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KERNEL-BASED SEMIPARAMETRIC ESTIMATORS: SMALL BANDWIDTH
ASYMPTOTICS AND BOOTSTRAP CONSISTENCY
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This paper develops asymptotic approximations for kernel-based semiparametric es-
timators under assumptions accommodating slower-than-usual rates of convergence of
their nonparametric ingredients. Our first main result is a distributional approximation
for semiparametric estimators that differs from existing approximations by accounting
for a bias. This bias is nonnegligible in general, and therefore poses a challenge for
inference. Our second main result shows that some (but not all) nonparametric boot-
strap distributional approximations provide an automatic method of correcting for the
bias. Our general theory is illustrated by means of examples and its main finite sample
implications are corroborated in a simulation study.

KEYWORDS: Semiparametrics, small bandwidth asymptotics, bootstrapping, robust
inference.

1. INTRODUCTION

THE IMPORTANCE OF SEMIPARAMETRIC ESTIMATORS is widely recognized, yet the consen-
sus opinion seems to be that existing large sample results suffer from the serious short-
coming that the finite sample distributions of these estimators are much more sensitive to
the properties of their (slowly converging) nonparametric ingredients than conventional
asymptotic theory would suggest. In other words, the conventional approach to asymp-
totic analysis of semiparametric estimators, while delivering very tractable distributional
approximations, effectively ignores certain features of these estimators that are important
in samples of realistic size. Motivated by this observation, and with the ultimate goal of
developing more “robust” inference procedures based on semiparametric estimators, this
paper obtains two main results. (We employ a certain well-defined sense of “robustness”
discussed precisely below.)

First, we revisit the large sample properties of kernel-based semiparametric estimators
and obtain novel distributional approximations for members of this large class. By design,
these approximations capture certain features of their nonparametric ingredient that are
ignored by conventional approximations. Moreover, as a consequence of their method
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of construction, our approximations are demonstrably more robust than conventional
ones in the sense that we allow for (but do not require) nonparametric ingredients whose
precision is low enough (in an order of magnitude sense) to render conventional distri-
butional approximations invalid. Accordingly, our approximations lead to an improved
understanding of the finite and large sample properties of semiparametric estimators.

Relative to conventional approximations, the distinguishing feature of the distribu-
tional approximations developed herein is that they explicitly account for the presence of
a (possibly) first-order bias effect, which emerges when the precision of the first-step non-
parametric estimator is sufficiently low. The presence of the bias unearthed by our first
main result poses potentially serious challenges for inference: for instance, the commonly
used “estimator ± 1�96 × standard error” approach to construct an approximate 95%
confidence interval for a scalar parameter of interest is invalid in the presence of a non-
negligible bias. Nonetheless, our second main result shows that a carefully implemented
nonparametric bootstrap distributional approximation provides an automatic method of
bias correction and that the associated percentile confidence intervals are asymptotically
valid even in the presence of a nonnegligible bias. In addition to being of theoretical in-
terest, this result therefore offers guidance for empirical work.

For the semiparametric estimators we consider, the precision of the nonparametric in-
gredient is governed by the bandwidth associated with the kernel-based first-step estima-
tor. In the development of our results, we use this bandwidth as a technical device to shed
light on the interplay between the distributional properties of the semiparametric estima-
tor and the precision of its nonparametric ingredient. In particular, because the rate of
convergence of the nonparametric ingredient is low when the bandwidth is “small,” the
bandwidths for which our results offer new insights are those that are small and we there-
fore use the term “small bandwidth asymptotics” to highlight the distinguishing feature
of the technical approach we take in this paper. This terminology is consistent with that
used in earlier work of ours, but in important respects the results obtained herein differ
from those currently available in the literature.

Cattaneo, Crump, and Jansson (2010, 2014a) studied the density-weighted average
derivative estimator of Powell, Stock, and Stoker (1989) and showed that the distinguish-
ing feature emerging from the small bandwidth distributional approximation for that par-
ticular estimator is the presence of a variance effect, while Cattaneo, Crump, and Jansson
(2014b) showed that the variance effect in question cannot be corrected for by using the
standard nonparametric bootstrap. In contrast, this paper is concerned with a class of
estimators for which the distinguishing feature of their small bandwidth asymptotic dis-
tribution is the presence of a bias effect. A well-known member of the class of estimators
studied in this paper is the weighted average derivative estimator analyzed in Cattaneo,
Crump, and Jansson (2013) and, as a consequence, our first main result can be interpreted
as a nontrivial generalization of one of the results in that paper, since the results herein
cover a large class of two-step (possibly over-identified and non-differentiable) GMM
settings. Furthermore, our second main result offering bootstrap-based automatic bias
reduction and valid inference appears to be new in the literature.

At a conceptual level, our small bandwidth approach is very similar to the “dimension
asymptotics” approach taken in the seminal work of Mammen (1989) and, although the
technical details are rather different, some of our main conclusions are similar to his. For
a more detailed explanation of the connection between small bandwidth asymptotics and
dimension asymptotics, see Enno Mammen’s discussion of Cattaneo, Crump, and Jansson
(2013). The approach we take is also similar to the approach taken by Abadie and Imbens
(2006, 2008), but our main conclusion regarding the bootstrap (and subsampling) is quite
different from that of Abadie and Imbens (2008).
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The literature on two-step semiparametric estimators is vast, but our first main result
differs from most existing results in at least two respects. First, due to the presence of a
bias, our distributional conclusions differ from those obtained in the work surveyed by
Andrews (1994b), Newey and McFadden (1994), Chen (2007), and Ichimura and Todd
(2007). Second, a seemingly novel technical feature of our work is that reliance on a
heretofore ubiquitous stochastic equicontinuity condition is avoided and that avoiding
such condition is necessary, in general, in order for the bias we highlight to be nonneg-
ligible; that is, our generalization of existing distributional conclusions cannot be accom-
plished without avoiding reliance on a stochastic equicontinuity condition that has fea-
tured prominently in earlier work.

Our second main result concerns the bootstrap. Previous work on bootstrap validity for
general classes of semiparametric models under standard conditions includes Chen, Lin-
ton, and van Keilegom (2003) and Cheng and Huang (2010). Our result is qualitatively
similar to the bootstrap consistency results of these papers, but in at least two respects
our results broaden the scope of resampling-based inference in a possibly surprising way.
First, we show that some (but not all) standard bootstrap-based distributional approx-
imations deliver an automatic bias correction. Second, whereas all previous bootstrap
consistency results have been obtained for settings in which subsampling-based inference
procedures are also valid, the bias effect that is central to our work turns out to render
subsampling-based inference procedures invalid in general. To the extent that subsam-
pling can be regarded as a “regularized” version of the bootstrap (e.g., Bickel and Li
(2006)), it therefore seems surprising that the standard nonparametric bootstrap in its
simplest form turns out to be asymptotically valid in the setting of this paper.

Other work related to ours includes Chernozhukov, Escanciano, Ichimura, and Newey
(2016) and Robins, Li, Tchetgen, and van der Vaart (2008). When specialized to kernel-
based estimators, the local robustness property discussed by Chernozhukov et al. (2016)
can be interpreted as an application of “large bandwidth asymptotics” and their results are
complementary to ours in the sense that they ensure robustness to “large” bandwidths
by paying more careful attention to the smoothing bias that our theory is largely silent
about. The work on higher-order influence functions by Robins et al. (2008) is similar
to ours at least insofar as it uses higher-order U-statistics and focuses on settings where
nonparametric ingredients converge at slow rates, but unlike us they focused on problems
for which optimal interval estimates exhibit a slower-than-usual rate of convergence, and
even when specialized to the average density example studied below, the results obtained
using their approach (e.g., Robins, Li, Tchetgen, and van der Vaart (2016), Robins, Li,
Mukherjee, Tchetgen, and van derVaart (2017)) appear to be quite different from ours.

The paper proceeds as follows. Section 2 introduces the setup and gives our first main
result. Section 3 gives an in-depth discussion of that result, including both connections
to previous theoretical work on semiparametrics and implications for empirical work em-
ploying semiparametric inference procedures. Section 4 presents our second main re-
sult, a bootstrap analog of the main result from Section 2. Section 5 is concerned with
generic verification of the high-level assumptions under which our main results are ob-
tained, while Section 6 illustrates how the latter sufficient conditions for our high-level
assumptions can be verified in the context of the specific example of inverse probability
weighting (IPW) estimation with possibly non-differentiable moment functions. Finally,
Section 7 offers simulation evidence, and Section 8 concludes.

Three distinct examples are considered in the paper. The first of these is mainly peda-
gogical and serves the dual purposes of illustrating our main results in a canonical setting
while at the same time demonstrating the fact that the complications we highlight are
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present even in the simplest of examples. Our second example, the IPW example already
mentioned, is more substantive and a representative member of a class of estimators
which is very popular in a variety of settings in applied work, including program eval-
uation, missing data, measurement error, and data combination. Finally, the simulation
results make use of an estimator which is easy to compute, yet somewhat challenging to
analyze and base inference on, namely, a so-called “Hit Rate” estimator. Technical details
for all three examples are provided in the Supplemental Material (Cattaneo and Jansson
(2018)), which also contains some additional technical results that may be of independent
interest.

2. KERNEL-BASED SEMIPARAMETRIC ESTIMATORS

Suppose θ0 ∈ Θ ⊆ R
dθ is an estimand representable as the solution (with respect to

θ ∈Θ) to an equation of the form

G(θ�γ0)= 0� G(θ�γ)= Eg(z�θ�γ)�

where g is a known functional, z is a random vector, and γ0 is an unknown function. Let-
ting z1� � � � � zn denote i.i.d. copies of z and assuming that γ̂n is a nonparametric estimator
of γ0, a natural estimator θ̂n of θ0 is given by a minimizer (with respect to θ ∈Θ) of

Ĝn(θ� γ̂n)
′ŴnĜn(θ� γ̂n)� Ĝn(θ�γ)= 1

n

n∑
i=1

g(zi� θ�γ)�

where Ŵn is some (possibly random) symmetric, positive semidefinite matrix.
Estimators of this kind, often referred to as semiparametric two-step estimators, are

widely used in practice and have received considerable attention in the literature. A com-
mon feature of existing distributional results for semiparametric two-step estimators, in-
cluding those surveyed by Andrews (1994b), Newey and McFadden (1994), Chen (2007),
and Ichimura and Todd (2007), is that they are developed under assumptions ensuring
that the limiting distribution of θ̂n depends on γ̂n only through the estimand γ0. To be
specific, existing asymptotic results are of the form

√
n(θ̂n − θ0)�N (0�Σ0)� (1)

where � denotes weak convergence and where it follows from Newey (1994a, Proposi-
tion 1), that the asymptotic variance Σ0 depends on γ̂n only through its probability limit
(under general misspecification) and not on the method used to construct γ̂n (e.g., ker-
nels, local polynomials, or series) and/or on the value of the “tuning” parameter(s) asso-
ciated with the chosen method (e.g., the kernel and the bandwidth for kernel estimators).
While the simplicity of the limiting distribution in (1) is desirable insofar as it facilitates
inference on θ0, the rather extreme insensitivity of this distributional approximation with
respect to the specifics of the nuisance parameter estimator γ̂n is arguably unsatisfactory
because folklore and simulation evidence suggests that, in samples of realistic size, the
distributional properties of θ̂n do in fact depend somewhat heavily on the specifics of γ̂n.

The insensitivity of the distributional conclusion (1) with respect to the specifics of the
first-step estimator γ̂n is driven in large part by assumptions ensuring that γ̂n converges
sufficiently rapidly to γ0. To be specific, assumptions of the form γ̂n − γ0 = oP(n

−1/4) are
ubiquitous in the literature on semiparametric two-step estimators, and the simplicity
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of (1) is largely due to these convergence rate assumptions. As a means to the end of
developing more reliable distributional approximations for θ̂n, this paper allows for (but
does not require) milder-than-usual convergence rate requirements on γ̂n as a theoretical
device to obtain distributional approximations for semiparametric estimators that have
the intuitive appeal of featuring an explicit dependence (even asymptotically) on some of
the specific features underlying the estimator γ̂n. Therefore, unlike conventional approx-
imations currently available in the literature, our distribution theory for two-step semi-
parametric estimators is able to explicitly account for the effect of the first-step estimator
on the distributional approximation. More specifically, we obtain results of the form

√
n(θ̂n − θ0 −Bn)�N (0�Σ0)� (2)

where Σ0 is the usual asymptotic variance of a semiparametric estimator (i.e., the same as
in (1)) and Bn is a non-random “bias” term. Because the distribution theory developed
herein is consistent with conventional results when the latter are applicable, the bias Bn

in (2) is asymptotically negligible (i.e., o(n−1/2)) under conventional assumptions, but in
general Bn turns out to be nonnegligible under seemingly mild departures from those
assumptions. Moreover, the magnitude and functional form of Bn turn out to depend on
the specifics of the estimator γ̂n used in the construction of θ̂n. In other words, we find
that although the asymptotic variance of θ̂n remains insensitive with respect to the type
of first-step nonparametric estimator also under our (weaker) assumptions, the specific
structure of γ̂n does exert a first-order effect on θ̂n through Bn when milder-than-usual
convergence rate requirements are placed on γ̂n.

The result (2) follows from three easy-to-interpret high-level conditions in the impor-
tant special case where the first-step estimator γ̂n is kernel-based in the sense that

γ̂n = (γ̂n�1� � � � � γ̂n�dγ )′� γ̂n�k(z�θ)= 1
n

n∑
j=1

wk(zj� θ)κn�k
[
xk(z�θ)− xk(zj� θ)

]
� (3)

where κn�k(x) = κk(x/hn�k)/h
dk
n�k, hn�k = o(1) is a bandwidth, κk is a (kernel-like) func-

tion, and wk and xk are known functions of dimensions 1 and dk, respectively. Nonpara-
metric estimators that can be written in the form (3) include kernel estimators (e.g., of
the form discussed by Newey and McFadden (1994, Section 8.3)) and local polynomial
regression estimators (e.g., Fan and Gijbels (1997)). On the other hand, series estimators
are not of this form, and we therefore use the term “kernel-based” when referring to the
estimator in (3).

Our first high-level condition is the following.

CONDITION AL—Approximate Linearity: For some non-random Jn and J0, Jn → J0

and

θ̂n − θ0 =JnĜn(θ0� γ̂n)+ oP

(
n−1/2

)
�

Condition AL is referred to as “approximate linearity” in recognition of the fact that
the condition effectively approximates Ĝn(θ�γ) with a function that is linear/affine with
respect to θ. In particular, Condition AL is simply a representation, the displayed equality
holding with Jn = J0 = Idθ and without any oP(n

−1/2) term, in the important special case
where g(z�θ�γ)= g(z�0�γ)− θ and θ̂n is defined as the solution to Ĝn(θ� γ̂n)= 0. More
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generally, standard heuristics suggest that, under suitable regularity conditions, Condi-
tion AL will hold with Jn =J0 = −(Ġ′

0W0Ġ0)
−1Ġ′

0W0, where Ġ0 = ∂G(θ�γ0)/∂θ
′|θ=θ0 and

where W0 is the probability limit of Ŵn. Lemma 1 below gives conditions under which
these heuristics can be made rigorous also when γ̂n exhibits a slower-than-usual rate of
convergence.

Under Condition AL, the large sample properties of θ̂n are governed by

Ĝn(θ0� γ̂n)= 1
n

n∑
i=1

g0(zi� γ̂n)� g0(z�γ)= g(z�θ0�γ)�

Analyzing this object without assuming a faster-than-n1/4 rate of convergence on the part
of γ̂n turns out to be challenging partly because the standard method of accounting for
the dependence/overlap between the arguments zi and γ̂n of the summand g0(zi� γ̂n) turns
out to be invalid when γ̂n converges at a slower-than-usual rate. Specifically, as further
discussed and exemplified in Section 3.1, it turns out that a commonly employed stochastic
equicontinuity condition typically requires (and/or is applicable only when one assumes)
that the rate of convergence of γ̂n exceeds n1/4.

Analyzing Ĝn(θ0� γ̂n) without imposing further structure on g and/or relying on stochas-
tic equicontinuity nevertheless turns out to be feasible when γ̂n is kernel-based, the reason
being that in this case Ĝn(θ0� γ̂n) admits a representation of the form

Ĝn(θ0� γ̂n)= 1
n

n∑
i=1

gn
(
zi� γ̂

(i)
n

)
� (4)

where gn is some function and where

γ̂(i)n = (
γ̂(i)n�1� � � � � γ̂

(i)
n�dγ

)′
� γ̂(i)n�k(z�θ)= 1

n− 1

n∑
j=1�j �=i

wk(zj� θ)κn�k
[
xk(z�θ)− xk(zj� θ)

]
�

is the ith “leave-one-out” estimator of γ0. To be specific, the fact that γ̂n is kernel-based
implies that each γ̂n�k is additively separable between zi and {zj : j �= i}:

γ̂n�k(z�θ)= n−1γ̂in�k(z�θ)+ (
1 − n−1

)
γ̂(i)n�k(z�θ)�

where

γ̂in = (
γ̂in�1� � � � � γ̂

i
n�dγ

)′
� γ̂in�k(z�θ)=wk(zi� θ)κn�k

[
xk(z�θ)− xk(zi� θ)

]
�

As a consequence, the function

gn(zi� γ)= g0

(
zi� n

−1γ̂in + (
1 − n−1

)
γ
)

satisfies gn(zi� γ̂(i)n )= g0(zi� γ̂n), implying in particular that the representation (4) is valid.
In addition to delivering (4), the assumption that γ̂n is kernel-based makes it possi-

ble to formulate primitive conditions under which the following high-level assumption is
satisfied.
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CONDITION AS—Asymptotic Separability: For some ḡn,

1√
n

n∑
i=1

[
gn

(
zi� γ̂

(i)
n

) − gn(zi� γn)
]

= 1√
n

n∑
i=1

[
ḡn

(
zi� γ̂

(i)
n

) − ḡn(zi� γn)
] + oP(1)

= 1√
n

n∑
i=1

[
Ḡn

(
γ̂(i)n

) − Ḡn(γn)
] + oP(1)�

where γn(·)= Eγ̂n(·) and Ḡn(γ)= Eḡn(z�γ).

The main part of Condition AS is the second equality and the function ḡn is intro-
duced to facilitate verification of that part (and of Condition AN below). Indeed, while
the first part of Condition AS holds (without any oP(1) term) when ḡn = gn, the second
part of Condition AS is considerably easier to verify when ḡn(z� ·) is a low-order polyno-
mial approximation to gn(z� ·). When the rate of convergence of γ̂n exceeds n1/6 (but not
necessarily n1/4), the simplest polynomial approximation to gn(z� ·) satisfying the first part
of Condition AS is usually a quadratic one of the form

ḡn(z�γ)= gn(z�γn)+ gn�γ(z)[γ− γn] + 1
2
gn�γγ(z)[γ− γn�γ− γn]� (5)

where gn�γ(z)[·] and gn�γγ(z)[·� ·] are linear and bilinear functionals, respectively. Condi-
tions under which the second part of Condition AS is satisfied when ḡn is of the form (5)
will be given in Lemma 2 below.

Condition AS implies that the separable (between zi and γ̂(i)n ) approximation

gn
(
zi� γ̂

(i)
n

) ≈ gn(zi� γn)+ Ḡn

(
γ̂(i)n

) − Ḡn(γn)

to gn(zi� γ̂(i)n ) is asymptotically valid in the sense that it satisfies

√
nĜn(θ0� γ̂n)= 1√

n

n∑
i=1

gn
(
zi� γ̂

(i)
n

)
(6)

= 1√
n

n∑
i=1

[
gn(zi� γn)+ Ḡn

(
γ̂(i)n

) − Ḡn(γn)
] + oP(1)�

Because averages of terms (such as gn(zi� γn) and Ḡn(γ̂
(i)
n )− Ḡn(γn)) that each depend on

one, but not both, of zi and γ̂(i)n are much easier to analyze than averages of terms (such
as gn(zi� γ̂(i)n )) that depend on both zi and γ̂(i)n , Condition AS therefore greatly simplifies
the analysis of Ĝn(θ0� γ̂n).

In addition to the notational nuisance of having to employ additional sub- and super-
scripts in many places, a more substantive complication that must be addressed when
proceeding under Condition AS is that it turns out that the leading term in (6) has a non-
negligible mean in general. Whereas the limiting distribution of

√
nĜn(θ0� γ̂n) is normal
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with mean zero under conventional asymptotics, the simplest asymptotic normality re-
sult about the leading term in (6) that one can hope for more generally is therefore the
following, primitive sufficient conditions for which will be given in Lemma 3 below.

CONDITION AN—Asymptotic Normality: For some non-random Bn and Ω0,

1√
n

n∑
i=1

[
gn(zi� γn)+ Ḡn

(
γ̂(i)n

) − Ḡn(γn)−Bn
]
�N (0�Ω0)�

Combining Conditions AL, AS, and AN, we obtain (2). For later reference, we state
this observation as a theorem.

THEOREM 1: If γ̂n is kernel-based and if Conditions AL, AS, and AN are satisfied, then
(2) holds with Σ0 =J0Ω0J ′

0 and Bn =JnBn.

3. DISCUSSION OF THEOREM 1

Theorem 1 differs in three important ways from existing “master theorems” concern-
ing the asymptotic distribution of semiparametric two-step estimators. First, although
the high-level assumptions of Theorem 1 look remarkably similar to their natural coun-
terparts in the existing literature, our Assumption AS differs in a subtle, yet crucial,
way from a heretofore ubiquitous stochastic equicontinuity assumption. Second, The-
orem 1 sheds new light on the bias properties of semiparametric two-step estimators.
Finally, and perhaps most interestingly from the perspective of empirical practice, The-
orem 1 has important implications for inference. The following subsections discuss these
three differences in turn and illustrate them by means of the following canonical exam-
ple.

EXAMPLE 1—Average Density: Suppose z1� � � � � zn are i.i.d. copies of a continuously
distributed random vector z ∈ R

d with a density γ0. Then a kernel-based estimator of
θ0 = Eγ0(z), the average density, is given by

θ̂ADn = 1
n

n∑
i=1

γ̂n(zi)� γ̂n(z)= 1
n

n∑
j=1

Kn(z− zj)�

where Kn(z)=K(z/hn)/hdn , hn is a bandwidth, and K is a kernel. The estimator θ̂ADn can
be interpreted as the solution to Ĝn(θ� γ̂n)= 0, where

g(z�θ�γ)= gAD(z�θ�γ)= γ(z)− θ�
Under standard regularity conditions (e.g., those given in Section SA.1 of the Supple-
mental Material), θ̂ADn can be analyzed using the results of this paper, as can the related
estimators θ̂ISDn and θ̂LRn introduced below.

3.1. Asymptotics Without Stochastic Equicontinuity

In the existing semiparametrics literature, the analysis of objects such as Ĝn(θ0� γ̂n)
invariably proceeds under an assumption of the following kind.
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CONDITION SE—Stochastic Equicontinuity: For some ḡ0,

1√
n

n∑
i=1

[
g0(zi� γ̂n)− g0(zi� γ0)

] = 1√
n

n∑
i=1

[
ḡ0(zi� γ̂n)− ḡ0(zi� γ0)

] + oP(1)

= 1√
n

n∑
i=1

[
Ḡ0(γ̂n)− Ḡ0(γ0)

] + oP(1)�

where Ḡ0(γ)= Eḡ0(z�γ).

Like Condition AS, Condition SE is an “asymptotic separability” condition insofar as it
implies that the separable (between zi and γ̂n) approximation

g0(zi� γ̂n)≈ g0(zi� γ0)+ Ḡ0(γ̂n)− Ḡ0(γ0)

to g0(zi� γ̂n) is asymptotically valid in the sense that

√
nĜn(θ0� γ̂n)= 1√

n

n∑
i=1

g0(zi� γ̂n)= 1√
n

n∑
i=1

[
g0(zi� γ0)+ Ḡ0(γ̂n)− Ḡ0(γ0)

] + oP(1)�

We refer to the condition using the label “SE” because the second (and main) part of the
condition reduces to well-known stochastic equicontinuity conditions for suitable choices
of ḡ0. In particular, the second part of Condition SE reduces to Assumption 5.2 of Newey
(1994a) when ḡ0(z�γ) is linear in γ and to (2.8) of Andrews (1994a) and (3.34) of Andrews
(1994b) when ḡ0 = g0.

On the surface, Condition AS might appear to be nothing more than a “leave-one-out”
counterpart of Condition SE. Crucially, however, the primitive conditions required to
verify the second parts of AS and SE can often differ significantly.

EXAMPLE 1—continued: Turning first to Condition AS and setting ḡADn = gADn , the first
part of that condition is automatically satisfied and the second part becomes

1√
n

n∑
i=1

[
γ̂(i)n (zi)− 2γn(zi)+ θn

] = oP(1)�

where

γ̂(i)n (z)= 1
n− 1

n∑
j=1�j �=i

Kn(z− zj)� γn(·)= Eγ̂n(·)� θn = Eγn(z)�

It follows from a simple variance calculation that Condition AS is satisfied if nhdn → ∞.
On the other hand, setting ḡAD0 = gAD0 , the first part of Condition SE is automatically

satisfied and the second part becomes

1√
n

n∑
i=1

[
γ̂n(zi)− γn(zi)− γ0(zi)+ θ0

] = oP(1)�
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It follows from a direct calculation that if nhdn → ∞, then

1√
n

n∑
i=1

[
γ̂n(zi)− γn(zi)− γ0(zi)+ θ0

] = 1√
nh2d

n

K(0)+ oP(1)�

so Condition SE requires the stronger condition nh2d
n → ∞ unless K(0)= 0.

To interpret the bandwidth requirements nhdn → ∞ and nh2d
n → ∞ associated with

Conditions AS and SE in this example, it is helpful to recall that the (pointwise) rate of
convergence of γ̂n − γn is

√
nhdn; that is, γ̂n(z)− γn(z)=OP(1/

√
nhdn) for any z ∈ R

d . The
conditions nhdn → ∞ and nh2d

n → ∞ therefore correspond loosely to the requirements of
consistency and faster-than-n1/4-consistency, respectively, on the part of the nonparamet-
ric ingredient γ̂n.

Although exceedingly simple in some respects, the average density example is represen-
tative in the sense that while the second part of Condition AS typically holds whenever
γ̂n is consistent (in a suitable sense), the second part of Condition SE typically requires
γ̂n to be faster-than-n1/4-consistent. As a consequence, reliance on Condition SE must
be avoided, in general, when accommodating nonparametric components whose conver-
gence rate is no faster than n1/4. More importantly, perhaps, the average density example
illustrates the fact that reliance on Condition SE must be avoided, in general, when the
goal is to generalize (1), as the term K(0)/

√
nhdn quantifying the departure from Condi-

tion SE turns out to be the main source of the bias of the average density estimator.
In other words, in addition to being an interesting technical challenge that can be moti-

vated by the desire to accommodate nonparametric components whose convergence rate
is no faster than n1/4, relaxing Condition SE is of fundamental importance when the goal
is to obtain more refined distributional approximations than (1). We are unaware of previ-
ous work pointing out the need to, let alone providing a solution to the question of how to,
avoid reliance on Condition SE (or the like) when generalizing (1) and/or accommodating
nonparametric components whose convergence rate is no faster than n1/4. Our proposed
Condition AS is arguably an attractive alternative to Condition SE because it inherits one
of the main benefits of the conventional Condition SE (namely, “asymptotic separabil-
ity”) without imposing unduly strong convergence rate requirements on γ̂n. A drawback
of Condition AS in its present formulation is that γ̂n is assumed to be kernel-based. Al-
though doing so is beyond the scope of the present paper, it would be of interest to relax
that assumption.

We are aware of only two exceptions to the rule that Condition SE requires γ̂n to
be faster-than-n1/4-consistent. The first of these exceptions occurs when g0(zi� γ) and
gn(zi� γ) coincide (apart from a non-important factor of proportionality). An important
example of this phenomenon is provided by the “leave-in” version of Powell, Stock, and
Stoker’s (1989) estimator: As pointed out in their footnote 6, that estimator satisfies
g0(zi� γ)= (1 − n−1)gn(zi� γ) because symmetric kernels satisfy K′(0)= 0. The other ex-
ception occurs when g0(z�γ) is already additively separable between z and γ, as is the
case for the consumer surplus estimator of Hausman and Newey (1995) where the asso-
ciated g0(z�γ) does not depend on z at all. Both exceptions can be illustrated by means
of Example 1.

EXAMPLE 1—continued: The function gAD0 satisfies gAD0 (zi� γ) = (1 − n−1)gADn (zi� γ)
when K(0)= 0, so in this case Condition SE holds whenever Condition AS does.
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An alternative estimator of θ0 = ∫
Rd
γ0(u)

2 du is the integrated squared density estima-
tor

θ̂ISDn =
∫
Rd

γ̂n(u)
2 du�

which can be interpreted as the solution to Ĝn(θ� γ̂n)= 0, where

g(z�θ�γ)= gISD(z�θ�γ)=
∫
Rd

γ(u)2 du− θ�

Because gISD0 (z�γ)= ∫
Rd
γ(u)2 du− θ0 does not even depend on z, (asymptotic) “sepa-

rability” between z and γ is of course automatic and, indeed, both parts of Condition SE
are satisfied (without any oP(1) terms) when ḡISD0 = gISD0 . (Setting ḡISDn = gISDn and applying
Lemma 2 below, Condition AS can also be shown to hold provided nhdn → ∞.)

3.2. Bias Properties

Under the conditions of Theorem 1, the main determinant of the bias Bn in (2) is Bn of
Condition AN. When Condition AS is satisfied with a ḡn of the form (5), the functional
Ḡn is also quadratic. Indeed, defining

Gn(γ)= Egn(z�γ)� Gn�γ[η] = Egn�γ(z)[η]� Gn�γγ[η�ϕ] = Egn�γγ(z)[η�ϕ]�
we have

Ḡn(γ)=Gn(γn)+Gn�γ[γ− γn] + 1
2
Gn�γγ[γ− γn�γ− γn]�

Because γ̂i�n − γn has mean zero, the leading term in (6) therefore satisfies

E
[
gn(zi� γn)+ Ḡn

(
γ̂(i)n

) − Ḡn(γn)
] = BS

n +BLI
n +BNL

n �

where

BS
n =G0(γn)� G0(γ)= Eg0(z�γ)�

is a “smoothing” bias term, while

BLI
n =Gn(γn)−G0(γn) and BNL

n = 1
2n

EGn�γγ

[
γ̂in − γn� γ̂in − γn

]
are generic versions of what Cattaneo, Crump, and Jansson (2013) referred to as “leave-
in” and “nonlinearity” bias terms, respectively.

The smoothing bias BS
n is familiar from the conventional theory and we have nothing

new to say about it, but because one of our main results (namely, Theorem 2 below) ef-
fectively requires the smoothing bias to be asymptotically negligible (i.e., BS

n = o(n−1/2)),
we give a brief discussion of sufficient conditions for this to occur. In most cases, the mag-
nitude of BS

n coincides with that of the smoothing bias γn − γ0 of the first-step estimator
γ̂n, leading to the familiar conclusion that undersmoothing is required in order to achieve
BS
n = o(n−1/2). An exception to this rule might occur when the moment function g(z�θ�γ)

is “locally robust” in the sense of Chernozhukov et al. (2016), as θ̂n then has the “small
bias property” discussed by Newey, Hsieh, and Robins (2004); that is, the magnitude of
BS
n is smaller than that of γn − γ0.
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EXAMPLE 1—continued: The bias γn − γ0 of γ̂n satisfies
∫
Rd

[γn(u) − γ0(u)]2 du =
O(h2P

n ), as hn → 0, where P is the order of the kernel K. As a consequence,

GAD
0 (γn)=

∫
Rd

[
γn(u)− γ0(u)

]
γ0(u)du=O(

hPn
)
�

so the smoothing bias associated with θ̂ADn is asymptotically negligible provided nh2P
n → 0,

a condition which requires undersmoothing because the MSE-optimal bandwidth for γ̂n
satisfies hn ∼ n−1/(2P+d).

The condition for the smoothing bias associated with θ̂ISDn to be asymptotically negligi-
ble is the same as that for θ̂ADn , the reason being that

GISD
0 (γn)= 2GAD

0 (γn)+
∫
Rd

[
γn(u)− γ0(u)

]2
du= 2GAD

0 (γn)+O(
h2P
n

)
�

On the other hand, the estimator

θ̂LRn = 2θ̂ADn − θ̂ISDn = 2
n

n∑
i=1

γ̂n(zi)−
∫
Rd

γ̂n(u)
2 du

has the small bias property, as it can be interpreted as the solution to Ĝn(θ� γ̂n)= 0 with

g(z�θ�γ)= gLR(z�θ�γ)= 2gAD(z�θ�γ)− gISD(z�θ�γ)= 2γ(z)−
∫
Rd

γ(u)2 du− θ�

where gLR is locally robust because it follows from the foregoing that

GLR
0 (γn)= −

∫
Rd

[
γn(u)− γ0(u)

]2
du=O(

h2P
n

)
�

As a consequence, the smoothing bias associated with θ̂LRn is asymptotically negligible
provided nh4P

n → 0, a condition which does not require undersmoothing when P > d/2.

The leave-in and nonlinearity biases are usually asymptotically negligible whenever the
rate of convergence of γ̂n exceeds n1/4. As a consequence, these biases play no role in
the conventional theory. In contrast, it turns out that one or both of BLI

n and BNL
n will

typically be nonnegligible when the rate of convergence of γ̂n is no faster than n1/4. To be
specific, when γ̂n − γn �= oP(n

1/4), one typically finds that BLI
n is nonnegligible whenever

Condition SE fails while BNL
n is nonnegligible whenever g0(z�γ) is nonlinear in γ.

EXAMPLE 1—continued: Because

GAD
n (γn)−GAD

0 (γn)= 1
nhdn

K(0)+O(
n−1

)
�

the leave-in bias associated with θ̂ADn is nonnegligible unless either nh2d
n → ∞ orK(0)= 0,

the former being the condition under which the rate of convergence of γ̂n exceeds n1/4 and
the latter being the condition under which Condition SE is satisfied by gAD. On the other
hand, because gAD0 (z�γ) = γ(z) − θ0 is linear in γ, GAD

n�γγ[·� ·] = 0 and the nonlinearity
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bias associated with θ̂ADn is zero. In summary, we therefore find that if nh2P
n → 0 and if

nhdn → ∞, then

E
[
gADn (zi� γn)+ ḠAD

n

(
γ̂(i)n

) − ḠAD
n (γn)

] =BAD
n + o(n−1/2

)
� BAD

n = 1
nhdn

K(0)�

When nhdn → ∞, Condition SE is satisfied by gISD and the leave-in bias associated with
θ̂ISDn is negligible because

GISD
n (γn)−GISD

0 (γn)=O(
n−1

)
�

On the other hand, because gISD0 (z�γ) = ∫
Rd
γ(u)2 du− θ0 is nonlinear in γ, the nonlin-

earity bias associated with θ̂ISDn is nonzero. Indeed,

EGISD
n�γγ

[
γ̂in − γn� γ̂in − γn

] = 2
hdn

∫
Rd

∫
Rd

K(v)2γ0(u− vhn)dudv+O(
1 + n−1h−d

n

)
�

so the nonlinearity bias associated with θ̂ISDn is nonnegligible unless nh2d
n → ∞. In sum-

mary, we therefore find that if nh2P
n → 0 and if nhdn → ∞, then

E
[
gISDn (zi� γn)+ ḠISD

n

(
γ̂(i)n

) − ḠISD
n (γn)

] = BISD
n + o(n−1/2

)
�

where

BISD
n = 1

nhdn

∫
Rd

∫
Rd

K(v)2γ0(u− vhn)dudv�

Finally, being a linear combination of θ̂ADn and θ̂ISDn , the locally robust estimator θ̂LRn has
nonnegligible leave-in and nonlinearity biases associated with it unless nh2d

n → ∞. To be
specific, it follows from the foregoing that if nh4P

n → 0 and if nhdn → ∞, then

E
[
gLRn (zi� γn)+ ḠLR

n

(
γ̂(i)n

) − ḠLR
n (γn)

] = BLR
n + o(n−1/2

)
�

where

BLR
n = 1

nhdn

[
2K(0)−

∫
Rd

∫
Rd

K(v)2γ0(u− vhn)dudv
]
�

3.3. Inference

Because (2) generalizes to the familiar result (1) by accommodating Bn �= 0, it is natural
to investigate whether inference procedures designed to be valid under (1) remain valid
also when Bn �= 0 in (2). For the purposes of that investigation, the remainder of this
section assumes for specificity, but without loss of relevance, that dθ = 1 (i.e., that θ0 is
scalar) and that Σ0 is positive.

When θ̂n is assumed to satisfy (1), it is common to base inference on a distributional
approximation of the form

√
n(θ̂n − θ0)∼̇N (0� Σ̂n), where Σ̂n is some estimator of Σ0. If

Σ̂n is consistent, then the distributional approximation is itself consistent in the sense that

sup
t∈Rdθ

∣∣P[√
n(θ̂n − θ0)≤ t] − P

[
N (0� Σ̂n)≤ t]∣∣ = o(1)�
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a fact which in turn implies, for instance, that the asymptotic coverage probability of the
following “Normal” confidence interval for θ0 is 1 − α:

CINn�1−α = [θ̂n − q̂n�1−α/2� θ̂n − q̂n�α/2]�

where q̂n�α = inf{q ∈ R : P[N (0� Σ̂n) ≤ q] ≥ α} = Φ−1(α)

√
Σ̂n/n, with Φ(·) the standard

normal c.d.f. As it turns out, replacing (1) with (2) severely affects the properties of the
confidence interval CINn�1−α. Indeed, if Σ̂n is consistent and if (2) holds, then it can be shown
that

P
[
θ0 ∈ CINn�1−α

] =Φ[
Φ−1(1 − α/2)− √

nBn/
√
Σ0

] −Φ[
Φ−1(α/2)− √

nBn/
√
Σ0

] + o(1)�
implying in particular that CINn�1−α is asymptotically valid if and only if Bn = o(n−1/2).

A conceptually distinct distributional approximation is provided by the bootstrap. In
standard notation, the bootstrap approximation to the c.d.f. of

√
n(θ̂n − θ0) is given by

P
∗[√n(θ̂∗

n − θ̂n)≤ ·], where θ̂∗
n denotes a bootstrap analogue of θ̂n and P

∗ denotes a prob-
ability computed under the bootstrap distribution conditional on the data. Assuming (1)
holds, it is well understood that asymptotically valid inference procedures can be based
on the bootstrap whenever the bootstrap consistency condition

sup
t∈Rdθ

∣∣P[√
n(θ̂n − θ0)≤ t] − P

∗[√n(θ̂∗
n − θ̂n

) ≤ t]∣∣ = oP(1) (7)

is satisfied.
For instance, (7) ensures that certain bootstrap-based variance estimators are consis-

tent under (1). As a consequence, a fully “automatic” (in the sense that it can be imple-
mented without even characterizing Σ0) version of CINn�1−α can be constructed by basing
the variance estimator on the bootstrap, but because bootstrap-based variance estima-
tors are consistent also under (2) (when (7) holds), the corresponding interval CINn�1−α is
asymptotically invalid under (2).

Three other well-known examples of bootstrap-based confidence intervals for θ0 with
asymptotic coverage probability 1 − α under (1) and (7) are the “Efron” interval

CIEn�1−α = [
θ̂n + q∗

n�α/2� θ̂n + q∗
n�1−α/2

]
�

the “percentile” interval

CIPn�1−α = [
θ̂n − q∗

n�1−α/2� θ̂n − q∗
n�α/2

]
�

and the “symmetric” interval

CISn�1−α = [
θ̂n −Q∗

n�1−α� θ̂n +Q∗
n�1−α

]
�

where q∗
n�α = inf{q ∈ R : P∗[(θ̂∗

n − θ̂n)≤ q] ≥ α} and Q∗
n�α = inf{Q ∈ R : P∗[|θ̂∗

n − θ̂n| ≤Q] ≥
α}.

Like CINn�1−α, the interval CIEn�1−α is typically asymptotically invalid under (2). Indeed, if
(2) and (7) hold, then it can be shown that

P
[
θ0 ∈ CIEn�1−α

] =Φ[
Φ−1(1 −α/2)− 2

√
nBn/

√
Σ0

]−Φ[
Φ−1(α/2)− 2

√
nBn/

√
Σ0

]+o(1)�
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implying in particular that CIEn�1−α is asymptotically invalid when Bn �= o(n−1/2), being even
more sensitive to the bias Bn than CINn�1−α. On the other hand, it can be shown that (2) and
(7) are sufficient to guarantee asymptotic validity of the intervals CIPn�1−α and CISn�1−α; that
is, if (2) and (7) hold, then

P
[
θ0 ∈ CIPn�1−α

] → 1 − α and P
[
θ0 ∈ CISn�1−α

] → 1 − α�
Specializing to the “knife-edge” case where Bn ∼ n−1/2, our main qualitative findings

can be summarized as follows.

PROPOSITION 1: Suppose (2) holds with Bn = B/
√
n + o(n−1/2) for some B �= 0. If

Σ̂n →P Σ0 and if (7) holds, then

lim
n→∞

P
[
θ0 ∈ CIEn�1−α

]
< lim

n→∞
P
[
θ0 ∈ CINn�1−α

]
< lim

n→∞
P
[
θ0 ∈ CIPn�1−α

]
= lim

n→∞
P
[
θ0 ∈ CISn�1−α

] = 1 − α�

The main constructive message of Proposition 1 and the discussion preceding it is that
replacing (1) with (2) would not have serious consequences for the coverage probabilities
of the intervals CIPn�1−α and CISn�1−α if validity of (7) could be established also under (2).
Conditions for this to occur are given in the next section.

Although CIPn�1−α and CISn�1−α enjoy similar coverage properties, their efficiency prop-
erties can be very different. Indeed, if (2) and (7) hold, then CIPn�1−α is rate-optimal
in the sense that its width q∗

n�1−α/2 − q∗
n�α/2 is OP(n

−1/2). In contrast, CISn�1−α has width
2Q∗

n�1−α = 2|Bn| +Op(n
−1/2), implying in particular that it is not even rate-optimal when√

n|Bn| → ∞. More generally, CISn�1−α is (asymptotically) wider than CIPn�1−α whenever
Bn �= o(n−1/2).

We close this section by briefly discussing three additional types of confidence intervals
that are known to be “robust” in the sense that they do not require a consistent esti-
mator of Σ0 or even the full force of the

√
n-normality property (1). First, the inference

procedure of Ibragimov and Müller (2010) can be adapted to the current setup to pro-
duce a confidence interval whose asymptotic validity follows from (1) even if Σ0 does not
admit a consistent estimator. Second, in the more general case where

√
n(θ̂n − θ0) has

a (non-degenerate) limiting distribution which is symmetric about zero, then the proce-
dure recently proposed by Canay, Romano, and Shaikh (2017) can be used to construct an
asymptotically valid confidence interval for θ0. Finally, in the yet more general case where
one makes only the “minimal” assumption that

√
n(θ̂n − θ0) has a (non-degenerate) lim-

iting distribution, then the subsampling approximation to the distribution of
√
n(θ̂n − θ0)

is known to be consistent (e.g., Politis and Romano (1994)). Like CINn�1−α and CIEn�1−α, con-
fidence intervals based on the procedures of Ibragimov and Müller (2010) and Canay,
Romano, and Shaikh (2017) are asymptotically invalid if Bn �= o(n−1/2). Subsampling-
based confidence intervals, on the other hand, are valid provided

√
nBn is convergent

(not necessarily to zero), but even these intervals are invalid in general if Bn �=O(n−1/2).
In particular, and perhaps surprisingly in light of the fact that subsampling is often re-
garded as a “regularized” version of the bootstrap (e.g., Bickel and Li (2006)), one by-
product of the results of this paper is a remarkably simple example of an instance where
the bootstrap-based confidence intervals CIPn�1−α and CISn�1−α are asymptotically valid even
though subsampling-based confidence intervals are not.
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EXAMPLE 1—continued: If the bandwidth is of the form hn = Cn−1/η, where C > 0 and
η ∈ (d�2P) are user-chosen constants, then

√
n
(
θ̂ADn − θ0 −BAD

n

)
�N (0�Σ0)� Σ0 = 4V

[
γ0(z)

]
�

Unless K(0)= 0, asymptotic validity of the confidence intervals CINn�1−α and CIEn�1−α there-
fore fails whenever η ∈ (d�2d]. The same is true for the intervals based on the procedures
of Ibragimov and Müller (2010) and Canay, Romano, and Shaikh (2017). Subsampling-
based confidence intervals, on the other hand, are valid when η= 2d, but even these in-
tervals can be shown to be invalid for η ∈ (d�2d). In contrast, as further discussed below,
the intervals CIPn�1−α and CISn�1−α turn out to be valid also when η ∈ (d�2d).

Similar remarks apply to θ̂ISDn and θ̂LRn , as
√
n
(
θ̂ISDn − θ0 −BISD

n

)
�N (0�Σ0) and

√
n
(
θ̂LRn − θ0 −BLR

n

)
�N (0�Σ0)

whenever η ∈ (d�2P) and η ∈ (d�4P), respectively.

4. BOOTSTRAP CONSISTENCY

One consequence of replacing (1) with (2) is that the statistics
√
n(θ̂n −θ0)might cease

to be tight, as
√
n(θ̂n−θ0)= √

nBn+OP(1) when (2) holds. Proving bootstrap consistency
without existence of limiting distributions (or even tightness) can be difficult in general
(e.g., Radulovic (1998)), but thankfully the present setting has enough structure to enable
us to give a simple characterization of bootstrap consistency. Indeed, suppose (2) and the
following bootstrap counterpart thereof hold:

√
n
(
θ̂∗
n − θ̂n −B∗

n

)
�P N

(
0�Σ∗

0

)
� (8)

where B∗
n and Σ∗

0 are some non-random matrices and where �P denotes weak conver-
gence in probability. Assuming Σ0 is positive definite, it then follows from the relation

sup
t∈Rdθ

∣∣P[√
n(θ̂n − θ0 −Bn)≤ t] − P

∗[√n(θ̂∗
n − θ̂n −Bn

) ≤ t]∣∣
= sup

t∈Rdθ

∣∣P[√
n(θ̂n − θ0)≤ t] − P

∗[√n(θ̂∗
n − θ̂n

) ≤ t]∣∣
that a necessary and sufficient condition for (7) is that B∗

n =Bn + o(n−1/2) and Σ∗
0 = Σ0.

This characterization is very useful because it turns out that (8) can be often verified by
imitating the proof of (2). To give a precise statement, let θ̂∗

n be a minimizer of

Ĝ∗
n

(
θ� γ̂∗

n

)′
Ŵ ∗
n Ĝ

∗
n

(
θ� γ̂∗

n

)
� Ĝ∗

n(θ�γ)= 1
n

n∑
i=1

g
(
z∗
i�n� θ�γ

)
�

where z∗
1�n� � � � � z

∗
n�n is a random sample with replacement from z1� � � � � zn, Ŵ ∗

n is some
bootstrap counterpart of Ŵn, and where

γ̂∗
n = (

γ̂∗
n�1� � � � � γ̂

∗
n�dγ

)′
� γ̂∗

n�k(z�θ)= 1
n

n∑
j=1

wk
(
z∗
j�n� θ

)
κn�k

[
xk(z�θ)− xk

(
z∗
j�n� θ

)]
�
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Under regularity conditions, it follows from a bootstrap counterpart of Condition AL
that the large sample properties of θ̂∗

n are governed by Ĝ∗
n(θ̂n� γ̂

∗
n). Moreover, in perfect

analogy with (4), the fact that γ̂∗
n is kernel-based implies that

Ĝ∗
n

(
θ̂n� γ̂

∗
n

) = 1
n

n∑
i=1

g∗
0

(
z∗
i�n� γ̂

∗
n

) = 1
n

n∑
i=1

g∗
n

(
z∗
i�n� γ̂

∗�(i)
n

)
� (9)

where

γ̂∗�(i)
n = (

γ̂∗�(i)
n�1 � � � � � γ̂

∗�(i)
n�dγ

)′
�

γ̂∗�(i)
n�k (z�θ)= 1

n− 1

n∑
j=1�j �=i

wk
(
z∗
j�n� θ

)
κn�k

[
xk(z�θ)− xk

(
z∗
j�n� θ

)]
�

is the ith “leave-one-out” estimator of γ0 and where, defining

γ̂∗�i
n = (

γ̂∗�i
n�1� � � � � γ̂

∗�i
n�dγ

)′
� γ̂∗�i

n�k(z�θ)=wk
(
z∗
i�n� θ

)
κn�k

[
xk(z�θ)− xk

(
z∗
i�n� θ

)]
�

the functions g∗
n and g∗

0 satisfy

g∗
n

(
z∗
i�n� γ

) = g∗
0

[
z∗
i�n� n

−1γ̂∗�i
n + (

1 − n−1
)
γ
]
� g∗

0(z�γ)= g(z� θ̂n� γ)�
As a consequence, θ̂∗

n enjoys large sample properties analogous to those of θ̂n provided
bootstrap analogues of Conditions AS and AN hold.

Theorem 2 below gives a precise statement. That statement involves the following boot-
strap analogues of Conditions AL, AS, and AN.

CONDITION AL*: For some non-random J ∗
n and J ∗

0 , J ∗
n →J ∗

0 and

θ̂∗
n − θ̂n =J ∗

n Ĝ
∗
n

(
θ̂n� γ̂

∗
n

) + oP

(
n−1/2

)
�

CONDITION AS*: For some function ḡ∗
n,

1√
n

n∑
i=1

[
g∗
n

(
z∗
i�n� γ̂

∗�(i)
n

) − g∗
n

(
z∗
i�n� γ̂n

)] = 1√
n

n∑
i=1

[
ḡ∗
n

(
z∗
i�n� γ̂

∗�(i)
n

) − ḡ∗
n

(
z∗
i�n� γ̂n

)] + oP(1)

= 1√
n

n∑
i=1

[
Ḡ∗
n

(
γ̂∗�(i)
n

) − Ḡ∗
n(γ̂n)

] + oP(1)�

where Ḡ∗
n(γ)= E

∗ḡ∗
n(z

∗
i�n� γ) and where E

∗[·] denotes E[·|z1� � � � � zn].
CONDITION AN*: For some non-random B∗

n and Ω∗
0,

1√
n

n∑
i=1

[
g∗
n

(
z∗
i�n� γ̂n

) + Ḡ∗
n

(
γ̂∗�(i)
n

) − Ḡ∗
n(γ̂n)−B∗

n

]
�P N

(
0�Ω∗

0

)
�

THEOREM 2: If γ̂∗
n is kernel-based and if Conditions AL*, AS*, and AN* are satisfied,

then (8) holds with Σ∗
0 =J ∗

0 Ω
∗
0J ∗′

0 and B∗
n =J ∗

n B∗
n. In particular, (7) is satisfied if (2) holds

and if B∗
n =Bn + o(n−1/2) and Σ∗

0 = Σ0, where Σ0 is positive definite.
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As further demonstrated in Section 5.4, Conditions AL*, AS*, and AN* are natural
bootstrap analogues of the conditions of Theorem 1 not only in appearance, but also in
the sense that they can be verified by mimicking the verification of their counterparts in
Theorem 1. Moreover, in most cases the conditions for bootstrap consistency given in
Theorem 2 are satisfied under conditions similar to those imposed in order to obtain (2).
In particular, bootstrap consistency does not require faster-than-n1/4-consistency on the
part of γ̂n.

EXAMPLE 1—continued: If hn → 0 and if nhdn → ∞, then θ̂AD�∗n , θ̂ISD�∗n , and θ̂LR�∗n all
satisfy (8) with Σ∗

0 = 4Vγ0(z) and B∗
n equal to BAD

n , BISD
n , and BLR

n , respectively. As a
consequence, if the bandwidth is of the form hn = Cn−1/η, then θ̂AD�∗n , θ̂ISD�∗n , and θ̂LR�∗n

satisfy (7) whenever η ∈ (d�2P), η ∈ (d�2P), and η ∈ (d�4P), respectively.

REMARK 1: We deliberately study only the simplest version of the bootstrap. As in
Hahn (1996), doing so is sufficient when the goal is to establish first-order asymptotic
validity, but we conjecture that bootstrap consistency results can be obtained for various
modifications of the simple nonparametric bootstrap, including those proposed by Brown
and Newey (2002) and Hall and Horowitz (1996) to handle over-identified models. Sim-
ilarly, to highlight the fact that asymptotic pivotality plays no role in our theory, we use
the bootstrap to approximate the distribution of

√
n(θ̂n − θ0) rather than a Studentized

version thereof.

5. VERIFYING THE ASSUMPTIONS OF THEOREMS 1 AND 2

The purpose of this section is to present tools that can be used to verify those elements
of the assumptions of Theorems 1 and 2 that have no obvious counterpart in the conven-
tional theory on semiparametric two-step estimators.

5.1. Condition AL

Letting Ġ(γ) denote ∂G(θ�γ)/∂θ′|θ=θ0 whenever the derivative exists (and zero other-
wise), standard heuristics suggest that under suitable regularity conditions, Condition AL
will hold with Jn = J0 = −(Ġ′

0W0Ġ0)
−1Ġ′

0W0, where Ġ0 = Ġ(γ0) and where W0 is the
probability limit of Ŵn. When Ĝn(θ0� γ̂n) = OP(n

−1/2), these standard heuristics can be
made rigorous with the help of Pakes and Pollard (1989, Theorem 3.3), a variant of which
is given by the ρ= 2 version of Lemma 1 below.

However, the condition Ĝn(θ0� γ̂n)=OP(n
−1/2) fails, in general, when the weaker Con-

ditions AS and AN are used to obtain distributional approximations, so in order to justify
our reliance on Condition AL it is important to have sufficient conditions for Condi-
tion AL that do not require Ĝn(θ0� γ̂n)=OP(n

−1/2). This observation motivates condition
(iv) of the following result, whose formulation and content is in the spirit of Pakes and
Pollard (1989, Theorem 3.3).

LEMMA 1: Suppose that θ̂n − θ0 = op(1), that Ġ′
0W0Ġ0 has rank dθ, and that, for some

ρ ∈ [2�4) and for some non-randomWn and Ġn withWn−W0 = o(1) and Ġn− Ġ0 = o(1):
(i) Ĝn(θ̂n� γ̂n)

′ŴnĜn(θ̂n� γ̂n)≤ infθ∈Θ Ĝn(θ� γ̂n)
′ŴnĜn(θ� γ̂n)+ oP(n

−1);
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(ii) for every δn = o(1),

sup
‖θ−θ0‖≤δn

∥∥G(θ� γ̂n)−G(θ0� γ̂n)− Ġ(γ̂n)(θ− θ0)
∥∥

‖θ− θ0‖ρ/2 = oP(1);

(iii) for every δn = o(1),

sup
‖θ−θ0‖≤δn

∥∥Ĝn(θ� γ̂n)−G(θ� γ̂n)− Ĝn(θ0� γ̂n)+G(θ0� γ̂n)
∥∥

1 + n1/ρ‖θ− θ0‖ = oP

(
n−1/ρ

);
(iv) Ĝn(θ0� γ̂n)=OP(n

−1/ρ);
(v) θ0 is an interior point of Θ;

(vi) Ŵn −Wn = oP(n
1/ρ−1/2) and Ġ(γ̂n)− Ġn = oP(n

1/ρ−1/2);
(vii) Ġ(γ̂n)′ŴnĜn(θ̂n� γ̂n)= oP(n

−1/2) and, for every δn =O(n−1/ρ),

sup
‖θ−θ0‖≤δn

∥∥Ĝn(θ� γ̂n)−G(θ� γ̂n)− Ĝn(θ0� γ̂n)+G(θ0� γ̂n)
∥∥ = oP

(
n−1/2

)
�

Then Condition AL holds with

Jn = −(
Ġ′
nWnĠn

)−1
Ġ′
nWn and J0 = −(

Ġ′
0W0Ġ0

)−1
Ġ′

0W0�

As already mentioned, Lemma 1 effectively becomes a variant of Pakes and Pollard
(1989, Theorem 3.3), when ρ = 2. In particular, when ρ = 2, condition (iv) becomes
Ĝn(θ0� γ̂n) = OP(n

−1/2), conditions (i)–(iii) and (v) reduce to natural analogs of those of
Pakes and Pollard (1989, Theorem 3.3), condition (vi) becomes Ŵn − W0 = oP(1) and
Ġ(γ̂n)− Ġ0 = oP(1), and condition (vii) is implied by the other conditions of the lemma.

In Lemma 1, the magnitude of the departure from standard asymptotics is therefore
governed by the parameter ρ. The introduction of this parameter is motivated by the fact
that although Ĝn(θ0� γ̂n) = OP(n

−1/2) can fail to hold under Conditions AS and AN, the
weaker condition (iv) in Lemma 1 typically holds even when its ρ= 2 version does not.

To be more precise, when ρ > 2, conditions (iii) and (iv) of Lemma 1 are weaker than
their ρ= 2 counterparts, whereas conditions (ii), (vi), and (vii) are stronger than their ρ=
2 counterparts. Importantly, however, the technical tools routinely applied to verify the
conditions of results such as Lemma 1 in the standard (i.e., ρ= 2) case can also be used
to verify most (if not all) of the conditions even when a failure of Ĝn(θ0� γ̂n)=OP(n

−1/2)
implies that ρ > 2 is required in condition (iv). In particular, even when ρ > 2, condition
(ii) is a relatively mild smoothness condition onG and condition (iii) can be verified using
standard empirical process techniques, as can the displayed part of condition (vii).

In Section 6, we illustrate how to verify the conditions of Lemma 1 with ρ= 3 for the
case of IPW estimators with possibly non-smooth moment conditions.

REMARK 2: While the property Ġ(γ̂n)′ŴnĜn(θ̂n� γ̂n)= oP(n
−1/2) assumed in condition

(vii) is implied by the other conditions of the lemma when ρ= 2, verification of this prop-
erty seems to require additional conditions when ρ > 2. As explained in a subsection fol-
lowing the proof of Lemma 1, one possibility is to require that g is of dimension dθ, while
another possibility is to require ρ < 3 and that oP(n

−1/2) can be replaced by oP(n
1/ρ−1) in

the displayed part of condition (vii).
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5.2. Condition AS

When ḡn is of the form (5), the error in the approximation

gn
(
zi� γ̂

(i)
n

) ≈ ḡn
(
zi� γ̂

(i)
n

) + gn(zi� γn)− ḡn(zi� γn)
is usually “cubic” in γ̂(i)n − γn (in some suitable sense), in which case the first part of
Condition AS is satisfied provided γ̂(i)n −γn = oP(n

−1/6) (in some suitable sense). The ease
with which these heuristics can be made rigorous depends in part on the smoothness of g,
but suffice it to say that a condition of the form γ̂n − γn = oP(n

−1/6) has been found to be
sufficient in all of the cases we have examined, including even the non-differentiable-in-γ
example used in the Monte Carlo experiment of Section 7 (and analyzed in Section SA.3
of the Supplemental Material).

Whereas it is usually most efficient to proceed on a case-by-case basis when verifying
the first part of Condition AS, the second part of the condition admits general sufficient
conditions that are both mild and relatively simple. A common way of verifying the second
part of Condition SE (i.e., the stochastic equicontinuity counterpart of Condition AS) is
to exhibit a sequence Γn satisfying P(γ̂n ∈ Γn)→ 1 and

sup
γ∈Γn

∥∥∥∥∥ 1√
n

n∑
i=1

[
ḡ0(zi� γ)− Ḡ0(γ)− ḡ0(zi� γ0)+ Ḡ0(γ0)

]∥∥∥∥∥ = oP(1)�

where empirical process results (e.g., maximal inequalities) can be used to formulate
primitive sufficient conditions for the latter (see, e.g., Andrews (1994b, Condition (3.36)),
Chen, Linton, and van Keilegom (2003, Conditions (2.4) and (2�5′)), and references
therein). An analogous approach does not seem applicable when the goal is to formulate
primitive sufficient conditions for the second part of Condition AS, as the dependence of
γ̂(i)n on i implies that the second part of Condition AS cannot be deduced with the help of
a result of the form

sup
γ∈Γn

∥∥∥∥∥ 1√
n

n∑
i=1

[
ḡn(zi� γ)− Ḡn(γ)− ḡn(zi� γn)+ Ḡn(γn)

]∥∥∥∥∥ = oP(1)�

Instead, the proof of the following lemma exploits the fact that the object of interest can
be expressed as a linear combination of U-statistics when γ̂n is kernel-based. Here, and
elsewhere in the paper, it is tacitly assumed that the indices i� j, and k are distinct, unless
explicitly noted otherwise.

LEMMA 2: Suppose that γ̂n is kernel-based, that ḡn is of the form (5), and that

V
(
gn�γ(zi)

[
γ̂jn − γn

]) = o(n)� V
(
gn�γγ(zi)

[
γ̂jn − γn� γ̂kn − γn

]) = o(n2
)
�

V
(
E

(
gn�γγ(zi)

[
γ̂jn − γn� γ̂jn − γn

]|zi)) = o(n2
)
� V

(
gn�γγ(zi)

[
γ̂jn − γn� γ̂jn − γn

]) = o(n3
)
�

Then the second part of Condition AS is satisfied.

5.3. Condition AN

When ḡn is of the form (5), we have

1√
n

n∑
i=1

[
gn(zi� γn)+ Ḡn

(
γ̂(i)n

) − Ḡn(γn)
] = 1√

n

n∑
i=1

ψn(zi)+ √
nB̂n�
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where

ψn(zi)= gn(zi� γn)−Gn(γn)+ δn(zi)� δn(zi)=Gn�γ

[
γ̂in − γn

]
�

and

B̂n =Gn(γn)+ 1
2

1
n

n∑
i=1

Gn�γγ

[
γ̂(i)n − γn� γ̂(i)n − γn

]
�

Direct calculations can usually be used to demonstrate existence of a function ψ0 satis-
fying

E
∥∥ψn(z)−ψ0(z)

∥∥2 → 0� E
∥∥ψ0(z)

∥∥2
<∞� (10)

Indeed, under general conditions, (10) holds with ψ0(z)= g0(z�γ0)+ δ0(z), where δ0(z)
is the “correction term” discussed by Newey (1994a). If (10) holds, then Condition AN is
satisfied if also B̂n = Bn +oP(n

−1/2). A simple sufficient condition for this to occur is given
in the next result.

LEMMA 3: Suppose that γ̂n is kernel-based, that ḡn is of the form (5), that (10) holds, and
that

V
(
Gn�γγ

[
γ̂in − γn� γ̂in − γn

]) = o(n2
)
� V

(
Gn�γγ

[
γ̂in − γn� γ̂jn − γn

]) = o(n)�

Then Condition AN holds with Ω0 =V[ψ0(z)] and any Bn = EB̂n + o(n−1/2).

5.4. Conditions AL*, AS*, and AN*

Condition AL* can often be verified with the help of the following bootstrap analogue
of Lemma 1.

LEMMA 4: Suppose that the assumptions of Lemma 1 are satisfied, that θ̂∗
n − θ0 = oP(1),

and that:
(i*) Ĝ∗

n(θ̂
∗
n� γ̂

∗
n)

′Ŵ ∗
n Ĝ

∗
n(θ̂

∗
n� γ̂

∗
n)≤ infθ∈Θ Ĝ∗

n(θ� γ̂
∗
n)

′Ŵ ∗
n Ĝ

∗
n(θ� γ̂

∗
n)+ oP(n

−1);
(ii*) for every δn = o(1),

sup
‖θ−θ0‖≤δn

∥∥G(
θ� γ̂∗

n

) −G(
θ0� γ̂

∗
n

) − Ġ(
γ̂∗
n

)
(θ− θ0)

∥∥
‖θ− θ0‖ρ/2 = oP(1);

(iii*) for every δn = o(1),

sup
‖θ−θ0‖≤δn

∥∥Ĝ∗
n

(
θ� γ̂∗

n

) −G(
θ� γ̂∗

n

) − Ĝ∗
n

(
θ0� γ̂

∗
n

) +G(
θ0� γ̂

∗
n

)∥∥
1 + n1/ρ‖θ− θ0‖ = oP

(
n−1/ρ

);
(iv*) Ĝ∗

n(θ0� γ̂
∗
n)=OP(n

−1/ρ);
(vi*) Ŵ ∗

n −Wn = oP(n
1/ρ−1/2) and Ġ(γ̂∗

n)− Ġn = oP(n
1/ρ−1/2);

(vii*) Ġ(γ̂∗
n)

′Ŵ ∗
n Ĝ

∗
n(θ̂

∗
n� γ̂

∗
n)= oP(n

−1/2) and, for every δn =O(n−1/ρ),

sup
‖θ−θ0‖≤δn

∥∥Ĝ∗
n

(
θ� γ̂∗

n

) −G(
θ� γ̂∗

n

) − Ĝ∗
n

(
θ0� γ̂

∗
n

) +G(
θ0� γ̂

∗
n

)∥∥ = oP

(
n−1/2

)
�

Then Condition AL* holds with J ∗
n =Jn and J ∗

0 =J0.
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When the first part of Condition AS is satisfied with ḡn of the form (5), there usually
exist linear and bilinear functionals g∗

n�γ(z)[·] and g∗
n�γγ(z)[·� ·] such that the first part of

Condition AS* is satisfied with

ḡ∗
n(z�γ)= g∗

n(z� γ̂n)+ g∗
n�γ(z)[γ− γ̂n] + 1

2
g∗
n�γγ(z)[γ− γ̂n� γ− γ̂n]� (11)

Conditions under which the second part of Condition AS* holds when ḡ∗
n is of the form

(11) are given in the following bootstrap analogue of Lemma 2.

LEMMA 5: Suppose that γ̂∗
n is kernel-based, that ḡ∗

n is of the form (11), and that

V
∗(g∗

n�γ

(
z∗
i�n

)[
γ̂∗�j
n − γ̂n

]) = oP(n)�

V
∗(g∗

n�γγ

(
z∗
i�n

)[
γ̂∗�j
n − γ̂n� γ̂∗�k

n − γ̂n
]) = oP

(
n2

)
�

V
∗(
E

∗(
g∗
n�γγ

(
z∗
i�n

)[
γ̂∗�j
n − γ̂n� γ̂∗�j

n − γ̂n
]|z∗

i�n

)) = oP

(
n2

)
�

V
∗(g∗

n�γγ

(
z∗
i�n

)[
γ̂∗�j
n − γ̂n� γ̂∗�j

n − γ̂n
]) = oP

(
n3

)
�

where V∗[·] denotes V[·|z1� � � � � zn]. Then the second part of Condition AS* is satisfied.

Finally, when ḡ∗
n is of the form (11), we have

1√
n

n∑
i=1

[
g∗
n

(
z∗
i�n� γ̂n

) + Ḡ∗
n

(
γ̂∗�(i)
n

) − Ḡ∗
n(γ̂n)

] = 1√
n

n∑
i=1

ψ∗
n

(
z∗
i�n

) + √
nB̂∗

n�

where

ψ∗
n

(
z∗
i�n

) = g∗
n

(
z∗
i�n� γ̂n

) −G∗
n(γ̂n)+ δ∗

n

(
z∗
i�n

)
� δ∗

n

(
z∗
i�n

) =G∗
n�γ

[
γ̂∗�i
n − γ̂n

]
�

and

B̂∗
n =G∗

n(γ̂n)+ 1
2

1
n

n∑
i=1

G∗
n�γγ

[
γ̂∗�(i)
n − γ̂n� γ̂∗�(i)

n − γ̂n
]
�

with

G∗
n(γ)= E

∗g∗
n

(
z∗
i�n� γ

)
� G∗

n�γ[η] = E
∗g∗

n�γ

(
z∗
i�n

)[η]�
G∗
n�γγ[η�ϕ] = E

∗g∗
n�γγ

(
z∗
i�n

)[η�ϕ]�
Direct calculations can usually be used to show that

E
∗∥∥ψ∗

n

(
z∗
i�n

) −ψn
(
z∗
i�n

)∥∥2 = oP(1)� (12)

in which case the following bootstrap analogue of Lemma 3 can be used to verify Condi-
tion AN*.

LEMMA 6: Suppose that the assumptions of Lemma 3 are satisfied, that γ̂∗
n is kernel-based,

that ḡ∗
n is of the form (11), that (12) holds, and that

V
∗(G∗

n�γγ

[
γ̂∗�i
n − γ̂n� γ̂∗�i

n − γ̂n
]) = oP

(
n2

)
�



KERNEL-BASED SEMIPARAMETRIC ESTIMATORS 977

V
∗(G∗

n�γγ

[
γ̂∗�i
n − γ̂n� γ̂∗�j

n − γ̂n
]) = oP(n)�

E
∗B̂∗

n = EB̂∗
n + oP

(
n−1/2

)
�

Then Condition AN* holds with Ω∗
0 =Ω0 and any B∗

n = EB̂∗
n + o(n−1/2).

REMARK 3: If the conditions of Lemma 6 are satisfied, then Ω̂n = n−1
∑n

i=1ψ
∗
n(zi)ψ

∗
n(zi)

′

is a consistent estimator of Ω0. Although Ω̂n emerges here as a by-product of our analy-
sis of the bootstrap, it is interesting to note that it can be interpreted as a variant of the
“delta-method” variance estimator of Newey (1994b).

6. EXAMPLE: INVERSE PROBABILITY WEIGHTING

In the previous sections, the average density example was chosen for illustrative pur-
poses because it highlights exactly those parts of our high-level assumptions that differ
from conventional ones, namely, Condition AN (which quantifies the departure from con-
ventional conclusions) and the second part of Condition AS (which enables us to depart
from conventional assumptions). Indeed, the estimators discussed in connection with Ex-
ample 1 were intentionally chosen in such a way that Condition AL and the first part of
Condition AS are representations in the sense that they hold without any oP(n

−1/2) and
oP(1) terms.

To substantiate the claim that Example 1 is nevertheless representative, this section ex-
amines a more substantive and complicated class of estimators, namely, IPW estimators.
For these estimators, Condition AL and the first part of Condition AS are not merely rep-
resentations, but as discussed in what follows, they nevertheless remain verifiable under
assumptions that are sufficiently weak to permit us to obtain distributional results that
differ from conventional ones, a difference that once again is quantified by Condition AN
and can be brought to light thanks to the second part of Conditions AS.

Suppose z1� � � � � zn are i.i.d. copies of z = (y� t�x′)′, where y ∈ R is a scalar dependent
variable, t ∈ {0�1} is a binary indicator, and x ∈ X ⊆R

d is a continuous covariate with
density f0. Assuming the estimand θ0 ∈Θ⊆ R

dθ is the unique solution to an equation of
the form

E

[
t

q0(x)
m(y;θ)

]
= 0� q0(x)= E(t|x)= P[t = 1|x]�

where m is a known R
dθ -valued function, an IPW estimator θ̂n of θ0 is one that satisfies

1
n

n∑
i=1

ti

q̂n(xi)
m(yi; θ̂n)= oP

(
n−1/2

)
�

where q̂n is an estimator of (the propensity score) q0.
In what follows, we assume that q0 is estimated using a local polynomial estimator of

order P > 3d/4 − 1. To describe this estimator, define dP = (P + d − 1)!/[P!(d − 1)!],
and let bP(x) ∈ R

dP denote the Pth-order polynomial basis expansion based on x =
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(x1� � � � � xd)
′ ∈ R

d; that is,

bP(x)=

⎛
⎜⎜⎜⎝

1
[x]1

���
[x]P

⎞
⎟⎟⎟⎠ � [x]p =

⎛
⎜⎜⎜⎝

x
p
1

x
p−1
1 x2
���
x
p
d

⎞
⎟⎟⎟⎠ �

Also, let

γ̂x�n(x)= vecP

[
1
n

n∑
i=1

Kx�n(xi − x)
]
� Kx�n(u)= bP�n(u)bP�n(u)′Kn(u)�

and

γ̂t�n(x)= 1
n

n∑
i=1

tiKt�n(xi − x)� Kt�n(u)= bP�n(u)Kn(u)�

where bP�n(u) = bP(u/hn), Kn(u) = K(u/hn)/h
d
n , hn is a bandwidth, K is a kernel, and

where vecP : RdP×dP → R
d2
P is the vectorization operator. The Pth-order local polynomial

estimator of q0(x) is given by q(x; γ̂n), where

q(x;γ)= e′
P

(
vec−1

P

[
γx(x)

])−1
γt(x)� γ = (

γ′
x�γ

′
t

)′
�

eP is the first unit vector in R
dP , and vec−1

P :Rd2
P →R

dP×dP is the inverse of vecP .
Because γ̂n is kernel-based, the associated IPW estimator θ̂n is a kernel-based two-

step semiparametric, which can be analyzed using the results of the previous sections by
representing the defining property of θ̂n as

Ĝn(θ̂n� γ̂n)
′ŴnĜn(θ̂n� γ̂n)= oP

(
n−1

)
� Ŵn = Idθ�

where

g(z�θ�γ)= t

q(x;γ)m(y;θ)

is neither linear in γ nor (necessarily) differentiable in θ. Doing so, it is shown in
Section A.2 of the Supplemental Material that under regularity conditions and if
nh3d/2

n /(logn)3/2 → ∞ and nh2P+2
n → 0, then the conditions of Theorems 1 and 2 are

satisfied. In what follows, we briefly describe the main steps in the proof(s).
First, consider Condition AL. Under the stated bandwidth conditions, it follows from

the discussion below that Ĝn(θ0� γ̂n)=OP(n
−1/3). Accordingly, we set ρ= 3 when verifying

Condition AL with the help of Lemma 1. To define the other main objects of that lemma,
set Wn =W0 = Idθ and let

γx�n(x)= vecP

[∫
Rd

Kx(u)f0(x+ uhn)du
]
� Kx(u)= bP(u)bP(u)′K(u)�

γt�n(x)=
∫
Rd

Kt(u)q0(x+ uhn)f0(x+ uhn)du� Kt(u)= bP(u)K(u)�
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and

γx�0(x)= f0(x) vecP

[∫
Rd

Kx(u)du

]
� γt�0(x)= q0(x)f0(x)

∫
Rd

Kt(u)du�

The functional G can be represented as

G(θ�γ)= E

[
q0(x)

q(x;γ)r0(x;θ)
]
� r0(x;θ)= E

[
m(y;θ)|x� t = 1

]
�

and satisfies G(θ�γ0)= 0 if and only if θ= θ0 because q(x;γ0)= q0(x). Moreover, under
regularity conditions, including differentiability of r0(x; ·), we have

Ġ(γ)= E

[
q0(x)

q(x;γ) ṙ0(x)
]
� ṙ0(x)= ∂

∂θ
r0(x;θ)

∣∣∣
θ=θ0

�

Apart from condition (iv), the hardest-to-verify conditions of Lemma 1 are (iii) and the
displayed part of (vii). We verify these conditions with the help of empirical process tech-
niques and using the fact that

max
1≤i≤n

∥∥γ̂n(xi)− γn(xi)
∥∥ = oP

(
n−1/6

)
when nh3d/2

n /(logn)3/2 → ∞.
Next, consider Condition AS. Because g(z�θ�γ) is a smooth functional of γ, it is nat-

ural to set ḡn equal to a second-order Taylor approximation to gn obtained by expanding
around γ = γn. Simple bounding arguments can be used to show that the resulting ḡn
satisfies the first part of Condition AS because max1≤i≤n ‖γ̂n(xi) − γn(xi)‖ = oP(n

−1/6).
Moreover, because ḡn is of the form (5), Lemma 2 can be used to show that the second
part of Condition AS is satisfied whenever nhdn → ∞.

Condition AN is also satisfied, as can be shown using Lemma 3. To be specific, (10)
holds with

ψ0(z)= t

q0(x)
m(y;θ0)− r0(x;θ0)

q0(x)

(
t − q0(x)

)
�

while lengthy calculations show that if nh3d/2
n /(logn)3/2 → ∞ and nh2P+2

n → 0, then we can
set

Bn = −K(0)
nhdn

(
e′
PΓ

−1
x eP

)∫
X

1 − q0(u)

q0(u)
r0(u;θ0)du

+ 1
nhdn

∫
Rd

∫
Rd

r0(u;θ0)f0(u)

q0(u)
2 e′

P

× Γx�n(u)−1Kt(v)Kt(v)
′Γx�n(u)−1ePσ

2
t (u+ vhn)f0(u+ vhn)dudv�

where

Γx�n(x)= vec−1
P

(
γx�n(x)

)
� Γx =

∫
Rd

Kx(u)du� σ2
t (x)= q0(x)

(
1 − q0(x)

)
�

Because Conditions AN and AL both hold, with ‖Bn‖ = O(n−1h−d
n ) in the latter, we

have Ĝn(θ0� γ̂n) = OP(n
−1/2 + ‖Bn‖) = OP(n

−1/3) when nh3d/2
n /(logn)3/2 → ∞. In other

words, condition (iv) of Lemma 1 holds with ρ= 3.
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To summarize, if nh3d/2
n /(logn)3/2 → ∞ and if nh2P+2

n → 0, then the conditions of The-
orem 1 are satisfied and (2) holds with

Bn = −Ġ−1
n Bn� Ġn = E

[
q0(x)

q(x;γn) ṙ0(x)
]
�

and

Σ0 = Ġ−1
0 V

[
ψ0(z)

]
Ġ−1

0 � Ġ0 = E
[
ṙ0(x)

]
�

Proceeding in a similar way, Conditions AL*, AS*, and AN* can be verified using Lem-
mas 4, 5, and 6, respectively. Moreover, B∗

n can be set equal to Bn in Lemma 6, so it follows
from Theorem 2 that the bootstrap consistency condition (7) is satisfied.

Importantly, while perhaps not the weakest possible, the bandwidth conditions we im-
pose are sufficiently weak to permit θ̂n to exhibit a nonnegligible asymptotic bias. To
be specific, the bandwidth condition nh3d/2

n /(logn)3/2 → ∞ allows for the possibility that
nh2d

n �∞, in which case Bn =O(n−1h−d
n ) �= o(n−1/2).

7. SIMULATION EVIDENCE

We conducted a small-scale Monte Carlo experiment to explore some of the implica-
tions of our theoretical results in samples of moderate size. Because the simulation study
involves bootstrap procedures, computational considerations let us to consider a closed
form estimator and a relatively small sample size.

The estimator we consider is the one previously analyzed in the Hit Rate example of
Chen, Linton, and van Keilegom (2003), which we also re-analyze using our results in
Section SA.3 of the Supplemental Material. To describe this estimator, let z1� � � � � zn be
i.i.d. copies of z = (y�x′)′, where y ∈ R is a scalar dependent variable and x ∈ R

d is a
continuous covariate with density γ0. The parameter of interest is the scalar θ0 = P[y ≥
γ0(x)] = E[1(y ≥ γ0(x))], a kernel-based semiparametric estimator of which is given by

θ̂n = 1
n

n∑
i=1

1
(
yi ≥ γ̂n(xi)

)
� γ̂n(x)= 1

n

n∑
j=1

Kn(xj − x)�

where Kn(x)=K(x/hn)/hdn , hn is a bandwidth, and K is a kernel.
Although the estimator θ̂n is in closed form (i.e., satisfies Condition AL without any

oP(n
−1/2) term), the estimator is significantly more complicated than the average density

estimators of Example 1 because it is a non-smooth functional of γ̂n. Nevertheless, it is
shown in Section SA.3 of the Supplemental Material that θ̂n can be analyzed using the
results of this paper. In particular, under the regularity conditions given there, we show
that if nh3d/2

n /(logn)3/2 → ∞ and if nh2P
n → 0, with P the kernel order, then the conditions

of Theorems 1 and 2 are satisfied with Σ∗
0 = Σ0 and B∗

n = Bn = O[1/(nhdn)]. The explicit
formulas for all the biases and variance quantities are given in the Supplemental Material
for brevity.

We consider S = 1,000 replications for the Monte Carlo experiment, where for each
replication we generate a random sample of size n= 1,000 from a model of the form(

yi
xi

)
∼N

((
μy
0

)
�

(
σ2
y 0′

0 σ2
xId

))
�
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TABLE I

SIMULATION DATA GENERATING PROCESSES

Model d P μy σy σx θ0 Σ0 BSB
0 BS

0 hopt

M1 1 2 1/2 1/2 1/2 0�449 0�322 −0�253 0�402 0�086
M2 1 4 1/2 1/2 1/2 0�449 0�322 −0�374 0�544 0�233
M3 2 2 1/2 1/2 1/2 0�633 0�296 −0�115 0�517 0�122
M4 2 4 1/2 1/2 1/2 0�633 0�296 −0�260 0�826 0�261
M5 3 4 1/2 1/2 1/2 0�732 0�226 −0�142 0�681 0�298

M6 1 2 1/2 1/3 1/3 0�229 0�209 −0�079 0�101 0�092
M7 1 4 1/2 1/3 1/3 0�229 0�209 −0�092 −4�072 0�089
M8 2 2 1/2 1/3 1/3 0�356 0�305 −0�079 0�585 0�108
M9 2 4 1/2 1/3 1/3 0�356 0�305 −0�162 −3�960 0�165
M10 3 4 1/2 1/3 1/3 0�457 0�358 −0�127 −2�195 0�238

M11 1 2 1/2 1/4 1/3 0�208 0�203 −0�070 −0�297 0�049
M12 1 4 1/2 1/4 1/3 0�208 0�203 −0�077 −7�057 0�077
M13 2 2 1/2 1/4 1/3 0�351 0�319 −0�081 0�278 0�131
M14 2 4 1/2 1/4 1/3 0�351 0�319 −0�167 −6�784 0�152
M15 3 4 1/2 1/4 1/3 0�464 0�385 −0�133 −4�332 0�218

M16 1 2 3/4 3/4 1/4 0�327 0�283 −0�108 1�318 0�043
M17 1 4 3/4 3/4 1/4 0�327 0�283 −0�153 3�338 0�136
M18 2 2 3/4 3/4 1/4 0�318 0�266 −0�040 1�018 0�079
M19 2 4 3/4 3/4 1/4 0�318 0�266 −0�084 −7�957 0�132
M20 3 4 3/4 3/4 1/4 0�328 0�261 −0�053 −15�813 0�158

M21 1 2 1 1/2 1/5 0�280 0�276 −0�049 1�029 0�036
M22 1 4 1 1/2 1/5 0�280 0�276 −0�054 −27�472 0�055
M23 2 2 1 1/2 1/5 0�252 0�229 −0�029 −1�514 0�066
M24 2 4 1 1/2 1/5 0�252 0�229 −0�060 −73�575 0�086
M25 3 4 1 1/2 1/5 0�241 0�210 −0�035 −74�966 0�120

As described in Table I, a total of 25 different configurations of μy�σ2
y �σ

2
x� d, and P were

considered. Some of these models (namely, those with (d�P) ∈ {(1�2)� (2�2)}) are not
covered by conventional first-order asymptotic results (because P is too small), but be-
cause our large sample results only require P > 3d/4, all of the models listed in Table I
are covered by the results of this paper.

We focus on the performance of three 95% confidence intervals, namely, the (feasible)
bootstrap-based intervals CIE0�95 and CIP0�95 and an infeasible version of CIN0�95 obtained by
setting Σ̂n equal to n times the simulation variance of θ̂n. We use the simulation variance
of θ̂n to avoid rendering our results sensitive to the choice of additional tuning parame-
ters needed in order to estimate the (complicated) asymptotic variance of θ̂n. In the sim-
ulations, for each replication we approximate the bootstrap distribution by resampling
B = 1,000 times. For each model, we report results for a range of bandwidths hn, partly
with the aim of judging the relevance of one of the main predictions of our theory (e.g.,
Proposition 1), namely, that

P
[
θ0 ∈ CIE0�95

] ≤ P
[
θ0 ∈ CIN0�95

] ≤ P
[
θ0 ∈ CIP0�95

] ≈ 0�95�

with strict inequalities for “small” bandwidths, that is, whenever nh2d
n �∞.

Tables II–VI report the main results. For each model, we consider a grid of band-
widths of the form hn = c · hopt, where c ∈ {0�5�0�6�0�7�0�8�0�9�1�0�1�1} and where
hopt is an “optimal” (in a certain sense) bandwidth characterized in Section 3.4 of the
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TABLE II

SIMULATION RESULTS FOR MODELS M1–M5 (n= 1,000, B= 1,000, S = 1,000)a

BW CR IL

hn c E N P E N P B/SE MSE

M1: d = 1�P = 2 0�043 0�5 0�930 0�942 0�935 0�072 0�070 0�072 −0�258 1�070
0�051 0�6 0�942 0�944 0�939 0�072 0�070 0�072 −0�185 1�034
0�060 0�7 0�947 0�948 0�942 0�072 0�070 0�072 −0�124 1�014
0�069 0�8 0�952 0�948 0�939 0�072 0�070 0�072 −0�067 1�003
0�077 0�9 0�954 0�946 0�940 0�071 0�070 0�071 −0�016 1�000

hopt = 0�086 1�0 0�955 0�946 0�939 0�071 0�070 0�071 0�032 1�000
0�094 1�1 0�957 0�946 0�937 0�071 0�070 0�071 0�084 1�003

M2: d = 1�P = 4 0�117 0�5 0�949 0�944 0�940 0�072 0�070 0�072 −0�141 1�015
0�140 0�6 0�952 0�946 0�941 0�072 0�070 0�072 −0�104 1�007
0�163 0�7 0�951 0�947 0�941 0�071 0�070 0�071 −0�070 1�001
0�186 0�8 0�954 0�949 0�940 0�071 0�070 0�071 −0�041 0�999
0�210 0�9 0�954 0�949 0�940 0�071 0�070 0�071 −0�010 0�996

hopt = 0�233 1�0 0�953 0�948 0�941 0�071 0�070 0�071 0�025 1�000
0�256 1�1 0�953 0�946 0�939 0�071 0�070 0�071 0�065 1�004

M3: d = 2�P = 2 0�061 0�5 0�082 0�657 0�935 0�073 0�068 0�073 −1�606 3�709
0�073 0�6 0�407 0�828 0�936 0�072 0�068 0�072 −1�022 2�114
0�085 0�7 0�688 0�899 0�932 0�071 0�068 0�071 −0�644 1�457
0�098 0�8 0�833 0�933 0�929 0�070 0�068 0�070 −0�373 1�158
0�110 0�9 0�904 0�946 0�927 0�069 0�067 0�069 −0�155 1�030

hopt = 0�122 1�0 0�943 0�948 0�918 0�069 0�067 0�069 0�033 1�000
0�134 1�1 0�959 0�944 0�903 0�068 0�067 0�068 0�201 1�033

M4: d = 2�P = 4 0�130 0�5 0�642 0�873 0�939 0�071 0�069 0�071 −0�810 1�724
0�156 0�6 0�814 0�921 0�943 0�071 0�068 0�071 −0�534 1�328
0�183 0�7 0�887 0�934 0�941 0�070 0�068 0�070 −0�353 1�152
0�209 0�8 0�926 0�945 0�943 0�069 0�068 0�069 −0�219 1�065
0�235 0�9 0�942 0�952 0�941 0�069 0�068 0�069 −0�103 1�024

hopt = 0�261 1�0 0�953 0�953 0�937 0�068 0�067 0�068 0�005 1�000
0�287 1�1 0�958 0�951 0�931 0�068 0�067 0�068 0�114 1�006

M5: d = 3�P = 4 0�149 0�5 0�000 0�242 0�931 0�070 0�063 0�070 −2�669 9�069
0�179 0�6 0�123 0�682 0�936 0�066 0�062 0�066 −1�511 3�544
0�209 0�7 0�543 0�861 0�941 0�064 0�061 0�064 −0�901 1�903
0�238 0�8 0�799 0�910 0�939 0�062 0�060 0�062 −0�528 1�317
0�268 0�9 0�897 0�939 0�935 0�061 0�060 0�061 −0�266 1�086

hopt = 0�298 1�0 0�935 0�948 0�930 0�060 0�060 0�060 −0�060 1�000
0�328 1�1 0�947 0�948 0�918 0�059 0�059 0�059 0�125 1�005

a(i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt ; (ii) columns under CR report
coverage error for 95% confidence intervals; (iii) columns under IL report average interval length for 95% confidence intervals; and
(iv) columns B/SE and MSE report, respectively, simulation bias relative to simulation standard error and simulation mean squared
error of θ̂n(hn).

Supplemental Material. For implementation, we set K(u) = k(u1)k(u2) · · ·k(ud) for
u = (u1�u2� � � � � ud)

′ ∈ R
d , with k(·) a Pth-order univariate kernel, where k(v) = φ(v)

if P = 2 and k(v)= (3 − v2)φ(v)/2 if P = 4, and φ(v)= dΦ(v)/dv. Each table includes
coverage rates and average interval length for three 95% confidence intervals CIE0�95�CIN0�95,
and CIP0�95, as well as the bias divided by the square root of the simulation variance (B/SE)
and the mean squared error (MSE) of each estimator θ̂n. The simulations are time con-
suming because for each bandwidth and each simulation replication, we need to approx-
imate the standard (bootstrap) distribution of θ̂∗

n. For this reason, we focus exclusively
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TABLE III

SIMULATION RESULTS FOR MODELS M6–M10 (n= 1,000, B= 1,000, S = 1,000)a

BW CR IL

hn c E N P E N P B/SE MSE

M6: d = 1�P = 2 0�046 0�5 0�956 0�943 0�933 0�058 0�056 0�058 −0�095 1�004
0�055 0�6 0�956 0�945 0�937 0�058 0�056 0�058 −0�066 1�000
0�064 0�7 0�958 0�944 0�938 0�057 0�056 0�057 −0�040 0�999
0�074 0�8 0�958 0�945 0�938 0�057 0�056 0�057 −0�014 0�998
0�083 0�9 0�957 0�947 0�942 0�057 0�056 0�057 0�016 0�997

hopt = 0�092 1�0 0�958 0�946 0�943 0�057 0�056 0�057 0�048 1�000
0�101 1�1 0�958 0�944 0�941 0�057 0�056 0�057 0�084 1�009

M7: d = 1�P = 4 0�045 0�5 0�957 0�944 0�927 0�058 0�056 0�058 −0�143 1�001
0�053 0�6 0�959 0�944 0�933 0�058 0�056 0�058 −0�118 0�999
0�062 0�7 0�957 0�944 0�930 0�058 0�056 0�058 −0�102 1�005
0�071 0�8 0�958 0�944 0�934 0�058 0�056 0�058 −0�092 1�005
0�080 0�9 0�958 0�945 0�935 0�058 0�056 0�058 −0�088 1�000

hopt = 0�089 1�0 0�959 0�945 0�937 0�058 0�056 0�058 −0�084 1�000
0�098 1�1 0�957 0�945 0�937 0�058 0�056 0�058 −0�084 0�997

M8: d = 2�P = 2 0�054 0�5 0�116 0�674 0�896 0�065 0�066 0�065 −1�504 2�931
0�065 0�6 0�477 0�839 0�913 0�067 0�067 0�067 −0�952 1�761
0�075 0�7 0�730 0�915 0�913 0�068 0�067 0�068 −0�584 1�266
0�086 0�8 0�863 0�941 0�916 0�069 0�068 0�069 −0�315 1�054
0�097 0�9 0�927 0�950 0�915 0�069 0�068 0�069 −0�091 0�978

hopt = 0�108 1�0 0�953 0�951 0�903 0�070 0�069 0�070 0�113 1�000
0�118 1�1 0�960 0�940 0�890 0�070 0�070 0�070 0�308 1�100

M9: d = 2�P = 4 0�083 0�5 0�193 0�709 0�899 0�066 0�066 0�066 −1�408 2�433
0�099 0�6 0�533 0�830 0�912 0�067 0�067 0�067 −0�977 1�633
0�116 0�7 0�725 0�884 0�922 0�068 0�067 0�068 −0�731 1�294
0�132 0�8 0�817 0�910 0�926 0�068 0�067 0�068 −0�580 1�128
0�149 0�9 0�867 0�926 0�928 0�068 0�067 0�068 −0�479 1�047

hopt = 0�165 1�0 0�898 0�930 0�932 0�068 0�067 0�068 −0�417 1�000
0�182 1�1 0�914 0�941 0�934 0�068 0�067 0�068 −0�373 0�972

M10: d = 3�P = 4 0�119 0�5 0�000 0�008 0�832 0�065 0�068 0�065 −4�375 14�886
0�143 0�6 0�001 0�312 0�887 0�070 0�071 0�070 −2�441 5�643
0�167 0�7 0�138 0�675 0�913 0�073 0�072 0�073 −1�514 2�760
0�190 0�8 0�502 0�831 0�923 0�074 0�073 0�074 −0�989 1�696
0�214 0�9 0�753 0�909 0�927 0�075 0�074 0�075 −0�626 1�226

hopt = 0�238 1�0 0�883 0�935 0�933 0�076 0�075 0�076 −0�324 1�000
0�262 1�1 0�936 0�950 0�924 0�077 0�076 0�077 −0�029 0�938

a(i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt ; (ii) columns under CR report
coverage error for 95% confidence intervals; (iii) columns under IL report average interval length for 95% confidence intervals; and
(iv) columns B/SE and MSE report, respectively, simulation bias relative to simulation standard error and simulation mean squared
error of θ̂n(hn).

on a few low-dimension models, d ∈ {1�2�3}, although we did experiment with higher di-
mensions and found that the results reported herein are exacerbated as the dimension
increases, which is not surprising (given the structure of the “small” bandwidth bias) but
nevertheless important from a practical point of view.

Overall, the bootstrap-based confidence interval CIP0�95 performs better than its rivals
in the simulations. In particular, and as predicted by our theory, the automatic bias re-
duction property of CIP0�95 established in this paper for “small” bandwidths is found to



984 M. D. CATTANEO AND M. JANSSON

TABLE IV

SIMULATION RESULTS FOR MODELS M11–M15 (n= 1,000, B= 1,000, S = 1,000)a

BW CR IL

hn c E N P E N P B/SE MSE

M11: d = 1�P = 2 0�024 0�5 0�950 0�940 0�929 0�056 0�054 0�056 −0�224 1�033
0�029 0�6 0�956 0�943 0�928 0�056 0�054 0�056 −0�194 1�025
0�034 0�7 0�959 0�944 0�933 0�056 0�054 0�056 −0�176 1�014
0�039 0�8 0�959 0�946 0�931 0�056 0�054 0�056 −0�164 1�009
0�044 0�9 0�960 0�947 0�934 0�056 0�054 0�056 −0�156 1�007

hopt = 0�049 1�0 0�959 0�946 0�934 0�056 0�053 0�056 −0�153 1�000
0�054 1�1 0�960 0�946 0�932 0�055 0�053 0�055 −0�151 0�995

M12: d = 1�P = 4 0�039 0�5 0�964 0�943 0�931 0�057 0�054 0�057 −0�151 0�995
0�046 0�6 0�965 0�947 0�931 0�057 0�054 0�057 −0�127 0�997
0�054 0�7 0�966 0�953 0�932 0�057 0�054 0�057 −0�110 0�999
0�062 0�8 0�967 0�952 0�929 0�057 0�054 0�057 −0�101 1�002
0�069 0�9 0�965 0�952 0�933 0�057 0�054 0�057 −0�096 1�003

hopt = 0�077 1�0 0�965 0�952 0�934 0�056 0�054 0�056 −0�093 1�000
0�085 1�1 0�965 0�948 0�933 0�056 0�054 0�056 −0�093 0�992

M13: d = 2�P = 2 0�065 0�5 0�424 0�817 0�905 0�067 0�066 0�067 −1�052 1�845
0�078 0�6 0�719 0�898 0�916 0�068 0�067 0�068 −0�657 1�278
0�092 0�7 0�862 0�941 0�923 0�068 0�067 0�068 −0�382 1�025
0�105 0�8 0�923 0�950 0�924 0�069 0�067 0�069 −0�157 0�927
0�118 0�9 0�950 0�949 0�921 0�069 0�068 0�069 0�051 0�920

hopt = 0�131 1�0 0�963 0�941 0�910 0�070 0�069 0�070 0�259 1�000
0�144 1�1 0�955 0�922 0�884 0�070 0�070 0�070 0�480 1�182

M14: d = 2�P = 4 0�076 0�5 0�042 0�593 0�882 0�065 0�065 0�065 −1�750 2�937
0�091 0�6 0�334 0�766 0�903 0�067 0�066 0�067 −1�213 1�859
0�106 0�7 0�589 0�848 0�909 0�068 0�067 0�068 −0�913 1�395
0�122 0�8 0�735 0�886 0�918 0�068 0�067 0�068 −0�735 1�176
0�137 0�9 0�812 0�904 0�919 0�068 0�067 0�068 −0�624 1�062

hopt = 0�152 1�0 0�854 0�913 0�923 0�068 0�067 0�068 −0�559 1�000
0�167 1�1 0�875 0�919 0�927 0�068 0�067 0�068 −0�527 0�965

M15: d = 3�P = 4 0�109 0�5 0�000 0�000 0�750 0�059 0�066 0�059 −6�304 20�100
0�131 0�6 0�000 0�063 0�864 0�068 0�070 0�068 −3�478 7�287
0�152 0�7 0�005 0�412 0�904 0�072 0�072 0�072 −2�172 3�351
0�174 0�8 0�183 0�684 0�920 0�074 0�073 0�074 −1�477 1�915
0�196 0�9 0�490 0�813 0�926 0�075 0�073 0�075 −1�055 1�297

hopt = 0�218 1�0 0�714 0�884 0�927 0�075 0�074 0�075 −0�759 1�000
0�239 1�1 0�840 0�918 0�933 0�076 0�075 0�076 −0�518 0�821

a(i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt ; (ii) columns under CR report
coverage error for 95% confidence intervals; (iii) columns under IL report average interval length for 95% confidence intervals; and
(iv) columns B/SE and MSE report, respectively, simulation bias relative to simulation standard error and simulation mean squared
error of θ̂n(hn).

be quantitatively important. Furthermore, even when the bias appears to be small, CIP0�95
continues to exhibit good properties.

More specifically, our findings show that for d = 1, all three inference procedures per-
form well, as the bias highlighted in this paper is of relatively small importance. On the
other hand, and more importantly, for d = 2 we find an important bias for “small” band-
widths. This bias is accounted for when using the percentile bootstrap (i.e., CIP0�95), but
not when using the Efron’s bootstrap (i.e., CIE0�95) or the infeasible version of CIN0�95 that
employs the actual simulation (unknown in practice) variance of the estimator. Indeed,
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TABLE V

SIMULATION RESULTS FOR MODELS M16–M20 (n= 1,000, B= 1,000, S = 1,000)a

BW CR IL

hn c E N P E N P B/SE MSE

M16: d = 1�P = 2 0�022 0�5 0�934 0�946 0�929 0�067 0�065 0�067 −0�239 1�038
0�026 0�6 0�943 0�947 0�931 0�067 0�066 0�067 −0�174 1�018
0�030 0�7 0�948 0�948 0�934 0�067 0�066 0�067 −0�120 1�007
0�035 0�8 0�951 0�948 0�933 0�067 0�066 0�067 −0�069 0�999
0�039 0�9 0�955 0�949 0�938 0�067 0�066 0�067 −0�024 0�996

hopt = 0�043 1�0 0�956 0�949 0�934 0�067 0�066 0�067 0�020 1�000
0�048 1�1 0�957 0�949 0�938 0�067 0�066 0�067 0�065 1�003

M17: d = 1�P = 4 0�068 0�5 0�952 0�947 0�937 0�067 0�066 0�067 −0�113 0�994
0�081 0�6 0�954 0�948 0�938 0�067 0�066 0�067 −0�084 0�995
0�095 0�7 0�956 0�949 0�941 0�067 0�066 0�067 −0�058 0�994
0�108 0�8 0�956 0�950 0�940 0�067 0�066 0�067 −0�032 0�992
0�122 0�9 0�955 0�948 0�940 0�067 0�066 0�067 −0�004 0�994

hopt = 0�136 1�0 0�955 0�946 0�940 0�067 0�066 0�067 0�032 1�000
0�149 1�1 0�955 0�947 0�939 0�067 0�066 0�067 0�077 1�008

M18: d = 2�P = 2 0�040 0�5 0�125 0�670 0�895 0�061 0�062 0�061 −1�480 2�855
0�048 0�6 0�474 0�847 0�913 0�063 0�063 0�063 −0�937 1�723
0�056 0�7 0�726 0�911 0�917 0�064 0�064 0�064 −0�584 1�254
0�063 0�8 0�857 0�937 0�918 0�065 0�064 0�065 −0�320 1�055
0�071 0�9 0�921 0�952 0�917 0�065 0�065 0�065 −0�106 0�989

hopt = 0�079 1�0 0�948 0�952 0�908 0�066 0�066 0�066 0�093 1�000
0�087 1�1 0�959 0�941 0�902 0�066 0�066 0�066 0�279 1�077

M19: d = 2�P = 4 0�066 0�5 0�344 0�787 0�907 0�063 0�063 0�063 −1�193 2�079
0�079 0�6 0�634 0�872 0�913 0�064 0�063 0�064 −0�828 1�474
0�092 0�7 0�784 0�909 0�924 0�064 0�063 0�064 −0�615 1�218
0�105 0�8 0�856 0�926 0�929 0�064 0�064 0�064 −0�483 1�094
0�119 0�9 0�891 0�932 0�933 0�065 0�064 0�065 −0�390 1�037

hopt = 0�132 1�0 0�916 0�937 0�932 0�065 0�064 0�065 −0�328 1�000
0�145 1�1 0�929 0�941 0�934 0�065 0�064 0�065 −0�274 0�975

M20: d = 3�P = 4 0�079 0�5 0�000 0�000 0�347 0�045 0�053 0�045 −7�498 19�190
0�095 0�6 0�000 0�012 0�796 0�054 0�057 0�054 −4�172 7�176
0�111 0�7 0�000 0�260 0�868 0�059 0�060 0�059 −2�618 3�329
0�127 0�8 0�062 0�543 0�888 0�061 0�061 0�061 −1�813 1�902
0�143 0�9 0�300 0�729 0�904 0�062 0�062 0�062 −1�362 1�293

hopt = 0�158 1�0 0�542 0�809 0�915 0�063 0�062 0�063 −1�085 1�000
0�174 1�1 0�684 0�853 0�919 0�064 0�063 0�064 −0�902 0�848

a(i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt ; (ii) columns under CR report
coverage error for 95% confidence intervals; (iii) columns under IL report average interval length for 95% confidence intervals; and
(iv) columns B/SE and MSE report, respectively, simulation bias relative to simulation standard error and simulation mean squared
error of θ̂n(hn).

the ranking across inference procedures in terms of coverage is in perfect agreement with
our theoretical predictions.

8. CONCLUSION

This paper has developed “small bandwidth” asymptotic results for a large class of two-
step kernel-based semiparametric estimators. Our first main result, Theorem 1, differs
from those obtained in earlier work on semiparametric two-step estimators by accommo-
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TABLE VI

SIMULATION RESULTS FOR MODELS M21–M25 (n= 1,000, B= 1,000, S = 1,000)a

BW CR IL

hn c E N P E N P B/SE MSE

M21: d = 1�P = 2 0�018 0�5 0�954 0�946 0�935 0�066 0�063 0�066 −0�146 1�008
0�022 0�6 0�956 0�949 0�932 0�066 0�063 0�066 −0�106 1�010
0�025 0�7 0�957 0�948 0�932 0�066 0�063 0�066 −0�072 1�007
0�029 0�8 0�957 0�948 0�934 0�066 0�063 0�066 −0�042 1�004
0�033 0�9 0�958 0�947 0�938 0�065 0�063 0�065 −0�014 1�002

hopt = 0�036 1�0 0�958 0�950 0�940 0�065 0�063 0�065 0�014 1�000
0�040 1�1 0�958 0�951 0�940 0�065 0�063 0�065 0�043 1�001

M22: d = 1�P = 4 0�027 0�5 0�961 0�950 0�936 0�066 0�063 0�066 −0�126 0�995
0�033 0�6 0�961 0�949 0�932 0�066 0�064 0�066 −0�101 1�003
0�038 0�7 0�959 0�947 0�932 0�066 0�064 0�066 −0�087 1�004
0�044 0�8 0�958 0�948 0�931 0�066 0�064 0�066 −0�078 1�004
0�049 0�9 0�957 0�948 0�936 0�066 0�064 0�066 −0�074 1�002

hopt = 0�055 1�0 0�956 0�949 0�938 0�066 0�064 0�066 −0�071 1�000
0�060 1�1 0�956 0�947 0�939 0�065 0�064 0�065 −0�070 0�995

M23: d = 2�P = 2 0�033 0�5 0�013 0�473 0�874 0�053 0�053 0�053 −2�055 2�946
0�040 0�6 0�192 0�676 0�894 0�055 0�054 0�055 −1�484 1�861
0�046 0�7 0�438 0�775 0�904 0�056 0�054 0�056 −1�174 1�395
0�053 0�8 0�606 0�821 0�912 0�056 0�055 0�056 −0�992 1�175
0�060 0�9 0�709 0�851 0�910 0�056 0�055 0�056 −0�886 1�060

hopt = 0�066 1�0 0�766 0�876 0�909 0�056 0�055 0�056 −0�818 1�000
0�073 1�1 0�802 0�884 0�908 0�056 0�055 0�056 −0�777 0�962

M24: d = 2�P = 4 0�043 0�5 0�001 0�341 0�848 0�052 0�053 0�052 −2�395 3�862
0�052 0�6 0�078 0�619 0�882 0�055 0�054 0�055 −1�643 2�233
0�060 0�7 0�337 0�775 0�898 0�056 0�055 0�056 −1�229 1�545
0�069 0�8 0�557 0�838 0�909 0�057 0�055 0�057 −0�983 1�219
0�078 0�9 0�687 0�865 0�918 0�057 0�055 0�057 −0�854 1�067

hopt = 0�086 1�0 0�757 0�875 0�917 0�057 0�055 0�057 −0�788 1�000
0�095 1�1 0�792 0�883 0�912 0�057 0�055 0�057 −0�767 0�975

M25: d = 3�P = 4 0�060 0�5 0�000 0�000 0�000 0�022 0�033 0�022 −18�517 23�105
0�072 0�6 0�000 0�000 0�122 0�033 0�042 0�033 −8�922 8�607
0�084 0�7 0�000 0�001 0�665 0�041 0�046 0�041 −5�296 3�754
0�096 0�8 0�000 0�050 0�800 0�047 0�049 0�047 −3�587 1�982
0�108 0�9 0�000 0�228 0�825 0�049 0�050 0�049 −2�723 1�284

hopt = 0�120 1�0 0�020 0�351 0�812 0�051 0�051 0�051 −2�316 1�000
0�132 1�1 0�082 0�406 0�775 0�052 0�052 0�052 −2�160 0�906

a(i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt ; (ii) columns under CR report
coverage error for 95% confidence intervals; (iii) columns under IL report average interval length for 95% confidence intervals; and
(iv) columns B/SE and MSE report, respectively, simulation bias relative to simulation standard error and simulation mean squared
error of θ̂n(hn).

dating a nonnegligible bias. A noteworthy feature of the assumptions of this theorem is
that reliance on a commonly employed stochastic equicontinuity condition is avoided. The
second main result, Theorem 2, shows that the bootstrap provides an automatic method
of correcting for the bias even when it is nonnegligible.

The findings of this paper are pointwise in two distinct respects. First, the distribution
of observables is held fixed when developing large sample theory. Second, the results
are obtained for a fixed bandwidth sequence. It would be of interest to develop uniform
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versions of Theorems 1 and 2 along the lines of Romano and Shaikh (2012) and Einmahl
and Mason (2005), respectively.

Although the size of the class of estimators covered by our results is nontrivial, it would
be of interest to explore whether conclusions analogous to ours can be obtained for semi-
parametric two-step estimators whose first step involves other types of nonparametric es-
timators (e.g., sieve estimators of M-regression functions, possibly after model selection
as in Belloni, Chernozhukov, Fernández-Val, and Hansen (2017) and references therein).
In this paper, we focus on kernel-based estimators because of their analytical tractability,
but we conjecture that our results can be extended to cover other nonparametric first-step
estimators. In future work, we intend to attempt to substantiate this conjecture.

APPENDIX A: PROOFS

A.1. Proof of Theorem 1

The proof is elementary:

√
n(θ̂n − θ0 −JnBn) = [

J0 + o(1)] 1√
n

n∑
i=1

[
gn

(
zi� γ̂

(i)
n

) −Bn
] + oP(1)

= [
J0 + o(1)] 1√

n

n∑
i=1

[
gn(zi� γn)+ Ḡn

(
γ̂(i)n

) − Ḡn(γn)−Bn
] + oP(1)

�N
(
0�J0Ω0J ′

0

)
�

where the first equality uses Condition AL and (4), the second equality uses Condition AS,
and the last line uses Condition AN.

A.2. Proof of Theorem 2

The proof is elementary:
√
n
(
θ̂∗
n − θ̂n −J ∗

n B∗
n

)
= [

J ∗
0 + o(1)] 1√

n

n∑
i=1

[
g∗
n

(
z∗
i�n� γ̂

∗�(i)
n

) −B∗
n

] + oP(1)

= [
J ∗

0 + o(1)] 1√
n

n∑
i=1

[
g∗
n

(
z∗
i�n� γ̂n

) + Ḡ∗
n

(
γ̂∗�(i)
n

) − Ḡ∗
n(γ̂n)−B∗

n

] + oP(1)

�P N
(
0�J ∗

0 Ω
∗
0J ∗′

0

)
�

where the first equality uses Condition AL* and (9), the second equality uses Condi-
tion AS*, and the last line uses Condition AN*.

A.3. Proof of Lemma 1

Using (iv), (vi), and Ġ(γ̂n)′ŴnĠ(γ̂n)→P Ġ
′
0W0Ġ0 > 0, we have

(Ĵn −Jn)Ĝn(θ0� γ̂n)= oP

(
n−1/2

)
� Ĵn = −[

Ġ(γ̂n)
′ŴnĠ(γ̂n)

]−1
Ġ(γ̂n)

′Ŵn�
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As a consequence, it suffices to show that θ̂n − θ0 − ĴnĜn(θ0� γ̂n) = oP(n
−1/2). To do so,

let

Ln(θ)= Ġ(γ̂n)′Ŵn

[
Ĝn(θ0� γ̂n)+ Ġ(γ̂n)(θ− θ0)

]
�

Because Ġ(γ̂n)′ŴnĠ(γ̂n)→P Ġ
′
0W0Ġ0 > 0 and

Ln(θ̂n)= Ġ(γ̂n)′ŴnĠ(γ̂n)
[
θ̂n − θ0 − ĴnĜn(θ0� γ̂n)

]
�

it suffices to show that Ln(θ̂n)= oP(n
−1/2).

If θ̂n − θ0 =OP(n
−1/ρ), then∥∥G(θ̂n� γ̂n)−G(θ0� γ̂n)− Ġ(γ̂n)(θ̂n − θ0)

∥∥ = ‖θ̂n − θ0‖ρ/2oP(1)= oP

(
n−1/2

)
and ∥∥Ĝn(θ̂n� γ̂n)−G(θ̂n� γ̂n)− Ĝn(θ0� γ̂n)+G(θ0� γ̂n)

∥∥ = oP

(
n−1/2

)
by (ii) and (vii), respectively. As a consequence, by the triangle inequality,∥∥Ln(θ̂n)∥∥ ≤ ∥∥Ġ(γ̂n)′Ŵn

∥∥∥∥Ĝn(θ̂n� γ̂n)−G(θ̂n� γ̂n)− Ĝn(θ0� γ̂n)+G(θ0� γ̂n)
∥∥

+ ∥∥Ġ(γ̂n)′Ŵn
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(
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where the equality uses ‖Ġ(γ̂n)′Ŵn‖ = OP(1) and Ġ(γ̂n)′ŴnĜn(θ̂n� γ̂n) = oP(n
−1/2). The

proof can therefore be completed by showing that θ̂n − θ0 =OP(n
−1/ρ).

Proof of θ̂n − θ0 = OP(n
−1/ρ). Because θ̂n − θ0 = oP(1), Ŵ 1/2

n Ġ(γ̂n)−W 1/2
0 Ġ0 = oP(1),

and Ġ′
0W0Ġ0 > 0, condition (ii) implies that
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n

[
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n Ĝn(θ̂n� γ̂n)=OP(n
−1/ρ) because
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]∥∥
≤ ∥∥Ŵ 1/2

n

[
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+ ∥∥Ŵ 1/2
n Ĝn(θ̂n� γ̂n)

∥∥ + ∥∥Ŵ 1/2
n Ĝn(θ0� γ̂n)

∥∥
=OP
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where the inequality uses the triangle inequality and the equality uses (iv).

A.4. Verifying Ġ(γ̂n)′ŴnĜn(θ̂n� γ̂n)= oP(n
−1/2)

Suppose the conditions of Lemma 1 are satisfied, with the possible exception of

Ġ(γ̂n)
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Ġ(γ̂n)
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nŴnRn + oP

(
n−1

)
�

which rearranges as
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Ġ(γ̂n)

′Ŵn
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Ġ(γ̂n)
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The desired result therefore follows if either

Ŵn − ŴnĠ(γ̂n)
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Ġ(γ̂n)

′ŴnĠ(γ̂n)
]−1
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A.5. Proof of Lemma 2
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n )− ḡn(zi� γn)+ Ḡn(γn)] has mean zero,

so it suffices to show that its variance converges to zero. Using the decomposition

1√
n

n∑
i=1

[
ḡn

(
zi� γ̂

(i)
n

) − Ḡn

(
γ̂(i)n

) − ḡn(zi� γn)+ Ḡn(γn)
]

= 1√
n(n− 1)

n∑
i=1

n∑
j=1�j �=i

(
gn�γ(zi)

[
γ̂jn − γn

] −Gn�γ

[
γ̂jn − γn

])

+ 1
2
√
n(n− 1)2

n∑
i=1

n∑
j=1�j �=i

(
gn�γγ(zi)

[
γ̂jn − γn� γ̂jn − γn

] −Gn�γγ

[
γ̂jn − γn� γ̂jn − γn

])

+ 1
2
√
n(n− 1)2

n∑
i=1

n∑
j=1�j �=i

n∑
k=1�k/∈{i�j}

(
gn�γγ(zi)

[
γ̂jn − γn� γ̂kn − γn

]

−Gn�γγ

[
γ̂jn − γn� γ̂kn − γn

])
�

and Hoeffding’s theorem for U-statistics, we have

V

(
1√
n

n∑
i=1

[
ḡn

(
zi� γ̂

(i)
n

) − Ḡn

(
γ̂(i)n

) − ḡn(zi� γn)+ Ḡn(γn)
])

= 1
n
O

(
V

(
gn�γ(zi)

[
γ̂jn − γn

])) + 1
n2O

(
V

(
gn�γγ(zi)

[
γ̂jn − γn� γ̂kn − γn

]))
+ 1
n2O

(
V

[
E

(
gn�γγ(zi)

[
γ̂jn − γn� γ̂jn − γn

]|zi)]) + 1
n3O

(
V

(
gn�γγ(zi)

[
γ̂jn − γn� γ̂jn − γn

]))
= o(1)�

where the last equality uses the assumptions displayed in the statement of the lemma.
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A.6. Proof of Lemma 3

Because

1√
n

n∑
i=1

Gn�γγ

[
γ̂(i)n − γn� γ̂(i)n − γn

]

= 1
(n− 1)2

n∑
i=1

n∑
j=1�j �=i

Gn�γγ

[
γ̂jn − γn� γ̂jn − γn

]

+ 1
(n− 1)2

n∑
i=1

n∑
j=1�j �=i

n∑
k=1�k/∈{i�j}

Gn�γγ

[
γ̂jn − γn� γ̂kn − γn

]

= 1
n− 1

n∑
i=1

Gn�γγ

[
γ̂in − γn� γ̂in − γn

]

+ n− 2
(n− 1)2

n∑
i=1

n∑
j=1�j �=i

Gn�γγ

[
γ̂in − γn� γ̂jn − γn

]
�

it follows from Hoeffding’s theorem for U-statistics that if the assumptions displayed in
the statement of the lemma are satisfied, then

V(
√
nB̂n)= 1

n2O
(
V

(
Gn�γγ

[
γ̂in − γn� γ̂in − γn

])) + 1
n
O

(
V

(
Gn�γγ

[
γ̂in − γn� γ̂jn − γn

])) = o(1)�

implying in particular that
√
n(B̂n −EB̂n)= oP(1).

If also (10) is satisfied, then Condition AN holds with Ω0 = V[ψ0(z)] and any Bn =
EB̂n + o(n−1/2) because

1√
n

n∑
i=1

[
gn(zi� γn)+ Ḡn

(
γ̂(i)n

) − Ḡn(γn)−Bn
]

= 1√
n

n∑
i=1

ψn(zi)+ √
n(B̂n −EB̂n)+ √

n(EB̂n −Bn)

= 1√
n

n∑
i=1

ψ0(zi)+ oP(1)�N (0�Ω0)�

A.7. Proof of Lemma 4

Using (iv*), (vi*), and Ġ(γ̂∗
n)

′Ŵ ∗
n Ġ(γ̂

∗
n)→P Ġ

′
0W0Ġ0 > 0, we have

(
Ĵ ∗
n −Jn

)
Ĝ∗
n

(
θ̂n� γ̂

∗
n

) = oP

(
n−1/2

)
� Ĵ ∗

n = −[
Ġ

(
γ̂∗
n

)′
Ŵ ∗
n Ġ

(
γ̂∗
n

)]−1
Ġ

(
γ̂∗
n

)′
Ŵ ∗
n �

As a consequence, it suffices to show that θ̂∗
n − θ̂n − Ĵ ∗

n Ĝ
∗
n(θ̂n� γ̂

∗
n)= oP(n

−1/2). To do so,
let

L∗
n(θ)= Ġ(

γ̂∗
n

)′
Ŵ ∗
n

[
Ĝ∗
n

(
θ̂n� γ̂

∗
n

) + Ġ(
γ̂∗
n

)
(θ− θ̂n)

]
�
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Because Ġ(γ̂∗
n)

′Ŵ ∗
n Ġ(γ̂

∗
n)→P Ġ

′
0W0Ġ0 > 0 and

L∗
n

(
θ̂∗
n

) = Ġ(
γ̂∗
n

)′
Ŵ ∗
n Ġ

(
γ̂∗
n

)[
θ̂∗
n − θ̂n − Ĵ ∗

n Ĝ
∗
n

(
θ̂n� γ̂

∗
n

)]
�

it suffices to show that L∗
n(θ̂

∗
n)= oP(n

−1/2).
Because θ̂n − θ0 =OP(n

−1/ρ),∥∥G(
θ̂n� γ̂

∗
n

) −G(
θ0� γ̂

∗
n

) − Ġ(γ̂n)(θ̂n − θ0)
∥∥ = ‖θ̂n − θ0‖ρ/2oP(1)

= oP

(
n−1/2

)
and ∥∥Ĝ∗

n

(
θ̂n� γ̂

∗
n

) −G(
θ̂n� γ̂

∗
n

) − Ĝ∗
n

(
θ0� γ̂

∗
n

) +G(
θ0� γ̂

∗
n

)∥∥ = oP

(
n−1/2

)
by (ii*) and (vii*), respectively. If also θ̂∗

n − θ0 =OP(n
−1/ρ), then

∥∥G(
θ̂∗
n� γ̂

∗
n

) −G(
θ0� γ̂

∗
n

) − Ġ(
γ̂∗
n

)(
θ̂∗
n − θ0

)∥∥ = ∥∥θ̂∗
n − θ0

∥∥ρ/2oP(1)= oP

(
n−1/2

)
and ∥∥Ĝ∗

n

(
θ̂∗
n� γ̂

∗
n

) −G(
θ̂∗
n� γ̂

∗
n

) − Ĝ∗
n

(
θ0� γ̂

∗
n

) +G(
θ0� γ̂

∗
n

)∥∥ = oP

(
n−1/2

)
by (ii*) and (vii*), respectively. As a consequence, by the triangle inequality,

∥∥L∗
n

(
θ̂∗
n

)∥∥ ≤ ∥∥Ġ(
γ̂∗
n

)′
Ŵ ∗
n

∥∥∥∥Ĝ∗
n

(
θ̂n� γ̂

∗
n

) −G(
θ̂n� γ̂

∗
n

) − Ĝ∗
n

(
θ0� γ̂

∗
n

) +G(
θ0� γ̂

∗
n

)∥∥
+ ∥∥Ġ(

γ̂∗
n

)′
Ŵ ∗
n

∥∥∥∥G(
θ̂n� γ̂

∗
n

) −G(
θ0� γ̂

∗
n

) − Ġ(γ̂n)(θ̂n − θ0)
∥∥

+ ∥∥Ġ(
γ̂∗
n

)′
Ŵ ∗
n

∥∥∥∥Ĝ∗
n

(
θ̂∗
n� γ̂

∗
n

) −G(
θ̂∗
n� γ̂

∗
n

) − Ĝ∗
n

(
θ0� γ̂

∗
n

) +G(
θ0� γ̂

∗
n

)∥∥
+ ∥∥Ġ(γ̂n)′Ŵn

∥∥∥∥G(
θ̂∗
n� γ̂

∗
n

) −G(
θ0� γ̂

∗
n

) − Ġ(
γ̂∗
n

)(
θ̂∗
n − θ0

)∥∥
+ ∥∥Ġ(

γ̂∗
n

)′
Ŵ ∗
n Ĝ

∗
n

(
θ̂∗
n� γ̂

∗
n

)∥∥
= oP

(
n−1/2

)
�

where the equality uses ‖Ġ(γ̂∗
n)

′Ŵ ∗
n ‖ = OP(1) and Ġ(γ̂∗

n)
′Ŵ ∗

n Ĝ
∗
n(θ̂

∗
n� γ̂

∗
n) = oP(n

−1/2). The
proof can therefore be completed by showing that θ̂∗

n − θ0 =OP(n
−1/ρ).

Proof of θ̂∗
n−θ0 =OP(n

−1/ρ). Because θ̂∗
n−θ0 = oP(1) and Ŵ 1/2

n Ġ(γ̂∗
n)−W 1/2

0 Ġ0 = oP(1),
condition (ii*) implies that

∥∥θ̂∗
n − θ0

∥∥ ≤ ∥∥Ŵ ∗1/2
n

[
G

(
θ̂∗
n� γ̂

∗
n

) −G(
θ0� γ̂

∗
n

)]∥∥OP(1)�

so it suffices to show that Ŵ ∗1/2
n [G(θ̂∗

n� γ̂
∗
n)−G(θ0� γ̂

∗
n)] ≤OP(n

−1/ρ)+ ‖θ̂∗
n − θ0‖oP(1).

Using (i*) and (iv*), we have Ŵ ∗1/2
n Ĝ∗

n(θ̂
∗
n� γ̂

∗
n)=OP(n

−1/ρ) because

Ĝ∗
n

(
θ̂∗
n� γ̂

∗
n

)′
Ŵ ∗
n Ĝ

∗
n

(
θ̂∗
n� γ̂

∗
n

) ≤ Ĝ∗
n

(
θ0� γ̂

∗
n

)′
Ŵ ∗
n Ĝ

∗
n

(
θ0� γ̂

∗
n

) + oP

(
n−1

)
=OP

(
n−2/ρ

)
�
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Also, using θ̂∗
n − θ0 = oP(1) and (iii*),

∥∥Ŵ ∗1/2
n

[
Ĝ∗
n

(
θ̂∗
n� γ̂

∗
n

) −G(
θ̂∗
n� γ̂

∗
n

) − Ĝ∗
n

(
θ0� γ̂

∗
n

) +G(
θ0� γ̂

∗
n

)]∥∥
= oP

(
n−1/ρ

) + ∥∥θ̂∗
n − θ0

∥∥oP(1)�

so ∥∥Ŵ ∗1/2
n

[
G

(
θ̂∗
n� γ̂

∗
n

) −G(
θ0� γ̂

∗
n

)]∥∥
≤ ∥∥Ŵ ∗1/2

n

[
Ĝ∗
n

(
θ̂∗
n� γ̂

∗
n

) −G(
θ̂∗
n� γ̂

∗
n

) − Ĝ∗
n

(
θ0� γ̂

∗
n

) +G(
θ0� γ̂

∗
n

)]∥∥
+ ∥∥Ŵ ∗1/2

n Ĝ∗
n

(
θ̂∗
n� γ̂

∗
n

)∥∥ + ∥∥Ŵ ∗1/2
n Ĝ∗

n

(
θ0� γ̂

∗
n

)∥∥
=OP

(
n−1/ρ

) + ‖θ̂n − θ0‖oP(1)�

where the inequality uses the triangle inequality and the equality uses (iv*).

A.8. Proof of Lemma 5

By construction,

E
∗
(

1√
n

n∑
i=1

[
ḡ∗
n

(
z∗
i�n� γ̂

∗�(i)
n

) − Ḡ∗
n

(
γ̂∗�(i)
n

) − ḡ∗
n

(
z∗
i�n� γ̂n

) + Ḡ∗
n(γ̂n)

]) = 0�

Moreover, using the decomposition

1√
n

n∑
i=1

[
ḡ∗
n

(
z∗
i�n� γ̂

∗�(i)
n

) − Ḡ∗
n

(
γ̂∗�(i)
n

) − ḡ∗
n

(
z∗
i�n� γ̂n

) + Ḡ∗
n(γ̂n)

]

= 1√
n(n− 1)

n∑
i=1

n∑
j=1�j �=i

(
g∗
n�γ

(
z∗
i�n

)[
γ̂∗�j
n − γ̂n

] −G∗
n�γ

[
γ̂∗�j
n − γ̂n

])

+ 1
2
√
n(n− 1)2

n∑
i=1

n∑
j=1�j �=i

(
g∗
n�γγ

(
z∗
i�n

)[
γ̂∗�j
n − γ̂n� γ̂∗�j

n − γ̂n
]

−G∗
n�γγ

[
γ̂∗�j
n − γ̂n� γ̂∗�j

n − γ̂n
])

+ 1
2
√
n(n− 1)2

n∑
i=1

n∑
j=1�j �=i

n∑
k=1�k/∈{i�j}

(
g∗
n�γγ

(
z∗
i�n

)[
γ̂∗�j
n − γ̂n� γ̂∗�k

n − γ̂n
]

−G∗
n�γγ

[
γ̂∗�j
n − γ̂n� γ̂∗�k

n − γ̂n
])
�

and proceeding as in the proof of Lemma 2, it follows from the assumptions displayed in
the statement of Lemma 5 that

V
∗
(

1√
n

n∑
i=1

[
ḡn

(
zi� γ̂

(i)
n

) − Ḡn

(
γ̂(i)n

) − ḡn(zi� γn)+ Ḡn(γn)
]) = oP(1)�
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A.9. Proof of Lemma 6

Because

1√
n

n∑
i=1

G∗
n�γγ

[
γ̂∗�(i)
n − γ̂n� γ̂∗�(i)

n − γ̂n
] = 1

n− 1

n∑
i=1

G∗
n�γγ

[
γ̂∗�i
n − γ̂n� γ̂∗�i

n − γ̂n
]

+ n− 2
(n− 1)2

n∑
i=1

n∑
j=1�j �=i

G∗
n�γγ

[
γ̂∗�i
n − γ̂n� γ̂∗�j

n − γ̂n
]
�

it follows from Hoeffding’s theorem for U-statistics that if the assumptions displayed in
the statement of the lemma are satisfied, then

√
n
(
B̂∗
n −EB̂∗

n

) = √
n
(
B̂∗
n −E

∗B̂∗
n

) + √
n
(
E

∗B̂∗
n −EB̂∗

n

) = oP(1)�

and therefore

1√
n

n∑
i=1

[
g∗
n

(
z∗
i�n� γ̂n

) + Ḡ∗
n

(
γ̂(i)n

) − Ḡ∗
n(γ̂n)−B∗

n

] = 1√
n

n∑
i=1

ψ∗
n

(
z∗
i�n

) + oP(1)

for any B∗
n = EB̂∗

n + o(n−1/2). If also (12) is satisfied, then

1√
n

n∑
i=1

ψ∗
n

(
z∗
i�n

) = 1√
n

n∑
i=1

ψn
(
z∗
i�n

) − 1√
n

n∑
i=1

ψn(zi)+ oP(1)

= 1√
n

n∑
i=1

ψ0

(
z∗
i�n

) − 1√
n

n∑
i=1

ψ0(zi�n)+ oP(1)�P N (0�Ω0)�

where the second equality uses (10).
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