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Abstract. We present a kernel-based approach to reinforcement learning that overcomes the stability problems
of temporal-difference learning in continuous state-spaces. First, our algorithm converges to a unique solution of
an approximate Bellman’s equation regardless of its initialization values. Second, the method is consistent in the
sense that the resulting policy converges asymptotically to the optimal policy. Parametric value function estimates
such as neural networks do not possess this property. Our kernel-based approach also allows us to show that the
limiting distribution of the value function estimate is a Gaussian process. This information is useful in studying the
bias-variance tradeoff in reinforcement learning. We find that all reinforcement learning approaches to estimating
the value function, parametric or non-parametric, are subject to a bias. This bias is typically larger in reinforcement
learning than in a comparable regression problem.
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1. Introduction

Reinforcement learning has been applied successfully to a variety of practical applications
including prominent examples such as Tesauro’s Neurogammon or Singh and Bertsekas’
dynamic channel allocation algorithms (Tesauro, 1989; Singh & Bertsekas, 1997). A funda-
mental obstacle to a widespread application of reinforcement learning to industrial problems
is that reinforcement learning algorithms frequently fail to converge to a solution. This is
particularly true for variants of temporal difference learning that use parametric function
approximators (for example, linear combinations of feature vectors or neural networks)
to represent the value function of the underlying Markov Decision Process (MDP). For a
detailed discussion of this problem, as well as a list of exceptions, the interested reader
is referred to Boyan and Moore (1995) and Tsitsiklis and Van Roy (1996). By adopting
a non-parametric perspective on reinforcement learning, we suggest an algorithm that al-
ways converges to a unique solution. This algorithm assigns value function estimates to the
states in a sample trajectory and updates these estimates iteratively. Each update is based on
kernel-based averaging. An advantage of using kernel-based methods is that a wide body of
statistical literature on local averaging methods can be brought to bear upon reinforcement
learning. In particular, the close connection between kernel-based reinforcement learning
and nonlinear regression using kernel smoothers allows us to demonstrate that our algorithm
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is consistent in the statistical sense. In other words, additional training data always improve
the quality of the estimates and eventually lead to optimal performance. To the best of
our knowledge, this is the first reinforcement learning algorithm for which such a global
optimality property has been demonstrated in a continuous-space framework. By contrast,
recently-advocated “direct” policy search or perturbation methods can, by construction, be
optimal at most in a local sense (Sutton et al., 2000; Tsitsiklis & Konda, 2000). Besides es-
tablishing consistency we also derive the limiting distribution of the value function estimate.
This is useful in studying the bias-variance tradeoff in reinforcement learning. We also find
that all reinforcement learning algorithms, by their nature are subject to a bias. This bias is
larger than in a comparable regression problem. We also provide an asymptotic formula for
the bias increase which could help understand this issue in a more general framework.

In the context of reinforcement learning, local averaging has been suggested in work by
Rust (1997) and Gordon (1999), making the assumption that the transition probabilities of
the MDP are known and can be used for learning. Our approach is fundamentally different
in that kernel-based reinforcement learning only relies on the sample trajectories of the
MDP. Therefore it is more widely applicable. Other related ideas can be found in Werbos
(1990), Thrun and Moéller (1992), Bradtke (1993), Landelius (1997), and Papavassiliou and
Russell (1999). Baird and Klopf (1993) apply the nearest neighbor algorithm to reinforce-
ment learning, and Connell and Utgoff (1987), Peng and Williams (1995), and Atkeson,
Moore, and Schaal (1997) apply locally weighted regression to physical control problems.
The temporal-difference learning algorithm is due to Sutton and the idea to directly approx-
imate the “action-value function” that is also used in this work was first used by Watkins
(Sutton, 1988; Watkins & Dayan, 1992). With regard to theoretical results, Tsitsiklis and
Van Roy (1999) prove the convergence of a stochastic algorithm for the estimation of the
value function in optimal stopping problems. For practical applications of simulation-based
optimal control in Finance, see Longstaff and Schwartz’s (1998) paper on American op-
tion pricing and Brandt’s work on Optimal Portfolio Choice (Brandt, 1999). While our
method addresses both discounted- and average-cost problems, we focus on discounted-
costs here and refer the reader interested in average-costs to other work (Ormoneit & Glynn,
2002).

The remainder of this work is organized as follows. In Section 2, we review basic facts
about Markov Decision Processes. In Sections 3 and 4, we introduce the kernel-based rein-
forcement learning operator and discuss algorithmic considerations relevant for its practical
application. In Section 5 we present the main theoretical results of this paper, including theo-
rems establishing the consistency of kernel-based reinforcement learning and the asymptotic
distribution of the resulting estimate. In Section 6 we use these results to derive asymptotic
bias formulas for the random Bellman operator. Section 7 concludes.

2. Markov decision processes

Consider a system which is observed at discrete time steps and where the state at time ¢,
X,, takes on values in [0, 1]¢ forr = 1,2, ..., T, T < co. At each time point, an agent
has the option of taking one of a finitely many actions in the set A = {1, 2, ..., M} based
on the state of the system at that time, X;, alone. The system reacts to the action taken at
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time ¢, denoted by a,, stochastically in a manner that depends only on the current state
of the system and the action taken (i.e., the dependence is Markovian). Assume that the
transitions are homogeneous in time and the density of X,y; = y given X; = x anda; = a
is given by p(y | x, a). The corresponding probability measure is denoted by P,(x, -). The
reward obtained from this transition is given by the reward function r(y, x, a). The goal is
to identify “good” actions or policies that lead to large rewards.

The sequences {X,} and {a,} are stochastic processes defined on a probability space
(2, F, P). The knowledge of the agent at time ¢ is represented by the o -algebra F; = o (Xo,
aop, ..., Xs). Let E, denote the expectation conditional on J;. Formal assumptions are
summarized in Appendix A.1.

We consider both finite- and infinite-horizon versions of the scenario described above
which correspond to the cases T < oo and T = oo, respectively. We assume that at any
given time ¢, the utility of all future actions is of the discounted additive form

T-1
i, ...,ar) =Yy o' (X1, Xy, a0) + (T < o0’ ' R(X7),

s=t

where 1 > o > 0 is the discount factor.

In the finite-horizon case (T < o0), there is a special terminal reward R(X7) at the last
period T'. The task is to identify actions so as to maximize the expected utility of all future
actions given current knowledge, i.e. so as to maximize E;[u,(a,, ..., ar—1)]. The value of
being in a particular state x at any time 7 is defined as the expected utility given optimal
actions for all future time points. It is expressed by the value function, J/*(x), which may
be found recursively: For the terminal time point, 7', J;(x) = R(x) and

Ji(x) = max E[r(Xp41, x, @) + al (X)) | Xs =x,a, = al (1)

fort = T — 1,..., 1. An action that maximizes the expression on the right of (1) is an
optimal action. The recursive relation in (1) may be expressed in terms of the Bellman
operator A that maps J;;; to J;. Thus (1) may be rewritten conveniently as J,;* = AJ*

t+1°
In infinite-horizon problems (T = 00), we will assume that « < 1 to ensure the finiteness
of the expected utility u,(ay, ..., ar—;). The value of being in x is independent of ¢ in this

case because we are always facing an infinite planning horizon, and the value function can
be defined as the unique solution of the fixed-point equation J* = AJ* (Bellman, 1957).
Intuitively, J*(x) equals the expected utility of being in x at any time and choosing optimal
actions at any future state as in the finite-horizon case. In the rest of the paper, when there
is no danger of confusion, we will sometimes drop the time subscript and use the symbol
J* to denote either J;* or J*.

Within the above framework, reinforcement learning is concerned with the identifica-
tion of good actions or strategies in the absence of explicit knowledge of the transi-
tion density p(y |x, a). For this purpose it is convenient to introduce the action-value
Sfunction

0 () = E/lr(Xeq1, x,0) + aJ (Xe) | Xy = x, a4, = al. 2
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Q7 , is the value of taking action a at time 7 and optimal actions in all future times
Definition (2) can be abbreviated by using an operator I', that maps J7 | to QF ;
07, =TaJ5\  (O)=E[r(Xi41,x,a) +aJ]  (Xi01) | X = x, a0, = a].

Estimates of Q7 ,(x) may be computed by stochastic approximation of the parameters
in a suitable model of the action-value function Q, for example, in a neural network ar-
chitecture (Robbins & Monro, 1951; Watkins & Dayan, 1992). Unfortunately, proofs for
the convergence of the resulting algorithms can only be obtained in special cases (Bradtke,
1993; Landelius, 1997; Tsitsiklis & Van Roy, 1999). Furthermore, these estimates are typ-
ically inconsistent in the sense that they do not necessarily converge to the true Q* as the
number of samples grows towards infinity.

We suggest an alternative approach to approximating the unknown I', using a random
operator f‘a based on historic realizations of outcomes given action a. Define Q; = {Q;.4:
acA}and Q = {Q, :a € A},i.e. the setof all action value functions. Let 7 be the maximum
operator over all actions defined as 7 Q,(x) = max, Q,(x). Then ;=7 Q,and J =7 Q.
Using definition (2), the Bellman equations J;* = AJ;", | and J*= AJ* can be written as
o7, =T, 707, ,and Q*=r T Q*, respectively. Formally, we can thus simply substi-
tute the approximation I, for I’y to obtain a new set of approximate Bellman equations,
Q, r TQ,H and Q F T Q We can now define a reinforcement learning algorithm as
amethod to solve these equations. Of course, the existence of such solutions depends on the
definition of the approximate expectation operator I',. Below we will show that a suitable
definition can be found by kernel-based averaging. This approximation guarantees a unique
solution and is statistically consistent.

3. Kernel-based reinforcement learning

In this section, we describe the construction of the approximate expectation operator us-
ing kernel-based averaging and we illustrate details of the resulting learning algorithm.
To motivate the idea of local averaging, we will first consider a simple case. Suppose the
reward and the value function are constant on a finite number of partitions By, ..., By of
[0, 1]¢. If there are a sufficient number of historical realizations of the system available, then
we can approximate the transition probabilities between partitions, p; j(a) = P(X;11 €
B;|X, € B;,a, = a), arbitrarily well. We can now think of p; ;(a) the transition proba-
bility in a new, discrete MDP with the states i = 1, ..., N whose transition probability
matrix is known. Hence, the usual contraction arguments to demonstrate the convergence
of dynamic programming apply to this approximation (Puterman, 1994; Bertsekas, 1995).
In principle, we may thus recover the value function of an arbitrary MDP by using finer
and finer partitions of the state space which corresponds to the construction of a sequence
of piecewise constant approximations of J*. Practically, it is well-known that piecewise
constant function estimates are typically inferior to more elaborate “smoothing” methods
(Fan & Gijbels, 1996). Suppose S¢ is a collection of m,, historical state transitions from x;
to y¢, generated using action a. To apply smoothing to reinforcement learning, we replace
the events B; with “fuzzy events” defined by a “membership function” or a weighting
kernel ksa (x4, x), centered at x. Forming conditional probability estimates by analogy to
the piecewise constant case and taking expectations leads us to define the following random
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approximation of I';:

Pad()= > ksepCxo 0)[r (38 x5 a) +ad ()] 3)
(x5, y¢)€se
S={(xs, y{) |s =1,..., m,} is a collection of historical transitions where action a was

taken. The state of the system when action @ was taken is given by the first component, x;.
The second component, y¢, is the state of the system after taking the action and is distributed
according to P,(x,, B). There is a separate training data set for each action. The weighting
function ksa 5 (xs, x) depends on the training set S¢, x and a “mother kernel” function ¢+
and is given by:

e o (xs, x) = ¢+<@>/ 3 ¢+<@). )

(o, yg)€S®

This weighting scheme gives equal weight to equidistant points. The magnitude of the
weight as a function of distance is governed by the univariate, non-negative mother kernel
function ¢*. By construction, the weights are designed to be positive and add up to unity;
this fact plays an important role in the convergence properties of the learning algorithm.
Formal details of this construction and of the sample data generating process are described
in the assumptions in Appendix A.1. For concreteness, the reader may wish to think of the
mother kernel function ¢ (z) as a univariate normal density. The degree of “smoothing”
can be controlled by the bandwidth parameter, b, corresponds the “standard deviation” of
this normal density. Even though definition (4) depends on b and (implicitly) on the action
a, we will omit the corresponding subscripts for simplicity.

Recalling our notation from the previous section, the expression for f‘aJ (x) in (3) can
be interpreted as an approximation of the action-value function, Q(a, x), that is associated
with the value function J(x). Intuitively, (3) assesses the value of applying action a in
state x by looking at all times in the training data where a has been applied previously
in a state similar to x, and by averaging the immediate rewards and the value estimates
at the outcomes of these previous transitions. Because the weights k(x,, x) are related
inversely to the distance ||x; — x||, transitions originating in the neighborhood of x are
most influential in this averaging procedure. A more statistical interpretation of (4) would
suggest that ideally we could simply generate a large number of independent samples from
the conditional distribution P,(x, -) and estimate (2) using Monte-Carlo approximation.
Practically speaking, this approach is infeasible even if we can generate samples from
P,(x, -): First, we may not have sufficient control over the experiment to generate the
samples using arbitrary starting points. Second, in order to assess the value of the simulated
successor states we would need to sample recursively, thereby incurring exponentially
increasing computational complexity. A more realistic alternative is to estimate [, J(x) as
a local average of the rewards that were generated in previous transitions originating in the
neighborhood of x, where the membership of an observation x;, in the neighborhood of x
is quantified using k(x;, x). For a smooth value function J, the value of I',J at location
x should be similar to the value of I, J in the neighborhood of x, resulting in little loss
of precision using this approximation. More precisely, the amount of local averaging has
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to be controlled carefully using the bandwidth parameter. A discussion of the resulting
bias-variance dilemma follows in Section 5.

We would like to mention that (4) is by no means the only way to specify the weighting
function k(x;, x). In Ormoneit and Glynn (2002) the authors discuss several alternatives
including nearest-neighbor regression, grid-based approximations, and trees. Yet another
interesting possibility is to use locally weighted regression in place of the local averaging
rule (4). Practical applications of this idea are described in Smart and Kaebling (2000).
Locally weighted regression can be shown to eliminate much of the bias at the boundaries
of the state-space and it is sometimes believed to lead to superior performance in regression
problems (Hastie & Loader, 1993; Ormoneit & Hastie, 2000). From a mathematical per-
spective, it is well-known that locally weighted regression can be interpreted as a special
case of local averaging using the notion of “equivalent kernels” (Fan & Gijbels, 1996).
However, local regression estimates need to be suitably constrained in practice to guar-
antee the positivity of the equivalent weights. One possibility to achieve this is by using
regularization.

4. Approximate dynamic programming

We mentioned previously that the main application of the random operator I, is to de-
rive “plug-in” estimates of the functions J*(x) and Q*(a, x) by solving the approximate
Bellman equations Ql =T TQH] and Q = F T Q These equatlon can be ertten al-
ternatively in terms of the approximate value function as J, =TT, J,+1 and J = TT,J
where we use (3) as the approximate expectation operator. For finite-horizon problems, this
approximate Bellman equation is readily solved by iterating backwards from the known
terminal condition fT(X 7) = R(X7). This procedure is analogous to the value iteration
algorithm in dynamic programming. With regard to a practical implementation note that, as
J is only evaluated at the locations y; on the right side of (3), backward iteration does not
require storage of an explicit representation of the value function JA,H (x) for all values of
x; instead, only the values ]AH 1(y5) are needed. Similarly, in infinite-horizon problems we
compute a solution to J =TT,J by using the infinite-horizon version of value iteration. It
is helpful to note that I, is “self-approximating” in the sense that in order to characterize J
it suffices to find a set of function values at the locations y¢ satisfying J O = (’TF J ()
(see also Rust, 1997). Then the value of [.J (x) at new locations x # y¢ can be derived
directly from the definition of I, in (3). Below we assume for simplicity that we have an
equal number of observations in S¢ for all actions, i.e. m, = m for all @ € A. Hence the
value iteration update rule—restricted to the locations y{—can be written compactly using
matrix notation:

=T(O[R +alJ)). (5)
Here R is am x M matrix with entry r (yy, x;, a) atlocation (s, a), ® isam x M x m tensor

with entry k(x,, y%) at location (s’, a, s), and 7 is an operator that takesam x M x M
tensor and maximizes over its second dimension. The old and new value function estimates,
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J and J, are matrices of dimensionality m x M. Using the fact that the weights in ® can
essentially be interpreted as probabilities, it is easy to prove the following theorem:

Theorem 1. The approximate value iteration (5) converges to a unique fixed point.

The proof of this theorem is provided in Appendix A.2. Computationally, a single applica-
tion of (5) requires O (m?* x M) operations in a “naive” matrix implementation. Substantial
improvements can be obtained by defining the weighting function such that it is zero outside
a fixed range. Using a nearest neighbor kernel, for example, the weight matrix © is sparse
and the complexity of (5) reduces to O(I x m x M) where [ is the number of neighbors
(Devroye, Gyorfi, & Lugosi, 1996). This computational requirement is sufficiently small
to accommodate many real-world applications where the number of observations is fixed.
For online problems, however, we require an algorithm whose computational complexity
is independent of the number of observations m. In the case of temporal-difference learn-
ing, this is achieved typically by using a parametric approximation of the value function
with a fixed number of parameters. A comparable strategy in the context of kernel-based
reinforcement learning would be to discard old observations or to summarize clusters of
data using “sufficient” statistics. Note that the convergence property in Theorem 1 remains
unaffected by such an approximation.

5. Consistency and optimal bandwidth selection

Above we described a reinforcement learning algorithm that uses training data to derive
estimates of the value function J*(x) and of the action-value function Q*(a, x). From
a statistical perspective, a minimum requirement for such an algorithm is that additional
training data should always improve the quality of the approximation and eventually lead
to optimal performance. More formally, reinforcement learning should be consistent in
the sense that as the number of observed transitions m goes to infinity, the solutions of
0, = .7 Qi+1and Q = r.7 Q should deviate arbitrarily little from the true Q} and
Q*, and the actions generated by I, should be optimal asymptotically. While consistency
is highly desirable, it is hard to establish using parametric approximations of the value
function such as neural networks. Partly, this is due to the previously mentioned convergence
problems of temporal-difference learning which make a formal characterization of the
solution difficult if not meaningless in many cases. As a consequence, previous results in
this spirit are limited to restricted families of value functions, such as linear combinations
of basis functions in optimal stopping problems (Tsitsiklis & Van Roy, 1999). In the case
of kernel-based reinforcement learning, on the other hand, the value function estimate is
uniquely defined as the solution of the approximate Bellman equation. Therefore, a rich
body of convergence results for kernel smoothers can be brought to bear upon kernel-based
reinforcement learning (for an overview, see Devroye, Gyorfi, & Lugosi, 1996).

As the basis for the results in this section we make the following simplifying assump-
tions, formally listed in Appendix A.1: First, we mentioned above that the very reason for
averaging over neighboring transitions is the belief that the functions r and J* are smooth.
Formally, this smoothness is expressed in terms of Lipschitz continuity in Assumption 1.
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Second, to obtain accurate approximations over the entire state space, we draw the starting
points of the sample transitions (x,, y) in S* independently according to a uniform distri-
bution (see Assumption 3). Of course, this assumption is unrealistic for many real systems.
A proper account of weaker assumptions that would lead to identical results is beyond the
scope of this paper and therefore left for future work. The d-dimensional weighting function
k(x;, x) is assumed to be defined in terms of a univariate “mother kernel” as described in
Section 3 (see also Assumption 4).

We first establish the asymptotic normality of the kernel-based approximation. Even
though this property is used only indirectly in our consistency proof below, it will turn out
to be convenient for the bias analysis of kernel-based reinforcement learning in Section 6.

Lemma 1.  For any Lipschitz continuous element J of C([0, 119) and any fixed bandwidth
b > 0, the sequence /m(I'yJ (x) — E[I',J (x)]) converges in distribution to a Gaussian
process on C([b, 1 — b1%).

The proof of Lemma 1, which is analogous to Rust’s proof of a corresponding theorem
regarding density-based random operators (Rust, 1997), can be found in Appendix A.2.
Note that we restrict ourselves to the interval [b, 1 — b] to avoid boundary effects of the
weighting kernel. Below we argue that smaller and smaller bandwidths should be used as
m increases, such that [b, 1 — b] converges to [0, 1]. Note also that throughout this section
we explicitly require that the number of observations generated using each action goes to
infinity.

We proceed in several steps to demonstrate the consistency of the value function estimates
Jy and J. In our first step, we establish the consistency of the random operator L, Jif applied
to an arbitrary fixed function J. For this purpose, we decompose the approximation error
[',J — T, J into a bias term, E[['zJ (x)] — T'xJ (x) and a variance term, 'y J — E[I,J (x)].
Note that these two terms depend on the bandwidth parameter b in opposite fashions: A small
bandwidth reduces the size of the neighborhood used for averaging and hence increases
the variance. Simultaneously, because the observations in the reduced neighborhood are
closer to x, a small bandwidth also reduces the bias of the estimate. As a result, we face a
bias-variance tradeoff in that b must be chosen such as to balance the contradictory tasks
of minimizing the bias and minimizing the variance. In order for both of these terms to
disappear asymptotically, we need to “shrink” the weighting kernel with increasing sample
size at an appropriate rate. Lemma 2 establishes formal conditions on “shrinkage rates” that
lead to a consistent estimate of ', J.

Lemma 2. A shrinkage rate b(m) is called “admissible” if for any Lipschitz continuous
element J of C ([0, 11%), the random operator I, J satisfies:

If0d = Tadlloo > 0 as m — oo.
b is admissible if it satisfies b**' \/m — 0o and b — 0 .as m — oc.

The “admissibility” condition of Lemma 2 ensures that the bandwidth decreases to zero
slowly enough so as not to cause an undesired increase in variance. Intuitively, more and
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more data need to be taken into account as they arrive by a smaller and smaller kernel.
Given the finiteness of the action space A, it is simple to show that the consistency of I, J
implies the consistency of AJ =7T,J in our second step:

Lemma3. For any admissible shrinkage rate b(m) and any Lipschitz continuous element
J of C([0, 119, AJ satisfies:

IAJ = AJ oo 5 0as m — oo.

Next, we demonstrate that consistency carries over from a single application of Atoa
fixed J to the estimates J, and J, obtained as the result of the iteration procedure described
in Section 3. It follows the main result of this section:

Theorem 2. Let b(m) be an admissible shrinkage rate used to evaluate the random op-
erator I',. In the finite-horizon case, let J; denote the approximation of J that is obtained
using the iteration J, = TT,J;1. Then we have

A P
Ji — Jleo = 0as m — oo.
t

In the infinite-horizon case, let J be the fixed point of the approximate Bellman’s equation
J' =TT ,J. Then we have

A P
IJ — J*leoc = 0asm — oo.

Theorem 2 confirms that kernel-based reinforcement learning consistently estimates the
true value function if an admissible shrinkage rate is chosen. Given the relatively broad
class of admissible shrinkage strategies identified in Lemma 2, it is natural to ask whether
there exists any one particular strategy that is optimal in that it leads to the fastest possible
convergence. Theorem 3 provides an affirmative answer to this question, and characterizes
the optimal shrinkage rate as well as the corresponding convergence rate.

Theorem 3. The optimal convergence rate that may be obtained using a shrinking kernel
1 1
is Op(m™%@2), The optimal shrinkage rate is O (m™ 2@2),

This result follows from the error bounds (A.1) and (A.2) in the Proof of Lemma 2.
Besides guiding the practical choice of b, Theorem 3 provides insight into the question
of whether simulation-based methods are suited to “break” the curse of dimensionality.
This question is the main focus of Rust’s analysis of density-based random approximations
of the Bellman operator (Rust, 1997). In particular, Rust concludes that if the transition
density p(y, | x, a) is known, an algorithm similar to ours can be used to approximate the
value function in a computation time that is only polynomial in d. By contrast, Theorem 3
suggests that for kernel-based reinforcement learning, where p(y | x, @) is unknown, the
number of observations grows exponentially in d even if b is chosen optimally. Maybe
little surprisingly, knowledge of the transition density—if available—can thus be used to
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improve the approximation of the value function estimate dramatically in high-dimensional
problems.

While our focus above was on the asymptotic identification of the value function, it is
frequently more important in practice to ensure that the actual strategy derived using this
estimate is near-optimal for sufficiently large samples. We conclude this section with a
theorem that formally establishes this property:

Theorem 4. By using the random operator ['.J (x) and an admissible shrinkage rate
to approximate the true action-value function, T',J*(x), the probability of choosing a
suboptimal action converges to zero as the number of samples in each data set S* goes to

infinity.

6. Bias-variance tradeoff in reinforcement learning

In Section 5 we proved the consistency of kernel-based reinforcement learning with regard
to estimates of the value function and of the optimal strategy. In this section, we investigate
more closely the bias-variance tradeoff for finite samples. As mentioned in Section 5, bias
arises in small samples due to the nonzero bandwidth of the averaging kernel, b, which
leads to a “blurring” of the function values in the neighborhood defined by b. This bias
effect is typical for kernel-based methods and not specific to the reinforcement learning
problem. By contrast to alternative applications of kernel smoothers, however, there is also
a second bias term which arises from the fact that in the approximate Bellman’s equation
J = ’TF J we apply a maximum operator to a random estimate of the true expectation
I',. This estimate is clearly biased upward because the expectation of the maximum of a
random function generally exceeds the maximum of the expectation by the convexity of the
maximum operation and Jensens’s inequality. We formulate this important finding in the
following lemma:

Lemma 4. Ifl:‘a J (x) is an unbiased estimate of ', J (x) then E[Tf‘aJ(x)] > AJ(x).

Note that this undesired artifact is not specific to the kernel-based method but it affects all
reinforcement learning methods that involve estimates of the value function. In the case of
kernel-based learning, however, we can exploit our knowledge of the asymptotic distribution
of the random approximation in order to quantify the magnitude of the second bias term.
Statistically speaking, the biased estimate can be characterized using “order statistics”, and
the distributions of these statistics lead to an analytic expression for the (asymptotic) bias:

Theorem 5. For any Lipschitz continuous element J of C([0, 11¢), the asymptotic bias

of theA second type resulting from a single application of AtoJ, defined as E [AJ(x)] —
TE[T,J(x)], equals

M 2 2
~ - o +o
= (i — ui)PU; = U,,-)+,/—Ze—f“‘fP<U,,» > U )), 6)
i=1 J#£
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where we use the definitions (i = max{iy, ..., Un},

wi = E[0,J(x)], o} = Var[[J ()],

Uy =T11J(x), U=max{U,...,U,},
U_; = max{U,, ..., U \{U}, U_;; =max{U,..., U \{U;, U},

~ oiUi+o7U; olo} (Wi — 1j)°
UVij=—5 "> M= T o 2
o toj (o] +Uj)

Here the first term in (6) is non-positive and accounts for the possibility that sometimes the
observed maximum may be generated from a suboptimal action. The second term depends
on the “separability” of pairs of actions i and j. Intuitively, the closer the values w; and
are to each other (relative to their respective variances aiz and sz)’ the greater is the bias that
results from observing U; > U, even though in reality u; < p;. Interestingly, formula (6)
indicates that in reinforcement learning the bias-variance tradeoff with regard to the optimal
kernel width is quite different from that in regression, because the variance term o> shows up
in the bias terms of both the first and second types. Based on an estimate of aiz, (6) could also
serve to construct a bias-correction, where a carefully chosen function of Uy, . .., U,—say
a fraction of the bias estimate resulting from (6)—would be subtracted from AJ (x). Note,
however, that bias-adjustments of this sort frequently lead to new instabilities because they
increase variance of the estimate to an undesired level. The exact nature of this tradeoff in
reinforcement learning is unknown and would be an interesting subject for future research.

7. Conclusions

We have presented a new, kernel-based reinforcement learning method that overcomes
important shortcomings of temporal-difference learning in continuous-state domains. Our
method uses locally weighted averaging to assess the value of a particular state x using
historic observations of transitions originating in the neighborhood of x. The resulting ran-
dom operator is self-approximating in the sense that its fixed point may be characterized
as the solution of a simple matrix equation. This equation may be solved using an iterative
algorithm. Our main theorem established that kernel-based reinforcement learning consis-
tently approximates the true value function of the MDP provided the kernel bandwidth is
decreased appropriately with increasing sample size. We also provided an asymptotic bias
formula that characterizes the bias-variance tradeoff in reinforcement learning. Our results
were derived under the assumption that elements in the transition set are independent and
that the first component was drawn uniformly from a unit hypercube. We believe these
assumptions may be relaxed in future work.

Practically speaking, the performance of our approximation—and of any other method—
is dictated by the amount of training data and by the available computational resources.
Neither our method nor any other reinforcement learning algorithm that does not incorpo-
rate prior knowledge can “break” the “curse-of-dimensionality”. This is because the lower
bounds for the complexity of non-linear regression are exponential (Stone, 1982) and re-
inforcement learning is at least as hard as nonlinear regression (an arbitrary regression
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problem can be reduced to a trivial one-step MDP; see also Rust, 1997). However we note
that this “curse” is accompanied by the “blessing” of not having to know the transition
density of the underlying MDP. Moreover, for a number of stochastic control problems the
state-space may be satisfactorily described by using a low-dimensional set of features. We
therefore believe that kernel-based reinforcement learning, because of its stability, may be
a valuable tool to tackle many challenging problems.

Appendix
A.l.  Assumptions

1. The reward function, r(y, z, @) is a jointly Lipschitz continuous function of y and z for
alla € A, i.e. there exists a K, > 0 such that

|r(y/» Z/’a) _r(yv Z,Cl)| = Kl”(y/ - Z/ _Z)”

2. The conditional distribution of X, given X, =x and a, =a, P,(x, -), is homogeneous
for all ¢ and has a density function p(y | x, @) with respect to the Lebesgue measure A.
The mean and the covariance matrix of p(y | x, a) are finite.

3. For each action a, we define a sample data set S* as {(x,, y)Is = 1,...,m,}; for
simplicity, let m, = m for alla € A. Each element in this set, (x,, y¢), is an independent
draw from the distribution of (Z, Y'). Here the first component, Z, is distributed uniformly
on [0, 1]¢ and the second component, Y, follows the conditional distribution P, (xy, -).

4. Given the sample set S¢, the weighting kernel k (x;, x) = kg« 5 (x;, x) is constructed using
a Lipschitz continuous “mother kernel”, ¢ : [0, 1] — IR™, satisfying fol ¢(2)dz = 1.
For each x € [0, 1]¢ and each (x;, yi) € 8% kga p(xg, x) is defined according to (4),
where ¢ (z) is the completion of ¢ (z) on IR.

A.2.  Proofs of theorems and lemmata

Proof of Theorem 1: In the finite-horizon case, the statement of the theorem is straight-
forward because the update (5) is deterministic and it is carried out exactly T times. In
the infinite-horizon case, A defines a contraction mapping on the Banach space formed by
C([0, 1]%) and the supremum norm:

|AJ — AJ|loo = sup (maxf’aJ(x) —maxf‘,J’(x))
xel0, 134 acA acA

<a sup max |:Zk(xx, (I () - J’(yf)):|

xef0,11¢ 9€A
< allJ = Jloo-

Hence we can appeal to the Banach Fixed-Point theorem to establish convergence and the
uniqueness of the solution (see, for example, Puterman, 1994). O
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Proofof Lemmal: Letthe “asymptotic weighting kernel” k(Z, x)bedefinedask(z, x) =
% Note that mk(z, x) converges to k(z, x) uniformly almost surely as m goes
to inﬁﬁity. We will show that the random function &,(x) = &,(x) — E[£,(x)] satisfies a

Central Limit Theorem by applying a Theorem 1 of Jain and Marcus (1975), where
(0) =K(Z, (Y, Z,a) + aJ (V)].

Then it follows that, 1//m 3", &,(x) = /m(I'yJ (x) — E[[,J (x)]) converges in dis-
tribution to a Gaussian measure on C ([b, 1 — b]%) as m— 0o. We now proceed to verify the
assumptions in Jain and Marcus (1975).

Since the expectation operator is linear, E[F £,1=0 for arbitrary linear functionals F.
Since &,(x) is Lipschitz continuous and hence bounded, the unconditional expectation
E[&, (x)?] is bounded. Furthermore, realizations of éa are elements of C ([0, 1]%). By appli-
cation of the triangular and Jensen’s inequalities it can be seen that £, satisfies

&, (x, 0) — E,(x', )| < M(w)|lx — x']|
where
M(w) = K (IY“| + E[IY“||a, = a).

Here Y* = r(Y, Z,a) + aJ(Y) and K} is the Lipschitz constant of the weighting kernel
k(xy, ). As furthermore the d-dimensional hypercube has finite metric entropy (see, for
example, Rust, 1997) by Theorem 1 of Jain and Marcus (1995) €, satisfies a Central Limit
Theorem. O

Proof of Lemma 2:  First, we note that the approximation error of the random operator Iy
depends on the “shape” of the mother kernel, the bandwidth parameter b, and the dimension
d of the state space. In order to bound this error, we will need the following result regarding
the “volume” of the derived weighting kernel ¢ (||z — x||/b) in d dimensions:

Lemma 5 (Kernel Volume Lemma). Let Cp 4 be defined according to Cp4g= f[o,l]d
¢t (152 1) and let v; = [} 7'¢(2)dz. Then for x € [b, 1 — b}

422y,

Cva="Gan

Proof: To prevent confusions with the operator I',, we use the symbol G(-) to denote
Euler’s gamma function.

[
(0,134

7 —
b

x H)A(dz) _ b / ¢+ (IzIDA(dz)
Rd

., 00 prd/2,d—1 .
= | G e

bdZJTd/z 1
-G /2 )y

rd_ld)(r)dr O
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Second, to establish the consistency of I oJ, let Ig(z, x), m, and &, ; be defined as in the

previous proof, and let " (x) = % By the triangular inequality we have
’ s'=1 s’

N

IA

||ﬁ0] - E[éz:ns]”oo + ||E[§¢:nf] - l_‘a‘]Hoo
Vin + B

We use the symbol ||-||« for the supremum norm on C ([0, 1]%), as opposed to the Eucledian
norm ||-|| on IR?. Below we yvill refer to V,, as the “variance term” and to B,, as the “bias
term”. To establish that P(||I"yJ — 'y J|lco > &) — 0 for all § > 0, it suffices to show that

V, 50 and B, — 0.

In particular, note that V,,, is a random variable whereas B,, is a non-stochastic function of
m. We discuss separately the convergence of V,,, and B,,:

(i) Vi = O:
In Rust (1997), it is shown using an empirical process argument that the expectation
of the variance term V,, may be approximated by (Theorem 3.3, Eq. (3.19))

EL| R — EER1L] = [Tl + aVACIR, 1l

Here Rust’s Lipschitz constant for the transition density K, must be replaced by the
Lipschitz constant K for k(z, x), if considered as a function of z only. In particular,
it follows from the definition of the weighting kernel in Assumption 4:

- - 1 Z—x 7 —x
k by _k ,7 S T -
lk(z, x) —k(z', x)| Coa ¢< 5 ) ¢< 3 )’
- Ko lz — x| Iz’ — x|
= Cpa| b b
Ky ,
< 7.
< be’dIIz 2

Thus, K; = %:] where K, is the Lipschitz constant of the mother kernel and Cy, 4 is
the “kernel volume” derived in Lemma 5. Hence, using Markov’s inequality:

. . 7ol +dyTCIK I I
P(||F0J_E[éa,5]”oo>8) <\/; 8\/%
_ \/iot[l -i—d«/EC]K@G(d/Z)||J||oo
o 2 bd+1ﬁ827'[d/2vd_| ’

(A1)

Consequently, V,, — 0 provided that b**!\/m — oo.
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@ii): B, — 0:
Let h(z)=IyJ(z) = E[r(Y,z,a) + aJ(Y)|Z = z], and let K; be the Lipschitz
constant of /(z). Then for all x € [b, 1 — b]%:

|E[&] = Tal |, = sup

X

f f(z, 1) (h(2) — h())Ad2)
[0,1]4

< sup / k(z, x)|h(z) — h(x)|A(dz)
x [0,174
< sup/ k(z,x)Kyllz — x|IA(dz)
x [0,174
o [ e (157])
=" ¢ Iz — xlIA(dz)
Cb,d xp [0,1]4 b
bd-HK
= L sup/ o" Iz lzlIAdz2)
b.d X R4
bKy 27?2 (!
= rd71¢(r) rdr
Cra G/2) Jo
= Kh—L (A2)
Vd—1
Thus, B,, — 0 provided that b — 0. o

Proof of Lemma 3: (see also Lemma 3.1 in Rust (1993))

||AJ — AJ|loc = sup (max faJ(x) — maj( FaJ(x))
ae

xef0,1]¢ \ a€A

< sup max(F J(x) —T,J(x))

xe[0,1¢ 9€A
=max||FaJ—FaJ||OO O
acA

Proof of Theorem 2: We need to show that, for any admissible shrinkage strategy, con-
sistency carries over from a single application of A to a fixed J to the estimates J, and J.
In the finite-horizon case, this is straightforward for if each application of A introduces a
bounded error term, the error of the repeated application of A must be bounded by the sum
of these terms. In the infinite-horizon case, A defines a contraction mapping according to
the proof of Theorem 1:

IAT — AT oo < @Il — I [lco-

~

Asusual, let / = AJ and J* = AJ*. An application of the triangle inequality suffices to
show that

1T — T lleo < alld — J*lloo + IAT* — AT |l

such that P(Ilf — J*|| > &) is bounded by P(||1A\J — AJ|loo > (1 —@)f). O
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Proof of Theorem 3: We consider shrinkage rates of the form b = m™ fora > 0. Thus,
for a fixed d, the bias term (A.2) is of order de ,ML)H 7, and the variance term
(A.1) grows like b = —,_ We need to choose a such that mln{m, m,,} is maximal.
Clearly, this is the case 1f —ad+1)+1/2=ao0ra= L TOEE)) +2) The resulting convergence

rate is - = m 2(d+2> O

ma

Proof of Theorem 4: For simplicity, first consider the case where I',J*(x) and f‘uf (x)
take on different values for all @ € A such that the functions a*(x) = arg max,c4 [, J*(x)
and @™ (x) = arg max,c4 f‘af (x) are well-defined. For all ¢ > O weneed to finda N € IN
independent of x such that P(a(x)™ # a*(x)) < & for all m > N. For a particular x, let
1; denote the ith-largest value of I'; J*(x), and let V; = f‘af (x) for the same action a. A
necessary condition for @™ to differ from a*(m) is that either |V — (| > (u; — u2)/2 or
Vi — il = (u1 — n2)/2 for some i # 1. Thus

P@)" #a*(x)) < Y P(V; — il = (1 — 12)/2).

Then by Theorem 2 there exist constants N; independent of x satisfying

P(Vi — pil = (m1 — n2)/2) < /M

for all m > N;. The maximum of these values is the desired constant N.

If either 'y J*(x) or faf (x) takes on identical values for different actions, a sim-
ilar argument may be used to show that P(a"(x) ¢ argmax[,J*(x)) "2 0 where
argmax I', J*(x) denotes the set of maximizing a-values. O

Proof of Theorem 5: Because the random variables U; are independent according to
Assumption 3 and asymptotically normal distributed according to Lemma 1, we have

P(USu)éP(UIgu,...,UnEM):l—[q><u—m>_

i=1 i

By the product rule, the density of U is of the form

p) = Z%,@H ( )

J#

Here ¢, ,2(z) denotes the normal density function with mean w; and variance 0[2 and ®
denotes the standard normal distribution function.
Furthermore,
>d u

ﬂméifwwwﬁl<
)du—i/d)ﬂ az(u)]_[ ( ) u.

J#
J#i

_ZM/%MWH (

J#
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Here [ ¢, ,2() [1; @(”;"i‘f Ydu = P(U; > U_;). Partial integration gives that

/qsl’mz(u)]—[ < )du /%, 2 () ]_[ ( ; )du
J#i Wi J

2020 —p )2
_aioj(u, nj)

2 ~ -
7+) PWU;; = U_ ).

Substituting back into the formula for E (U] gives (6). O
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