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Many approaches to reinforcement learning combine neural net­

works or other parametric function approximators with a form of 

temporal-difference learning to estimate the value function of a 

Markov Decision Process. A significant disadvantage of those pro­

cedures is that the resulting learning algorithms are frequently un­

stable. In this work, we present a new, kernel-based approach to 

reinforcement learning which overcomes this difficulty and provably 

converges to a unique solution. By contrast to existing algorithms, 

our method can also be shown to be consistent in the sense that 

its costs converge to the optimal costs asymptotically. Our focus 

is on learning in an average-cost framework and on a practical ap­

plication to the optimal portfolio choice problem. 

1 Introduction 

Temporal-difference (TD) learning has been applied successfully to many real-world 

applications that can be formulated as discrete state Markov Decision Processes 

(MDPs) with unknown transition probabilities. If the state variables are continuous 

or high-dimensional , the TD learning rule is typically combined with some sort of 

function approximator - e.g. a linear combination of feature vectors or a neural 

network - which may well lead to numerical instabilities (see, for example, [BM95, 

TR96]). Specifically, the algorithm may fail to converge under several circumstances 

which, in the authors ' opinion, is one of the main obstacles to a more wide-spread 

use of reinforcement learning (RL) in industrial applications. As a remedy, we 

adopt a non-parametric perspective on reinforcement learning in this work and we 

suggest a new algorithm that always converges to a unique solution in a finite 

number of steps. In detail, we assign value function estimates to the states in a 

sample trajectory and we update these estimates in an iterative procedure. The 



updates are based on local averaging using a so-called "weighting kernel". Besides 

numerical stability, a second crucial advantage of this algorithm is that additional 

training data always improve the quality of the approximation and eventually lead 

to optimal performance - that is, our algorithm is consistent in a statistical sense. 

To the authors' best knowledge, this is the first reinforcement learning algorithm 

for which consistency has been demonstrated in a continuous space framework. 

Specifically, the recently advocated "direct" policy search or perturbation methods 

can by construction at most be optimal in a local sense [SMSMOO , VRKOOj. 

Relevant earlier work on local averaging in the context of reinforcement learning 

includes [Rus97j and [Gor99j. While these papers pursue related ideas, their ap­

proaches differ fundamentally from ours in the assumption that the transition prob­

abilities of the MDP are known and can be used for learning. By contrast, kernel­

based reinforcement learning only relies on sample trajectories of the MDP and it 

is therefore much more widely applicable in practice. While our method addresses 

both discounted- and average-cost problems, we focus on average-costs here and 

refer the reader interested in discounted-costs to [OSOOj. For brevity, we also defer 

technical details and proofs to an accompanying paper [OGOOj. Note that average­

cost reinforcement learning has been discussed by several authors (e.g. [TR99]). 

The remainder of this work is organized as follows. In Section 2 be provide basic 

definitions and we describe the kernel-based reinforcement learning algorithm. Sec­

tion 3 focuses on the practical implementation of the algorithm and on theoretical 

issues. Sections 4 and 5 present our experimental results and conclusions. 

2 Kernel-Based Reinforcement Learning 

Consider a MDP defined by a sequence of states X t taking values in IRd , a sequence 

of actions at taking values in A = {I, 2, ... , M}, and a family of transition kernels 

{Pa(x, B)la E A} characterizing the conditional probability of the event X t E B 

given X t- 1 = x and at-l = a. The cost function c(x, a) represents an immediate 

penalty for applying action a in state x. Strategies, policies, or controls are under­

stood as mappings of the form J1. : IRd -+ A, and we let PX,/A denote the probability 

distribution governing the Markov chain starting from Xo = x associated with the 

policy J1.. Several regularity conditions are listed in detail in [OGOOj. 

Our goal is to identify policies that are optimal in that they minimize the long-run 

average-cost TJ/A == liIllT-too Ex,/A [f 'L,;=-Ol c(Xt, J1.(Xt})]. An optimal policy, J1.*, can 

be characterized as a solution to the Average-Cost Optimality Equation (ACOE): 

TJ* + h*(x) 

J1.*(x) 

min{c(x, a) + (rah*)(x)}, 
a 

argmin{c(x, a) + (rah*)(x)} , 
a 

(1) 

(2) 

where TJ* is the minimum average-cost and h*(x) has an interpretation as the differ­

ential value of starting in x as opposed to drawing a random starting position from 

the stationary distribution under J1.*. r a denotes the conditional expectation oper­

ator (r ah)(X) == Ex,a [h(Xl) ], which is assumed to be unknown so that (1) cannot 

be solved explicitly. Instead, we simulate the MDP using a fixed proposal strat­

egy jl in reinforcement learning to generate a sample trajectory as training data. 

Formally, let S == {zo, .. . , Zm} denote such an m-step sample trajectory and let 



A == {ao, ... ,am-llas = p,(zs)} and C == {c(zs , as)IO ~ s < m} be the sequences 

of actions and costs associated with S. Then our objective can be reformulated as 

the approximation of fJ* based on information in S, A, and C. In detail, we will 

construct an approximate expectation operator, l' m,a, based on the training data, 

S, and use this approximation in place of the true operator rain this work. For­

mally substituting 1'm,a for rain (1) and (2) gives the Approximate Avemge-Cost 

Optimality Equation (AACOE): 

i)m + hm(x) 

flm(x) argmjn {c(x , a) + (1' m,ahm)(X)} . 

(3) 

(4) 

Note that , ifthe solutions i)m and hm to (3) are well-defined, they can be interpreted 

as statistical estimates of TJ* and h* in equation (1). However , i)m and hm need not 

exist unless 1'm ,a is defined appropriately. We therefore employ local averaging in 

this work to construct 1'm,a in a way that guarantees the existence of a unique 

fixed point of (3). For the derivation of the local averaging operator, note that 

the task of approximating (rah)(x) = Ex,a[h(Xdl can be interpreted alternatively 

as a regression of the "target" variable h(Xd onto the "input" Xo = x . So-called 

kernel-smoothers address regression tasks of this sort by locally averaging the target 

values in a small neighborhood of x . This gives the following approximation: 

m-l 

L km ,a(zs , x)h(zs+1)' (5) 
s=o 

(6) 

In detail, we employ the weighting function or weighting kernel km ,a (zs , x) in (6) to 

determine the weights that are used for averaging in equation (5). Here km,a(zs , x) is 

a multivariate Gaussian, normalized so as to satisfy the constraints km , .. (zs, x) > 0 

if as = a , km,a(zs , x) = 0 if as i- a, and I:::,,=~l km, .. (zs, x) = 1. Intuitively, (5) 

assesses the future differential cost of applying action a in state x by looking at all 

times in the training data where a has been applied previously in a state similar 

to x , and by averaging the current differential value estimates at the outcomes of 

these previous transitions. Because the weights km , .. (zs , x) are related inversely 

to the distance Ilzs - xii, transitions originating in the neighborhood of x are most 

influential in this averaging procedure. A more statistical interpretation of (5) would 

suggest that ideally we could simply generate a large number of independent samples 

from the conditional distribution Px,a and estimate Ex ,a[h(X1)l using Monte-Carlo 

approximation. Practically speaking , this approach is clearly infeasible because in 

order to assess the value of the simulated successor states we would need to sample 

recursively, thereby incurring exponentially increasing computational complexity. A 

more realistic alternative is to estimate l' m,a h (x) as a local average of the rewards 

that were generated in previous transitions originating in the neighborhood of x, 

where the membership of an observation Z s in the neighborhood of x is quantified 

using km,a( zs, x). Here the regularization parameter b determines the width of the 

Gaussian kernel and thereby also the size of the neighborhood used for averaging. 

Depending on the application , it may be advisable to choose b either fixed or as a 

location-dependent function of the training data. 



3 "Self-Approximating Property" 

As we illustrated above, kernel-based reinforcement learning formally amounts to 

substituting the approximate expectation operator r m,a for r a and then applying 

dynamic programming to derive solutions to the approximate optimality equation 

(3). In this section, we outline a practical implementation of this approach and 

we present some of our theoretical results. In particular, we consider the relative 

value iteration algorithm for average-cost MDPs that is described , for example, in 

[Ber95]. This procedure iterates a variant of equation (1) to generate a sequence of 

value function estimates, h~ , that eventually converge to a solution of (1) (or (3), 

respectively). An important practical problem in continuous state MDPs is that the 

intermediate functions h~ need to be represented explicitly on a computer. This re­

quires some form of function approximation which may be numerically undesirable 

and computationally burdensome in practice. In the case of kernel-based reinforce­

ment learning, the so-called "self-approximating" property allows for a much more 

efficient implementation in vector format (see also [Rus97]). Specifically, because 

our definition of r m,ah in (5) only depends on the values of h at the states in S, 

the AACOE (3) can be solved in two steps: 

(7) 

(8) 

In other words , we first determine the values of hm at the points in S using (7) 

and then compute the values at new locations x in a second step using (8). Note 

that (7) is a finite equation system by contrast to (3). By introducing the vectors 

and matrices n?,(i) == hm,?,( zi ), c?,(i) == C?,(Zi), q>?,(i,j) == km ,?, (Zj,Zi ) for i = 
1, . .. , m and j = 1, ... , m , the relative value iteration algorithm can thus be written 

conveniently as (for details, see [Ber95, OGOO]): 

~k+1 ._ ~k ~k () 
U .- U n ew -Itnew 1 . (9) 

Hence we end up with an algorithm that is analogous to value iteration except that 

we use the weighting matrix q>a in place ofthe usual transition probabilities and nk 

and C a are vectors of points in the training set S as opposed to vectors of states. 

Intuitively, (9) assigns value estimates to the states in the sample trajectory and 

updates these estimates in an iterative fashion. Here the update of each state is 

based on a local average over the costs and values of the samples in its neighborhood. 

Since q>a (i, j) > 0 and 2::7=1 q>a(i, j) = 1 we can further exploit the analogy between 

(9) and the usual value iteration in an "artificial" MDP with transition probabilities 

q>a to prove the following theorem: 

Theorem 1 The relative value iteration (9) converges to a unique fixed point. 

For details, the reader is referred to [OSOO , OGOO]. Note that Theorem 1 illustrates 

a rather unique property of kernel-based reinforcement learning by comparison to 

alternative approaches. In addition, we can show that - under suitable regularity 

conditions - kernel-based reinforcement learning is consistent in the following sense: 

Theorem 2 The approximate optimal cost Tfm converges to the true optimal cost 

TI* in the sense that 

E 1 A * 1 m-t co 0 
xo , ji. Tim - TI ---+ . 



Also, the true cost of the approximate strategy Pm converges to the optimal cost: 

Hence Pm performs as well as fJ* asymptotically and we can also predict the op­

timal cost TJ* using r,m. From a practical standpoint, Theorem 2 asserts that the 

performance of approximate dynamic programming can be improved by increasing 

the amount of training data. Note, however, that the computational complexity 

of approximate dynamic programming depends on the sample size m. In detail , 

the complexity of a single application of (9) is O(m2) in a naive implementation 

and O(mlog m) in a more elaborate nearest neighbor approach. This complexity 

issue prevents the use of very large data sets using the "exact" algorithm described 

above. As in the case of parametric reinforcement learning, we can of course restrict 

ourselves to a fixed amount of computational resources simply by discarding obser­

vations from the training data or by summarizing clusters of data using "sufficient 

statistics". Note that the convergence property in Theorem 1 remains unaffected 

by such an approximation. 

4 Optimal Portfolio Choice 

In this section , we describe the practical application of kernel-based reinforcement 

learning to an investment problem where an agent in a financial market decides 

whether to buy or sell stocks depending on the market situation. In the finance 

and economics literature, this task is known as "optimal portfolio choice" and has 

created an enormous literature over the past decades. Formally, let St symbolize 

the value of the stock at time t and let the investor choose her portfolio at from the 

set A == {O , 0.1, 0.2 , ... , I}, corresponding to the relative amount of wealth invested 

in stocks as opposed to an alternative riskless asset. At time t + 1, the stock price 

changes from St to St+1, and the portfolio of the investor participates in the price 

movement depending on her investment choice. Formally, if her wealth at time t is 

Wt , it becomes Wt+1 = (1 + at St ±~: S, ) Wt at time t + 1. To render this simulation 

as realistic as possible, our investor is assumed to be risk-averse in that her fear of 

losses dominates her appreciation of gains of equal magnitude. A standard way to 

express these preferences formally is to aim at maximizing the expectation of a con­

cave "utility function", U(z), ofthe final wealth WT. Using the choice U(z) = log( z), 

the investor's utility can be written as U(WT) = 2:,;:01 log (1 + at S'±~:S') . Hence 

utilities are additive over time, and the objective of maximizing E[U(WT)] can be 

stated in an average-cost framework where c(x, a) = Ex,a [log (1 + a S'±~:S' )]. 

We present results using simulated and real stock prices. With regard to the simu­

lated data, we adopt the common assumption in finance literature that stock prices 

are driven by an Ito process with stochastic, mean-reverting volatility: 

dSt fJStdt + ylv;StdBt, 

dVt ¢(fJ - vt)dt + pylv;dBt . 

Here Vt is the time-varying volatility, and Bt and Bt are independent Brownian mo­

tions. The parameters of the model are fJ = 1.03, fJ = 0.3, ¢ = 10.0, and p = 5.0. We 



simulated daily data for the period of 13 years using the usual Euler approximation 

of these equations. The resulting stock prices, volatilities, and returns are shown in 

Figure l. Next, we grouped the simulated time series into 10 sets of training and 

Figure 1: The simulated time-series of stock prices (left) , volatility (middle) , and 

daily returns (right; Tt == log(St/St-d) over a period of one year. 

test data such that the last 10 years are used as 10 test sets and the three years 

preceding each test year are used as training data. Table 1 reports the training and 

test performances on each of these experiments using kernel-based reinforcement 

learning and a benchmark buy & hold strategy. Performance is measured using 

Year II Reinforcement Learning Buy &: Hold 
II Training Test I Training Test 

4 0.129753 0.096555 0.058819 0.052533 

5 0.125742 0. 107905 0.043107 0.081395 

6 0.100265 -0.074588 0.053755 -0.064981 

7 0.059405 0.201186 0.018023 0.172968 

8 0.082622 0.227161 0.041410 0.197319 

9 0.077856 0.098172 0.074632 0.092312 

10 0.136525 0.199804 0.137416 0.194993 

11 0.145992 0.121507 0.147065 0.118656 

12 0.126052 -0.018110 0.125978 -0.017869 

13 0.127900 -0 .022748 0.077196 -0 .029886 

Table 1: Investment p erformance on the simulated data (initial wealth Wa = 100). 

the Sharpe-ratio which is a standard measure of risk-adjusted investment perfor­

mance. In detail, the Sharpe-ratio is defined as SR = log(WT/Wo)/iT where iT is 

the standard deviation of log(Wt!Wt- 1 ) over time. Note that large values indicate 

good risk-adjusted performance in years of positive growth , whereas negative val­

ues cannot readily be interpreted. We used the root of the volatility (standardized 

to zero mean and unit variance) as input information and determined a suitable 

choice for the bandwidth parameter (b = 1) experimentally. Our results in Table 1 

demonstrate that reinforcement learning dominates buy & hold in eight out of ten 

years on the training set and in all seven years with positive growth on the test set. 

Table 2 shows the results of an experiment where we replaced the artificial time 

series with eight years of daily German stock index data (DAX index, 1993-2000). 

We used the years 1996-2000 as t est data and the three years preceding each test 

year for training. As the model input , we computed an approximation of the (root­

) volatility using a geometric average of historical returns. Note that the training 

performance of reinforcement learning always dominates the buy & hold strategy, 

and the test results are also superior to the benchmark except in the year 2000. 



Year Reinforcement Learning Buy &; Hold 

Training Test Training Test 

1996 0.083925 0.173373 0.038818 0.120107 
1997 0.119875 0.121583 0.119875 0.096369 
1998 0.123927 0.079584 0.096183 0.035204 
1999 0.141242 0.094807 0.035137 0.090541 
2000 0.085236 -0.007878 0.081271 0.148203 

Table 2: Investment performance on the DAX data. 

5 Conclusions 

We presented a new, kernel-based reinforcement learning method that overcomes 

several important shortcomings of temporal-difference learning in continuous-state 

domains. In particular, we demonstrated that the new approach always converges 

to a unique approximation of the optimal policy and that the quality of this approx­

imation improves with the amount of training data. Also, we described a financial 

application where our method consistently outperformed a benchmark model in an 

artificial and a real market scenario. While the optimal portfolio choice problem is 

relatively simple, it provides an impressive proof of concept by demonstrating the 

practical feasibility of our method. Efficient implementations of local averaging for 

large-scale problems have been discussed in the data mining community. Our work 

makes these methods applicable to reinforcement learning, which should be valuable 

to meet the real-time and dimensionality constraints of real-world problems. 
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