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Abstract. Data clustering has found its usefulness in various fields. Al-
gorithms are mostly developed using euclidean distance. But it has sev-
eral drawbacks which maybe rectified by using kernel distance formula.
In this paper, we propose a kernel based rough-fuzzy C-Means (KRFCM)
algorithm and use modified version of the performance indexes (DB and
D) obtained by replacing the distance function with kernel function. We
provide a comparative analysis of RFCM with KRFCM by computing
their DB and D index values. The analysis is based upon both numer-
ical as well as image datasets. The results establish that the proposed
algotihtm outperforms the existing one.

Keywords: Clustering, Kernel, DB Index, Dunn Index, Rough-Fuzzy
C-Means.

1 Introduction

Cluster is a collection of data elements that are similar to each other but dissimi-
lar to elements in other clusters. Cluster analysis is a key tool in the field of data
analysis. Clustering techniques have their use in areas like analysis of statistical
data, pattern recognition, image analysis, information retrieval, bioinformatics
and data mining. Clustering algorithms partition data into a certain number of
groups or so called clusters. There is no set of predefined rules to determine the
correctness of clustering. Hence many variations can be made to any single algo-
rithm to develop a new algorithm. An iterative technique of partitioning a dataset
into K-clusters was introduced by MacQueen in 1967 [1]. Applying this concepts
of fuzzy sets Ruspini [2] first proposed the fuzzy clustering algorithm, which was
later modified and generalized by Dunn [3] and Bezdek [4] respectively. Similarly
using the concept of rough sets P. Lingras proposed the rough k-means clustering
algorithm[5]. Further developments led to the proposal of rough set based kernel
k-means algorithm by Zhou et al. [6] and Tripathy et al. [7]-[8].

Distance between objects can be calculated in many ways, the euclidean dis-
tance based clustering is easy to implement and hence most commonly used. It
has two drawbacks, firstly the final results are dependent on the initial centers
and secondly it can only find linearly separable cluster. Kernel based clustering
helps in rectifying the second problem as it produces nonlinear separating hyper
surfaces among clusters [9] . Kernel functions are used to transform the data in
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the image plane into a feature plane of higher dimension known as kernel space.
Nonlinear mapping functions used transforms the nonlinear seperation problem
in the image plane into a linear serperation problem in kernel space facilitating
clustering in feature space. Mercer’s theorem [10] can be used to calculate the
distance between the pixel feature values in kernel space without knowing the
transformation function.

It was pointed out by Dubois and Prade [11] that rough and fuzzy sets com-
plement each other. In fact the hybrid model of rough fuzzy and fuzzy rough
sets provide a better model for representing imperfect data. In fuzzy set theory
we have definite formulae for the computation of membership values. Thus the
hybrid algorithms takes care of both features by providing membership values to
elements as well as modeling vagueness in data through the boundary concept.
The concepts of lower and upper approximations in rough set deals with uncer-
tainity and vagueness, whereas the concept of membership function in fuzzy set
helps in enhancing and evaluating overlapping clusters.

In this paper we implement and further modify the Rough-Fuzzy C-Means
given by Maji et al. [12] to propose a new hybrid kernel based algorithm.We show
the comparison between the two using numeric datasets and image datasets. The
paper contains 5 sections. Section 2 provides the basic information about the
euclidean and kernel distance functions. Section 3 gives a detailed explanation
on the proposed kernel based Rough-Fuzzy C-Means algorithm. Section 4 is
where the evaluation results are discussed. Finally the paper is concluded in
section 5.

2 Types of Distance Functions

Euclidean Distance. The euclidean distance d(x, y) between any two objects
x and y in any n-dimensional plane can be found using

d(x, y) =

√
(x1 − y1)

2 + (x2 − y2)
2 + · · ·+ (xn − yn)

2. (1)

where, x1, x2 . . . xn and y1, y2 . . . yn are attributes of x and y respectively.

Kernel Distance. If x is an object then φ(x) is the transformation of x in high
dimensional feature space where the inner product space is defined by K(x, y) =
〈φ(x), φ(y)〉. In this paper we use the Gaussian kernel function.

K(x, y) = exp

(
−‖x− y‖2

σ2

)
. (2)

Where, σ2 =
∑N

k=1 ‖xk − x‖2 /N with x =
∑N

k=1 xk/N .

N is total number of data objects [9]. According to Phillips et al. [13] kernel
distance function D(x, y) in the generalized form isD(x, y) = K(x, x)+K(y, y)−
2K(x, y) and on applying the property of similarity (i.e., K(x, x) = 1) it can be
further reduced to (3).

D(x, y) = 2(1−K(x, y)). (3)
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3 Kernel Based Rough-Fuzzy C-Means (K-RFCM)

Rough Fuzzy C-Means was proposed by P. Maji et al.[12] and S. Mitra et al.
[14]; it combines the concepts of rough set theory and fuzzy set theory. The
concepts of lower and upper approximations in rough set deals with uncertainty,
vagueness and incompleteness whereas the concept of membership function in
fuzzy set helps in enhancing and evaluating overlapping clusters. We follow the
same concept and replace all euclidean distance functions with kernel distance
function given in (3). According to rough set theory if xj ∈ BUi then object xj is
contained completely in cluster Ui and if xj ∈ BN(Ui) then object xj belongs to
cluster Ui and also belongs to the boundary of another cluster. Hence, according
to fuzzy set theory the objects in boundary of clusters will have different mem-
bership values for the concerned clusters. Hence, membership values of objects
in lower approximation are μij = 1 while for those in boundary region are the
same as that in FCM. The steps followed in this algorithm are given below

1. Assign initial means vi for c clusters.

2. Compute μik using

μik =
1∑c

j=1(
Dik

Djk
)

2
m−1

(4)

3. Let μik and μjk be the maximum and next to maximum membership values
of object xk to cluster centroids vi and vj .
If μik − μjk < δ then
xk ∈ BUi and xk ∈ BUj and xk cannot be a member of any lower approxi-
mation.
Else xk ∈ BUi.
where, delta is given by

δ =
1

N

N∑
i=1

(μik − μjk) (5)

4. Calculate new cluster means by using

Vi =

⎧
⎪⎨
⎪⎩

wlow ×A+ wup ×B if |BUi| �= φ and |BN(Ui)| �= φ;

B if |BUi| = φ and |BN(Ui)| �= φ;

A ELSE

(6)

where, A =

∑
xk∈BUi

xk

|BUi| and B =

∑
xk∈BUi−BUi

μm
ikxk∑

xk∈BUi−BUi
μm
ik

5. Repeat from step 2 until termination condition is met of until there is no
more assignment of objects
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DB and Dunn Index. The Davis-Bouldin (DB) and Dunn (D) indexes [15] are
two of the basic performance indexes. They help in evaluating the efficiency of
clustering. The results are depend upon the number of clusters required. The DB
index is defined as the ratio of sum of within-cluster distance to between-cluster
distance. It is formulated as

DB =
1

c

c∑
i=1

maxi�=j

{
S(Ui) + S(Uj)

d(Ui, Uj)

}
for 1 < i, j < c (7)

A good clustering procedure should give value of DB index as low as possible.
Similar to the DB index the D index is used for the identification of clusters that
are compact and separated. It is computed as

Dunn = mini

{
minj �=i

{
d(Ui, Uj)

maxlS(Ul)

}}
for 1 < i, j, l < c (8)

Greater value for the D index proves to be more efficient The within cluster
distance denoted be S(Ui) is given as

S(Ui) =

⎧
⎪⎨
⎪⎩

wlow × C + wup ×D if |BUi| �= φ and |BN(Ui)| �= φ;

D if |BUi| = φ and |BN(Ui)| �= φ;

C ELSE

(9)

where, C =

∑
xk∈BUi

Dik
2

|BUi| and D =

∑
xk∈BUi−BUi

μm
ikDik

2

∑
xk∈BUi−BUi

μm
ik

4 Evaluation

The evaluation has been done in 2 parts. Firstly using a few real datasets and
then on image datasets. We compare the results from RFCM algorithm and the
proposed K-RFCM algorithm. Each datset is compared on the basis of DB and
Dunn index.

4.1 Numerical Dataset: Iris and Soybean

Table 1 shows the cluster centers that are formed after applying each algorithm
on the iris dataset consisting of 50 elements having 4 attributes each. Evaluation
has been performed for c = 2,3 and 4. The initial centers are taken to be the
first c elements of the dataset. We see that the results of both algorithms have
very minute difference. Further analysis has been done for c = 2 in Table 2, it
shows which all elements lie in the lower and boundary regions of each cluster.
Again esults are approximately the same except for some values that have been
highlighted in the table. These values are responsible for the minute difference
observed in Table1.

Table 3 and 4 provides a comparison of the methods RFCM and KRFCM
based upon the computations of DB and D index on the iris data set and the
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Table 1. Cluster Center Values on Iris Dataset (c = 2,3 & 4)

No. of Clusters RFCM K-RFCM

2
Center 1 5.1639; 4.3754; 3.3974; 2.6100 5.1531; 4.3497; 3.3873; 2.6047

Center 2 4.8498; 3.9619; 3.1373; 2.9359 4.8373; 3.9638; 3.1324; 2.3930

3

Center 1 5.1571; 4.3643; 3.3929; 2.6036 5.1308; 4.3538; 3.3897; 2.6019

Center 2 4.8927; 3.9783; 3.1430; 2.3980 4.8935; 3.9788; 3.1431; 2.3981

Center 3 4.5961; 3.9278; 3.0708; 2.3600 4.5984; 3.9296; 3.0719; 2.3608

4

Center 1 5.1571; 4.3643; 3.3929; 2.6036 5.1308; 4.3538; 3.3897; 2.6019

Center 2 4.9150; 3.9850; 3.1400; 2.4059 4.9146; 3.9990; 3.1573; 2.4089

Center 3 4.7134; 3.9620; 3.0776; 2.3589 4.7157; 3.9645; 3.0791; 2.3602

Center 4 4.6128; 3.8615; 3.0740; 2.3561 4.6528; 3.9027; 3.1164; 2.3880

Table 2. Lower and Boundary Elements for Iris Dataset (c = 2)

Cluster
Center

Lower Boundary

RFCM K-RFCM RFCM K-RFCM

Center 1 0, 4, 7, 10, 16, 17,
19, 21, 27, 28, 36,
39, 40, 46, 48

0, 4, 7, 10, 17, 19,
21, 26, 27, 28, 31,
36, 39, 40, 46, 48

2, 5, 6, 8, 11, 13,
14, 15, 18, 20, 22,
23, 24, 26, 29, 31,
32, 33, 35, 38, 41,
42, 43, 44, 47, 49

5, 6, 8, 11, 13, 14,
15, 16, 18, 20, 22,
23, 24, 29, 32, 33,
35, 38, 41, 42, 43,
44, 47, 49

Center 2 1, 3, 9, 12, 25, 30,
34, 37, 45

1, 2, 3, 9, 12, 25,
30, 34, 37, 45

2, 5, 6, 8, 11, 13,
14, 15, 18, 20, 22,
23, 24, 26, 29, 31,
32, 33, 35, 38, 41,
42, 43, 44, 47, 49

5, 6, 8, 11, 13, 14,
15, 16, 18, 20, 22,
23, 24, 29, 32, 33,
35, 38, 41, 42, 43,
44, 47, 49

Table 3. DB and Dunn Indexes for Iris Dataset

No. of
Clusters

DB Index Dunn Index

RFCM K-RFCM RFCM K-RFCM

2 115.8219 15.6873 0.0159 0.1275

3 157.5086 20.7628 0.0093 0.0743

4 309.0443 84.4577 0.0042 0.01365
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soybean dataset. In Table 3 it is clear that the values for DB index in K-RFCM
are far lower than those of RFCM and the values for Dunn index are larger in the
former algorithm. Hence stating that while results are similar the performance
of K-RCCM is better than RFCM. Looking over at Table 4 the soybean data
set consists of 37 elements having 35 attributes, the DB index values are lower
for K-RFCM and Dunn index values are also low for the same. Though larger
values for Dunn index were expected but we predict the low values are due to
the large number of attributes involved in the dataset.

Table 4. DB and Dunn Indexes for Soybean Dataset

No. of
Clusters

DB Index Dunn Index

RFCM K-RFCM RFCM K-RFCM

2 624.7929 119.7455 0.0029 0.0162

3 1074.2871 116.8911 9.4638 0.0096

4 1737.3794 192.9677 6.4533 0.0059

Table 5. DB and Dunn Indexes for Image datasets

No. of
Clusters

DB Index Dunn Index

RFCM K-RFCM RFCM K-RFCM

Brain 4.0469 0.0594 0.1060 10.3673

Cell 0.0561 negligible 11.4630 very large

Iris 4.7198 0.1643 0.1643 5.4695

Penny 9.2726 0.2369 0.0916 4.9417

4.2 Image Dataset

We have processed a number of images using both the algorithms to obtain a
resultant image and as well as the DB and Dunn index values. Table 5 gives
us the overview of the DB and Dunn index values obtained for each image. In
all cases we observe that we achieve our desired results. There is a significant
drop in DB index and significant increase in Dunn index. Comparing each image
indivdually. Fig. 1c is sharp and has more clarity in outlines and finite details
than that of Fig 1b. The difference between Fig 2b. and Fig 2c. is highly evident.
Cell can be correctly identified in Fig. 2c. Finally, there is no noticeable change
seen in Fig 3b. and Fig 3c.
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1a : Original 1b : RFCM Version 1c : K-RFCM Version

Fig. 1. Brain Image

2a : Original 2b : RFCM Version 2c : K-RFCM Version

Fig. 2. Cell Image

3a : Original 3b : RFCM Version 3c : K-RFCM Version

Fig. 3. Iris Image

5 Conclusion

This paper focuses on improving the performance of the existing RFCM algo-
rithm by using kernel function instead of euclidean distance. Hence, developing
a new hybrid kernel based algorithm. Also, two of the most widely used perfor-
mance indexes have been modified using kernel distance function for the eval-
uation of kernel based algorithms. Comparison between RFCM and proposed
K-RFCM has been done on a wide variety of datasets to obtain favourable re-
sults. From the obtained results we can conclude that the proposed algorithm
clearly outperforms the existing algorithm on the basis of performance and yields
equivalent or better outputs in image dataset. The DB and D index introduced
in this paper can also be applied on kernel based algorithms using rough sets
and fuzzy sets individually to compare their performances.
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