
Kernel-Density-Based Clustering of Time Series Subsequences Using a
Continuous Random-Walk Noise Model

Anne Denton
Department of Computer Science

North Dakota State University
Fargo, North Dakota 58105-5164, USA

anne.denton@ndsu.edu

Abstract

Noise levels in time series subsequence data are typi-
cally very high, and properties of the noise differ from those
of white noise. The proposed algorithm incorporates a con-
tinuous random-walk noise model into kernel-density-based
clustering. Evaluation is done by testing to what extent the
resulting clusters are predictive of the process that gener-
ated the time series. It is shown that the new algorithm
not only outperforms partitioning techniques that lead to
trivial and unsatisfactory results under the given quality
measure, but also improves upon other density-based algo-
rithms. The results suggest that the noise elimination prop-
erties of kernel-density-based clustering algorithms can be
of significant value for the use of clustering in preprocess-
ing of data.

1. Introduction

Finding patterns in time series subsequence data is a no-
toriously difficult problem. Standard clustering techniques,
such as k-means and hierarchical clustering, result in clus-
ters that are largely independent of the time series from
which they originate [13]. Kernel-density-based clustering
can lead to meaningful results, especially if an appropri-
ate noise model is chosen [6]. Noise elimination in kernel-
density-based clustering is based on the concept of a noise
threshold, below which maxima in the density distribution
are not considered as cluster centers [10]. Most time series
data follow a noise distribution that differs from standard
assumptions on randomness, and it can be beneficial to in-
corporate a more accurate noise distribution. While previ-
ous work [6] assumed a discrete random-walk model, the
current paper is based on a continuous model that is much
more realistic in most settings.

Time series clustering algorithms have been used di-

rectly as pattern extraction algorithms [15], and as pre-
processing step for further data mining [5]. Neither appli-
cation relies on assigning a cluster to all subsequences. It
can be expected that noise elimination as part of a cluster-
ing process will increasingly become important in the pre-
processing of data for classification. While attribute selec-
tion in classification has traditionally been performed on the
basis of classification quality [14] this approach is vulnera-
ble to the ”curse of dimensionality”, and does not scale well
to a large number of attributes. It is, therefore, important
to develop preprocessing techniques that are able to distin-
guish between noise and meaningful data without using the
class label. In many current data mining problems, objects
are characterized by diverse data, that can include time se-
ries data as well as other attributes. In this setting it is very
important that attributes derived from a time series should
contribute information that can be beneficial to a classifica-
tion process, and noise elimination in clustering gains new
importance.

The current paper examines the time series subsequence
clustering problem from a classification perspective, where
the class label is the correct identification of the entire clus-
tering rather than any individual cluster. Quality of pattern
extraction is evaluated by testing to what extent the assign-
ment to clusters can be used to identify the type of time
series from which the clusters were derived. K-means and
other partitioning methods produce a trivial and very poor
result under this measure because a subsequence is guaran-
teed to be assigned to some cluster even if the clustering
was produced based on a different time series. In kernel-
density-based clustering, subsequences may be identified as
noise, and will then not be assigned to the respective time
series. It will be shown that the ratio of correctly to in-
correctly assigned subsequences can become very large for
some models that discard a substantial number of subse-
quences as noise.

The paper is organized as follows. Section 2 introduces

the concepts and techniques relevant to the problem, section
3 explains the concept underlying the algorithm; section 4
describes the implementation; section 5 discusses the ex-
perimental evaluation, and section 6 concludes the paper.

2. Background

The term ”time series” is typically used for sequential
real-valued data that are collected at regular time intervals.
Many other types of sequential data can be distinguished,
such as sequences of integer-valued and categorical data.
Examples of time series data include ECG measurements,
weather recordings, and stock market data.
Definition 1: A time series T = t1, . . . , tn is a sequence of
real numbers, corresponding to values of an observed quan-
tity, collected at equally spaced points in time.
Definition 2: A subsequence of time series T = t1, . . . , tn,
with length w, is a sequence S = tm, . . . , tm+w−1 with
1 ≤ m ≤ n−w+1. The process of extracting subsequences
by incrementing m in steps of one is called application of a
sliding window.

Subsequences are commonly represented as vectors in a
w-dimensional vector space. Comparison of subsequences
can be done through any measure defined on a vector space,
such as an Lp norm. A typical choice is the L2 norm,
i.e., Euclidean distance. Some distance measures that are
specific to time series data, such as dynamic time warp-
ing (DTW) [2] and longest common subsequence similarity
(LCSS) [17] are not suitable for the short subsequences (w
between 8 and 16) considered in this paper.

Using Euclidean distance on the raw time series data
leads to clusterings that are dominated by the mean of the
subsequence. Hence, it is common to normalize the data. A
common type of normalization is Z-normalization in which
the mean is subtracted and the subsequence is divided by its
standard deviation [9]. In this paper a different approach,
which follows more naturally from the random-walk model,
is used. The mean is subtracted as in Z-normalization,
but the time series is then normalized based on the root-
mean-square of differences between adjacent data points.
Note that the differences are only used for the normaliza-
tion process and not as the actual data to be compared as in
[7].

A very simple model of a time series is ”strict white
noise” as defined in [16].
Definition 3: A Strict white noise time series is a normally
distributed sequence of values {et} corresponding to time t.
Mean µ and variance σ are assumed to be the same for all
time points.

E{et} = µ, var{et} = σ2, ∀t,

cov{et, es} = 0, ∀t �= s. (1)

Subsequences of such a time series, when represented as
vectors in a w-dimensional vector space, correspond to data
points, for which each attribute follows a Gaussian noise
distribution. The assumption of Gaussian noise is com-
monly made for data from a wide variety of sources and
data mining algorithms are typically able to handle this type
of noise.

Strict white noise behavior is, however, not often ob-
served in time series data. It is much more common that
successive points in a time series are correlated. For exam-
ple, a weather report that consistently predicts tomorrow’s
average temperature to be the yearly average would typi-
cally perform much more poorly than a report that claims
that tomorrow’s average temperature will be the same as to-
day’s. It is, therefore, important to define a noise model for
which the jumps between successive points are assumed to
be randomly distributed rather than the values themselves.
A time series that follows this model is called a random-
walk time series.
Definition 4: A Gaussian random-walk time series is a nor-
mally distributed sequence that satisfies

Xt − Xt−1 = et

E{et} = 0, var{et} = σ2, ∀t,

cov{et, es} = 0, ∀t �= s. (2)

An example of such a time series is provided among the data
sets from the UCR time series repository [12]. The values
of the Gaussian random-walk time series vary continuously.
Previous work [6] on clustering of time series data used a
limited representation in which successive points were as-
sumed to differ by unit steps. Such discrete random-walk
time series are typically of less practical relevance and will,
therefore, not be considered in this paper.

2.1. Kernel-Density-Based Clustering

Clustering based on kernel-density estimation is an es-
tablished technique in many contexts [3, 4, 10]. The kernel
density estimator for n data points xi, i = 1, . . . , n in a d-
dimensional space is given by

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi

h

)
(3)

where the kernel function K(x) is normalized∫
Rd

K(x)dx = 1. (4)

One of the most common choices as kernel function is a
Gaussian kernel. All calculations in this paper use this ker-
nel function

K(G)(x) =
1

(2π)d/2
exp

(
−|x|2

2

)
(5)

2

The Gaussian kernel is radially symmetric. A profile can,
therefore, be defined through

K(G)(x) = ck,dk(|x|2) (6)

where ck,d is a normalization constant that guarantees the
normalization in equation (4). Cluster centers are defined
as local maxima in the density landscape. In [10] these lo-
cal maxima are called density attractors and in [4] modes.
While [10] uses a feature space grid to assist in the search
for maxima, [4] parses the table of data points for each hill
climbing step. The latter approach was chosen in this paper
because it avoids representing the high-dimensional feature
space. To identify modes, all data points are taken as start-
ing points and their location is updated through a sequence
of hill climbing step. Updates, i.e. differences between ten-
tative cluster center locations for successive steps, are com-
puted as

mh(x) =

∑n
i=1 xig

(∣∣x−xi

h

∣∣2)
∑n

i=1 g
(∣∣x−xi

h

∣∣2) − x (7)

where g(x) = −k′(x) is the negative derivative of the ker-
nel profile. Data points are associated with the cluster center
to which they are attracted. Only modes above a threshold t
are considered cluster centers. Data points that are attracted
to modes below t are outliers or noise. When testing data
points for cluster membership only those points were con-
sidered for which the density at the original location already
exceeded t. In a standard application of density-based clus-
tering t is considered a parameter that has to be selected
by the user. The number of free parameters is often quoted
as drawback of density-based clustering. In this paper a
comparison with random-walk data is used to determine t,
effectively eliminating this parameter.

The next section addresses differences between standard
clustering problems and time series subsequence clustering
and their impact on kernel-density-based clustering.

3. Scaling the Coordinate System

Kernel-density-based clustering is robust against noise,
provided the noise leads to an approximately constant den-
sity surface. Constant contributions to the density distribu-
tion do not affect the position of maxima. This section will
demonstrate that, by default, the density landscape corre-
sponding to a random-walk time series cannot be consid-
ered constant. Using a standard implementation of density-
based clustering would result in cluster centers that are due
to random-walk behavior, i.e., noise. This section also
demonstrates how to scale the coordinate system to avoid
this problem.

2 4 6 8
−4

−2

0

2

4

Time Point

N
or

m
al

iz
ed

 V
al

ue

RW cluster
Eigenvector

Figure 1: Most relevant eigenvector for w = 8 together
with the only cluster of random-walk time series for h = 3,
both normalized according to equation (16).

Consider the density distribution of a white noise time
series. The kernel-density function has the shape

ρ(x′) ∼
∫

dx1 · · · dxw exp

(
−

n∑
i=1

(x′
i − xi)2

2h2

)

× exp

(
−

w∑
i=1

x2
i

2σ2

)
(8)

where w is the window size, and thereby dimensionality, of
the subsequences, σ is defined in 2 and h is the width of the
Gaussian that is used as kernel function.

The distribution in equation (8) is invariant under rota-
tions of the coordinate system, implying that the distribution
ρ(x′) depends on only the absolute value r = |x′|. For data
points of interest, r is kept fixed, and hence the distribution
is constant for the space that is explored. Note that, strictly,
a normalization process that results in fixed r cannot pre-
serve a Gaussian distribution in the individual coordinates:
The normalization limits the maximal value in any one di-
mension to

√
w for

∑w
1 x2

i = w and, thereby, causes the tail
of the Gaussian distribution to be cut off. For large w this
effect is negligible and it will be ignored in the following.

As mentioned earlier, noise in time series data are more
likely to be described well by a random-walk series than by
white noise. A random-walk time series has the following
density distribution

ρ(x′) ∼
∫

dx1 · · · dxw exp

(
−

n∑
i=1

(x′
i − xi)2

2r2

)

× exp

(
−

w∑
i=2

(xi − xi−1)2

2σ2

)
(9)

This distribution is not rotationally invariant. The following
steps have the goal of tranforming the distribution such that

3

it becomes rotationally invariant. As a first step, the argu-
ment of the second exponential function (S(x)) is expanded

ρ(x′) ∼
∫

dx1 · · · dxw exp

(
−

n∑
i=1

(x′
i − xi)2

2r2

)

exp
(
−S(x)

2σ2

)
(10)

with

S(x) = x2
1 + x2

w + 2
w−1∑
i=2

x2
i − 2

w∑
i=2

xi−1xi (11)

S(x) can be written in matrix form S = xT Ax

S(x) =

x1

x2

x3

. . .
xw

T

1 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0

. . .
0 0 0 . . . 1

x1

x2

x3

. . .
xw

(12)
Matrix A is then diagonalized. In practice, this is done

numerically. For w = 4 the diagonalization can be done
analytically, so this case will be used as an example. The
diagonalized matrix for w = 4 is

D =

0 0 0 0
0 (2 −√

2) 0 0
0 0 2 0
0 0 0 (2 +

√
2)

 (13)

It can be seen that the system has four distinct eigenvalues.
The corresponding eigenvectors are

u1 =

1
1
1
1

 u2 =

1

2
√

2 −√
2

−1
1 −√

2
−1 +

√
2

1

 (14)

u3 =
1
2

1
−1
−1
1

u4 =

1

2
√

2 +
√

2

−1
1 +

√
2

−1 −√
2

1

The first eigenvector, u1, corresponding to eigenvalue 0,
does not contribute in the practical implementation, because
the mean of each subsequence is subtracted as a normaliza-
tion step. It can be shown, through approximate evaluation
of the density integral in equation (8) that the eigenvector
corresponding to the smallest non-zero eigenvalue, namely
u2, is responsible for the density maximum in the untrans-
formed system. The calculation is omitted due to lack of
space. Figure 1 shows the corresponding eigenvalue for
w = 8 together with a result of density-based clustering
without scaling.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

x=y Eigen−
vector

Figure 2: Simplified 2-dimensional system.

The remainder of the transformation is straightforward.
The eigenvectors u1 . . . u4 define a rotation matrix V that
can be used to transform the coordinate system

xrot = V Tx (15)

Transformation of A results in the diagonal matrix from
equation (13) D = VTAV. Note that the normalization
in equation (14) was chosen such that T is orthogonal,
which is different from the normalization applied in figure
1. A natural normalization condition for time series subse-
quences is

w∑
i=2

(xi − xi−1)2 = (w − 1) (16)

In the limit of w → ∞, a random-walk time series with
σ = 1 satisfies this normalization. In the new coordinate
system, equation (12) can be written as

1
2σ2

S(x) =
1

2σ2
xT

rotDxrot (17)

Note that the system can be interpreted as effectively
having different values of σ for each dimension

σeff
i =

σ√
di

for di �= 0 (18)

where di is the ith eigenvalue. Note that d1 = 0 has to
be excluded. This is consistent with the normalization pro-
cedure of x that involves subtracting the mean, or in other
words, the component corresponding to u1. Different val-
ues for σ in different dimension clearly violate rotational
symmetry. To achieve rotational symmetry the dimensions
are scaled by

√
D, resulting in an overall transformation

xscaled =
√

DVT x (19)

4

2 4 6 8 10 12

0.3

0.4

0.5

0.6

Cluster Index

D
en

si
ty

no scaling
scaling

Figure 3: Comparison of densities of the first 13 clusters
from random-walk data for the algorithm with and withouth
scaling (h = 1, nodes = 4).

In the scaled coordinate system rotational invariance is sat-
isfied, and the original σ describes the distribution for all
dimensions

1
2σ2

S(x) =
1

2σ2
xT

scaledxscaled (20)

3.1. Intuitive Interpretation

It may initially seem counter-intuitive that one random-
walk time series should correspond to a higher kernel-
density than all others, and thereby dominate the system
unless scaling is applied. This section will discuss a sys-
tem that is defined in a slightly different way, and captures
the essential behavior already in two dimensions.

A 2-dimensional system can be defined by looking at
time series subsequences with w = 3 for which the first
time point is assumed to be fixed at x0 = 0. The density
distribution for the remaining two time points is then

ρ(x′) ∼
∫

dx1dx2 exp

(
−

2∑
i=1

(x′
i − xi)2

2r2

)

exp
(
−x2

1 + (x2 − x1)2

2σ2

)
(21)

The resulting equation for S(x) analogous to equation (12)
is

S(x) =
(

x1

x2

)T (2 −1
−1 1

)(
x1

x2

)
= xTAsx (22)

This system can be visualized by plotting the line of
S(x) = 2 which corresponds to the normalization condi-
tion equivalent to equation (16). Figure 2 shows the result-
ing ellipse. In this simple two-dimensional case it is easy to

True Assign. False Assign.
0

0.2

0.4

0.6

0.8

1
k−means
AD−2004
no scal.
w = 8
w = 12
w = 16

Ratio (r)
0

10

20

30

40

50

60

Figure 4: Relative number of correct (T) and incorrect
(F) assignments, added over all data sets, and their ratio
(r=T/F).

see why an ellipse should be expected: If variable x1 and
x2 were each normally distributed with normalization con-
dition x2

1 + x2
2 = 2 we would see the circle with radius

√
2.

In the random-walk system x2 is replaced by u2 = x2−x1.
Hence, the ellipse is the result of adding x2 = x1 to the
functions representing the circle x2 = ±√2 − x2

1. Figure
2 also depicts the direction of the relevant eigenvector. It
now becomes clear what causes the non-trivial direction of
the most relevant eigenvector.

4. Implementation

The implementation was done in MATLAB as an ex-
tension of [11], a kd-tree-based [1] MATLAB toolbox for
kernel-density estimation. Modes are evaluated using a hill-
climbing algorithm. As in [6] sequences are not only com-
pared in their original position but also in shifted locations.
This shifting is necessary to prevent a characteristic pattern
that extends over only part of the time interval from appear-
ing as multiple cluster centers. The comparison process in-
volves taking the first m time points of one subsequence
and the last m time points of the other, normalizing both,
calculating the distance, and applying a penalty as in [6].

The algorithm has the following components. Sub-
sequences are normalized by subtracting the mean. For
practical reasons a normalization was chosen such that∑w

i=2(xi − xi−1)2 = (w − 1)2 rather than the normaliza-
tion from equation 16. A transformation matrix is then con-
structed as described in section 3 and all subsequences are
scaled according to equation (19). Note that a back transfor-
mation has to be applied every time a distance is calculated
because the shifting of locations described in the first para-
graph of this section has to be applied in the original space.
The back tranformation, which is also applied to the final

5

cluster centers, is given by

x = V
√

D
−1

xscaled (23)

Note that the inversion of
√

D is easy to achieve since the
matrix is diagonal. Strictly speaking, the matrix D from
equation (13) cannot be inverted because of its eigenvalue
0. However, only the (w − 1) eigenvectors corresponding
to the non-zero eigenvalues have to be considered as basis
vectors for the transformed space, due to the normalization.
Transformation from the (w − 1)-dimensional space back
into the w-dimensional original space is straight forward,
and unaffected by the eigenvalue 0.

A density landscape is constructed based on the trans-
formed data points. Comparisons between cluster centers
are done using the same algorithm that was described for
individual sequences, and matches between cluster centers
may involve a time shift. This significantly reduces appar-
ent redundancies between cluster centers. The procedure re-
quires an additional heuristic cut-off distance. In the current
paper, only those modes of the density distribution are con-
sidered as separate cluster centers that do not have a clus-
ter center with higher density within a range of 0.1

√
w. A

threshold has to be identified below which cluster centers
are considered as noise. For this purpose a clustering is
performed on the first 500 points of the random-walk time
series from [12]. The maximum density of cluster centers
in this clustering is chosen as noise threshold. The distribu-
tion of densities of cluster centers was also used to test the
algorithm. Figure 3 shows that the density for the first 13
cluster centers shows a much slower decrease for the algo-
rithm that uses scaling than for the same algorithm without
scaling. A threshold that does not result in cluster centers
due to noise in the scaled algorithm can still return noise-
generated cluster centers in the unscaled algorithm. If the
noise-threshold is chosen higher, the number of clusters that
can be identified is reduced.

The testing is done as follows. Normalization and scal-
ing are done in the same way as when constructing clus-
ters. Assignment to a cluster center is achieved using hill-
climbing on the same density landscape. Only those data
points that have a density exceeding the noise threshold be-
fore beginning the hill-climbing are assigned to a cluster
center. Due to the shifting procedure a subsequence can be
assigned to multiple clusters. In the final evaluation a sub-
sequence is considered as predicting a particular time series
if it is assigned to at least one of the clusters of that time
series. Note that evaluation is done on a different part of the
time series for all experiments. A correct assignment cor-
responds to an instance of a subsequence being assigned to
at least one cluster derived from a time series that has the
same source. An incorrect assignment signifies that a sub-
sequence matches at least one cluster of a time series of a
different source.

Table 1: Results of evaluation
data AD- no w = w = w =
set 2004 sc. 8 12 16

T 0.60 0.44 0.41 0.17 0.16
total F 0.23 0.10 0.08 0.011 2.7e-3

r 2.66 4.22 5.15 15.0 58.8
T 0.92 0.95 0.91 0.87 0.91

ecg F 0.13 0.14 0.085 0.033 0.016
r 7.26 7.02 10.79 26.2 54.9
T 0.042 0.016 0 0 0

buoy F 0.026 6e-3 0 0 0
r 1.62 2.67 NaN NaN NaN

bal- T 0.46 0.5 0.40 0.30 0.29
loon F 0.09 0.061 0.027 0.003 1.3e-3

r 5.16 8.30 15.0 99.3 232
T 0.52 2e-3 0.18 0.10 8e-3

glass F 0.073 1.5e-3 0.047 0.052 4.3e-3
r 7.11 1.33 3.89 1.88 1.88
T 0.088 0.14 0.048 8e-3 8e-3

steam F 0.053 9.1e-3 0.025 3e-3 3e-4
r 1.65 1.59 1.96 2.67 32.0
T 0.89 0.64 0.76 0.19 0.17

speech F 0.48 0.22 0.23 8e-3 1e-3
r 1.85 2.89 3.36 23.8 168
T 0.87 0.55 0.76 0.05 4e-3

quake F 0.49 0.18 0.18 4.3e-3 3e-4
r 1.76 2.99 4.24 11.8 16
T 0.68 0.4 0.31 0.04 0.028

ocean F 0.26 0.057 0.05 0 0
r 2.63 6.98 6.15 Inf Inf

dar- T 0.97 0.74 0.33 2e-3 0
win F 0.44 0.18 0.08 5e-4 5e-4

r 2.18 4.14 4.08 4.0 0

5. Experimental Evaluation

The algorithm was evaluated on several standard data
sets from the UCR Time Series Data Mining Archive [12] as
well as on an ECG series (MIT-BIH Arrhythmia Database:
mitdb100) from PhysioBank [8] (ecg). Descriptions of the
data sets from [12] are distributed with the data. The series
ecg was compressed by averaging over 20 consecutive val-
ues, the buoy series from the UCR Archive by averaging the
buoy sensor series over 4 values. Table 1 lists experimental
results. Note that buoy stands for buoy sensor, glass for the
first series of glassfurnace, steam for the second series of
steamgen, quake for earthquake, and shear for ocean shear.

The evaluation was done as follows. For each time series
clusters were constructed based on the first 500 data points.
As a first step, subsequences were extracted through appli-
cation of a sliding window. The window size was w = 8,
unless otherwise stated. Evaluation was done on the next

6

total ecg balloon glass steam speech quake ocean darwin

10
0

10
1

10
2

Ratio of Average Number of Correctly / Incorrectly Assigned Points

k−means
AD−2004
no scaling
w = 8
w = 12
w = 16

Figure 5: Comparison of results (for parameters see text).

500 data points. Results list the fraction of correctly / incor-
rectly assigned sequences. A subsequence can be assigned
to a cluster from the correct time series, and can possibly
also be assigned to a cluster of any of the other time series.
In fact, k-means and other partitioning algorithms assign
a subsequence to one cluster of every time series against
which it is tested. The relative number of correct assign-
ments is therefore guaranteed to be one, and the relative
number of incorrectly assigned subsequences is one as well.
This result is trivial and does not require an implementation.

Five algorithms were compared besides k-means. Den-
sity based clustering with compensation for disrete random-
walk noise was performed using the parameters from [6].
Parameters for the density-based clustering with w = 8
with and without scaling were h = 2 and threshold t =
5e − 5. For w = 12 the choice was h = 2 and t = 6e − 7.
For w = 16 the width of the kernel function was chosen
to be h = 3 and the threshold t = 5e − 11. Note that the
choice of threshold was determined from the density distrib-
ution of a random-walk time series that was clustered under
the same conditions.

Figure 4 compares the average results over all data sets.
It can be seen that the average number of correct assign-
ments is relatively large for traditional algorithms. K-means
and other partitioning algorithms trivially have the largest
possible relative number of correct and incorrect assign-
ments, namely one. Density-based algorithms, in general,
allow outliers and both types of assignments are likely to
be smaller than their maximum value. The implementation
from [6] leads to the largest number of correct and incorrect
assignments and the poorest ratio among the density-based
algorithms. To understand this it is important to note that
the normalization in the current paper is based on differ-

ences between adjacent points whereas the normalization
in [6] used the standard deviation of the time series val-
ues. Figure 4 shows that the new algorithm performs better
even without scaling, which suggests that the normalization
based on differences between adjacent points is more suc-
cessful.

The relative number of correct assignments is smaller for
the implementation with scaling than for the implementa-
tion without scaling and the implementation from [6]. More
importantly, the number of incorrect assignments follows
the same trend but the decrease occurs much faster. The ra-
tio between correct and incorrect assignments is largest for
the implementation described in this paper. This result sup-
ports the claim that the algorithm with scaling is better able
to separate noise from meaningful data. For larger window
sizes the reduction of recognized clusters and the increase
in the ratio between correct and incorrect assignments be-
comes even more significant. This is to be expected, since a
long subsequence is less likely to match a cluster over its en-
tire length and more likely to be considered noise. However,
if a sequence does match a cluster, this match is expected to
be reliable.

Details are listed in table 4 and the ratio of correct to
incorrect assignments is plotted in figure 5. Correct assign-
ments (T) were evaluated on data from the same time series,
albeit a different section of it. Incorrect assignments were
determined from all other data sets in the table and the result
was divided by the total number of subsequences that were
tested. The ratio r is calculated as r=T/F. It can be noted
that for one data set — the ocean shear data set from [12]
— the number of incorrect assignments is 0 for w = 12
and w = 16 and the ratio, therefore, is infinite and cannot
be plotted. All data sets from [6] are listed as well as sev-

7

eral others. Results for the random-walk time series are not
listed since the recognition threshold was picked based on
the random data sets, and the number of matches was 0 for
all runs of the new algorithm. Another data set, the buoy
data set also leads to no assignments to clusters for the al-
gorithm presented in this paper. This is an indication that
the cluster result from [6] was still due to noise despite the
compensation for discrete random-walk noise and that com-
pensating for continuous rather than discrete random-walk
noise is important. It can, furthermore, be seen that the sub-
sequences are assigned much more reliably for some data
sets than for others. Time series with a deterministic physi-
cal origin lead to far better results than measurements from
less deterministic sources. The best results were achieved
for speech data, the balloon data set, and ecg data. For these
data sets, correct assignments were more likely than incor-
rect ones by about two orders of magnitude for w = 16.

6. Conclusions

A clustering algorithm for time series subsequences was
introduced that considers continuous random-walks as its
noise model. The algorithm makes use of a coordinate
transformation on the feature space that results in a uni-
form noise threshold for all valid input sequences. Eval-
uation was based on a new measure that specifically tests
the success of distinguishing cluster members from noise.
According to the new evaluation measure, the quality of re-
sults is improved by more then two orders of magnitude
on some data sets compared with k-means. These results
suggest that the algorithm can be productively used in time
series subsequence clustering and may also hold concepts
that can be generalized beyond this particular application.
The concept of using kernel-density-based clustering with a
specific noise-model for improved noise elimination has the
potential of being applied to many other settings.

7. Acknowlegements

Thanks to Alan Denton for proofreading the paper.

References

[1] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9),
1975.

[2] D. Berndt and J. Clifford. Advances in knowledge discov-
ery and data mining, chapter Finding patterns in time series:
a dynamic programming approach, pages 229–248. AAAI
Press, Menlo Park, CA, 1996.

[3] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
17(8):790–799, 1995.

[4] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(5):603–619, 2002.

[5] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and
P. Smyth. Rule discovery from time series. In Proceed-
ings of the IEEE Int. Conf. on Data Mining, Rio de Janeiro,
Brazil, 1998.

[6] A. Denton. Density-based clustering of time series subse-
quences. In In Proceedings of The Third Workshop on Min-
ing Temporal and Sequential Data (TDM 04) in conjunction
with The Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Seattle, WA, 2004.

[7] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani. Min-
ing the stock market (extended abstract): which measure
is best? In Sixth ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 487–496, Boston, MA,
2000.

[8] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Haus-
dorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody,
C.-K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit,
and PhysioNet: Components of a new research resource for
complex physiologic signals. Circulation, 101(23):e215–
e220, 2000 (June 13).

[9] D. Goldin and P. Kanellakis. On similarity queries for time-
series data: Constraint specification and implementation. In
1st Int’l Conf. on the Principles and Practice of Constraint
Programming, LNCS 976, pages 137–153. Springer, Sep.
1995.

[10] A. Hinneburg and D. Keim. A general approach to clustering
in large databases with noise. Knowl. Inf. Syst., 5(4):387–
415, 2003.

[11] A. Ihler. Kernel density estimation toolbox for matlab (r13),
accessed 04/2003.

[12] E. Keogh and T. Folias. The ucr time series data mining
archive, 2002.

[13] E. Keogh, J. Lin, and W. Truppel. Clustering of time series
subsequences is meaningless: implications for previous and
future research. In Proceedings of the IEEE Int. Conf. on
Data Mining, pages 115–122, Melbourne, FL, 2003.

[14] R. Kohavi and G. John. Wrappers for feature subset selec-
tion. Artificial Intelligence, 1–2:273–324, 1997.

[15] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in
massive time series databases. In Proceedings of the IEEE
Int. Conf. on Data Mining, Maebashi City, Japan, 2002.

[16] M. Priestley. Non-linear and non-stationary time series
analysis. Academic Press, 1988.

[17] M. Vlachos, D. Gunopoulos, and G. Kollios. Discovering
similar multidimensional trajectories. In Proceedings 18th
International Conference on Data Engineering (ICDE’02),
San Jose, CA, 2002.

8

