
Kernel-Based Reinforcement Learning in

Average-Cost Problems: An Application

to Optimal Portfolio Choice

Dirk Ormoneit

Department of Computer Science

Stanford University

Stanford, CA 94305-9010

ormoneit@cs.stanford.edu

Abstract

Peter Glynn

EESOR

Stanford University

Stanford, CA 94305-4023

Many approaches to reinforcement learning combine neural net­

works or other parametric function approximators with a form of

temporal-difference learning to estimate the value function of a

Markov Decision Process. A significant disadvantage of those pro­

cedures is that the resulting learning algorithms are frequently un­

stable. In this work, we present a new, kernel-based approach to

reinforcement learning which overcomes this difficulty and provably

converges to a unique solution. By contrast to existing algorithms,

our method can also be shown to be consistent in the sense that

its costs converge to the optimal costs asymptotically. Our focus

is on learning in an average-cost framework and on a practical ap­

plication to the optimal portfolio choice problem.

1 Introduction

Temporal-difference (TD) learning has been applied successfully to many real-world

applications that can be formulated as discrete state Markov Decision Processes

(MDPs) with unknown transition probabilities. If the state variables are continuous

or high-dimensional , the TD learning rule is typically combined with some sort of

function approximator - e.g. a linear combination of feature vectors or a neural

network - which may well lead to numerical instabilities (see, for example, [BM95,

TR96]). Specifically, the algorithm may fail to converge under several circumstances

which, in the authors ' opinion, is one of the main obstacles to a more wide-spread

use of reinforcement learning (RL) in industrial applications. As a remedy, we

adopt a non-parametric perspective on reinforcement learning in this work and we

suggest a new algorithm that always converges to a unique solution in a finite

number of steps. In detail, we assign value function estimates to the states in a

sample trajectory and we update these estimates in an iterative procedure. The

updates are based on local averaging using a so-called "weighting kernel". Besides

numerical stability, a second crucial advantage of this algorithm is that additional

training data always improve the quality of the approximation and eventually lead

to optimal performance - that is, our algorithm is consistent in a statistical sense.

To the authors' best knowledge, this is the first reinforcement learning algorithm

for which consistency has been demonstrated in a continuous space framework.

Specifically, the recently advocated "direct" policy search or perturbation methods

can by construction at most be optimal in a local sense [SMSMOO , VRKOOj.

Relevant earlier work on local averaging in the context of reinforcement learning

includes [Rus97j and [Gor99j. While these papers pursue related ideas, their ap­

proaches differ fundamentally from ours in the assumption that the transition prob­

abilities of the MDP are known and can be used for learning. By contrast, kernel­

based reinforcement learning only relies on sample trajectories of the MDP and it

is therefore much more widely applicable in practice. While our method addresses

both discounted- and average-cost problems, we focus on average-costs here and

refer the reader interested in discounted-costs to [OSOOj. For brevity, we also defer

technical details and proofs to an accompanying paper [OGOOj. Note that average­

cost reinforcement learning has been discussed by several authors (e.g. [TR99]).

The remainder of this work is organized as follows. In Section 2 be provide basic

definitions and we describe the kernel-based reinforcement learning algorithm. Sec­

tion 3 focuses on the practical implementation of the algorithm and on theoretical

issues. Sections 4 and 5 present our experimental results and conclusions.

2 Kernel-Based Reinforcement Learning

Consider a MDP defined by a sequence of states X t taking values in IRd , a sequence

of actions at taking values in A = {I, 2, ... , M}, and a family of transition kernels

{Pa(x, B)la E A} characterizing the conditional probability of the event X t E B

given X t- 1 = x and at-l = a. The cost function c(x, a) represents an immediate

penalty for applying action a in state x. Strategies, policies, or controls are under­

stood as mappings of the form J1. : IRd -+ A, and we let PX,/A denote the probability

distribution governing the Markov chain starting from Xo = x associated with the

policy J1.. Several regularity conditions are listed in detail in [OGOOj.

Our goal is to identify policies that are optimal in that they minimize the long-run

average-cost TJ/A == liIllT-too Ex,/A [f 'L,;=-Ol c(Xt, J1.(Xt})]. An optimal policy, J1.*, can

be characterized as a solution to the Average-Cost Optimality Equation (ACOE):

TJ* + h*(x)

J1.*(x)

min{c(x, a) + (rah*)(x)},
a

argmin{c(x, a) + (rah*)(x)} ,
a

(1)

(2)

where TJ* is the minimum average-cost and h*(x) has an interpretation as the differ­

ential value of starting in x as opposed to drawing a random starting position from

the stationary distribution under J1.*. r a denotes the conditional expectation oper­

ator (r ah)(X) == Ex,a [h(Xl)], which is assumed to be unknown so that (1) cannot

be solved explicitly. Instead, we simulate the MDP using a fixed proposal strat­

egy jl in reinforcement learning to generate a sample trajectory as training data.

Formally, let S == {zo, .. . , Zm} denote such an m-step sample trajectory and let

A == {ao, ... ,am-llas = p,(zs)} and C == {c(zs , as)IO ~ s < m} be the sequences

of actions and costs associated with S. Then our objective can be reformulated as

the approximation of fJ* based on information in S, A, and C. In detail, we will

construct an approximate expectation operator, l' m,a, based on the training data,

S, and use this approximation in place of the true operator rain this work. For­

mally substituting 1'm,a for rain (1) and (2) gives the Approximate Avemge-Cost

Optimality Equation (AACOE):

i)m + hm(x)

flm(x) argmjn {c(x , a) + (1' m,ahm)(X)} .

(3)

(4)

Note that , ifthe solutions i)m and hm to (3) are well-defined, they can be interpreted

as statistical estimates of TJ* and h* in equation (1). However , i)m and hm need not

exist unless 1'm ,a is defined appropriately. We therefore employ local averaging in

this work to construct 1'm,a in a way that guarantees the existence of a unique

fixed point of (3). For the derivation of the local averaging operator, note that

the task of approximating (rah)(x) = Ex,a[h(Xdl can be interpreted alternatively

as a regression of the "target" variable h(Xd onto the "input" Xo = x . So-called

kernel-smoothers address regression tasks of this sort by locally averaging the target

values in a small neighborhood of x . This gives the following approximation:

m-l

L km ,a(zs , x)h(zs+1)' (5)
s=o

(6)

In detail, we employ the weighting function or weighting kernel km ,a (zs , x) in (6) to

determine the weights that are used for averaging in equation (5). Here km,a(zs , x) is

a multivariate Gaussian, normalized so as to satisfy the constraints km , .. (zs, x) > 0

if as = a , km,a(zs , x) = 0 if as i- a, and I:::,,=~l km, .. (zs, x) = 1. Intuitively, (5)

assesses the future differential cost of applying action a in state x by looking at all

times in the training data where a has been applied previously in a state similar

to x , and by averaging the current differential value estimates at the outcomes of

these previous transitions. Because the weights km , .. (zs , x) are related inversely

to the distance Ilzs - xii, transitions originating in the neighborhood of x are most

influential in this averaging procedure. A more statistical interpretation of (5) would

suggest that ideally we could simply generate a large number of independent samples

from the conditional distribution Px,a and estimate Ex ,a[h(X1)l using Monte-Carlo

approximation. Practically speaking , this approach is clearly infeasible because in

order to assess the value of the simulated successor states we would need to sample

recursively, thereby incurring exponentially increasing computational complexity. A

more realistic alternative is to estimate l' m,a h (x) as a local average of the rewards

that were generated in previous transitions originating in the neighborhood of x,

where the membership of an observation Z s in the neighborhood of x is quantified

using km,a(zs, x). Here the regularization parameter b determines the width of the

Gaussian kernel and thereby also the size of the neighborhood used for averaging.

Depending on the application , it may be advisable to choose b either fixed or as a

location-dependent function of the training data.

3 "Self-Approximating Property"

As we illustrated above, kernel-based reinforcement learning formally amounts to

substituting the approximate expectation operator r m,a for r a and then applying

dynamic programming to derive solutions to the approximate optimality equation

(3). In this section, we outline a practical implementation of this approach and

we present some of our theoretical results. In particular, we consider the relative

value iteration algorithm for average-cost MDPs that is described , for example, in

[Ber95]. This procedure iterates a variant of equation (1) to generate a sequence of

value function estimates, h~ , that eventually converge to a solution of (1) (or (3),

respectively). An important practical problem in continuous state MDPs is that the

intermediate functions h~ need to be represented explicitly on a computer. This re­

quires some form of function approximation which may be numerically undesirable

and computationally burdensome in practice. In the case of kernel-based reinforce­

ment learning, the so-called "self-approximating" property allows for a much more

efficient implementation in vector format (see also [Rus97]). Specifically, because

our definition of r m,ah in (5) only depends on the values of h at the states in S,

the AACOE (3) can be solved in two steps:

(7)

(8)

In other words , we first determine the values of hm at the points in S using (7)

and then compute the values at new locations x in a second step using (8). Note

that (7) is a finite equation system by contrast to (3). By introducing the vectors

and matrices n?,(i) == hm,?,(zi), c?,(i) == C?,(Zi), q>?,(i,j) == km ,?, (Zj,Zi) for i =
1, . .. , m and j = 1, ... , m , the relative value iteration algorithm can thus be written

conveniently as (for details, see [Ber95, OGOO]):

~k+1 ._ ~k ~k ()
U .- U n ew -Itnew 1 . (9)

Hence we end up with an algorithm that is analogous to value iteration except that

we use the weighting matrix q>a in place ofthe usual transition probabilities and nk

and C a are vectors of points in the training set S as opposed to vectors of states.

Intuitively, (9) assigns value estimates to the states in the sample trajectory and

updates these estimates in an iterative fashion. Here the update of each state is

based on a local average over the costs and values of the samples in its neighborhood.

Since q>a (i, j) > 0 and 2::7=1 q>a(i, j) = 1 we can further exploit the analogy between

(9) and the usual value iteration in an "artificial" MDP with transition probabilities

q>a to prove the following theorem:

Theorem 1 The relative value iteration (9) converges to a unique fixed point.

For details, the reader is referred to [OSOO , OGOO]. Note that Theorem 1 illustrates

a rather unique property of kernel-based reinforcement learning by comparison to

alternative approaches. In addition, we can show that - under suitable regularity

conditions - kernel-based reinforcement learning is consistent in the following sense:

Theorem 2 The approximate optimal cost Tfm converges to the true optimal cost

TI* in the sense that

E 1 A * 1 m-t co 0
xo , ji. Tim - TI ---+ .

Also, the true cost of the approximate strategy Pm converges to the optimal cost:

Hence Pm performs as well as fJ* asymptotically and we can also predict the op­

timal cost TJ* using r,m. From a practical standpoint, Theorem 2 asserts that the

performance of approximate dynamic programming can be improved by increasing

the amount of training data. Note, however, that the computational complexity

of approximate dynamic programming depends on the sample size m. In detail ,

the complexity of a single application of (9) is O(m2) in a naive implementation

and O(mlog m) in a more elaborate nearest neighbor approach. This complexity

issue prevents the use of very large data sets using the "exact" algorithm described

above. As in the case of parametric reinforcement learning, we can of course restrict

ourselves to a fixed amount of computational resources simply by discarding obser­

vations from the training data or by summarizing clusters of data using "sufficient

statistics". Note that the convergence property in Theorem 1 remains unaffected

by such an approximation.

4 Optimal Portfolio Choice

In this section , we describe the practical application of kernel-based reinforcement

learning to an investment problem where an agent in a financial market decides

whether to buy or sell stocks depending on the market situation. In the finance

and economics literature, this task is known as "optimal portfolio choice" and has

created an enormous literature over the past decades. Formally, let St symbolize

the value of the stock at time t and let the investor choose her portfolio at from the

set A == {O , 0.1, 0.2 , ... , I}, corresponding to the relative amount of wealth invested

in stocks as opposed to an alternative riskless asset. At time t + 1, the stock price

changes from St to St+1, and the portfolio of the investor participates in the price

movement depending on her investment choice. Formally, if her wealth at time t is

Wt , it becomes Wt+1 = (1 + at St ±~: S,) Wt at time t + 1. To render this simulation

as realistic as possible, our investor is assumed to be risk-averse in that her fear of

losses dominates her appreciation of gains of equal magnitude. A standard way to

express these preferences formally is to aim at maximizing the expectation of a con­

cave "utility function", U(z), ofthe final wealth WT. Using the choice U(z) = log(z),

the investor's utility can be written as U(WT) = 2:,;:01 log (1 + at S'±~:S') . Hence

utilities are additive over time, and the objective of maximizing E[U(WT)] can be

stated in an average-cost framework where c(x, a) = Ex,a [log (1 + a S'±~:S')].

We present results using simulated and real stock prices. With regard to the simu­

lated data, we adopt the common assumption in finance literature that stock prices

are driven by an Ito process with stochastic, mean-reverting volatility:

dSt fJStdt + ylv;StdBt,

dVt ¢(fJ - vt)dt + pylv;dBt .

Here Vt is the time-varying volatility, and Bt and Bt are independent Brownian mo­

tions. The parameters of the model are fJ = 1.03, fJ = 0.3, ¢ = 10.0, and p = 5.0. We

simulated daily data for the period of 13 years using the usual Euler approximation

of these equations. The resulting stock prices, volatilities, and returns are shown in

Figure l. Next, we grouped the simulated time series into 10 sets of training and

Figure 1: The simulated time-series of stock prices (left) , volatility (middle) , and

daily returns (right; Tt == log(St/St-d) over a period of one year.

test data such that the last 10 years are used as 10 test sets and the three years

preceding each test year are used as training data. Table 1 reports the training and

test performances on each of these experiments using kernel-based reinforcement

learning and a benchmark buy & hold strategy. Performance is measured using

Year II Reinforcement Learning Buy &: Hold
II Training Test I Training Test

4 0.129753 0.096555 0.058819 0.052533

5 0.125742 0. 107905 0.043107 0.081395

6 0.100265 -0.074588 0.053755 -0.064981

7 0.059405 0.201186 0.018023 0.172968

8 0.082622 0.227161 0.041410 0.197319

9 0.077856 0.098172 0.074632 0.092312

10 0.136525 0.199804 0.137416 0.194993

11 0.145992 0.121507 0.147065 0.118656

12 0.126052 -0.018110 0.125978 -0.017869

13 0.127900 -0 .022748 0.077196 -0 .029886

Table 1: Investment p erformance on the simulated data (initial wealth Wa = 100).

the Sharpe-ratio which is a standard measure of risk-adjusted investment perfor­

mance. In detail, the Sharpe-ratio is defined as SR = log(WT/Wo)/iT where iT is

the standard deviation of log(Wt!Wt- 1) over time. Note that large values indicate

good risk-adjusted performance in years of positive growth , whereas negative val­

ues cannot readily be interpreted. We used the root of the volatility (standardized

to zero mean and unit variance) as input information and determined a suitable

choice for the bandwidth parameter (b = 1) experimentally. Our results in Table 1

demonstrate that reinforcement learning dominates buy & hold in eight out of ten

years on the training set and in all seven years with positive growth on the test set.

Table 2 shows the results of an experiment where we replaced the artificial time

series with eight years of daily German stock index data (DAX index, 1993-2000).

We used the years 1996-2000 as t est data and the three years preceding each test

year for training. As the model input , we computed an approximation of the (root­

) volatility using a geometric average of historical returns. Note that the training

performance of reinforcement learning always dominates the buy & hold strategy,

and the test results are also superior to the benchmark except in the year 2000.

Year Reinforcement Learning Buy &; Hold

Training Test Training Test

1996 0.083925 0.173373 0.038818 0.120107
1997 0.119875 0.121583 0.119875 0.096369
1998 0.123927 0.079584 0.096183 0.035204
1999 0.141242 0.094807 0.035137 0.090541
2000 0.085236 -0.007878 0.081271 0.148203

Table 2: Investment performance on the DAX data.

5 Conclusions

We presented a new, kernel-based reinforcement learning method that overcomes

several important shortcomings of temporal-difference learning in continuous-state

domains. In particular, we demonstrated that the new approach always converges

to a unique approximation of the optimal policy and that the quality of this approx­

imation improves with the amount of training data. Also, we described a financial

application where our method consistently outperformed a benchmark model in an

artificial and a real market scenario. While the optimal portfolio choice problem is

relatively simple, it provides an impressive proof of concept by demonstrating the

practical feasibility of our method. Efficient implementations of local averaging for

large-scale problems have been discussed in the data mining community. Our work

makes these methods applicable to reinforcement learning, which should be valuable

to meet the real-time and dimensionality constraints of real-world problems.

Acknowledgements. The work of Dirk Ormoneit was partly supported by the Deutsche

Forschungsgemeinschaft. Saunak Sen helped with valuable discussions and suggestions.

References

[Ber95)

[BM95)

[Gor99)

[OGOO)

[OSOO)

[Rus97)

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and
2. Athena Scientific, 1995.

J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely

approximating the value function. In NIPS 7,1995.

G. Gordon. Approximate Solutions to Markov Decision Processes. PhD thesis,
Computer Science Department, Carnegie Mellon University, 1999.

D. Ormoneit and P. Glynn. Kernel-based reinforcement learning in average­
cost problems. Working paper, Stanford University. In preparation.

D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learn­

ing, 2001. To appear.

J. Rust. Using randomization to break the curse of dimensionality. Economet­

"ica, 65(3):487- 516, 1997.

[SMSMOO) R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient meth­
ods for reinforcement learning with function approximation. In NIPS 12,2000.

[TR96) J. N. TsitsikIis and B. Van Roy. Feature-based methods for large-scale dynamic
programming. Machine Learning, 22:59-94, 1996.

[TR99) J. N. TsitsikIis and B. Van Roy. Average cost temporal-difference learning.
Automatica, 35(11):1799- 1808, 1999.

[VRKOO) J. N. Tsitsiklis V. R. Konda. Actor-critic algorithms. In NIPS 12,2000.

