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Abstract

A kernel method for realizing Bayes’ rule is proposed, based on representations of probabilities

in reproducing kernel Hilbert spaces. Probabilities are uniquely characterized by the mean of the

canonical map to the RKHS. The prior and conditional probabilities are expressed in terms of

RKHS functions of an empirical sample: no explicit parametric model is needed for these quan-

tities. The posterior is likewise an RKHS mean of a weighted sample. The estimator for the

expectation of a function of the posterior is derived, and rates of consistency are shown. Some rep-

resentative applications of the kernel Bayes’ rule are presented, including Bayesian computation

without likelihood and filtering with a nonparametric state-space model.

Keywords: kernel method, Bayes’ rule, reproducing kernel Hilbert space

1. Introduction

Kernel methods have long provided powerful tools for generalizing linear statistical approaches to

nonlinear settings, through an embedding of the sample to a high dimensional feature space, namely

a reproducing kernel Hilbert space (RKHS) (Schölkopf and Smola, 2002). Examples include sup-

port vector machines, kernel PCA, and kernel CCA, among others. In these cases, data are mapped

via a canonical feature map to a reproducing kernel Hilbert space (of high or even infinite dimen-

sion), in which the linear operations that define the algorithms are implemented. The inner product

between feature mappings need never be computed explicitly, but is given by a positive definite

kernel function unique to the RKHS: this permits efficient computation without the need to deal

explicitly with the feature representation.

The mappings of individual points to a feature space may be generalized to mappings of prob-

ability measures (e.g., Berlinet and Thomas-Agnan, 2004, Chapter 4). We call such mappings the
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kernel means of the underlying random variables. With an appropriate choice of positive definite

kernel, the kernel mean on the RKHS uniquely determines the distribution of the variable (Fukumizu

et al., 2004, 2009a; Sriperumbudur et al., 2010), and statistical inference problems on distributions

can be solved via operations on the kernel means. Applications of this approach include homo-

geneity testing (Gretton et al., 2007; Harchaoui et al., 2008; Gretton et al., 2009a, 2012), where

the empirical means on the RKHS are compared directly, and independence testing (Gretton et al.,

2008, 2009b), where the mean of the joint distribution on the feature space is compared with that

of the product of the marginals. Representations of conditional dependence may also be defined in

RKHS, and have been used in conditional independence tests (Fukumizu et al., 2008; Zhang et al.,

2011).

In this paper, we propose a novel, nonparametric approach to Bayesian inference, making use

of kernel means of probabilities. In applying Bayes’ rule, we compute the posterior probability of x

in X given observation y in Y ;

q(x|y) = p(y|x)π(x)
qY (y)

, (1)

where π(x) and p(y|x) are the density functions of the prior and the likelihood of y given x, re-

spectively, with respective base measures νX and νY , and the normalization factor qY (y) is given

by

qY (y) =
∫

p(y|x)π(x)dνX (x).

Our main result is a nonparametric estimate of posterior kernel mean, given kernel mean represen-

tations of the prior and likelihood. We call this method kernel Bayes’ rule.

A valuable property of the kernel Bayes’ rule is that the kernel posterior mean is estimated

nonparametrically from data. The prior is represented by a weighted sum over a sample, and the

probabilistic relation expressed by the likelihood is represented in terms of a sample from a joint

distribution having the desired conditional probability. This confers an important benefit: we can

still perform Bayesian inference by making sufficient observations on the system, even in the ab-

sence of a specific parametric model of the relation between variables. More generally, if we can

sample from the model, we do not require explicit density functions for inference. Such situations

are typically seen when the prior or likelihood is given by a random process: Approximate Bayesian

Computation (Tavaré et al., 1997; Marjoram et al., 2003; Sisson et al., 2007) is widely applied in

population genetics, where the likelihood is expressed as a branching process, and nonparametric

Bayesian inference (Müller and Quintana, 2004) often uses a process prior with sampling methods.

Alternatively, a parametric model may be known, however it might be of sufficient complexity to

require Markov chain Monte Carlo or sequential Monte Carlo for inference. The present kernel

approach provides an alternative strategy for Bayesian inference in these settings. We demonstrate

consistency for our posterior kernel mean estimate, and derive convergence rates for the expectation

of functions computed using this estimate.

An alternative to the kernel mean representation would be to use nonparametric density esti-

mates for the posterior. Classical approaches include kernel density estimation (KDE) or distribu-

tion estimation on a finite partition of the domain. These methods are known to perform poorly

on high dimensional data, however. In addition, computation of the posterior with KDE requires

importance weights, which may not be accurate in low density areas. By contrast, the proposed

kernel mean representation is defined as an integral or moment of the distribution, taking the form

of a function in an RKHS. Thus, it is more akin to the characteristic function approach (see, e.g.,
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Kankainen and Ushakov, 1998) to representing probabilities. A well conditioned empirical estimate

of the characteristic function can be difficult to obtain, especially for conditional probabilities. By

contrast, the kernel mean has a straightforward empirical estimate, and conditioning and marginal-

ization can be implemented easily, at a reasonable computational cost.

The proposed method of realizing Bayes’ rule is an extension of the approach used by Song

et al. (2009) for state-space models. In this earlier work, a heuristic approximation was used, where

the kernel mean of the new hidden state was estimated by adding kernel mean estimates from the

previous hidden state and the observation. Another relevant work is the belief propagation approach

in Song et al. (2010a, 2011), which covers the simpler case of a uniform prior.

This paper is organized as follows. We begin in Section 2 with a review of RKHS terminology

and of kernel mean embeddings. In Section 3, we derive an expression for Bayes’ rule in terms

of kernel means, and provide consistency guarantees. We apply the kernel Bayes’ rule in Section

4 to various inference problems, with numerical results and comparisons with existing methods in

Section 5. Our proofs are contained in Section 6 (including proofs of the consistency results of

Section 3).

2. Preliminaries: Positive Definite Kernels and Probabilities

Throughout this paper, all Hilbert spaces are assumed to be separable. For an operator A on a Hilbert

space, the range is denoted by R (A). The linear hull of a subset S in a vector space is denoted by

SpanS.

We begin with a review of positive definite kernels, and of statistics on the associated reproduc-

ing kernel Hilbert spaces (Aronszajn, 1950; Berlinet and Thomas-Agnan, 2004; Fukumizu et al.,

2004, 2009a). Given a set Ω, a (R-valued) positive definite kernel k on Ω is a symmetric kernel

k : Ω×Ω → R such that ∑n
i, j=1 cic jk(xi,x j) ≥ 0 for arbitrary number of points x1, . . . ,xn in Ω and

real numbers c1, . . . ,cn. The matrix (k(xi,x j))
n
i, j=1 is called a Gram matrix. It is known by the

Moore-Aronszajn theorem (Aronszajn, 1950) that a positive definite kernel on Ω uniquely defines a

Hilbert space H consisting of functions on Ω such that the following three conditions hold:

(i) k(·,x) ∈ H for any x ∈ Ω,

(ii) Span{k(·,x) | x ∈ Ω} is dense in H ,

(iii) 〈 f ,k(·,x)〉 = f (x) for any x ∈ Ω and f ∈ H (the reproducing property), where 〈·, ·〉 is the

inner product of H .

The Hilbert space H is called the reproducing kernel Hilbert space (RKHS) associated with k, since

the function kx = k(·,x) serves as the reproducing kernel 〈 f ,kx〉= f (x) for f ∈ H .

A positive definite kernel on Ω is said to be bounded if there is M > 0 such that k(x,x)≤ M for

any x ∈ Ω.

Let (X ,BX ) be a measurable space, X be a random variable taking values in X with distribution

PX , and k be a measurable positive definite kernel on X such that E[
√

k(X ,X)]< ∞. The associated

RKHS is denoted by H . The kernel mean mk
X (also written mk

PX
) of X on the RKHS H is defined by

the mean of the H -valued random variable k(·,X). The existence of the kernel mean is guaranteed

by E[‖k(·,X)‖] = E[
√

k(X ,X)] < ∞. We will generally write mX in place of mk
X for simplicity,

where there is no ambiguity. By the reproducing property, the kernel mean satisfies the relation

〈 f ,mX〉= E[ f (X)] (2)
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for any f ∈ H . Plugging f = k(·,u) into this relation,

mX(u) = E[k(u,X)] =
∫

k(u, x̃)dPX (x̃), (3)

which shows the explicit functional form. The kernel mean mX is also denoted by mPX
, as it depends

only on the distribution PX with k fixed.

Let (X ,BX ) and (Y ,BY ) be measurable spaces, (X ,Y ) be a random variable on X ×Y with

distribution P, and kX and kY be measurable positive definite kernels with respective RKHS HX

and HY such that E[kX (X ,X)] < ∞ and E[kY (Y,Y )] < ∞. The (uncentered) covariance operator

CY X : HX → HY is defined as the linear operator that satisfies

〈g,CYX f 〉HY
= E[ f (X)g(Y )]

for all f ∈ HX ,g ∈ HY . This operator CY X can be identified with m(Y X) in the product space HY ⊗
HX , which is given by the product kernel kY kX on Y × X (Aronszajn, 1950), by the standard

identification between the linear maps and the tensor product. We also define CXX for the operator

on HX that satisfies 〈 f2,CXX f1〉 = E[ f2(X) f1(X)] for any f1, f2 ∈ HX . Similarly to Equation (3),

the explicit integral expressions for CY X and CXX are given by

(CY X f )(y) =
∫

kY (y, ỹ) f (x̃)dP(x̃, ỹ) and (CXX f )(x) =
∫

kX (x, x̃) f (x̃)dPX (x̃), (4)

respectively.

An important notion in statistical inference with positive definite kernels is the characteristic

property. A bounded measurable positive definite kernel k on a measurable space (Ω,B) is called

characteristic if the mapping from a probability Q on (Ω,B) to the kernel mean mk
Q ∈ H is in-

jective (Fukumizu et al., 2009a; Sriperumbudur et al., 2010). This is equivalent to assuming that

EX∼P[k(·,X)] = EX ′∼Q[k(·,X ′)] implies P=Q: probabilities are uniquely determined by their kernel

means on the associated RKHS. With this property, problems of statistical inference can be cast as

inference on the kernel means. A popular example of a characteristic kernel defined on Euclidean

space is the Gaussian RBF kernel k(x,y) = exp(−‖x− y‖2/(2σ2)). A bounded measurable positive

definite kernel on a measurable space (Ω,B) with corresponding RKHS H is characteristic if and

only if H +R is dense in L2(P) for arbitrary probability P on (Ω,B), where H +R is the direct

sum of two RKHSs H and R (Aronszajn, 1950). This implies that the RKHS defined by a char-

acteristic kernel is rich enough to be dense in L2 space up to the constant functions. Other useful

conditions for a kernel to be characteristic can be found in Sriperumbudur et al. (2010), Fukumizu

et al. (2009b), and Sriperumbudur et al. (2011).

Throughout this paper, when positive definite kernels on a measurable space are discussed, the

following assumption is made:

(K) Positive definite kernels are bounded and measurable.

Under this assumption, the mean and covariance always exist for arbitrary probabilities.

Given i.i.d. sample (X1,Y1), . . . ,(Xn,Yn) with law P, the empirical estimators of the kernel mean

and covariance operator are given straightforwardly by

m̂
(n)
X =

1

n

n

∑
i=1

kX (·,Xi), Ĉ
(n)
Y X =

1

n

n

∑
i=1

kY (·,Yi)⊗ kX (·,Xi),
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where Ĉ
(n)
Y X is written in tensor form. These estimators are

√
n-consistent in appropriate norms,

and
√

n(m̂
(n)
X −mX) converges to a Gaussian process on HX (Berlinet and Thomas-Agnan, 2004,

Section 9.1). While we may use non-i.i.d. samples for numerical examples in Section 5, in our

theoretical analysis we always assume i.i.d. samples for simplicity.

3. Kernel Expression of Bayes’ Rule

We review Bayes’ rule and the notion of kernel conditional mean embeddings in Section 3.1. We

demonstrate that Bayes’ rule may be expressed in terms of these conditional mean embeddings. We

provide consistency results for the empirical estimators of the conditional mean embedding for the

posterior in Section 3.2.

3.1 Kernel Bayes’ Rule

We first review Bayes’ rule in a general form without using density functions, since the kernel

Bayes’ rule can be applied to situations where density functions are not available.

Let (X ,BX ) and (Y ,BY ) be measurable spaces, (Ω,A ,P) a probability space, and (X ,Y ) : Ω →
X ×Y be a (X ×Y -valued) random variable with distribution P. The marginal distribution of X

is denoted by PX . Suppose that Π is a probability measure on (X ,BX ), which serves as a prior

distribution. For each x ∈ X , let PY |x denote the conditional probability of Y given X = x; namely,

PY |x(B) = E[IB(Y )|X = x], where IB is the indicator function of a measurable set B ∈ BY .1 We

assume that the conditional probability PY |x is regular; namely, it defines a probability measure on

Y for each x. The prior Π and the family {PY |x | x ∈ X } defines the joint distribution Q on X ×Y

by

Q(A×B) =
∫

A
PY |x(B)dΠ(x) (5)

for any A ∈ BX and B ∈ BY , and its marginal distribution QY by

QY (B) = Q(X ×B).

Let (Z,W ) be a random variable on X ×Y with distribution Q. For y ∈ Y , the posterior probability

given y is defined by the conditional probability

QX |y(A) = E[IA(Z)|W = y] (A ∈ BX ). (6)

If the probability distributions have density functions with respect to a measure νX on X and νY on

Y , namely, if the p.d.f. of P and Π are given by p(x,y) and π(x), respectively, Equations (5) and

(6) are reduced to the well known form Equation (1). To make Bayesian inference meaningful, we

make the following assumption:

(A) The prior Π is absolutely continuous with respect to the marginal distribution PX .

1. The BX -measurable function PY |x(B) is always well defined. In fact, the finite measure µ(A) :=∫
{ω∈Ω|X(ω)∈A} IB(Y )dP on (X ,BX ) is absolutely continuous with respect to PX . The Radon-Nikodym theorem then

guarantees the existence of a BX -measurable function η(x) such that
∫
{ω∈Ω|X(ω)∈A} IB(Y )dP =

∫
A η(x)dPX (x). We

can define PY |x(B) := η(x). Note that PY |x(B) may not satisfy the σ-additivity in general. For details on conditional

probability, see, for example, Shiryaev (1995, §9).
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The conditional probability PY |x(B) can be uniquely determined only almost surely with respect to

PX . It is thus possible to define Q appropriately only if assumption (A) holds.

In ordinary Bayesian inference, we need only the conditional probability density (likelihood)

p(y|x) and prior π(x), and not the joint distribution P. In kernel methods, however, the information

on the relation between variables is expressed by covariance, which leads to finite sample estimates

in terms of Gram matrices, as we see below. It is then necessary to assume the existence of the

variable (X ,Y ) on X ×Y with probability P, which gives the conditional probability PY |x by con-

ditioning on X = x.

Let kX and kY be positive definite kernels on X and Y , respectively, with respective RKHS HX

and HY . The goal of this subsection is to derive an estimator of the kernel mean of posterior mQX |y.

The following theorem is fundamental to discuss conditional probabilities with positive definite

kernels.

Theorem 1 (Fukumizu et al., 2004) If E[g(Y )|X = ·] ∈ HX holds2 for g ∈ HY , then

CXX E[g(Y )|X = ·] =CXY g.

The above relation motivates to introduce a regularized approximation of the conditional expectation

(
CXX + εI)−1CXY g,

which is shown to converge to E[g(Y )|X = ·] in HX under appropriate assumptions, as we will see

later.

Using Theorem 1, we have the following result, which expresses the kernel mean of QY , and

implements the Sum Rule in terms of mean embeddings.

Theorem 2 (Song et al., 2009, Equation 6) Let mΠ and mQY
be the kernel means of Π in HX and

QY in HY , respectively. If CXX is injective,3 mΠ ∈ R (CXX), and E[g(Y )|X = ·] ∈ HX for any

g ∈ HY , then

mQY
=CY XC−1

XX mΠ, (7)

where C−1
XX mΠ denotes the function mapped to mΠ by CXX .

Proof Take f ∈ HX such that CXX f = mΠ. It follows from Theorem 1 that for any g ∈ HY ,

〈CY X f ,g〉= 〈 f ,CXY g〉= 〈 f ,CXX E[g(Y )|X = ·]〉= 〈CXX f ,E[g(Y )|X = ·]〉= 〈mΠ,E[g(Y )|X = ·]〉=
〈mQY

,g〉, which implies CY X f = mQY
.

As discussed by Song et al. (2009), we can regard the operator CY XC−1
XX as the kernel expression

of the conditional probability PY |x or p(y|x). Note, however, that the assumptions mΠ ∈ R (CXX)
and E[g(Y )|X = ·] ∈ HX may not hold in general; we can easily give counterexamples for the latter

in the case of Gaussian kernels.4 A regularized inverse (CXX + εI)−1 can be used to remove this

2. The assumption “E[g(Y )|X = ·] ∈ HX ” means that a version of the conditional expectation E[g(Y )|X = x] is included

in HX as a function of x.

3. Noting 〈CXX f , f 〉 = E[ f (X)2], it is easy to see that CXX is injective if X is a topological space, kX is a continuous

kernel, and Supp(PX ) = X , where Supp(PX ) is the support of PX .

4. Suppose that HX and HY are given by Gaussian kernel, and that X and Y are independent. Then, E[g(Y )|X = x] is

a constant function of x, which is known not to be included in a RKHS given by a Gaussian kernel (Steinwart and

Christmann, 2008, Corollary 4.44).
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strong assumption. An alternative way of obtaining the regularized conditional mean embedding

is as the solution to a vector-valued ridge regression problem, as proposed by Grünewälder et al.

(2012) and Grünewälder et al. (2013). A connection between conditional embeddings and ridge

regression was noted independently by Zhang et al. (2011, Section 3.5). Following Grünewälder

et al. (2013, Section 3.2), we seek a bounded linear operator F : HY → HX that minimizes the loss

Ec[F] = sup
‖h‖HY

≤1

E
(
E[h(Y )|X ]−〈Fh,kX (X , ·)〉HX

)2
,

where we take the supremum over the unit ball in HY to ensure worst-case robustness. Using the

Jensen and Cauchy-Schwarz inequalities, we may upper bound this as

Ec[F]≤ Eu[F] := E‖kY (Y, ·)−F∗[kX (X , ·)]‖2
HY

,

where F∗ denotes the adjoint of F . If we stipulate that5 F∗ ∈ HY ⊗HX , and regularize by the

squared Hilbert-Schmidt norm of F∗, we obtain the ridge regression problem

argmin
F∗∈HY ⊗HX

E‖kY (Y, ·)−F∗[kX (X , ·)]‖2
HY

+ ε‖F∗‖2
HS,

which has as its solution the regularized kernel conditional mean embedding. In the following, we

nonetheless use the unregularized version to derive a population expression of Bayes’ rule, use it as

a prototype for defining an empirical estimator, and prove its consistency.

Equation (7) has a simple interpretation if the probability density function or Radon-Nikodym

derivative dΠ/dPX is included in HX under Assumption (A). From Equation (3) we have mΠ(x) =∫
kX (x, x̃)dΠ(x̃) =

∫
kX (x, x̃)(dΠ/dPX )(x̃)dPX (x̃), which implies C−1

XX mΠ = dΠ/dPX from Equa-

tion (4) under the injective assumption of CXX . Thus Equation (7) is an operator expression of the

obvious relation

∫ ∫
kY (y, ỹ)dPY |x(ỹ)dΠ(x̃) =

∫
kY (y, ỹ)

( dΠ

dPX

)
(x̃)dP(x̃, ỹ).

In many applications of Bayesian inference, the probability conditioned on a particular value

should be computed. By plugging the point measure at x into Π in Equation (7), we have a popula-

tion expression6

E[kY (·,Y )|X = x] =CY XCXX
−1kX (·,x), (8)

or more rigorously we can consider a regularized inversion

E
reg
ε [kY (·,Y )|X = x] :=CY X(CXX + εI)−1kX (·,x) (9)

as an approximation of the conditional expectation E[kY (·,Y )|X = x]. Note that in the latter ex-

pression we do not need to assume kX (·,x) ∈ R (CXX), which is too strong in many situations. We

5. Note that more complex vector-valued RKHS are possible; see, for example, Micchelli and Pontil (2005).

6. The expression Equation (8) has been considered in Song et al. (2009, 2010a) as the kernel mean of the conditional

probability. It must be noted that for this case the assumption mΠ = k(·,x) ∈ R (CXX ) in Theorem 2 may not hold in

general. Suppose CXX hx = kX (·,x) were to hold for some hx ∈ HX . Taking the inner product with kX (·, x̃) would then

imply kX (x, x̃) =
∫

hx(x
′)kX (x̃,x

′)dPX (x
′), which is not possible for many popular kernels, including the Gaussian

kernel.

3759



FUKUMIZU, SONG AND GRETTON

will show in Theorem 8 that under some mild conditions a regularized empirical estimator based on

Equation (9) is a consistent estimator of E[kY (·,Y )|X = x].
To derive kernel realization of Bayes’ rule, suppose that we know the covariance operators CZW

and CWW for the random variable (Z,W ) ∼ Q, where Q is defined by Equation (5). The condi-

tional probability E[kX (·,Z)|W = y] is then exactly the kernel mean of the posterior distribution for

observation y ∈ Y . Equation (9) gives the regularized approximate of the kernel mean of posterior;

CZW (CWW +δI)−1kY (·,y), (10)

where δ is a positive regularization constant. The remaining task is thus to derive the covariance

operators CZW and CWW . This can be done by recalling that the kernel mean mQ =m(ZW ) ∈HX ⊗HY

can be identified with the covariance operator CZW : HY → HX by the standard identification of a

tensor ∑i fi ⊗ gi ( fi ∈ HX and gi ∈ HY ) and a Hilbert-Schmidt operator h 7→ ∑i gi〈 fi,h〉HX
. From

Theorem 2, the kernel mean mQ is given by the following tensor representation:

mQ =C(Y X)XC−1
XX mΠ ∈ HY ⊗HX ,

where the covariance operator C(Y X)X : HX →HY ⊗HX is defined by the random variable ((Y,X),X)
taking values on (Y ×X )×X . We can alternatively and more generally use an approximation by the

regularized inversion m
reg
Q = C(Y X)X(CXX + δ)−1mΠ, as in Equation (9). This expression provides

the covariance operator CZW . Similarly, the kernel mean m(WW ) on the product space HY ⊗HY is

identified with CWW , and the expression

m(WW ) =C(YY )XC−1
XX mΠ

gives a way of estimating the operator CWW .

The above argument can be rigorously implemented, if empirical estimators are considered. Let

(X1,Y1), . . . ,(Xn,Yn) be an i.i.d. sample with law P. Since we need to express the information in the

variables in terms of Gram matrices given by data points, we assume the prior is also expressed in

the form of an empirical estimate, and that we have a consistent estimator of mΠ in the form

m̂
(ℓ)
Π =

ℓ

∑
j=1

γ jkX (·,U j),

where U1, . . . ,Uℓ are points in X and γ j are the weights. The data points U j may or may not be a

sample from the prior Π, and negative values are allowed for γ j. Such negative weights may appear

in successive applications of the kernel Bayes rule, as in the state-space example of Section 4.3.

Based on Equation (9), the empirical estimators for m(ZW ) and m(WW ) are defined respectively by

m̂(ZW ) = Ĉ
(n)
(Y X)X

(
Ĉ
(n)
XX + εnI

)−1
m̂
(ℓ)
Π , m̂(WW ) = Ĉ

(n)
(YY )X

(
Ĉ
(n)
XX + εnI

)−1
m̂
(ℓ)
Π ,

where εn is the coefficient of the Tikhonov-type regularization for operator inversion, and I is the

identity operator. The empirical estimators ĈZW and ĈWW for CZW and CWW are identified with

m̂(ZW ) and m̂(WW ), respectively. In the following, GX and GY denote the Gram matrices (kX (Xi,X j))
and (kY (Yi,Yj)), respectively, and In is the identity matrix of size n.
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Proposition 3 The Gram matrix expressions of ĈZW and ĈWW are given by

ĈZW =
n

∑
i=1

µ̂ikX (·,Xi)⊗ kY (·,Yi) and ĈWW =
n

∑
i=1

µ̂ikY (·,Yi)⊗ kY (·,Yi),

respectively, where the common coefficient µ̂ ∈ R
n is

µ̂ =
(1

n
GX + εnIn

)−1

m̂Π, m̂Π,i = m̂Π(Xi) =
ℓ

∑
j=1

γ jkX (Xi,U j). (11)

The proof is similar to that of Proposition 4 below, and is omitted. The expressions in Proposition 3

imply that the probabilities Q and QY are estimated by the weighted samples {((Xi,Yi), µ̂i)}n
i=1 and

{(Yi, µ̂i)}n
i=1, respectively, with common weights. Since the weight µ̂i may be negative, the operator

inversion (ĈWW +δnI)−1 in Equation (10) may be impossible or unstable. We thus use another type

of Tikhonov regularization,7 resulting in the estimator

m̂QX |y := ĈZW

(
Ĉ2

WW +δnI
)−1

ĈWW kY (·,y). (12)

Proposition 4 For any y ∈ Y , the Gram matrix expression of m̂QX |y is given by

m̂QX |y = kT
X RX |Y kY (y), RX |Y := ΛGY ((ΛGY )

2 +δnIn)
−1Λ, (13)

where Λ = diag(µ̂) is a diagonal matrix with elements µ̂i in Equation (11), and kX ∈ HX
n

:= HX ×
·· ·×HX (n direct product) and kY ∈ HY

n
:= HY ×·· ·×HY are given by

kX = (kX (·,X1), . . . ,kX (·,Xn))
T and kY = (kY (·,Y1), . . . ,kY (·,Yn))

T .

Proof Let h= (Ĉ2
WW +δnI)−1ĈWW kY (·,y), and decompose it as h=∑n

i=1 αikY (·,Yi)+h⊥ =αT kY +

h⊥, where h⊥ is orthogonal to Span{kY (·,Yi)}n
i=1. Expansion of (Ĉ2

WW +δnI)h = ĈWW kY (·,y) gives

kT
Y (ΛGY )

2α+δnkT
Y α+δnh⊥ = kT

Y ΛkY (y). Taking the inner product with kY (·,Yj), we have

(
(GY Λ)2 +δnIn

)
GY α = GY ΛkY (y).

The coefficient ρ in m̂QX |y = ĈZW h = ∑n
i=1 ρikX (·,Xi) is given by ρ = ΛGY α, and thus

ρ = Λ
(
(GY Λ)2 +δnIn

)−1
GY ΛkY (y) = ΛGY

(
(ΛGY )

2 +δnIn

)−1
ΛkY (y).

We call Equations (12) and (13) the kernel Bayes’ rule (KBR). The required computations are

summarized in Figure 1. The KBR uses a weighted sample to represent the posterior; it is similar in

this respect to sampling methods such as importance sampling and sequential Monte Carlo (Doucet

et al., 2001). The KBR method, however, does not generate samples of the posterior, but updates

the weights of a sample by matrix computation. Note also that the weights in KBR may take

negative values. The interpretation as a probability is then not straightforward, hence the mean

7. An alternative thresholding approach is proposed by Nishiyama et al. (2012), although its consistency remains to be

established.
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Input: (i) {(Xi,Yi)}n
i=1: sample to express P. (ii) {(U j,γ j)}ℓj=1: weighted sample to express the

kernel mean of the prior m̂Π. (iii) εn,δn: regularization constants.

Computation:

1. Compute Gram matrices GX = (kX (Xi,X j)), GY = (kY (Yi,Yj)), and a vector m̂Π =
(∑ℓ

j=1 γ jkX (Xi,U j))
n
i=1.

2. Compute µ̂ = n(GX +nεnIn)
−1m̂Π.

[If the inversion fails, increase εn by εn := cεn with c > 1.]

3. Compute RX |Y = ΛGY ((ΛGY )
2 +δnIn)

−1Λ, where Λ = diag(µ̂).
[If the inversion fails, increase δn by δn := cδn with c > 1.]

Output: n×n matrix RX |Y .

Given conditioning value y, the kernel mean of the posterior q(x|y) is estimated by the

weighted sample {(Xi,ρi)}n
i=1 with weights ρ = RX |Y kY (y), where kY (y) = (kY (Yi,y))

n
i=1.

Figure 1: Algorithm for Kernel Bayes’ Rule

embedding viewpoint should take precedence (i.e., even if some weights are negative, we may still

use result of KBR to estimate posterior expectations of RKHS functions). We will give experimental

comparisons between KBR and sampling methods in Section 5.1.

If our aim is to estimate the expectation of a function f ∈ HX with respect to the posterior, the

reproducing property of Equation (2) gives an estimator

〈 f , m̂QX |y〉HX
= fT

X RX |Y kY (y), (14)

where fX = ( f (X1), . . . , f (Xn))
T ∈ R

n.

3.2 Consistency of the KBR Estimator

We now demonstrate the consistency of the KBR estimator in Equation (14). We first show consis-

tency of the estimator, and next the rate of consistency under stronger conditions.

Theorem 5 Let (X ,Y ) be a random variable on X ×Y with distribution P, (Z,W ) be a random

variable on X ×Y such that the distribution is Q defined by Equation (5), and m̂
(ℓn)
Π be a consistent

estimator of mΠ in HX norm. Assume that CXX is injective and that E[kY (Y,Ỹ )|X = x, X̃ = x̃] and

E[kX (Z, Z̃)|W = y,W̃ = ỹ] are included in the product spaces HX ⊗HX and HY ⊗HY , respectively,

as a function of (x, x̃) and (y, ỹ), where (X̃ ,Ỹ ) and (Z̃,W̃ ) are independent copies of (X ,Y ) and

(Z,W ), respectively. Then, for any sufficiently slow decay of the regularization coefficients εn and

δn, we have for any y ∈ Y ∥∥kT
X RX |Y kY (y)−mQX |y

∥∥
HX

→ 0

in probability as n → ∞, where kT
X RX |Y kY (y) is the KBR estimator given by Equation (13) and

mQX |y = E[kX (·,Z)|W = y] is the kernel mean of posterior given W = y.

It is obvious from the reproducing property that this theorem also guarantees the consistency

of the posterior expectation in Equation (14). The rate of decrease of εn and δn depends on the

convergence rate of m̂
(ℓn)
Π and other smoothness assumptions.
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Next, we show convergence rates of the KBR estimator for the expectation with posterior under

stronger assumptions. In the following two theorems, we show only the rates that can be derived

under certain specific assumptions, and defer more detailed discussions and proofs to Section 6. We

assume here that the sample size ℓ = ℓn for the prior goes to infinity as the sample size n for the

likelihood goes to infinity, and that m̂
(ℓn)
Π is nα-consistent in RKHS norm.

Theorem 6 Let f be a function in HX , (X ,Y ) be a random variable on X ×Y with distribution P,

(Z,W ) be a random variable on X ×Y with the distribution Q defined by Equation (5), and m̂
(ℓn)
Π be

an estimator of mΠ such that ‖m̂
(ℓn)
Π −mΠ‖HX

= Op(n
−α) as n → ∞ for some 0 < α ≤ 1/2. Assume

that the Radon Nikodym derivative dΠ/dPX is included in R (C
1/2
XX ), and E[ f (Z)|W = ·]∈R (C2

WW ).

With the regularization constants εn = n−
2
3

α and δn = n−
8
27

α, we have for any y ∈ Y

fT
X RX |Y kY (y)−E[ f (Z)|W = y] = Op(n

− 8
27

α), (n → ∞),

where fT
X RX |Y kY (y) is given by Equation (14).

It is possible to extend the covariance operator CWW to one defined on L2(QY ) by

C̃WW φ =
∫

kY (y,w)φ(w)dQY (w), (φ ∈ L2(QY )). (15)

If we consider the convergence on average over y, we have a slightly better rate on the consistency

of the KBR estimator in L2(QY ).

Theorem 7 Let f be a function in HX , (Z,W ) be a random vector on X ×Y with the distribution

Q defined by Equation (5), and m̂
(ℓn)
Π be an estimator of mΠ such that ‖m̂

(ℓn)
Π −mΠ‖HX

= Op(n
−α)

as n → ∞ for some 0 < α ≤ 1/2. Assume that the Radon Nikodym derivative dΠ/dPX is included

in R (C
1/2
XX ), and E[ f (Z)|W = ·] ∈ R (C̃2

WW ). With the regularization constants εn = n−
2
3

α and δn =

n−
1
3

α, we have

∥∥fT
X RX |Y kY (W )−E[ f (Z)|W ]

∥∥
L2(QY )

= Op(n
− 1

3
α), (n → ∞).

The condition dΠ/dPX ∈ R (C
1/2
XX ) requires the prior to be sufficiently smooth. If m̂

(ℓn)
Π is a

direct empirical mean with an i.i.d. sample of size n from Π, typically α = 1/2, with which the

theorems imply n4/27-consistency for every y, and n1/6-consistency in the L2(QY ) sense. While

these might seem to be slow rates, the rate of convergence can in practice be much faster than the

above theoretical guarantees.

While the convergence rates shown in the above theorems do not depend on the dimensionality

of original spaces, the rates may not be optimal. In fact, in the case of kernel ridge regression,

the optimal rates are known under additional information on the spectrum of covariance opera-

tors (Caponnetto and De Vito, 2007). It is also known (Eberts and Steinwart, 2011) that, given

the target function is in the Sobolev space of order α, the convergence rates is arbitrary close to

Op(n
−2α/(2α+d)), the best rate for any linear estimator (Stone, 1982), where d is the dimensionality

of the predictor. Similar convergence rates for KBR incorporating the information on eigenspec-

trum or smoothness will be interesting future works, in the light of the equivalence of the condi-

tional mean embedding and operator-valued regression shown by Grünewälder et al. (2012) and

Grünewälder et al. (2013).
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4. Bayesian Inference with Kernel Bayes’ Rule

We discuss problem settings for which KBR may be applied in Section 4.1. We then provide notes

on practical implementation in Section 4.2, including a cross-validation procedure for parameter

selection and suggestions for speeding computation. In Section 4.3, we apply KBR to the filtering

problem in a nonparametric state-space model. Finally, in Section 4.4, we give a brief overview of

Approximate Bayesian Computation (ABC), a widely used sample-based method which applies to

similar problem domains.

4.1 Applications of Kernel Bayes’ Rule

In Bayesian inference, we are usually interested in finding a point estimate such as the MAP solu-

tion, the expectation of a function under the posterior, or other properties of the distribution. Given

that KBR provides a posterior estimate in the form of a kernel mean (which uniquely determines the

distribution when a characteristic kernel is used), we now describe how our kernel approach applies

to problems in Bayesian inference.

First, we have already seen that under appropriate assumptions, a consistent estimator for the

expectation of f ∈ HX can be defined with respect to the posterior. On the other hand, unless

f ∈ HX holds, there is no theoretical guarantee that it gives a good estimate. In Section 5.1, we

discuss experimental results observed in these situations.

To obtain a point estimate of the posterior on x, Song et al. (2009) propose to use the preimage

x̂ = argminx ‖kX (·,x)−kT
X RX |Y kY (y)‖2

HX
, which represents the posterior mean most effectively by

one point. We use this approach in the present paper when point estimates are sought. In the case

of the Gaussian kernel exp(−‖x− y‖2/(2σ2)), the fixed point method

x(t+1) =
∑n

i=1 Xiρi exp(−‖Xi − x(t)‖2/(2σ2))

∑n
i=1 ρi exp(−‖Xi − x(t)|2/(2σ2))

,

where ρ = RX |Y kY (y), can be used to optimize x sequentially (Mika et al., 1999). This method

usually converges very fast, although no theoretical guarantee exists for the convergence to the

globally optimal point, as is usual in non-convex optimization.

A notable property of KBR is that the prior and likelihood are represented in terms of samples.

Thus, unlike many approaches to Bayesian inference, precise knowledge of the prior and likelihood

distributions is not needed, once samples are obtained. The following are typical situations where

the KBR approach is advantageous:

• The probabilistic relation among variables is difficult to realize with a simple parametric

model, while we can obtain samples of the variables easily. We will see such an example in

Section 4.3.

• The probability density function of the prior and/or likelihood is hard to obtain explicitly, but

sampling is possible:

– In the field of population genetics, Bayesian inference is used with a likelihood ex-

pressed by branching processes to model the split of species, for which the explicit

density is hard to obtain. Approximate Bayesian Computation (ABC) is a popular

method for approximately sampling from a posterior without knowing the functional

form (Tavaré et al., 1997; Marjoram et al., 2003; Sisson et al., 2007).
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– In nonparametric Bayesian inference (Müller and Quintana, 2004 and references therein),

the prior is typically given in the form of a process without a density form. In this case,

sampling methods are often applied (MacEachern, 1994; West et al., 1994; MacEach-

ern et al., 1999, among others). Alternatively, the posterior may be approximated using

variational methods (Blei and Jordan, 2006).

We will present an experimental comparison of KBR and ABC in Section 5.2.

• Even if explicit forms for the likelihood and prior are available, and standard sampling meth-

ods such as MCMC or sequential MC are applicable, the computation of a posterior estimate

given y might still be computationally costly, making real-time applications infeasible. Using

KBR, however, the expectation of a function of the posterior given different y is obtained

simply by taking the inner product as in Equation (14), once fT
X RX |Y has been computed.

4.2 Discussions Concerning Implementation

When implementing KBR, a number of factors should be borne in mind to ensure good performance.

First, in common with many nonparametric approaches, KBR requires training data in the region

of the new “test” points for results to be meaningful. In other words, if the point on which we

condition appears in a region far from the sample used for the estimation, the posterior estimator

will be unreliable.

Second, when computing the posterior in KBR, Gram matrix inversion is necessary, which

would cost O(n3) for sample size n if attempted directly. Substantial cost reductions can be achieved

if the Gram matrices are replaced by low rank matrix approximations. A popular choice is the

incomplete Cholesky factorization (Fine and Scheinberg, 2001), which approximates a Gram matrix

in the form of ΓΓT with n×r matrix Γ (r ≪ n) at cost O(nr2). Using this and the Woodbury identity,

the KBR can be approximately computed at cost O(nr2), which is linear in the sample size n. It is

known that in some typical cases the eigenspectram of a Gram matrix decays fast (Widom, 1963,

1964; Bach and Jordan, 2002). We can therefore expect that the incomplete Cholesky factorization

to reduce the computational cost effectively without much degrading estimation accuracy.

Third, kernel choice or model selection is key to effective performance of any kernel method.

In the case of KBR, we have three model parameters: the kernel (or its parameter, e.g., the band-

width), and the regularization parameters εn, and δn. The strategy for parameter selection depends

on how the posterior is to be used in the inference problem. If it is to be applied in regression or

classification, we can use standard cross-validation. In the filtering experiments in Section 5, we

use a validation method where we divide the training sample in two.

A more general model selection approach can also be formulated, by creating a new regression

problem for the purpose. Suppose the prior Π is given by the marginal PX of P. The posterior QX |y
averaged with respect to PY is then equal to the marginal PX itself. We are thus able to compare

the discrepancy of the empirical kernel mean of PX and the average of the estimators m̂QX |y=Yi
over

Yi. This leads to a K-fold cross validation approach: for a partition of {1, . . . ,n} into K disjoint

subsets {Ta}K
a=1, let m̂

[−a]
QX |y

be the kernel mean of posterior computed using Gram matrices on data

{(Xi,Yi)}i/∈Ta
, and based on the prior mean m̂

[−a]
X with data {Xi}i/∈Ta

. We can then cross validate by

minimizing ∑K
a=1

∥∥ 1
|Ta| ∑ j∈Ta

m̂
[−a]
QX |y=Yj

− m̂
[a]
X

∥∥2

HX
, where m̂

[a]
X = 1

|Ta| ∑ j∈Ta
kX (·,X j).
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4.3 Application to a Nonparametric State-Space Model

We next describe how KBR may be used in a particular application: namely, inference in a general

time invariant state-space model,

p(X ,Y ) = π(X1)
T+1

∏
t=1

p(Yt |Xt)
T

∏
t=1

q(Xt+1|Xt),

where Yt is an observable variable, and Xt is a hidden state variable. We begin with a brief review of

alternative strategies for inference in state-space models with complex dynamics, for which linear

models are not suitable. The extended Kalman filter (EKF) and unscented Kalman filter (UKF,

Julier and Uhlmann, 1997) are nonlinear extensions of the standard linear Kalman filter, and are well

established in this setting. Alternatively, nonparametric estimates of conditional density functions

can be employed, including kernel density estimation or distribution estimates on a partitioning of

the space (Monbet et al., 2008; Thrun et al., 1999). Kernel density estimates converges more slowly

in L2 as the dimension d of the space increases, however: for an optimal bandwidth choice, this

error drops as O(n−4(4+d)) (Wasserman, 2006, Section 6.5). If the goal is to take expectations of

smooth functions (i.e., RKHS functions), rather than to obtain consistent density estimates, then

we can expect better performance. We show our posterior estimate of the expectation of an RKHS

function converges at a rate independent of d. Most relevant to this paper are Song et al. (2009) and

Song et al. (2010b), in which the kernel means and covariance operators are used to implement a

nonparametric HMM.

In this paper, we apply the KBR for inference in the nonparametric state-space model. We do

not assume the conditional probabilities p(Yt |Xt) and q(Xt+1|Xt) to be known explicitly, nor do we

estimate them with simple parametric models. Rather, we assume a sample (X1,Y1, . . . ,XT+1,YT+1)
is given for both the observable and hidden variables in the training phase. The conditional prob-

ability for observation process p(y|x) and the transition q(xt+1|xt) are represented by the empirical

covariance operators as computed on the training sample,

ĈXY =
1

T

T

∑
i=1

kX (·,Xi)⊗ kY (·,Yi), ĈX+1X =
1

T

T

∑
i=1

kX (·,Xi+1)⊗ kX (·,Xi), (16)

ĈYY =
1

T

T

∑
i=1

kY (·,Yi)⊗ kY (·,Yi), ĈXX =
1

T

T

∑
i=1

kX (·,Xi)⊗ kX (·,Xi).

While the sample is not i.i.d., it is known that the empirical covariances converge to the covari-

ances with respect to the stationary distribution as T → ∞, under a mixing condition.8 We therefore

use the above estimator for the covariance operators.

Typical applications of the state-space model are filtering, prediction, and smoothing, which are

defined by the estimation of p(xs|y1, . . . ,yt) for s = t, s > t, and s < t, respectively. Using the KBR,

any of these can be computed. For simplicity we explain the filtering problem in this paper, but the

remaining cases are similar. In filtering, given new observations ỹ1, . . . , ỹt , we wish to estimate the

current hidden state xt . The sequential estimate for the kernel mean of p(xt |ỹ1, . . . , ỹt) can be derived

via KBR. Suppose we already have an estimator of the kernel mean of p(xt |ỹ1, . . . , ỹt) in the form

m̂xt |ỹ1,...,ỹt
=

T

∑
s=1

α
(t)
s kX (·,Xs),

8. One such condition to guarantee the central limit theorem for Markov chains in separable Hilbert spaces is geometri-

cal ergodicity. See, for example, Merlevéde et al. (1997) and Stachurski (2012) for details.
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where α
(t)
i = α

(t)
i (ỹ1, . . . , ỹt) are the coefficients at time t. We wish to derive an update rule to obtain

α(t+1)(ỹ1, . . . , ỹt+1).
For the forward propagation p(xt+1|ỹ1, . . . , ỹt) =

∫
q(xt+1|xt)p(xt |ỹ1, . . . , ỹt)dxt , based on Equa-

tion (9) the kernel mean of xt+1 given ỹ1, . . . , ỹt is estimated by

m̂xt+1|ỹ1,...,ỹt
= ĈX+1X(ĈXX + εT I)−1m̂xt |ỹ1,...,ỹt

= kT
X+1

(GX +T εT IT )
−1GX α(t),

where kT
X+1

= (kX (·,X2), . . . ,kX (·,XT+1)). Using the similar estimator with

p(yt+1|ỹ1, . . . , ỹt) =
∫

p(yt+1|xt+1)p(xt+1|ỹ1, . . . , ỹt)dxt , we have an estimate for the kernel mean of

the prediction p(yt+1|ỹ1, . . . , ỹt),

m̂yt+1|ỹ1,...,ỹt
= ĈY X(ĈXX + εT I)−1m̂xt+1|ỹ1,...,ỹt

=
T

∑
i=1

µ̂
(t+1)
i kY (·,Yi),

where the coefficients µ̂(t+1) = (µ̂
(t+1)
i )T

i=1 are given by

µ̂(t+1) =
(
GX +T εT IT

)−1
GXX+1

(
GX +T εT IT

)−1
GX α(t). (17)

Here GXX+1
is the “transfer” matrix defined by

(
GXX+1

)
i j
= kX (Xi,X j+1). From

p(xt+1|ỹ1, . . . , ỹt+1) =
p(yt+1|xt+1)p(xt+1|ỹ1, . . . , ỹt)∫

q(yt+1|xt+1)p(xt+1|ỹ1, . . . , ỹt)dxt+1

,

the kernel Bayes’ rule with the prior p(xt+1|ỹ1, . . . , ỹt) and the likelihood q(yt+1|xt+1) yields

α(t+1) = Λ(t+1)GY

(
(Λ(t+1)GY )

2 +δT IT

)−1
Λ(t+1)kY (ỹt+1), (18)

where Λ(t+1) = diag(µ̂
(t+1)
1 , . . . , µ̂

(t+1)
T ). Equations (17) and (18) describe the update rule of

α(t)(ỹ1, . . . , ỹt).
If the prior π(x1) is available, the posterior estimate at x1 given ỹ1 is obtained by the kernel

Bayes’ rule. If not, we may use Equation (8) to get an initial estimate ĈXY (ĈYY + εnI)−1kY (·, ỹ1),
yielding α(1)(ỹ1) = T (GY +T εT IT )

−1kY (ỹ1).
In sequential filtering, a substantial reduction in computational cost can be achieved by low

rank matrix approximations, as discussed in Section 4.2. Given an approximation of rank r for the

Gram matrices and transfer matrix, and employing the Woodbury identity, the computation costs

just O(Tr2) for each time step.

4.4 Bayesian Computation Without Likelihood

We next address the setting where the likelihood is not known in analytic form, but sampling is pos-

sible. In this case, Approximate Bayesian Computation (ABC) is a popular method for Bayesian

inference. The simplest form of ABC, which is called the rejection method, generates an approxi-

mate sample from Q(Z|W = y) as follows: (i) generate a sample Xt from the prior Π, (ii) generate a

sample Yt from P(Y |Xt), (iii) if D(y,Yt) < τ, accept Xt ; otherwise reject, (iv) go to (i). In step (iii),

D is a distance measure of the space X , and τ is tolerance to acceptance.

In the same setting as ABC, KBR gives the following sampling-based method for computing

the kernel posterior mean:
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1. Generate a sample X1, . . . ,Xn from the prior Π.

2. Generate a sample Yt from P(Y |Xt) (t = 1, . . . ,n).

3. Compute Gram matrices GX and GY with (X1,Y1), . . . ,(Xn,Yn), and RX |Y kY (y).

Alternatively, since (Xt ,Yt) is an sample from Q, it is possible to use simply Equation (8) for the

kernel mean of the conditional probability q(x|y). As in Song et al. (2009), the estimator is given by

n

∑
t=1

ν jkX (·,Xt), ν = (GY +nεnIn)
−1kY (y). (19)

The distribution of a sample generated by ABC approaches to the true posterior if τ goes to zero,

while empirical estimates via the kernel approaches converge to the true posterior mean embedding

in the limit of infinite sample size. The efficiency of ABC, however, can be arbitrarily poor for small

τ, since a sample Xt is then rarely accepted in Step (iii).

The ABC method generates a sample, hence any statistics based on the posterior can be ap-

proximated. Given a posterior mean obtained by one of the kernel methods, however, we may only

obtain expectations of functions in the RKHS, meaning that certain statistics (such as confidence

intervals) are not straightforward to compute. In Section 5.2, we present an experimental evaluation

of the trade-off between computation time and accuracy for ABC and KBR.

5. Experimental Results

This section demonstrates experimental results with the KBR estimator. In addition to the basic

comparison with kernel density estimation, we show simple experiments for Bayesian inference

without likelihood and filtering with nonparametric hidden Markov models. More practical applica-

tions are discussed in other papers; Nishiyama et al. (2012) propose a KBR approach to reinforce-

ment learning in partially observable Markov decision processes, Boots et al. (2013) apply KBR to

reinforcement learning with predictive state representations, and Nakagome et al. (2013) consider a

KBR-based method for problems in population genetics.

5.1 Nonparametric Inference of Posterior

The first numerical example is a comparison between KBR and a kernel density estimation (KDE)

approach to obtaining conditional densities. Let (X1,Y1), . . . ,(Xn,Yn) be an i.i.d. sample from P

on R
d ×R

r. With probability density functions KX (x) on R
d and KY (y) on R

r, the conditional

probability density function p(y|x) is estimated by

p̂(y|x) = ∑n
j=1 KX

hX
(x−X j)K

Y
hY
(y−Yj)

∑n
j=1 KX

h (x−X j)
,

where KX
hX
(x) = h−d

X KX (x/hX) and K
Y
hY
(x) = h−r

Y KY (y/hY ) (hX ,hY > 0). Given an i.i.d. sample

U1, . . . ,Uℓ from the prior Π, the particle representation of the posterior can be obtained by impor-

tance weighting (IW). Using this scheme, the posterior q(x|y) given y ∈ R
r is represented by the

weighted sample (Ui,ζi) with ζi = p̂(y|Ui)/∑ℓ
j=1 p̂(y|U j).

We compare the estimates of
∫

xq(x|y)dx obtained by KBR and KDE + IW, using Gaussian

kernels for both the methods. We should bear in mind, however, that the function f (x) = x does not
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Figure 2: Comparison between KBR and KDE+IW.

belong to the Gaussian kernel RKHS, hence the consistency result of Theorem 6 does not apply to

this function. In our experiments, the dimensionality was given by r = d ranging from 2 to 64. The

distribution P of (X ,Y ) was N((0,1T
d )

T ,V ) with V = AT A+ 2Id , where 1d = (1, . . . ,1)T ∈ R
d and

each component of A was randomly generated as N(0,1) for each run. The prior Π was N(0,VXX/2),
where VXX is the X-component of V . The sample sizes were n= ℓ= 200. The bandwidth parameters

hX ,hY in KDE were set hX = hY , and chosen over the set {2 ∗ i | i = 1, . . . ,10} in two ways: least

squares cross-validation (Rudemo, 1982; Bowman, 1984) and the best mean performance. For the

KBR, we chose σ in e−‖x−x′‖2/(2σ2) in two ways: the median over the pairwise distances in the data

(Gretton et al., 2008), and the 10-fold cross-validation approach described in Section 4.2. In the

latter, σx for kX is first chosen with σy for kY set as the median distances, and then σy is chosen

with the best σx. Figure 2 shows the mean square errors (MSE) of the estimates over 1000 random

points y ∼ N(0,VYY ). KBR significantly outperforms the KDE+IW approach. Unsurprisingly, the

MSE of both methods increases with dimensionality.

5.2 Bayesian Computation Without Likelihood

We compare ABC and the kernel methods, KBR and conditional mean, in terms of estimation

accuracy and computational time, since they have an obvious tradeoff. To compute the estimation

accuracy rigorously, the ground truth is needed: thus we use Gaussian distributions for the true prior

and likelihood, which makes the posterior easy to compute in closed form. The samples are taken

from the same model used in Section 5.1, and
∫

xq(x|y)dx is evaluated at 10 different values of y.

We performed 10 runs with different randomly chosen parameter values A, representing the “true”

distributions.

For ABC, we used only the rejection method; while there are more advanced sampling schemes

(Marjoram et al., 2003; Sisson et al., 2007), their implementation is dependent on the problem being

solved. Various values for the acceptance region τ are used, and the accuracy and computational

time are shown in Fig. 3 together with total sizes of the generated samples. For the kernel methods,

the sample size n is varied. The regularization parameters are given by εn = 0.01/n and δn = 2εn

for KBR, and εn = 0.01/
√

n for the conditional kernel mean. The kernels in the kernel methods
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Figure 3: Comparison of estimation accuracy and computational time with KBR and ABC for

Bayesian computation without likelihood. COND reprensents the method based on Equa-

tion (19). The numbers at the marks are the sample sizes generated for computation.

are Gaussian kernels for which the bandwidth parameters are chosen by the median of the pairwise

distances on the data (Gretton et al., 2008). The incomplete Cholesky decomposition with tolerance

0.001 is employed for the low-rank approximation. The resulting ranks are, for instance, around

30 for N = 200 and around 50 for N = 6000 in the case of KBR dimension 2; around 180 for

N = 200 and 1200 for N = 6000 in the case of dimension 6. This implies considerable reduction of

computational time especially in the case of large sample sizes. The experimental results indicate

that kernel methods achieve more accurate results than ABC at a given computational cost. The

conditional kernel mean yields the best results, since in this instance, it is not necessary to correct for

a difference in distribution between Π and PX . In the next experiment, however, this simplification

can no longer be made.

5.3 Filtering Problems

We next compare the KBR filtering method (proposed in Section 4.3) with EKF and UKF on syn-

thetic data.

KBR has the regularization parameters εT ,δT , and kernel parameters for kX and kY (e.g., the

bandwidth parameter for an RBF kernel). Under the assumption that a training sample is available,

cross-validation can be performed on the training sample to select the parameters. By dividing

the training sample into two, one half is used to estimate the covariance operators Equation (16)

with a candidate parameter set, and the other half to evaluate the estimation errors. To reduce the

search space and attendant computational cost, we used a simpler procedure, setting δT = 2εT , and

Gaussian kernel bandwidths βσX and βσY , where σX and σY were the median of pairwise distances

in the training samples (Gretton et al., 2008). This left only two parameters β and εT to be tuned.

We applied the KBR filtering algorithm from Section 4.3 to two synthetic data sets: a simple

nonlinear dynamical system, in which the degree of nonlinearity could be controlled, and the prob-

lem of camera orientation recovery from an image sequence. In the first case, the hidden state was
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Figure 4: Comparisons with the KBR Filter and EKF. (Average MSEs and standard errors over 30

runs.) (a): dynamics with weak nonlinearity (b): dynamics with strong nonlinearity.
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Xt = (ut ,vt)
T ∈ R

2, and the dynamics were given by

(
ut+1

vt+1

)
= (1+bsin(Mθt+1))

(
cosθt+1

sinθt+1

)
+ζt , θt+1 = θt +η (mod 2π),

where η > 0 is an increment of the angle and ζt ∼ N(0,σ2
hI2) is independent process noise. Note

that the dynamics of (ut ,vt) were nonlinear even for b = 0. The observation Yt was

Yt = (ut ,vt)
T +ξt , ξt ∼ N(0,σ2

oI),

where ξt was independent noise. The two dynamics were defined as follows: (a) rotation with noisy

observations η = 0.3, b = 0, σh = σo = 0.2; (b) oscillatory rotation with noisy observations η = 0.4,

b = 0.4, M = 8, σh = σo = 0.2. (See Fig.5). We assumed the correct dynamics were known to the

EKF and UKF.

Results are shown in Fig. 4. In all cases, the EKF and UKF show an indistinguishably small

difference. The dynamics in (a) are weakly nonlinear, and KBR has slightly worse MSE than EKF

and UKF. For data set (b), which has strong nonlinearity, KBR outperforms the nonlinear Kalman

filter for T ≥ 200.

In our second synthetic example, we applied the KBR filter to the camera rotation problem

used in Song et al. (2009). The angle of a camera, which was located at a fixed position, was a
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KBR (Gauss) KBR (Tr) Kalman (9 dim.) Kalman (Quat.)

σ2 = 10−4 0.210±0.015 0.146±0.003 1.980±0.083 0.557±0.023

σ2 = 10−3 0.222±0.009 0.210±0.008 1.935±0.064 0.541±0.022

Table 1: Average MSE and standard errors for camera angle estimation (10 runs).

hidden variable, and movie frames recorded by the camera were observed. The data were generated

virtually using a computer graphics environment. As in Song et al. (2009), we were given 3600

downsampled frames of 20×20 RGB pixels (Yt ∈ [0,1]1200), where the first 1800 frames were used

for training, and the second half were used to test the filter. We made the data noisy by adding

Gaussian noise N(0,σ2) to Yt .

Our experiments covered two settings. In the first, we did not use that the hidden state St

was included in SO(3), but only that it was a general 3× 3 matrix. In this case, we formulated

the Kalman filter by estimating the relations under a linear assumption, and the KBR filter with

Gaussian kernels for St and Xt as Euclidean vectors. In the second setting, we exploited the fact that

St ∈ SO(3): for the Kalman filter, St was represented by a quanternion, which is a standard vector

representation of rotations; for the KBR filter the kernel k(A,B) = Tr[ABT ] was used for St , and St

was estimated within SO(3). Table 1 shows the Frobenius norms between the estimated matrix and

the true one. The KBR filter significantly outperforms the EKF, since KBR is able to extract the

complex nonlinear dependence between the observation and the hidden state.

6. Proofs

This section includes the proofs of the theoretical results in Section 3.2. The proof ideas are similar

to Caponnetto and De Vito (2007) and Smale and Zhou (2007), in which the basic techniques are

taken from the general theory of regularization (Engl et al., 2000). Before stating the main proofs,

we provide a proof of consistency of the empirical counterparts in Proposition 3 to the kernel Sum

rule (Theorem 2). We then proceed to the proofs of Theorems 5 and 6, covering the consistency of

the KBR procedure in RKHS, followed by a proof of Theorem 7 for consistency in L2.

6.1 Consistency of the Kernel Sum Rule

We show consistency of an empirical estimate of mQY
in Theorem 2. The same proof also applies

in establishing consistency for the empirical estimates Ĉ
(n)
WW and Ĉ

(n)
WZ in Proposition 3.

Theorem 8 Assume that CXX is injective, m̂Π is a consistent estimator of mΠ in HX norm, and

that E[kY (Y,Ỹ )|X = x, X̃ = x̃] is included in HX ⊗HX as a function of (x, x̃), where (X̃ ,Ỹ ) is an

independent copy of (X ,Y ). Then, if the regularization coefficient εn decays to zero sufficiently

slowly, ∥∥Ĉ
(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1
m̂Π −mQY

∥∥
HY

→ 0

in probability as n → ∞.

Proof The assertion is proved if, as n → ∞,

‖Ĉ
(n)
Y X(Ĉ

(n)
XX + εnI)−1m̂Π −CY X(CXX + εnI)−1mΠ‖HY

→ 0 (20)

3772



KERNEL BAYES’ RULE

in probability and

‖CY X(CXX + εnI)−1mΠ −mQY
‖HY

→ 0 (21)

with an appropriate choice of εn.

By using the fact that B−1 −A−1 = B−1(A−B)A−1 holds for any invertible operators A and B,

the left hand side of Equation (20) is upper bounded by

∥∥Ĉ
(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1(
m̂Π −mΠ

)∥∥
HY

+
∥∥(Ĉ(n)

Y X −CY X

)(
CXX + εnI

)−1
mΠ

∥∥
HY

+
∥∥Ĉ

(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1(
CXX −Ĉ

(n)
XX

)(
CXX + εnI

)−1
mΠ

∥∥
HY

. (22)

By the decomposition

Ĉ
(n)
Y X = Ĉ

(n)1/2
YY Ŵ

(n)
Y X Ĉ

(n)1/2
XX

with ‖Ŵ
(n)

Y X ‖ ≤ 1 (Baker, 1973), we have

‖Ĉ
(n)
Y X(Ĉ

(n)
XX + εnI)−1‖ ≤ ‖Ĉ

(n)1/2
YY Ŵ

(n)
Y X (Ĉ

(n)
XX + εnI)−1/2‖= Op(ε

−1/2
n ),

which implies the first term is of Op(ε
−1/2
n ‖m̂Π −mΠ‖HX

). From the
√

n-consistency of the co-

variance operators, the second and third terms are of the order Op(n
−1/2ε−1

n ) and Op(n
−1/2ε

−3/2
n ),

respectively. If εn is taken so that εn ≫ n−1/3 and εn ≫‖m̂
(n)
Π −mΠ‖2

HX
, Equation (20) converges to

zero in probability.

For Equation (21), first note

‖CY X(CXX + εnI)−1mΠ −mQY
‖2

HY

= ‖CY X(CXX + εnI)−1mΠ‖2
HX

−2〈CY X(CXX + εnI)−1mΠ,mQY
〉HY

+‖mQY
‖2

HY
.

Let θ(x, x̃) := E[kY (Y,Ỹ )|X = x, X̃ = x̃]. The third term in the right hand side is

〈mQY
,mQY

〉HY
=

∫ ∫
mQY

(y)dPY |x(y)dΠ(x)

=
∫ ∫

〈mQY
,kY (·,y)〉HY

dPY |x(y)dΠ(x) =
∫ ∫

θ(x, x̃)dΠ(x)dΠ(x̃).

From the assumption θ ∈ HX ⊗HX and the fact E[mQY
(Y )|X = ·] = ∫

θ(·, x̃)dΠ(x̃), Lemma 9 below

shows E[mQY
(Y )|X = ·] ∈ HX . It follows from Theorem 1 that CXY mQY

= CXX E[mQY
(Y )|X = ·]

and thus

〈CY X(CXX + εnI)−1mΠ,mQY
〉HY

= 〈mΠ,(CXX + εnI)−1CXY mQY
〉HX

= 〈mΠ,(CXX + εnI)−1CXX E[mQY
(Y )|X = ·]〉HX

,

which converges to

〈mΠ,E[mQY
(Y )|X = ·]〉HX

=
∫ ∫

θ(x, x̃)dΠ(x)dΠ(x̃)

from Lemma 10 below.
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Note that

‖CY X f‖2
HY

= 〈CY X f ,CYX f 〉HX
= E[ f (X)(CYX f )(Y )]

= E[ f (X)E[kY (Y,Ỹ ) f (X̃)]] = E[ f (X) f (X̃)θ(X , X̃)]

for any f ∈ HX , where (X̃ ,Ỹ ) is an independent copy of (X ,Y ). By taking f = (CXX + εnI)−1mΠ,

the first term is given by

E
[
θ(X , X̃)((CXX + εnI)−1mΠ)(X)((CXX + εnI)−1mΠ)(X̃)

]

= E
[
θ(X , X̃) f (X) f (X̃)

]

=
〈
θ,(CXX ⊗CXX) f ⊗ f )

〉
HX ⊗HX

=
〈
θ,(CXX(CXX + εnI)−1mΠ)⊗ (CXX(CXX + εnI)−1mΠ)

〉
HX ⊗HX

,

which, by Lemma 10, converges to

〈θ,mΠ ⊗mΠ〉HX ⊗HX
=

∫ ∫
θ(x, x̃)dΠ(x)dΠ(x̃).

This completes the proof.

Lemma 9 Let HX and HY be RKHS’s on X and Y , respectively. If a function θ on X ×Y is in

HX ⊗HY (product space), then for any fixed y ∈ Y the function θ(·,y) of the first argument is in

HX .

Proof Let {φi}I
i=1 and {ψ j}J

j=1 be complete orthonormal bases of HX and HY , respectively, where

I,J ∈ N∪{∞}. Then θ is expressed as

θ =
I

∑
i=1

J

∑
j=1

αi jφiψ j

with ∑i, j |αi j|2 < ∞ (e.g., Aronszajn, 1950). We have θ(·,y) = ∑I
i=1 βiφi with βi = ∑J

j=1 αi jψ j(y).
Since

∑
i

|βi|2 = ∑
i

∣∣∣∑
j

αi jψ j(y)
∣∣∣
2

≤ ∑
i

∑
j

|αi j|2 ∑
j

|ψ j(y)|2 = ∑
i j

|αi j|2 ∑
j

〈ψ j,kY (·,y)〉2
HY

= ∑
i j

|αi j|2‖kY (·,y)‖2
HY

< ∞,

we have θ(·,y) ∈ HX .

Lemma 10 Let H be a separable Hilbert space and C be a positive, injective, self-adjoint, compact

operator on H . then, for any f ∈ H ,

((C+ εI)−1C f → f , (ε →+0).
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Proof By the assumptions, there exist an orthonormal basis {φi} for H and positive eigenvalues λi

such that

C f = ∑
i

λi〈 f ,φi〉H φi.

Then, we have

‖(C+ εI)−1C f − f‖2
H = ∑

i

∣∣∣ ε

λi + ε

∣∣∣
2

|〈 f ,φi〉H |2.

Since
∣∣(ε/λi+ε)

∣∣2 ≤ 1 and ∑i |〈 f ,φi〉H |2 = ‖ f‖2
H
<∞, the dominated convergence theorem ensures

lim
ε→+0

‖(C+ εI)−1C f − f‖2
H = ∑

i

lim
ε→+0

∣∣∣ ε

λi + ε

∣∣∣
2

|〈 f ,φi〉H |2 = 0,

which completes the proof.

6.2 Consistency Results in RKHS Norm

We first prove Theorem 5.

Proof [Proof of Theorem 5] By replacing Y 7→ (X ,Y ) and Y 7→ (Y,Y ), it follows from Theorem 8

that Ĉ
(n)
ZW and Ĉ

(n)
WW are consistent estimators of CZW and CWW , respectively, in operator norm. For

the proof, it then suffices to show

∥∥Ĉ
(n)
ZW

((
Ĉ
(n)
WW

)2
+δnI

)−1
Ĉ
(n)
WW kY (·,y)−CZW (C2

WW +δnI)−1CWW kY (·,y)
∥∥

HX
→ 0

in probability and ∥∥CZW (C2
WW +δnI)−1CWW kY (·,y)−mQX |y

∥∥
HX

→ 0

with an appropriate choice of δn. The proof of the first convergence is similar to the proof of

Equation (20) in Theorem 8, and we omit it. The proof of the second convergence is also similar to

Theorem 8. The square of the left hand side is decomposed as

∥∥CZW (C2
WW +δnI

)−1
CWW kY (·,y)

∥∥2

HX

−2
〈
CZW (C2

WW +δnI)−1CWW kY (·,y),mQX |y

〉
HX

+
∥∥mQX |y

∥∥2

HX
.

Let ξ ∈ HY ⊗HY be defined by ξ(y, ỹ) := E[kX (Z, Z̃)|W = y,W̃ = ỹ], where (Z̃,W̃ ) be an indepen-

dent copy of (Z,W ). The third term is then equal to

ξ(y,y) = E[kX (Z, Z̃)|W = y,W̃ = y].

For the second term, by the same argument as the proof of Theorem 8, we have

ξ(y, ·) = E[kX (Z, Z̃)|W = y,W̃ = ·] ∈ HY

via Lemma 9, and

CWZmQX |y =CWW E[kX (Z, Z̃)|W = ·,W̃ = y] =CWW ξ(·,y) ∈ HY .
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We then obtain
〈
CZW (C2

WW +δnI)−1CWW kY (·,y),mQX |y

〉
HX

=
〈
kY (·,y),(C2

WW +δnI)−1C2
WW ξ(·,y)

〉
HX

,

which converges to ξ(y,y).
Finally, defining ϕδ := (C2

WW +δI)−1CWW kY (·,y), the first term is equal to

E
[
ϕδ(W )ϕδ(W̃ )E[kX (Z, Z̃)|W,W̃ ]

]
=
〈
CZW ϕδ,CZW ϕδ

〉
HX

= E
[
ϕδ(W )

[
CZW ϕδ

]
(Z)

]

= E
[
k(Z,Z′)ϕδ(W )ϕδ(W̃ )

]
= E

[
ξ(W,W̃ )ϕδ(W )ϕδ(W̃ )

]

= 〈(CWW ⊗CWW )ϕδ ⊗ϕδ,ξ〉HY ⊗HY
= 〈(CWW ϕδ)⊗ (CWW ϕδ),ξ〉HY ⊗HY

,

which converges to 〈kY (·,y)⊗ kY (·,y),ξ〉HY ⊗HY
= ξ(y,y). This completes the proof.

We next show the convergence rate of expectation (Theorem 6) under stronger assumptions. The

first result is a rate of convergence for the mean transition in Theorem 2. In the following, R (C0
XX)

means HX .

Theorem 11 Assume that the Radon-Nikodym derivative dΠ/dPX is included in R (C
β
XX) for some

β ≥ 0, and let m̂
(n)
Π be an estimator of mΠ such that ‖m̂

(n)
Π −mΠ‖HX

= Op(n
−α) as n → ∞ for some

0 < α ≤ 1/2. Then, with εn = n
−max{ 2

3
α, α

1+β}, we have

∥∥Ĉ
(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1
m̂
(n)
Π −mQY

∥∥
HY

= Op(n
−min{ 2

3
α, 2β+1

2β+2
α}
), (n → ∞).

Proof Take η ∈ HX such that dΠ/dPX =C
β
XX η. Then, we have

mΠ =
∫

kX (·,x)
( dΠ

dPX

)
(x)dPX (x) =C

β+1
XX η. (23)

First we show the rate of the estimation error:
∥∥Ĉ

(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1
m̂
(n)
Π −CY X

(
CXX + εnI

)−1
mΠ

∥∥
HY

= Op

(
n−αε

−1/2
n

)
, (24)

as n → ∞. The left hand side of Equation (24) is upper bounded by

∥∥Ĉ
(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1(
m̂
(n)
Π −mΠ

)∥∥
HY

+
∥∥(Ĉ(n)

Y X −CY X

)(
CXX + εnI

)−1
mΠ

∥∥
HY

+
∥∥Ĉ

(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1(
CXX −Ĉ

(n)
XX

)(
CXX + εnI

)−1
mΠ

∥∥
HY

.

In a similar manner to derivation of the bound of Equation (22), we obtain Equation (24).

Next, we show the rate for the approximation error

∥∥CY X

(
CXX + εnI

)−1
mΠ −mQY

∥∥
HY

= O(ε
min{(1+2β)/2,1}
n ) (n → ∞). (25)

Let CY X =C
1/2
YY WY XC

1/2
XX be the decomposition with ‖WY X‖ ≤ 1. It follows from Equation (23) and

the relation

mQY
=

∫ ∫
kY (·,y)dPY |x(y)dΠ(x) =

∫ ∫
k(·,y)

( dΠ

dPX

)
(x)dPY |x(y)dPX (x)

=
∫ ∫

k(·,y)
( dΠ

dPX

)
(x)dP(x,y) =CY XC

β
XX η
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that the left hand side of Equation (25) is upper bounded by

‖C
1/2
YY WY X‖‖

(
CXX + εnI

)−1
C
(2β+3)/2
XX η−C

(2β+1)/2
XX η‖HX

≤ εn‖C
1/2
YY WY X‖‖(CXX + εnI)−1C

β+1/2
XX ‖‖η‖HX

.

For β ≥ 1/2, it follows from

εn‖(CXX + εnI)−1C
β+1/2
XX ‖ ≤ εn‖(CXX + εnI)−1CXX‖‖C

β−1/2
XX ‖

that the left hand side of Equation (25) converges to zero in O(εn). If 0 ≤ β < 1/2, we have

εn‖(CXX + εnI)−1C
β+1/2
XX ‖
= ε

β+1/2
n ‖ε

1/2−β
n (CXX + εnI)−(1/2−β)‖‖(CXX + εnI)−β−1/2C

β+1/2
XX ‖ ≤ ε

β+1/2
n ,

which proves Equation (25).

With the order of εn to balance Equations (24) and (25), the asserted rate of consistency is ob-

tained.

The following theorem shows the convergence rate of the estimator used in the second step of

KBR.

Theorem 12 Let f be a function in HX , and (Z,W ) be a random variable taking values in X ×Y .

Assume that E[ f (Z)|W = ·] ∈ R (Cν
WW ) for some ν ≥ 0, and that Ĉ

(n)
WZ : HX → HY and Ĉ

(n)
WW : HY →

HY are bounded operators such that ‖Ĉ
(n)
WZ −CWZ‖ = Op(n

−γ) and ‖Ĉ
(n)
WW −CWW‖ = Op(n

−γ) for

some γ > 0. Then, for a positive sequence δn = n−max{ 4
9

γ, 4
2ν+5

γ}, we have as n → ∞

∥∥Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f −E[ f (Z)|W = ·]

∥∥
HY

= Op(n
−min{ 4

9
γ, 2ν

2ν+5
γ}).

Proof Let η ∈ HX such that E[ f (Z)|W = ·] =Cν
WW η. First we show

∥∥Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f −CWW (C2

WW +δnI)−1CWZ f
∥∥

HY
= Op(n

−γδ
−5/4
n ). (26)

The left hand side of Equation (26) is upper bounded by

∥∥Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
(Ĉ

(n)
WZ −CWZ) f

∥∥
HY

+
∥∥(Ĉ(n)

WW −CWW )(C2
WW +δnI)−1CWZ f

∥∥
HY

+
∥∥Ĉ

(n)
WW ((Ĉ

(n)
WW )2 +δnI

)−1(
(Ĉ

(n)
WW )2 −C2

WW

)(
C2

WW +δnI
)−1

CWZ f
∥∥

HY
.

For A = Ĉ
(n)
WW , we have

‖A(A2 +δnI)−1‖= ‖{A2(A2 +δnI)−1}1/2(A2 +δnI)−1/2‖ ≤ δ
−1/2
n ,
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and thus the first term of the above bound is of Op(n
−γδ

−1/2
n ). A similar argument to CWW combined

with the decomposition CWZ = C
1/2
WWUWZC

1/2
ZZ with ‖UWZ‖ ≤ 1 shows that the second term is of

Op(n
−γδ

−3/4
n ). From the fact

‖(Ĉ(n)
WW )2 −C2

WW‖ ≤ ‖Ĉ
(n)
WW (Ĉ

(n)
WW −CWW )‖+‖(Ĉ(n)

WW −CWW )CWW‖= Op(n
−γ),

the third term is of Op(n
−γδ

−5/4
n ). This implies Equation (26).

From E[ f (Z)|W = ·] =Cν
WW η and CWZ f =CWW E[ f (Z)|W = ·] =Cν+1

WW η, the convergence rate

∥∥CWW (C2
WW +δnI)−1CWZ f −E[ f (Z)|W = ·]

∥∥
HY

= O(δ
min{1, ν

2
}

n ). (27)

can be proved in the same way as Equation (25).

Finally, combining Equations (26) and (27) proves the assertion.

6.3 Consistency Results in L2

Recall that C̃WW is the integral operator on L2(QY ) defined by Equation (15). The following the-

orem shows the convergence rate on average. Here R (C̃0
WW ) means L2(QY ). In the following the

canonical mapping from HY to L2(QY ) is denoted by JY . The mapping JX : HX → L2(QX ) is

defined similarly.

Theorem 13 Let f be a function in HX , and (Z,W ) be a random variable taking values in X ×Y

with distribution Q. Assume that E[ f (Z)|W = ·] ∈ HY and JY E[ f (Z)|W = ·] ∈ R (C̃ν
WW ) for some

ν > 0, and that Ĉ
(n)
WZ : HX → HY and Ĉ

(n)
WW : HY → HY are bounded operators such that ‖Ĉ

(n)
WZ −

CWZ‖ = Op(n
−γ) and ‖Ĉ

(n)
WW −CWW‖ = Op(n

−γ) for some γ > 0. Then, for a positive sequence

δn = n−max{ 1
2

γ, 2
ν+2

γ}, we have as n → ∞

∥∥JY Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f − JY E[ f (Z)|W = ·]

∥∥
L2(QY )

= Op(n
−min{ 1

2
γ, ν

ν+2
γ}),

where QY is the marginal distribution of W.

Proof Note that for f ,g ∈ HX we have (J f ,Jg)L2(QY ) = E[ f (W )g(W )] = 〈 f ,CWW g〉HX
. It follows

that the left hand side of the assertion is equal to

∥∥C
1/2
WW

{
Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f −E[ f (Z)|W = ·]

}∥∥
HY

.

First, by a similar argument to the proof of Equation (26), it is easy to show that the rate of the

estimation error is given by

∥∥C
1/2
WW

{
Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f −CWW (C2

WW +δnI)−1CWZ f
}∥∥

HY
= Op(n

−γδ−1
n ).

It suffices then to prove

∥∥JY CWW (C2
WW +δnI)−1CWZ f − JY E[ f (Z)|W = ·]

∥∥
L2(QY )

= O(δ
min{1, ν

2
}

n ).
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Let ξ ∈ L2(QY ) such that JY E[ f (Z)|W = ·] = C̃ν
WW ξ. In a similar way to Theorem 1,

C̃WW JY E[ f (Z)|W = ·] = C̃WZJX f holds, where C̃WZ is the extension of CWZ to an operator from

L2(QX ) to L2(QY ), and thus JY CWZ f = C̃ν+1
WW ξ. If follows from JY CWW = C̃WW JY that the left hand

side of the above equation is equal to

∥∥C̃WW (C̃2
WW +δnI)−1C̃ν+1

WW ξ−C̃ν
WW ξ

∥∥
L2(QY )

.

A similar argument to the proof of Equation (27) shows the assertion.

The convergence rate of KBR follows by combining the above theorems.

Theorem 14 Let f be a function in HX , (Z,W ) be a random variable that has the distribution

Q defined by Equation (5), and m̂
(n)
Π be an estimator of mΠ such that ‖m̂

(n)
Π −mΠ‖HX

= Op(n
−α)

(n → ∞) for some 0 < α ≤ 1/2. Assume that the Radon Nikodym derivative dΠ/dPX is in R (C
β
XX)

with β ≥ 0, and E[ f (Z)|W = ·] ∈ R (Cν
WW ) for some ν ≥ 0. For the regularization constants εn =

n
−max{ 2

3
α, 1

1+β α}
and δn = n−max{ 4

9
γ, 4

2ν+5
γ}, where γ = min{ 2

3
α, 2β+1

2β+2
α}, we have for any y ∈ Y

fT
X RX |Y kY (y)−E[ f (Z)|W = y] = Op(n

−min{ 4
9

γ, 2ν
2ν+5

γ}), (n → ∞),

where fT
X RX |Y kY (y) is given by Equation (13).

Theorem 15 Let f be a function in HX , (Z,W ) be a random variable that has the distribution

Q defined by Equation (5), and m̂
(n)
Π be an estimator of mΠ such that ‖m̂

(n)
Π −mΠ‖HX

= Op(n
−α)

(n → ∞) for some 0 < α ≤ 1/2. Assume that the Radon Nikodym derivative dΠ/dPX is in R (C
β
XX)

with β ≥ 0, E[ f (Z)|W = ·] ∈ HY , and JY E[ f (Z)|W = ·] ∈ R (C̃ν
WW ) for some ν > 0. With the

regularization constants εn = n
−max{ 2

3
α, 1

1+β α}
and δn = n−max{ 1

2
γ, 2

ν+2
γ}, where γ = min{ 2

3
α, 2β+1

2β+2
α},

we have ∥∥fT
X RX |Y kY (W )−E[ f (Z)|W ]

∥∥
L2(QY )

= Op(n
−min{ 1

2
γ, ν

ν+2
γ}),

as n goes to infinity.
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Steffen Grünewälder, Arthur Gretton, and John Shawe-Taylor. Smooth operators. In Proceedings of

the 30th International Conference on Machine Learning (ICML2013), pages 1184–1192, 2013.

Zaid Harchaoui, Francis Bach, and Eric Moulines. Testing for homogeneity with kernel Fisher

discriminant analysis. In Advances in Neural Information Processing Systems 21, pages 609–

616, Cambridge, MA, 2008. MIT Press.

Simon J. Julier and Jeffrey K. Uhlmann. A new extension of the kalman filter to nonlinear systems.

In Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing,

Simulation and Controls, 1997.

Annaliisa Kankainen and Nikolai G. Ushakov. A consistent modification of a test for independence

based on the empirical characteristic function. Journal of Mathematical Sciencies, 89:1582–1589,

1998.

Steven MacEachern. Estimating normal means with a conjugate style Dirichlet process prior. Com-

munications in Statistics – Simulation and Computation, 23(3):727–741, 1994.

Steven N. MacEachern, Merlise Clyde, and Jun S. Liu. Sequential importance sampling for nonpara-

metric Bayes models: The next generation. The Canadian Journal of Statistics, 27(2):251–267,

1999.

Paul Marjoram, John Molitor, Vincent Plagnol, and Simon Tavare. Markov chain monte carlo

without likelihoods. Proceedings of the National Academy of Sciences, 100(26):15324–15328,

2003.
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