), 6 percent (0.18 m), and 8 percent (0.28 m) over the

KNN for the Bhattacharyya, IP, and strongest RSS AP
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Fig. 9. Effect of system parameters on ARMSE. (a) ARMSE versus kernel width �. (b) ARMSE versus number of training samples.



selection methods. There is no improvement in the unit

variance for the Bhattacharyya case due to the mismatch

between the AP selection and kernelized distance measure-

ment components, as previously discussed. The kernel

method outperforms the histogram by 10 percent (0.34 m),

12 percent (0.37 m), 12 percent (0.38 m), and 8 percent

(0.27 m) for each of the AP selection methods, respectively.

8.7 Comparison to Other Methods

Finally, we compare the positioning accuracy of the

proposed system using all three steps of spatial filtering

ð� ¼ 0:3Þ, AP selection (Bhattacharrya), and kernel-based

weights ð� ¼ 2��Þ to that of the KNN ðK ¼ 4Þ and the

histogram-based methods ðK ¼ N; bin width ¼ 10Þ with no

spatial filtering and strongest three APs. Fig. 10 depicts the

comparison graphically, whereas Table 4 provides various

error measures. The values in this table are obtained using

parameter values obtained through validation with ARMSE

used as the optimality criterion.

The proposed method leads to improvements of 0.57 m

(17 percent) and 0.56 m (17 percent) over the KNN and

histogram-based methods in the ARMSE sense. Table 4 also

shows the ARMSE for the angular distance based method of

(9). Clearly, this distance is ineffective in capturing the

complexity of RSS distributions.

8.8 Summary of Recommendations

The experiments of the previous sections indicate that the

complexity and accuracy of a positioning system is affected

by the design of spatial filtering, AP selection, and distance

calculation components. In particular, spatial filtering and

AP selection can be employed to reduce the computational

complexity of the system by limiting the number of survey

points and reducing the dimension of the measures,

respectively. More importantly, we have discussed that

the interplay between the AP selection and distance

measurement components can be utilized to introduce

significant improvements in positioning accuracy.

Several technical problems remain to be explored within

the context of the proposed framework. We summarize

these in the following points:

. This paper has considered the problem of AP

selection in the input space. Investigation of efficient

and real-time feature selection and dimensionality

reduction methods in the kernel space can prove to

be beneficial in future developments. Additionally,

design of kernel functions geared toward the unique

characteristics of the WLAN positioning problem

(for example, correlated samples) must be examined.
. As power measurements are operator and device

dependent, the sensitivity of existing methods to

such parameters must be investigated. For example,

one possibility for overcoming such limitations is the

use of multiple fingerprints and fusion of results.
. The use of fingerprinting-based positioning solu-

tions in noncooperative settings for enforcing net-

work security requires centralized positioning,

necessitating attention to secure transmission of

location information, as well as mitigation strategies

for hostile power fluctuations by the MC.
. As low-power and battery operated network devices

such as Personal Digital Assistants (PDAs) prolifer-

ate, further research on power constrained imple-

mentations of WLAN positioning is necessary.

9 CONCLUSION

The rising prominence of location-based services necessi-

tates the development of indoor positioning systems. Due to

their ubiquity, WLANs provide a suitable and cost-effective

infrastructure for devising such systems. This paper has

examined the problem of WLAN positioning using RSS and

has proposed a three-step training-based solution to

manage the complexity of the indoor propagation environ-

ment. During the first step, spatial localization was

proposed to address the variability of RSS patterns over

space. Because the number of available APs is generally
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Fig. 10. Cumulative average error for KNN, histogram, and the proposed

method.

TABLE 4
Various Error Measures (in Meters) for KNN, Histogram, the Proposed Framework, and the Angular Distance



much greater than the minimum three needed for position-

ing, the second step dealt with the problem of AP selection.

Both parametric and nonparametric divergence measures

were used to select a subset of the available APs, and the

interaction between selection component and distance

measurement was examined. Motivated by the complexity

of RSS patterns, we proposed a kernelized measure for

evaluation of similarity between an observation RSS vector

and the training RSS records. The connection between the

proposed kernelized functions and the nonparametric

Nadaraya-Waston regression estimator was also discussed.

Finally, the proposed methods were evaluated using real

data from an office environment and shown to be effective

as compared to the commonly used KNN and histogram-

based solutions.
The nonparametric nature of the proposed methods

makes them particularly suitable for application to other

areas where probabilistic distributions of sensor patterns

are unknown or complicated by operations such as

quantization performed to meet power and bandwidth

constraints. Future research directions therefore include the

extension of methods proposed herein to distributed and

constrained settings of sensor networks used for positioning

and self-localization.
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3. From Theorem 2
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